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Abstract: This paper deals with the modeling and simulation of the in-host dynamics of a virus. The
modeling approach was developed according to the idea that mathematical models should go beyond
deterministic single-scale population dynamics by taking into account the multiscale, heterogeneous
features of the complex system under consideration. Here, we considered modeling the competition
between the virus, the epithelial cells it infects, and the heterogeneous immune system with evolving
activation states that induce a range of different effects on virus particles and infected cells. The
subsequent numerical simulations showed different types of model outcomes: from virus elimination,
to virus persistence and periodic relapse, to virus uncontrolled growth that triggers a blow-up in the
fully activated immune response. The simulations also showed the existence of a threshold in the
immune response that separates the regimes of higher re-infections from lower re-infections (compared
to the magnitude of the first viral infection).
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1. Motivations and plan of the paper

The emergence of the SARS-CoV-2 virus, responsible for the initial COVID-19 outbreak and the
subsequent pandemic [3], has affected our minds, health, and well-being to the point of visibly
altering the way we think and organize our lives, including our individual feelings, work organization,
economics, and all expressions of collective behavior in our societies. These enormous problems have
affected all countries of the world.
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On the positive side, however, there has been a growing awareness that science is a primary asset to
be respected and preserved. In addition, human societies are now aware that we live in a complex and
interconnected world. Accordingly, science has generated an enormous amount of research activity,
not only in the various branches of biology and medicine, such as virology, immunology, and medical
care, but also in parallel fields such as economics [23,36], psychology, and social sciences [29]. Thus,
a new vision of social organization and a greater attention to welfare problems is developing in our
societies. A dialog within the scientific community was quickly opened, see [41], and brought to the
attention of society the fragility of our planet [6].

The mathematical sciences have followed this activity, as can be seen in [8] and in the contents of
various special issues on this topic [9,68]. Most of the published studies focus on various modifications
of the susceptible-infectious-recovered (SIR) model, to incorporate specific aspects that could impact
viral transmission; see [16, 30, 55]. Some applications refer specifically to regional areas [14, 28].
The structural simplicity of these models is discussed, for example, in [21]. An important problem
addressed by compartmental models of SIR-type is the calibration of the models with empirical data
focusing on regional or national areas. These studies have to deal with the difficulty of collecting
reliable empirical data, somewhat related to contagion problems related to transport dynamics.

On the other hand, some innovative ideas have been proposed by various authors to account for the
different types of heterogeneity of human societies and their aggregations. For example, in [8] the
authors proposed a multiscale vision related to a systems approach that goes far beyond deterministic
population dynamics. Indeed, individual responses to infection and pandemic events are
heterogeneously distributed throughout the population. In addition to biological heterogeneity, there
are other types of heterogeneity, such as physical, related to age, and social heterogeneity that can
include also the level of education, which leads to a greater or lesser ability to reach an advanced level
of awareness regarding the risk of contagion [2, 40]. In particular, contagion awareness also plays an
important role in open areas and has led to various studies of crowd dynamics with internal behavioral
variables [1, 12, 13, 18, 39].

Another key issue in regard to SARS-CoV-2 infections is the in-host dynamics following viral
infection, which can end with immediate recovery, hospitalisation or even death of patients.
Experimental research over the past four years has led to a large amount of data on viral loads or
various immune responses (see Figure 1 for an example of two such datasets). However, due to the
heterogeneity in the data (e.g., viral RNA vs. sgRNA vs. virus titers [31]) and in the experiments, the
difficulties in interpreting such data in the context of single-scale ODE models that consider some
generic “viral load” counted from the moment the virus enters the body (and not from when
symptoms appear, as shown in Figure 1 below), or even due to the complexity of the multiscale
mathematical models that requires new mathematical techniques to parametrise the models across
multiple scales (see the Discussion section below), not all of this data is currently being used to
parametrise the mathematical models for in-host viral dynamics.

There are currently a few publications that focus on modeling the multiscale heterogeneous aspects
of in-host infections with SARS-CoV-2 [34, 74]. For example, we mention the multiscale modeling
study in [74], which considered the heterogeneous cells with different numbers of surface receptors
(thus at the microscale level). The multiscale modeling study in [34] used an agent-based model to
describe the heterogeneous cell population (where cells have different internal concentrations of an
antiviral drug) and the heterogeneous cytokine concentrations secreted by the cells. These published
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models focused on discrete aspects of the variable that gives the heterogeneity of a population, and
thus they were mainly described by ordinary differential equations.

Example of viral load data (viral copies/ml) & immune data (IFN-𝛾 – secreting T cells as measured in a ELISPOT assay) as 
collected by Challenger et al., BMC Medicine (2022), 20:25

Figure 1. Example of viral load data (viral copies/ml) and immune data (IFNγ-secreting T
cells, as measured by ELISPOT assays) taken from Challenger et al. [19]. The authors in [19]
have summarized longitudinal viral load data from 19 different publications. They have also
collected detailed data on immune responses from the study by Tan et al. [67]. Here we show
this data for T cell numbers. Note the time axis showing “days from symptoms onset”, which
is different from the approach taken by the mathematical models that usually consider time
from the start of infection.

This paper is devoted to modeling the multiscale in-host dynamics that develop within each
individual immediately after viral infection. The multiscale aspect is related to the heterogeneity of
the immune response to the viral infection (i.e., to viruses and infected epithelial cells), which
determines the outcome of the infection. In contrast to previous studies that focus on discrete states of
cells, here we assume a continuous activity variable that describes the immune response. This
assumption is based on experimental studies that show a continuum of immune cell activation states,
that results from various cell integration of cytokine signals that drive their activation [25, 32].
Throughout this theoretical study, we consider the competition between the virus and the
heterogeneous immune responses that appear immediately after the viral infection of the upper
respiratory tract, before the virus moves to the lungs and causes further tissue damage.

The paper is structured as follows:

• Section 2 presents the biological assumptions regarding the dynamics of the virus versus the
immune system, where the initial competition involves the innate immunity, while the adaptive
immunity acts after a lapse of time necessary to learn the presence of the pathogen. The key
feature of the dynamics is to quantify the outcome of the competition, i.e., to understand whether
the innate immunity succeeds in preventing the virus from reaching the lungs, while the activation
of the adaptive immunity by vaccines can avoid this event.
• Section 3 presents the general multiscale modeling framework that uses the so-called kinetic

theory of active particles [10]. Then, this general framework is applied to a specific case of
in-host viral infections of epithelial cells, which trigger heterogeneous immune anti-viral
responses, where immune cells evolve different levels of activation. The details of the model
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(and the biological mechanisms behind different virus-cell and cell-cell interactions) are also
specified in this section.
• Section 4 presents some numerical simulations that illustrate the range of model dynamics: from

virus elimination, to virus re-infection, to virus persistence and immune blow-up. Different
parameters are varied to explore the possible outcomes of the model: the mechanisms behind
short-term or long-term infections, the impact of different initial viral loads, and the impact of
persistant immunity.
• Finally, Section 5 looks ahead to new research perspectives by focusing on the potential of this

multiscale modeling framework to understand the complex dynamics of heterogeneous immune
responses.

