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Abstract: In this study, a two-dimensional “double-horizon peridynamics” formulation was presented 
for membranes. According to double-horizon peridynamics, each material point has two horizons: 
inner and outer horizons. This new formulation can reduce the computational time by using larger 
horizons and smaller inner horizons. To demonstrate the capability of the proposed formulation, 
various different analytical and numerical solutions were presented for a rectangular plate under 
different boundary conditions for static and dynamic problems. A comparison of peridynamic and 
classical solutions was given for different inner and outer horizon size values. 
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1. Introduction  

As a new continuum-mechanics formulation, peridynamics [1] has been introduced by 
considering the challenges that classical continuum mechanics (CCM) is facing. One major challenge 
of CCM is discontinuities such as cracks in the solution domain. In this case, spatial derivatives in 
governing equations of CCM cannot be defined along discontinuities, which makes governing 
equations. In addition, CCM does not have a length scale parameter, which makes it difficult to make 
predictions for some emerging areas such as nanoengineering. Peridynamics overcomes the first issue 
by utilising integrations rather than spatial derivatives in its governing equation. Moreover, by 
incorporating a length scale parameter, the horizon, it can capture physical behaviours seen at small 
scales. 
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There has been a significant development on peridynamics, especially during recent years. 
Amongst these, De Meo et al. [2] demonstrated the pit-to-crack process using peridynamics, starting 
from crack initiation to crack propagation phases by considering the microstructural features.      
Yin et al. [3] used peridynamics for large deformations and hyper-elastic materials. Liu et al. [4] 
utilized peridynamics to investigate fracture characteristics observed in zigzag graphene sheets. 
Peridynamics has also been used for the analysis of functionally graded materials [5] and composite 
materials [6]. Chen et al. [7] developed a fully coupled thermo-mechanical peridynamic formulation 
to analyse concrete cracking. Qin et al. [8] developed a peridynamic model for hydraulic fracturing of 
layered rock mass systems. Lakshmanan et al. [9] performed three-dimensional crystal plasticity 
simulations. Yan et al. [10] developed a coupled water flow and chemical transport peridynamic model 
suitable for unsaturated porous media. Wang et al. [11] presented a mixed-mode peridynamic fatigue 
model by employing ordinary-state-based peridynamics. Peridynamic formulations for beam [12,13] 
and plate [14,15] structures are also available in the literature. Peridynamics has also been utilized to 
free vibration [16] and buckling [17] analysis of cracked plates. 

Although they are limited, analytical solutions to peridynamic equations for some problems are 
available [18,19]. Numerical implementation of peridynamics is usually based on a meshless approach 
rather than mesh-based or semi-analytical approaches [20]. Ni et al. [21] coupled the finite element 
method and ordinary state-based peridynamics. Pagani and Carrera [22] coupled three-dimensional 
peridynamic formulation and higher-order one-dimensional finite elements. Xia et al. [23] coupled 
isogeometric analysis and peridynamics for the analysis of cracks. Liu et al. [24] coupled peridynamics 
and updated Lagrangian particle hydrodynamics to simulate ice–water interactions. Wang et al. [25] 
developed three-dimensional conjugated bond pair–based peridynamic formulation. Diana et al. [26] 
introduced anisotropic peridynamics suitable for homogenised micro-structured materials. Mikata [27] 
presented peridynamic formulations for fluid mechanics and acoustics. Another new peridynamic 
concept is “peridynamic differential operator”, which is mainly used to convert differentiations to their 
corresponding integral form [28]. Ren et al. [29] developed a higher-order nonlocal operator method 
for the solution of boundary value problems. In another study, Ren et al. [30] proposed a nonlocal 
operator method applicable to solving partial differential equations of mechanical problems.       
Zhuang et al. [31] presented a nonlocal operator method for dynamic fracture exploiting an explicit 
phase-field model. 

Yang et al. [29] introduced the concept of “double-horizon peridynamics” with an intention to 
reduce computational time of peridynamic simulations. Double-horizon peridynamics is different than 
the dual-horizon peridynamics developed by Ren et al [30]. Derivation of dual-horizon peridynamics 
based on Euler-Lagrange formulation is presented in Wang et al [31]. In double-horizon peridynamics, 
each material point has two horizons, whereas, in dual-horizon peridynamics, each interacting material 
point has a different horizon and size. More information about peridynamics literature can be found in 
Javili et al [32]. 