2. Phenomenology of the in-host dynamics

This section presents a phenomenological interpretation of the specific biological features of the
in-host competition between the virus and the immune system [50], where the dynamics take place
after contagion. As will be shown in the next section, this framework is intended to contribute to
the derivation of mathematical models that can describe the aforementioned competition in terms of a
differential system. We refer the reader to [8, 44, 47, 62] for more details regarding the description of
the in-host virus-immune competition.

Here, we focus on the early stages of infection, when the virus succeeds in bypassing the mucosal
barrier of the upper respiratory tract and begins to infect the epithelial cells, where it is confronted by
various immune reaction mechanisms. While innate responses play a very important role in blocking
the initial stages of invasion and in initiating antiviral immunity, the adaptive immune response stops
viral replication, leading to recovery from COVID-19 and the induction of persistent immune
memory [44]. Unfortunately, sometimes the immune mechanisms fail to contain the invasion and the
viral particles are able to reach the lung tissue, a critical factor in determining the evolution of the
disease and the fate of the patient [47]. This can happen because the number of infectious virus
particles is so high that they overcome the resistance of the immune mechanisms [73]. Indeed, the
cumulative number of virus particles infecting a patient is not easy to estimate. It could range from a
minimum number of virus particles needed to establish infection (i.e., infectious dose) to higher
numbers that can be acquired in hospitals, crowded environments, or from super-spreading events.
Alternatively, virus spread could be promoted by individual genetic variants [4], immunodeficiencies,
even those that would otherwise have gone unnoticed [48], senescence [42], or comorbidities that
impair the function of the immune system.

Referring to the study in [8], we remark that the investigation of viral infections in general requires
a multiscale approach. The macroscale corresponds to individuals that may be infected or uninfected,
while the microscale corresponds to in-host entities within infected individuals. The link between
the two scales is provided by the dynamics of contagion, which depend on the multiple parameters
mentioned above. Keeping this general framework in mind, the content of our paper focuses on the
in-host dynamics evolving from the viral load as an input data. Also related to input data, we remark
that since SARS-CoV-2 is a new virus [47], the antibodies induced by other coronaviruses, such as
SARS-CoV and MERS, in most of cases do not recognize and neutralize this new virus.

The specific features to be considered in the modeling approach of the dynamics of the biological

Networks and Heterogeneous Media Volume 19, Issue 2, 655–681.



659

system under consideration are described by the following points, which are preliminary to modeling.
We do not naively claim that the description is exhaustive, as it is limited to the specific assumptions
that will be actually included in the modeling approach.

1. Modeling Framework: The modeling approach is developed at the micro-scale, within an
infected individual, and focuses on the dynamics of the in-host entities, i.e., cells within the
tissue, virus particles, and immune agents. After a viral infection, there is a competition between
the virus and the immune system within each infected individual. The infection may progress (or
regress) due to a superiority (or inferiority) of the virus over the immune defense, and may end
with a full recovery of the patient, with the so-called long COVID-19, or with the death of the
patient. These outcomes are based on a complex dynamic by which antiviral immune
mechanisms prevent or not the passage of the virus from the upper respiratory tract to the lungs,
as well as on the time needed for the activation of adaptive immunity to eliminate the virus.

2. Multiple Characteristics: As noted above, the macroscopic scale corresponds to individuals and
the microscopic scale corresponds to in-host (i.e., within an individual) entities such as epithelial
cells, virus particles, and immune agents.

3. Contagion: The likelihood of infection depends on the number of viral copies (viral load) that
can reach the respiratory tract of a susceptible person. The arrival of an infectious viral load
depends mostly on the dynamics at the macroscopic scale, i.e., the interaction between a person
spreading the virus and other susceptible individuals and the social distance between them. The
risk of contagion is also influenced by the characteristics of the area where the infection occurs
(temperature, humidity, etc.) and on the time during which susceptible individuals are exposed
to the virus. The result of these dynamics modulates the number of infectious virus copies, a
modulation that critically influences the initial in-host dynamics of the virus-immune system
within each susceptible individual.

4. Viral Load: Viral load is the number of virus particles simultaneously penetrating a person. The
total number of SARS-CoV-2 virions was estimated in a recent experimental study [64]. The
minimum infectious dose of SARS-CoV-2 that can cause COVID-19 in humans is still an open
question, although some modeling studies and some experimental animal studies have estimated
the minimum infectious dose of SARS-CoV-2 to be of the order of hundreds of virions [37, 69].
In a recent experimental study, the total number of SARS-CoV-2 present in an infected individual
has been estimated to be in the billions [64]. The highest number of virus particles is produced
just before the onset of symptoms [37].

5. Affinity: Another important factor to consider is the affinity of the virus for human epithelial
cells. Affinity is a specific property of each variant of the virus.

6. Dynamics of the Virus: Through spike proteins, the virus interacts with and enters human
epithelial cells, where thousands of new copies of the virus are produced. These then invade
additional epithelial cells.

7. Virus Variants–Copying Errors: During the rapid production of new viruses within the infected
cell, many mistakes are made in the copying (transcription) of the viral RNA. Most of these errors
(mutations) are inconsequential or result in the production of less effective virus particles. In a
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few cases, new variants with more invasive properties may appear. Although the likelihood of the
emergence of more infectious variants is very low, Darwinian competition among virus particles
may favor their spread.

8. Dynamics of the Immune System: On the cell membrane as well as in the cytoplasm, human
cells have several sensors (e.g., pattern recognition receptors) that detect the presence of viral
RNA. These sensors trigger a variety of reactions that lead to the destruction of viral RNA and
the release of alarm signals. Among the early signals released by infected cells, a large family of
interferons triggers cell antiviral activities and prevents the spread of viral infection to
neighboring cells [52]. The virus-infected cell assembles the inflammasome and releases
multiple pro-inflammatory cytokines. This triggers an initial localized inflammatory response.
The infected cell may also undergo apoptosis before becoming a factory of new viral particles.
On the other hand, several proteins encoded by the viruses can sabotage and dampen immune
cell responses. The dynamics of the immune system’s reaction to viral invasion are markedly
affected by individual genetic variants that regulate the speed and intensity of each of the
above-mentioned reaction mechanisms.

9. Activation of Adaptive Immunity: In most cases, adaptive immunity is not activated during
these early stages unless primed by similar previous infections or by vaccines. However, at a
slower pace, the presence of viral particles and viral proteins is perceived by adaptive immunity
lymphocytes, alerted by the alarm signals released by both the infected epithelial cells and the
innate immunity cells recruited into the initial local inflammatory response. Antibodies of
different types (classes) are produced, progressively increasing in number and precision (affinity)
toward the viral proteins.

Figure 2. Representation of the in-host dynamics of the virus and of the immune response.

The above biological model provides a basic scheme on which to derive the mathematical model.
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Some additional details will have to be added when a more precise definition of the biological events
becomes important, as it will modulate the interpretation of the virus-immune system relationship. In
Figure 2, the sequential steps of this biological model are shown: the dark red arrows show the
progression of viral invasion, while the circles show the virus (V 1–4) and the immune defense
activities (D1–7) that interfere with this progression. These interferences can be so important as to
block infection and lead to viral clearance. Conversely, such perturbations can make viral progression
unstoppable and catastrophic. The specific features of these events can be formalized by deriving a
mathematical model.

3. Derivation of in-host mathematical models

This section is devoted to the derivation of mathematical models responsible for representing the
in-host dynamics by transferring the biological description presented in Section 2 into a system of
differential equations consistent with the mathematical kinetic theory of active particles (KTAP). The
model derivation considers the following three steps:

1. Subdivision of the system into populations, called functional subsystems, shortly FSs, which play
an effective role in the game. The state of each FS is defined by a distribution function over
the microscale state, called activity, which is expressed by the individual entities, called active
particles, shortly a-particles, that belong to each FS.

2. Derivation of a general mathematical structure suitable to define the dynamics of the distribution
function which acts as the dependent variable of the dynamical system. As it is shown in [10],
this structure should also capture, as far as it is possible, the main features of living systems. The
derivation of the mathematical structure should also include the dynamics of learning (i.e., cells
can learn from their interactions with other cells/particles and can change their activity state).

3. Modeling interactions involving active particles and inserting them into the given mathematical
structure to obtain specific mathematical models. According to [10], these interactions can be
nonlocal, nonlinearly additive, and can generate proliferative and destructive events.

These steps will be treated in more detail in the next subsections, where a multiscale mathematical
model for the interactions between infected epithelial cells, virus particles, and immune cells with
different activity levels will be proposed and further investigated numerically.

3.1. Functional subsystems, activity, and representation

The state of each FS is given by a time-dependent distribution function over the activity variable u,
for instance fi = fi(t, u), i = 1, ..., N̄ f (where N̄ f is the number of FSs). If the activity is not modified
by interactions, then the activity has a constant value u � u0 and the system behaves as a deterministic
population. In this case, we use the notation ni = ni(t; u0) to distinguish the deterministic FSs from the
stochastic FSs.

The following notation uses lowercase Roman letters for activities that can be modified by
interactions and Greek letters for parameters that may be heterogeneously distributed but are not
modified by interactions. The modeling approach also takes into account two reference quantities, the
critical number of virus particles that can occupy the upper respiratory tract before entering the lungs
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(NM) and the maximum number of host cells in the upper respiratory tract (NH) that can be infected,
which are used to normalize certain parameters involved in the dynamics to ensure appropriate units;
see Section 4.

Figure 3. Caricature description of the variables that form the functional subsystems
considered in this study. The virus particles and the infected epithelial cells are described by
densities, while the immune cells are described by a distribution over the activity variable.

Let us now consider, with reference to Figure 3, the deterministic and stochastic FSs that play the
game. A simple approach is to identify the following FSs and the activities expressed by each of them:

i = 1: Viral particles express the ability to infect epithelial cells, where replication occurs. Since
there is no progression of virus particles through an “activity-variable”, the virus population can be
considered deterministic, and the state of this 1-FS can be described by the density n1 = n1(t).

i = 2: Infected epithelial cells are the result of the viral infection spreading through the epithelial cell
population. Here, we focus only on the infected cells (in the upper respiratory tract) which are less
than the maximum number of host cells in the upper respiratory tract (NH) mentioned above. Again,
since there is no progression of infected epithelial cells through an “activity-variable space”, we can
consider this cell population as deterministic and thus, the density of infected cells in this 2-FS is given
by n2 = n2(t).

i = 3: Immune cells learn the presence of the virus and try to control the infection via anti-viral and
pro-inflammatory molecules, such as the interferons (IFN) [59]. For simplicity, here we average both
innate and adaptive immune responses into a single variable that describes a general antiviral immune
response. The state of this functional subsystem (3-FS) is given by the distribution f3 = f3(t; u).
Here, u ≥ 0 describes the activation level of these immune cells (which is the result of different types
and intensities of antigen exposure [33, 51]), with u = 0 denoting the non-activated state, and u = 1
describing the fully activated cells.
Remark 3.1 Note that the variability in the activation level of immune cells (involved in both innate
and adaptive immunity) is usually the result of variability in antigen exposure, with persistent antigen
exposure leading to reduced immune cell function [33, 51, 72]. Therefore, as an example, this activity
variable u could describe the state of exhaustion of CD8+ T cells, as characterized by higher

Networks and Heterogeneous Media Volume 19, Issue 2, 655–681.



663

expression values for different surface molecules; e.g., high PD-1 expression (PD-1HI), increased
TCF-1 expression (from intermediate TCF-1INT values to high TCF-1HI values), or Granzyme B
values (from low Granzyme BLO values to high Granzyme BHI values), as T cell exhaustion
progresses [72]. This activity variable u could also describe the level of macrophage phagocytosis
capability, as expressed by the surface FC receptor (as a loss in this receptor causes a reduction in
the phagocytosis level of these innate immune cells) [56].

3.2. Derivation of a kinetic theory mathematical structure

The derivation of mathematical models is based, as mentioned, on the kinetic theory of active
particles. This statement can be made more precise by deriving a mathematical structure suitable to
provide the framework to describe specific models. We consider the case of spatial homogeneity of
models describing the time dynamics of the distribution functions:

fi = fi(t, u) : [0,T ] × [0, 1] → R+, i = 1, 2, 3, (3.1)

where u is the microscale activity variable. The mathematical structure can be applied to all distribution
functions, although some of the FSs correspond to a deterministic population. In fact, this case can be
seen as a particular case of the most general one, where all dependent variables are stochastic.