In this study, the double-horizon peridynamics formulation presented by Yang et al. [29] for one-
dimensional structures is extended to two-dimensional structures, especially for a membrane. First, the 
details of the formulation are given. Next, the treatment of boundary conditions in the double-horizon 
peridynamics framework is provided. Then, analytical solutions for different boundary conditions are 
given. Finally, several numerical cases are presented by considering different boundary conditions for 
static or dynamic problems. 
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2. Two-dimensional double-horizon peridynamic formulation 

2.1. Classical PD formulation 

The equation of motion (EOM) for a two-dimensional membrane in classical continuum 
mechanics (CCM) can be written as: 

       
2 2 2

2
2 2 2

, , , , , , , ,
w w w

x y t c x y t x y t f x y t
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   
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(2.1) 

Taylor expansion can be used to convert the Laplace term into nonlocal form as: 
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(2.2) 

As shown in Figure 1, 𝜉 ൌ ‖𝝃‖  represents the distance between two material points, and 𝑛௜ 
represents the component of unit orientation vector such that 
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and 𝑂ሺ𝜉ସሻ denotes the truncation error. 

 

Figure 1. Peridynamic horizon in classical PD formulation. 

Considering 𝒙 as fixed, multiplying each term of Eq (2.2) by an attenuated kernel function 
ଵ

క
 

and integrating over the PD horizon gives 
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which implies 
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(2.5) 

Plugging Eq (2.5) back into (2.1) yields: 
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(2.6) 

Eq (2.6) reduces to the classical PD equation of motion if we neglect the residual term: 
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(2.7) 

2.2. Double-horizon peridynamics 

One can observe from Eq (2.5) that there exists a truncation error between the classical Laplace 
expression and the PD Laplace expression. As a consequence, the PD equation of motion, Eq (2.7), 
differs from the corresponding CCM, Eq (2.1), on the order of 𝑂ሺ𝛿ସሻ. One can reduce this error by 
choosing a small horizon size, 𝛿. However, this will weaken the nonlocal characteristic of PD. On the 
other hand, with a large horizon size, 𝛿, enhances PD nonlocal characteristics but can have negative 
effects on solution accuracy. Such contradiction is a common issue in most PD studies and can be 
overcome by the double-horizon peridynamics formulation. Moreover, double-horizon peridynamics 
can provide a computational advantage by utilising two horizons for each material point. In the double-
horizon peridynamics formulation, a smaller inner horizon is introduced inside the original horizon, as 
shown in Figure 2. In this section, details of double-horizon peridynamics are presented for two-
dimensional membranes. 
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Figure 2. Inner and outer horizons in the double-horizon peridynamics formulation. 

First, we know from Eq (2.5) that the nonlocal Laplace term within the inner horizon, Ω୍ can be 
expressed as 
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Note that the inner horizon size can be chosen as arbitrarily small so that 0 ൎ 𝑂ሺ𝜀ସሻ ≪ 𝑂ሺ𝛿ସሻ so that 
the residual is negligible. 

Next, let us consider the nonlocal Laplace term over the outer horizon, Ω୓. Multiplying each 

term in Eq (2.2) by 
ଵ

క
 gives 
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(2.9) 

Note that when 𝜉 varies over the outer horizon, the truncation error ranges as 
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(2.10) 

In order to minimize the truncation error so that it levels with that of the inner horizon, we can 

multiply Eq (2.9) by 
ఌయ

కయ
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Integrating Eq (2.11) over the outer horizon gives 
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(2.12) 

Ignoring the residual results in the nonlocal Laplace term with respect to outer horizon as 
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(2.13) 

Introducing two weight functions 𝜔ூ and 𝜔ை for inner and outer horizon, respectively, such 
that 
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Coupling Eq (2.8) and (2.14) with the introduction of weight functions gives 
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in which the weight functions can be chosen by considering each area in proportion to the total horizon 
area as 
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Coupling Eq (2.15) with (2.16) and substituting back into (2.1) yields the refined PD equation of 
motion for membrane structure as 
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In particular, it reduces to static case when eliminating the inertia term: 
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where 
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which represent PD parameters with respect to inner and outer horizons, respectively. 
Note that when the inner horizon radius is equal to the outer horizon radius, 𝜀 ൌ 𝛿, Eq (2.17a) 

and (2.17b) reduce to the traditional PD form. 

3. Boundary conditions 

Eq (2.17) holds if and only if each integration domain is intact. In other words, the total PD 
horizon of each material point is completely embedded in the body. However, for some material points 
adjacent to the boundary whose PD horizon is incomplete, we can introduce a fictitious region with a 
width of 𝛿 outside the body to ensure that Eq (2.17) holds for the entire body, as shown in Figure 3. 
The displacement field of the fictitious region is related to the real body to achieve a different kind of 
boundary conditions, and two common cases are explained below. 