The structure must include both conservative interactions, which modify the activity but not the
number of active particles, and proliferative/destructive events, which also modify the number of
particles. Guidelines for deriving such a structure are given in [10]. Accordingly, the said structure is
as follows:

∂

∂t
fi(t, u) =

4∑
j=1

ηi j[ f ]A(u∗ → u|u∗, u∗, f ) fi(t, u∗) f j(t, u∗) du∗ du∗

+Gi[ f ] − fi(t, u)Li[ f ], (3.2)

where f = { f1, f2, f3}, where each component of f corresponds to a specific population. Accordingly,
f1 corresponds to viral particles (IP), f2 corresponds to infected cells (FI), and f3 to immune cells
(CI). The proliferative/destructive interaction functionals Gi[ f ] and Li[ f ] could be local or non-local,
constant or density-dependent, as we will see for a specific case in the next section.The progression
probabilityA could have different forms, as long as it is zero when u ≈ 1 and it is one when u, u∗ ≈ 0;
see also Remark 4.1. The interaction rate ηi j describes the frequency of interactions between population
i and population j [10].

Remark 3.2 In the case of deterministic populations one has fi(t; u0) = ni(t)δ(u−u0), where δ denotes
the delta distribution and ni(t) denotes the density of the deterministic population i. The structure
(3.2) can be rapidly modified to include one or more deterministic populations, as shown by the model
derived in the next subsection.

Remark 3.3 The density of deterministic population i is obtained by the zero-order moments of the
distribution function as follows:

ni = ni(t) =
∫ 1

0
fi(t, u) du. (3.3)
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Remark 3.4 Since the innate immunity goes into action within minutes to hours of pathogen
infection [45], we incorporate the effect of this innate immunity into the initial conditions of the
model. Thus, f3(t, u) will describe mainly the effect of adaptive immunity (with different activity levels
u). However, we need to be aware of this simplifying assumption (given that there is actually an
overlap between the effects of innate and adaptive immunity).

3.3. From interactions to derivation of models

The derivation of the mathematical model follows the assumptions on the phenomenological
interpretation, in Section 2, of the biological system and of the description of the functional
subsystems in Subsection 3.1. The variables and parameters that appear in the equations below are
dimensional: variables are described in terms of cell densities and cell distributions (i.e., cell
numbers/densities distributed over a range taken by the activity variable), as well as the number of
viral RNA copies (RNAs/ml [7]), while parameters are described in terms of rates (e.g., proliferation
rates associated with doubling times, and death rates associated with half lives) and carrying
capacities (e.g., the maximum number of cells in the upper respiratory tract). For details on these
parameters and variables, see Tables 1 and 2, in Section 4.

• Dynamics of free viral particles (n1): Since the virus particles do not undergo conservative
interactions to change their activity status, in Eq (3.2) we have η1 j = 0, ∀ j ∈ {1, 2, 3}. Regarding the
proliferative interactions, we note that the viral particles are produced by the infected epithelial cells,
and therefore in Eq (3.2) we have G1 = γNcn2(t). Here, γ is the death rate of infected cells that is
associated with the release rate of new virus particles by these cells, and Nc is the number of virus
particles inside one infected cell (see also Table 2). Regarding the destructive interactions, we note
that the decay in the virion number is due to the action of immune cells which kill these viruses at a
rate µ (either directly through phagocytosis or indirectly through the secretion of cytokines such as
IFN [59]). Thus, in Eq (3.2), we have:

L1 = µ

∫ 1

0
K(u) f3(t, u) du, (3.4)

where the kernel K(u) gives the activity action for the anti-viral effect of immune cells starting from
the innate immunity corresponding to K = 1 to the increasing action of adaptative immunity. The
following equation summarizes these biological assumptions:

d
dt

n1(t) = γNcn2(t)︸   ︷︷   ︸
production

− µn1(t)
∫ 1

0
K(u) f3(t, u)du︸                          ︷︷                          ︸

elimination

. (3.5)

Remark 3.5 K = K(u) is required to be an increasing function of u. A simple model is as follows:

K(u) � (1 + ν u), with ν > 0. (3.6)

The heuristic model describes the growth of immune defence, where u = 0 denotes the the action of
innate immunity only, while ν u ↑⇒ K ↑ models the activation of the adaptative immunity.
Remark 3.6 Parameter γ is multiplied by the maximum viral load per cell Nc [7]. When infected cells
burst open, all of these viral particles are released into the micro-environment (and contribute to the
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population of free virions). In [7], the authors estimated this burst size to be about 103 virions, and
thus we may take Nc = 103 virions/cell.

• Dynamics of infected epithelial cells (n2): Since the progression of infected epithelial cells is not
modified by interactions with other cells or viral particles, in Eq (3.2), we have η2 j = 0, ∀ j ∈ {1, 2, 3}.
In regard to the proliferative interactions, we note that the number of infected cells increases, as in
Eq (3.4) (at rate α) due to viral particles interacting with the uninfected cells (NH − n2(t)) and entering
these cells. The destructive interactions are the result of the anti-viral effect of immune cells [22, 65],
as well as due to virus-induced cell death at rate γ following viral proliferation (i.e., cells burst open
and die). Thus, in Eq (3.2) we have

G2 = αn1(t)(NH − n2(t)), L2 = γ + µ

∫ 1

0
K(u) f3(t, u)du, (3.7)

with K(u) a kernel defining the activity space for the anti-viral immune responses. These biological
assumptions are summarized by the following equation:

d
dt

n2(t) = αn1(t) (NH − n2(t))︸                 ︷︷                 ︸
virus−induced in f ection

− γn2(t)︸︷︷︸
dvp

− µn2(t)
∫ 1

0
K(u) f3(t, u)du︸                          ︷︷                          ︸

elimination by immune cells

, (3.8)

where the abbreviation dvp denotes cell death due to virus proliferation.

• Dynamics of immune cells ( f3): As already mentioned, the distribution function f3 includes both
innate and adaptative immunity, where the activation of innate immunity corresponds to u = 0, while
interactions with virus particles activate cells of adaptative immunity from u = 0 to u = 1. This
dynamic is described by the probability density A(u∗ → u) corresponding to the interaction rate β
between immune cells and viral particles. In addition, these interactions induce a proliferation of
immune cells (with rate κ, which depends on the activation status u). These assumptions lead to the
following equation:

∂

∂t
f3(t, u) = κ(u) f3(t, u)n1(t)︸             ︷︷             ︸

proli f eration

− λ f3(t, u)︸   ︷︷   ︸
decay

+ βn1(t)
∫ 1

0
A(u∗ → u) f3(t, u∗)du∗︸                                     ︷︷                                     ︸

viral−induced activation

(3.9)

Therefore, the mathematical model consists in the following system of mixed ODEs and PDEs:

d
dt

n1(t) = γNcn2(t) − µn1(t)
∫ 1

0
K(u) f3(t, u)du,

d
dt

n2(t) = αn1(t) (NH − n2(t)) − γn2(t) − µn2(t)
∫ 1

0
K(u) f3(t, u)du,

∂

∂t
f3(t, u) = κ(u) f3(t, u)n1(t) − λ f3(t, u) + βn1(t)

∫ 1

0
A(u∗ → u) f3(t, u∗)du∗

(3.10)
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Remark 4.1 The progression probabilityA could have different shapes, as long as it is approximately
one when u, u∗ ≈ 0, it is zero when u = 1, and it is defined for u∗ ≥ u. Examples are: (a) 1−u

1+(u−u∗)+
and

(b) (1 − u)e−a (u−u∗)+
1−u . For the simulations presented throughout this study, we use the function given in

(a): A(u∗ → u) = 1−u
1+(u−u∗)+

.

4. Numerical simulations

This section reports some sample simulations for model (3.10) with the purpose of exploring the
qualitative behavior of the system considered here. We emphasise that while we tried to choose realistic
parameter values for these simulations (see the discussion below on the initial conditions, and the
discussion in Subsection 4.1 on all other model parameters), there is too much uncertainty in these
values to even think about quantitative predictions and comparison with real observations (see Figure 1
and the discussion about model calibration at the end of Section 5).

The initial conditions used for these simulations are listed in Table 1. For consistency with the data
in Figure 1, we assume that time represents the days from when symptoms appear. Since in [64] the
authors estimated between 102–104 virions in the nasal mucosa and pharynks, and the same numbers in
the trachea and bronchus, as well as in the tonsils and lymph nodes of an infected individual, here we
decided to start with n1(t = 0) = 103 virions. In regard to the infected cells, in [64] the authors estimated
between 104–106 infected cells per person around the peak of the infection (under the assumption that
1 cell could be infected by 10 virions at a given time; more virions per cells would have been resulted
in much lower estimations of infected cell numbers). These authors [64] also estimated around 1011

potential host cells, which resulted in 1 in 105–107 cells that could be infected. Since we do not know
how many cells can be infected in the upper respiratory tract (the focus of this study), we decided to
start the simulations with n2(t = 0) = 1 and varied these initial conditions between [1; 102]. Finally, in
regard to the immune responses, we note that the authors in [64] have estimated up to 109 SARS-CoV-2
specific T cells, with an unknown fraction found in infected tissues, and between 102–104 T cells per
infected cell. Since we do not know how many of these immune cells are fully activated (i.e., u close to
1), we assume an initial distribution f3(t = 0, u) = 10e−100u and vary it between [100e−100u; 102e−100u];
see also Table 1.

Table 1. Initial conditions (t = 0) for numerical simulations of model (3.10).

Description Initial value Simulation range
Viral load n1(t = 0) = N0 = 103 [102; 106]
Infected cells n2(t = 0) = 1 [1; 102]
Immune cells f3(t = 0, u) = 101e−100u [e−100u; 102e−100u]

For the numerical simulations (implemented in C), we discretized the integrals in Eq (3.10) using
Simpson’s rule. For the progression probability, we used A(u∗ → u) = 1−u

1+(u−u∗)
. Then, time was

discretized using a Runge-Kutta method.
As the numerical simulations presented below will focus on the impact of various model parameters

on the spread of viral infection through the epithelial cells, in the next sub-section, we discuss briefly
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the estimated values of these parameters (and the ranges over which they are varied).

Table 2. Summary of parameters that appear in model (3.10), together with their dimensional
units (“cells”, “days”, “RNA/ml”). The brackets in the 3rd column show the range over which
the parameters are varied during the simulations. For the estimation of these values (and their
scaling to ensure appropriate units), see the discussion in the main text.

Par. Units Baseline value; [range] Description
α ml

day×RNA 1.44 × 10−6;1.44 ×

[10−9, 10−4]
rate at which virus infects epithelial cells [7]

γ 1
day 0.69315; [0.1, 1] death rate of infected epithelial cells, associated

with the production rate of new viral particles
by these cells [54]

µ 1
day×cell 10−6; [10−4, 10−10] killing rate of virus particles and infected cells

by anti-viral immune cells [27].
κ(u) ml

day×RNA 10−9+u10−9

[10−11, 10−6]
proliferation rate of immune cells in the
presence of virus particles; we assume that cells
with different activity levels u ∈ [0, 1] have
different proliferation rates [20, 67]

λ 1
day 0.01 [10−3, 1] natural death rate of immune cells [17, 20, 53]

β 1
day 0.01 [10−3, 1] impact rate of virus particles on the activation

status of immune cells
Nc

RNA
ml×cell 103 [102, 104] the viral burst size, i.e., the number of virus

particles released by an infected cell [7]
ν − 0.1 [0, 1] coefficient describing the change in kernel K(u)

with respect to the activity variable u (see Eq
(3.6))

NM
RNA
ml 109 [106, 1011] critical number of virus particles that can

occupy the upper respiratory tract before
invading the lungs

NH cell 105 [103, 109] critical number of host cells in the upper
respiratory tract that are infected [7]

4.1. Estimating parameter values

The parameter values used for the numerical simulations in this study have been estimated as
follows:

• In regard to the host cells (per person), in [7] the authors noted that there are approximately. 109

mucous cells in the nasal cavity. Throughout this theoretical study, we choose a baseline value
NH = 105 much lower than the maximum number of host cells in the upper respiratory tract, since
it makes sense to assume that not all cells will be infected before the virus invades the lungs. We
also run simulations for NH ∈ [103, 109].
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• In regard to the critical number of virus particles that occupy the upper respiratory tract before
invading the lungs, we note that the number of SARS-CoV-2 genomic copies in nasopharyngeal
swabs is more than 106 viral RNAs copies/ml when the symptoms appear [60], and persists for
approximately 5 days before declining [60]. In [7], the authors noted that there are between 106–
1011 RNAs/ml in sputum, 106–109 RNAs/swab in the nasopharynx and 104–108 RNAs/swab in
the throat. Moreover, as mentioned above, in [64] the authors estimated between 102–104 virions
(or 106–108 RNA copies) in the nasal mucosa and pharynx, and the same numbers (102–104

virions or 106–109 RNA copies) in the trachea and bronchus, and again in the tonsils and lymph
nodes of an infected reference individual with a total body weight of 70 kg. The same authors
estimated between 105–107 infectious units (virions) in lung tissue. Due to the variability in data
across all of these different studies, here we choose a baseline value NM = 109, but we also run
simulations for NM ∈ [106, 1011].
• In regard to the replication timescale of SARS-CoV-2, in [7] the authors noted that the time for a

virion to enter a cell is approximately 10 min, which translates into an infection rate ≈ 144/day.
However, since the units for α are 1/(day × RNAs/ml), we need to rescale the infection rate
by virion levels. To this end, we choose α ≈ 144/NM. As a baseline value, we thus choose
α = 1.44 × 10−6, but we vary this parameter within the range α ∈ [1.44 × 10−9, 1.44 × 10−4].
• In [54], the authors show experimentally that infected human cells reduce their viability by a half