 

Figure 3. Real and fictitious regions for peridynamic solution domain. 

3.1. Clamped edge (C) 

Consider a body subjected to a fixed constrain at the edge 𝑥 ൌ 𝑥∗. Geometrically, this implies a 
zero curvature during deformation such that 
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By performing central difference 

     * * *

2

, , 2 , , , ,w x y t w x y t w x y t 



   

 
(3.2) 

and substituting Eq (3.1a) back into Eq (3.2) yields: 
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(3.3a) 

Similarly, a fixed boundary along the edge 𝑦 ൌ 𝑦∗ satisfies the following: 
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(3.3b) 

One can observe that a fixed boundary manipulates an anti-symmetric displacement relationship 
between real and fictitious regions with respect to the boundary. 

3.2. Free edge (F) 

Consider a body subjected to free boundary at the edge 𝑥 ൌ 𝑥∗ and geometrically, which implies 
a zero slope about 𝑦 axis such that 
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Performing central difference yields 
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(3.5a) 

Similarly, for free edge along 𝑦 ൌ 𝑦∗, the PD boundary condition will be 

     * *, , , , 0,w x y t w x y t       
 

(3.5b) 

One can observe that a free boundary manipulates a symmetric displacement relation between 
real and fictitious regions with respect to the boundary. 

4. Analytical solution for static cases 

4.1. Rectangular membrane with four fixed edges (CCCC) 

Consider a rectangular membrane with four fixed (clamped) edges (CCCC) subjected to some 
arbitrarily distributed load, as shown in Figure 4. 
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Figure 4. Rectangular membrane with four fixed edges (CCCC). 

As explained above, the PD boundary conditions can be given as 
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If we periodically extend such relationship over the entire 𝑥𝑦-plane, one can obtain a periodic 
displacement field with respect to 𝑥-direction and it is skew-symmetric about ሺ𝑥,𝑦ሻ ൌ ሺ2𝑛𝑎,𝑦ሻ for 
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Substituting Eq (4.25) into Eq (2.17b) yields 
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where the coefficients can be obtained based on orthogonality conditions as 
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Substituting Eq (4.5) into (4.2) results in the analytical solution to PD double-horizon model as 
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In particular, when 𝜀 ൌ 𝛿, Eq (4.6) reduces to the solution for the classical PD model: 

 
         

   
3

0 0
22

1 1 1 2

0 0

, sin sin sin sin
4 1

,
1 cos cos6

b a

m n

f x y mx ny dxdy mx ny

w x y
m nab c

d d
 


 

  


 

 

 
 
 



 


 
 

(4.7) 

Regarding boundary conditions of CCFF and CCCF, the corresponding solutions can be obtained 
from Eq (4.6) by letting: 

CCFF:
  

 2 1

2

m
m

a




  
and

    

 2 1

2

n
n

b




 
(4.8) 

CCCF:
 

m
m

a




  
and

    

 2 1

2

n
n

b




 
(4.9) 

4.2. Rectangular membrane with mixed boundary conditions (CFCF) 

Consider a rectangular membrane with two opposite edges clamped and others free subjected to 
some arbitrarily distributed load, as shown in Figure 5. 

 

Figure 5. Rectangular membrane with mixed boundary conditions (CFCF). 

As explained above, the PD boundary conditions can be written as 
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   
   
   
   

 

, ,

, ,
0,

, ,

, ,

w y w y

w a y w a y

w x w x

w x b w x b

 

 
 

 

 

  


     
 

     

(4.10) 

Obeying such relationship and periodically extending the displacement field over the entire 𝑥𝑦-
plane, one admissible solution can be selected as 

     
1 0

, sin cosmn
m n

w x y A mx ny
 

 


 

(4.11) 

where 
m

m
a




   
and

    

n
n

b




 
(4.12) 

Substituting Eq (4.11) back into Eq (2.17b), one can obtain  

 
2 2 3

1 2 1 2
3

1 0 0 0 0

1 cos cos 1 cos cos
sin cos ,mn I O

m n

m n m n
A k d d k d d mx ny f x y

   



         
  

 

 

  
  

 
    

 
(4.13) 

where the coefficients can be obtained as 

     

   

   

   