within 24 hours. From here, we estimate a death rate of γ = ln(2)/1 day = 0.693/day.
• The burst size (i.e., number of virions released by one infected cell) can vary between 10–102

in [64] and 103 in [7]. Here, we choose Nc = 103.
• Innate immune responses are observed within hours. Anti-viral adaptive T cell immune responses

are observed within 7 days of symptoms [49]. In fact, the study in [67] showed the presence of
T cell responses around days 3–5 from symptom onset in mild COVID-19 patients, and around
day 10 in moderate/severe patients. Earlier quantitative studies on the kinetics of murine T cells
in response to different viral infections [20] calculated the doubling time of T cells during the
initial expansion phase to be between 8–11 h, which translates into a murine proliferation rate
between 1.5–2.0/day. In healthy humans, this proliferation rate is much slower [43] and was
shown to differ between the naive T cells (0.0005–0.002/day), stem cell memory T cells (0.0007–
0.007/day), effector-memory (0.042/day), and central memory (0.01/day) T cells. It is expected
that human viral infections lead to a faster immune proliferation rate. We can describe all these
biological observations (showing an increased proliferation rate for more active cells, i.e., the
effector cells) with a simple linear proliferation function κ(u) = 1 + u. Due to the units for the
immune proliferation rates (i.e., ml/(day × RNAs); see Table 2), we rescale the above expression
by NM and choose average proliferation rates κ(u) = (10−9 + u × 10−9)ml/(day × RNAs), with
u ∈ [0, 1]. However, we vary κ ∈ [10−11, 10−6] ml/(day×RNAs) to account also for the variability
in the proliferation of T cells depending on the viruses used.
• In [53], the authors mentioned that following their expansion in response to viral particles, the

T cell population then decays with a half-life of approximately 200 days, which translates into
a death rate λ = 0.0035/day. However, this includes also the memory response that persists
much longer after the death of effector cells. An earlier study [17] (not focused on SARS-CoV-2)
estimated that effector memory T cells can have a life span from 6 days to 6 weeks. Another very
early study [20] calculated the half-life of murine T cells during the contraction phase following
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the peak of the response between 41 h and 3 days, which translates into a cell death rate λ ∈
(0.23, 0.4). Since different viruses can trigger different immune responses with different cell
kinetics (for either murine or human cells), throughout this study we consider a baseline value
λ = 10−2, but we vary this rate within a range λ ∈ (10−3, 101). This large parameter range is the
result of the fact that in this study, we do not distinguish between the different types of immune
cells (e.g., effector or effector-memory T cells, or the new concept of memory macrophages [70])
which have completely different lifespans described by different λ.
• Since the COVID-19 patients usually recover within 10–14 days, we can assume that within 10

days the virus is eliminated by the immune cells. Due to the units of µ (i.e., 1/(day × cell)),
we rescale by NH and thus we take an average baseline value µ ≈ 10−6. Note that experimental
studies to quantify the efficiency of human CD8 T cells against specific viruses (thus also against
SARS-CoV-2) are non-trivial [27], and previous estimates of this killing rate were performed on
animal cells infected with different viruses, which led to killing rates between 0.3–0.8/day [27].
Using all of this information, in this study, we consider the following range for the killing rate of
viruses and infected cells by the immune cells: µ ∈ (10−10, 10−4).

Figure 4. Baseline dynamics of continuum model (3.10): (a) density of virus particles: n1(t);
(b) density of infected cells: n2(t); (c) distribution of immune cells across the activity space:
f3(t, u). All parameters are as in Table 2. In (a) and (b), the sub-panels (i) show the 2D plots
n1,2(t) vs. time, while the sub-panels (ii) show the 3D plots n1,2 vs. u vs. time. The inset (right)
sub-figure in (c) shows the same graph as in the left main figure, but for time t ∈ [0, 0.8], so
that we see more clearly how the immune cells start to become activated (i.e., larger f3(u, t)
as u→ 1 and t → 0.8).

4.2. Model dynamics

In the following, we illustrate numerically some of the dynamics of kinetic (multiscale) model
(3.10).
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• Baseline dynamics. We start our numerical investigation into the behavior of model (3.10) by
showing in Figure 4 the baseline dynamics of this model. The simulations are performed with
the baseline parameter values from Table 2 and the initial conditions from Table 1. We see that,
for these parameter values, the virus particles and the infected epithelial cells are eliminated after
the first two days following the onset of symptoms. The elimination is the result of an increase
in the level of immune cells. Note that experimental/clinical studies have observed a rapid drop
in viral load after the peak of the infection [19, 64]; see also Figure 1. Moreover, in Figure 4 we
notice a prolonged immune response, which also seems to be consistent (at least qualitatively)
with clinical data shown in [19] and Figure 1.

Figure 5. (a) Long-term baseline dynamics of model (3.10); the parameters are as in Figure 4.
(b) Long-term dynamics obtained when we increase the death rate of immune cells to λ =
0.05; all other parameters are as in Table 2. In the sub-panels we show: (i) a 2D plot of the
density of virus particles n1(t); (ii) a 2D plot of the density of infected cells; and (iii) 3D plot
of the distribution of immune cells f3(u, t). We see that, for (a) the second infection is weaker
than the first one, while for (b), the second infection is stronger than the first one.

However, for the parameter values considered here, this viral elimination is not permanent and the
infection can relapse in the very long term. Such a re-infection behavior is consistent with various
clinical studies [35,63,66], which noted that the rates of re-infections were variable (from 3.1%–
13.0% in [66], to 47% in [63]), and they could occur at different times (e.g., in [66] re-infection
occurred approximately 180 days after the initial infection; in [63] re-infection occurred between
340–987 days after the initial infection). In Figure 5a, we show that for the baseline parameter
values listed in Table 2, the infection returns after approximately 600 days. However, the second
time there are less viral particles, less infected cells, and even a weaker immune response. This
time period between the infection/re-infection depends on the persistance of functional immune
cells that can recognise the virus and eliminate it (so model (3.10) incorporates implicitly an anti-
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viral memory immune response). In Figure 5b we investigate what happens when we reduce the
persistence of functional immune cells (with different activation levels) by increasing their death
rate λ to λ = 0.05. We see that in this case the second infection is slightly stronger than the
first one (i.e., higher numbers of virus particles and infected cells, and higher levels of immune
responses), while the third infection is slightly stronger than the second one. Moreover, for larger
λ the time between the first and second infection is larger than the time between the second and
third infection. We conclude the description of model dynamics shown in Figure 5 by noting that
more than one re-infection is possible, as observed in some clinical studies [63].

Figure 6. (a) Time between the 1st and 2nd viral infections, as we vary λ. (b) Difference in
the maximum viral load during the 1st and 2nd viral infections: the threshold between positive
values (i.e., 1st wave higher than the 2nd wave) and negative values (i.e., 1st wave lower than
the 2nd wave) is at λ ≈ 0.0275. The inset sub-figures are the same as the main figures, but
with the horizontal axis on a logscale. All other model parameters are as in Table 2.

• Increasing immune cell death. To have a better understanding of the impact of parameter λ
(that incorporates implicitly memory immune responses to the virus), in Figure 6 we compare
the characteristics of the model dynamics as we vary λ ∈ [0.01, 1]. In panel (a), we see that
the time between the original infection and the first re-infection decreases exponentially as we
increase λ: very fast for small λ (when there are enough immune cells in the system), and then
much slower for large λ (when the immune cells are eliminated). Since, in Figure 5, we have
seen that the second viral load could be higher or smaller than the first viral load, in panel (b) we
show how the difference in the maximum viral load between the first and second infections varies
with respect to λ. The threshold between positive and negative values occurs at λ = 0.0275, and
this corresponds to a delay between the 1st and 2nd infection of approximately 400 days (see
the inset sub-figure in Figure 6a), which is consistent with clinical observations [63]. This result
suggests that if the immune response is strong enough and persists for a very long time (i.e., when
λ < 0.0275) then the second wave of re-infection will be smaller than the first wave. However,
if the immune response is weak and does not last long (i.e., λ > 0.0275), the second wave of
re-infection is higher than the first wave; but this difference between the first and second wave
does not increase as λ increases significantly toward λ = 1 or past this value.
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• No anti-viral immune response (i.e., immune cell exhaustion). We also investigate numerically
what happens if there is almost no immune response against the virus or infected cells (and thus
we take µ = 0), while we keep the assumption that the immune cells can still be activated by the
presence of the pathogen (i.e., κ(u) > 0) but they do not eliminate it. This assumption corresponds
to clinical observations of high levels of immune cell activation and also high levels of immune
cell exhaustion in hospitalized patients with very severe COVID-19 infections (some patients
recovering, some dying) [71]. In Figure 7, we see that in this case, there is an over-activation of
the immune response, which then leads to a blow-up in the solution (i.e., the blow-up is in the
immune response). This blow-up is caused by the higher proliferation/activation rate of immune
cells in the presence of the persistent pathogen (that also keeps proliferating).

Figure 7. Model dynamics when we assume that the immune cells cannot eliminate the virus
and the virus-infected epithelial cells: here µ = 0. All other parameters are as in Table 2. The
inset sub-figures in panel (c) show the immune response characterized by different activation
states immediately after viral infection, i.e., t ∈ (0, 0.8), and for t ∈ (2.9, 3) just before the
blow-up that occurs on the fourth day-not shown here.

• Varying virus initial conditiosn n1(0), NH and NM. Since experimental studies [26] suggested
that initial viral load could predict the severity of illness, in Figure 8a, we show the
time-evolution of n1(t) as we increase its initial value to n1(0) = 104. We see that for the
parameter values in Table 2, the virus is eliminated faster (due to a faster activation of the
immune cells, in response to the higher initial viral load-not shown here).
These results depend significantly on two important parameters which could not be estimated
from the available literature: NM (the critical number of virus particles that can occupy the upper
respiratory tract) and NH (the critical number of host cells in the upper respiratory tract). In
Figure 8, we show one example of the effect of these parameters on viral evolution: for
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NH = 104 and NM = 1010, the amount of virus in the system is much lower (max(n1(t)) = 3000,
obtained at t = 5.5), but the infection lasts longer (until t = 8). For a more comprehensive
investigation of the effect of these two parameters on viral persistence, in Figure 8c we show a
colormap for the time when n1(t) reaches its maximum (during the first infection) vs.
NM ∈ [108, 1011] vs. NH ∈ [103, 106]. In the inset (i) we show the same time when n1 reaches its
maximum, as we fix NH = 104 (as in sub-panel (b)) and we vary NM ∈ [108, 1011]. First, we note
that increasing NM delays the time when n1(t) reaches its maximum value. Second, we see that
for NM = 1010 max(n1) is obtained for t = 5.5, while for NM = 1011 max(n1) is obtained for
t = 5. To clarify this aspect, in sub-panels (ii), we show two 3D plots n1(t) vs. t vs. immune
activity u′ for: NM = 1010 (top) and NM = 1011 (bottom). It is clear that for NM = 1010, the n1

peak is higher and is reached later, but the infection is eliminated faster (due to the immune
response–not shown here). In contract, for NM = 1011 the n1 peak is lower and is reached sooner,
but the infection continues to persist a bit longer.

Figure 8. (a) Dynamics of n1(t) when we increase the initial viral load: from n1(0) = 103

to n1(0) = 104. All other parameters are as in Table 2. (b) Dynamics of n1(t) when we
decrease NH (from baseline NH = 105) and increase NM (from baseline NM = 109). For a
more thorough investigation of the effect of varying NH and NM on viral load, in panel (c) we
show a colormap of the time when n1 reaches a maximum value, as we vary NM ∈ [108, 1011]
and NH ∈ [103, 106]. The inset sub-figures in panel (c) show: (i) a change in the time when
n1(t) reaches its maximum value for NH = 104 and NM ∈ [108, 1011]; (ii) the 3D plots of
n1(t) vs. time (t) vs. activity (u) for 2 specific cases: NM = 1010 (top) where max(n1) is
reached at t ≈ 5.5 but the virus is eliminated after t = 8; NM = 1011 (bottom) where max(n1)
is reached at t ≈ 5 but the virus is eliminated after t = 9.5.
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5. Summary and conclusion

This paper deals with the modeling and simulation of the in-host dynamics of the COVID-19 viral
infections in the upper respiratory tract. The topic aims to shed new light on the complexity of
heterogeneous immune-virus interactions, that could have an impact on patients. In fact, if the
invasion of viral particles succeeds in moving to the lungs, a patient needs intensive care and the risk
of death is greatly increased. Because of this motivation, the British Royal Society has decided to
promote, right from the beginning of the pandemic, a voluntary team, coordinated by Mark Chaplain,
to study this specific topic [61].

The plan of this paper was first to define the key features of the biological dynamics, and then to
develop some multiscale models whose dynamics could be explored numerically. We began this study
by proposing a general multiscale kinetic framework that could be used to investigate the infection of
healthy cells by a viral population. This framework, based on the kinetic theory of active particles
(KTAP) [8–10], can account for the heterogeneous nature of the antiviral immune responses with a
continuous of activation states [32]. The resulting model is a mixture of equations for changes in the
density of cells and viruses (which do not depend on the internal “activity” variable) and an equation
for changes in the distribution of immune cells with different activity levels described by a continuous
“activity” variable.

This KTAP theoretical framework (which can be applied to all viral infections and antiviral
immune responses) was then applied in detail to the case of SARS-CoV-2 infections. To this end, we
identified possible cell-cell and cell-virus interactions based on published experimental studies of
COVID-19 antiviral responses. We also estimated the model parameters based on the published
literature. Nevertheless, we are aware that the estimated values incorporated a lot of uncertainty and
the results do not have any predictive power. Even so, Section 4 shows the possible theoretical
outcomes of the model dynamics: from virus elimination in the short/medium time (Figure 4), to
virus relapse in the long term (Figure 5), and even to a blow-up in the immune response due to an
over-activation in response to virus accumulation (Figure 7). Some of these results were qualitatively
similar to clinical data presented in Figure 1 (i.e., the high viral load observed when symptoms
appear [19], the immune response that persists much longer after virus elimination [19, 67]), or other
clinical data showing re-infection of individuals already tested positive [35]. Other results, such as the
blow-up of the immune response, only showed the potential dynamics of this model (as we could not
find immune cell data for such cases. Most of the publications focused on cytokine levels in the
context of tissue damage and patient mortality [38]). We also investigated the impact on model
dynamics when we changed the initial levels of viral particles (Figure 8a), or we change different
model parameters: λ, NH and NM (Figure 8b,c). The simulations showed the possibility of having
lower/higher secondary infections, as well as shorter/longer durations for these infections, all
depending on the values of these model parameters (not easily estimated). Moreover, these simulation
results of viral re-infections were consistent with the numerical results of other types of models that
equally show re-infections: from discrete individual-based models [57] to continuous differential
equation models [5]. Nevertheless, for a more clear understanding of the mathematical and biological
mechanisms responsible for this oscillatory behavior, as well as for all other type of behavior,
exhibited by this kinetic model (e.g., density blow-up), we need to focus on a more detailed analytical
investigation of this model. However, such an investigation is not the purpose of this study, and will
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form the subject of a future investigation.

We emphasise again that this model does not have predictive power, since model dynamics depends
very much on the unknown microscale-level parameters and functions, such as µ, and κ(u), as well as
on the unknown macroscale-level parameters such as NH and NM, which were approximated for the
sake of simulations as their exact values are unknown (even if some lower/upper limits can be found
in various studies—see Table 2). Moreover, the immune defences are heterogeneously distributed
in the population (but we do not have any empirical data for such heterogeneous distribution of cell
phenotypes); furthermore, their dynamics depend on the initial (unknown) viral load, which can have
an important influence on the quantitative behavior, of the dynamics inside the various tissues of the
body in the upper and lower respiratory tracts. Due to all of these unknowns, we emphasize that this
model can only explore the qualitative behavior, of the system under consideration. Although some
parameters have been chosen based on empirical data (see Table 2), and although some simulation
results are qualitatively similar to some real data (see Figure 1), this study is not focused on model
calibration.

Calibration of multiscale models with empirical data is not an easy task [24], since (i) biological
processes at different scales are interconnected, but data (usually collected at a single scale as a result
of one single experiment) might not account for such interconnectivity; (ii) it is not always very clear
how to estimate the parameters that connect the different scales. In addition, some of model
parameters (such as those triggering transitions in cells’ phenotypes) are likely stochastic, and
therefore they could be known probably only up to a distribution. For such cases, sensitivity and
uncertainty analysis could be employed to better understand the impact of these parameters on model
outcomes [58]. A complete global sensitivity analysis will be the subject of a future theoretical study
focused on a comparison between kinetic and deterministic ODE models (as sensitivity and
uncertainty analyses are now classical approches for ODE models, but not for kinetic models).

In summary, we believe that further studies should explore this data calibration problem for such
kinetic multiscale models, as these models are sufficiently flexible to take into account all the
aforementioned multiscale features of the biological systems. Additional studies can further develop
the results of our paper: for instance, by introducing the dynamics of virus variants and vaccination
programs into this multiscale approach (see [11, 12, 46]), while accounting also for their impacts on
the immune responses. This would allow us to connect these in-host multiscale models with other
between-host (either single-scale or multiscale) models for the spread of the disease through a
human/animal population, in the presence or not of vaccination, as done in [15].
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Calderón, G. Pérez-Cabeza, et al., Persistent exhausted T-cell immunity after severe COVID-
19: 6-month evaluation in a prospective observational study, J. Clin. Med., 12 (2023), 3539.
https://doi.org/10.3390/jcm12103539

72. D. J. Verdon, M. Mulazzani, M.R. Jenkins, Cellular and molecular mechanisms of CD8+

T cell differentiation, dysfunction and exhaustion, Int. J. Mol. Sci., 21 (2020), 7357.
https://doi.org/10.3390/ijms21197357

73. W. Van Damme, R. Dahake, R. van de Pas, G. Vanham, Y. Assefa, COVID-19: Does
the infectious inoculum dose-response relationship contribute to understanding heterogeneity
in disease severity and transmission dynamics? Med. Hypotheses, 146 (2021), 110431.
https://doi.org/10.1016/j.mehy.2020.110431

74. S. Wang, M. Hao, Z. Pan, J. Lei, X. Zou, Data-driven multiscale mathematical modeling of SARS-
CoV-2 infection revels heterogeneity among COVID-19 patients, PLoS Comput. Biol., 17 (2021),
e1009587. https://doi.org/10.1371/journal.pcbi.1009587

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Networks and Heterogeneous Media Volume 19, Issue 2, 655–681.

https://dx.doi.org/https://doi.org/10.1098/rsta.2021.0170
https://www.ed.ac.uk/files/atoms/files/uncover_029-01_review_infectious_dose_of_covid-19.pdf
https://www.ed.ac.uk/files/atoms/files/uncover_029-01_review_infectious_dose_of_covid-19.pdf
https://dx.doi.org/https://doi.org/10.1073/pnas.1816935115
https://dx.doi.org/https://doi.org/10.3390/jcm12103539
https://dx.doi.org/https://doi.org/10.3390/ijms21197357
https://dx.doi.org/https://doi.org/10.1016/j.mehy.2020.110431
https://dx.doi.org/https://doi.org/10.1371/journal.pcbi.1009587
https://creativecommons.org/licenses/by/4.0

	Motivations and plan of the paper
	Phenomenology of the in-host dynamics
	Derivation of in-host mathematical models
	Functional subsystems, activity, and representation
	Derivation of a kinetic theory mathematical structure
	From interactions to derivation of models

	Numerical simulations
	Estimating parameter values
	Model dynamics 

	Summary and conclusion