0 0
2 2 3

1 2 1 23
0 0 0

0 0
0 2 2 3

1 13
0 0 0

4
, sin cos

, 1
1 1

1 cos cos 1 cos cos

2
, sin

1, 0
1 1

1 cos 1 cos

b a

mn

I O

b a

m

I O

f x y mx ny dxdy
ab

A m n

k m n d d k m n d d

f x y mx dxdy
ab

A m n

k m d d k m d d

   



   



         
  

       
  



  


  





  
   


 

   

 

   
 

(4.14) 

Substituting Eq (4.14) in Eq (4.11) yields 

 

   

   

     

0 0
2 2 3

1 13
0 0 0

0 0
2 2 3

1 1 2 1 2
3

0 0 0

2
, sin

1 1
1 cos 1 cos

,
4

, sin cos

cos
1 cos cos 1 cos cos

b a

I O

b a

n
I O

f x y mx dxdy
ab

k m d d k m d d

w x y

f x y mx ny dxdy
ab

ny
m n m n

k d d k d d

   



   



       
  

         
  







 


  
 

 
 
 
  

 
 

 

   

 


   

1

sin
m

mx












 
 
 
 
 
 



 

(4.15) 
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Again, letting 𝜀 ൌ 𝛿 reduces to the solution for the classical PD model as 

 
   3

0 0 0 0
2 22

1 11 1 2

0 0 0 0

1
, sin , sin cos

24 1
, cos sin

6 1 cos 1 cos cos

b a b a

m n

f x y mxdxdy f x y mx nydxdy

w x y ny mx
ab c m m n

d d d d
   


       

 

 

 

 
 
   

  
  

   
 

   
 

(4.16) 

Regarding boundary conditions of CFFF, the corresponding solution can be obtained from Eq 
(4.15) by letting: 

 2 1

2

m
m

a




 
and

   

n
n

b




 
(4.17) 

5. Free vibration 

Consider an 𝑎 ൈ 𝑏  rectangular membrane with four edges being clamped. The equation of 
motion and initial conditions are given as 

         2 22 3
1 2 1 2

2 3
0 0 0

, , , , , , , ,
, , I O

w x y t w x y t w x y t w x y tw
x y t k d d k d d

t

   



        
  

     
 

    
 

(5.1) 

   0, ,0 ,w x y w x y
 
and

    
   0, , 0 ,

w
x y v x y

t




  
(5.2) 

Let us separate the variables as 

     , , ,w x y t W x y T t
 (5.3) 

and substituting back into Eq (5.1): 

             2 2 2 3
1 2 1 2

2 3
0 0 0

, , , ,
, I O

d T t W x y W x y W x y W x y
W x y T t k d d k d d

dt

   



        
  

      
  

 
   

 
(5.4)

which yields 

 
 

 
       2 2 2 3

1 2 1 2
2 3

0 0 0

, , , ,1 1

, I O

d T t W x y W x y W x y W x y
k d d k d d

T t dt W x y

   



         
  

      
    

 
    (5.5) 

where λ  ℝ is a constant independent of 𝑥, 𝑦 and 𝑡. Two characteristic functions can be written as 

   
2

2

d T t
T t

dt
 

 
(5.6a) 

and 

         
2 2 3

1 2 1 2

3
0 0 0

, , , ,
,I O

W x y W x y W x y W x y
k d d k d d W x y

   



         
  

     
     

 
(5.6b)
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5.1. Rectangular membrane with four fixed edges (CCCC) 

Comparing Eqs (5.6b) with (2.17b), if we consider 𝑊ሺ𝑥,𝑦ሻ  as an analogue to 𝑤ሺ𝑥,𝑦ሻ  and 
𝜆𝑤ሺ𝑥,𝑦ሻ as an analogue to 𝑓ሺ𝑥, 𝑦ሻ, the following can be obtained by utilising Eqs (4.2) and (4.5) as 

           

   

2 2 3
1 2 1 2

3
1 1 0 0 0

1 1

1 cos cos 1 cos cos
sin sin

sin sin

mn I O
m n

mn
m n

m n m n
A k d d k d d mx ny

A mx ny

   



        
  



 

 

 

 

  
 

 



    


 

(5.7) 

By comparing corresponding coefficients on both sides, the eigenvalues can be obtained as 

       2 2 3
1 2 1 2

4
0 0 0

1 cos cos 1 cos cos
mn I O

m n m n
k d d k d d

   



         
  

 
    

 
(5.8) 

The general solution to Eq (5.6a) can be written as 

     cos sinmn mn mn mn mnT t A t B t  
 

(5.9) 

According to the superposition principle, the general solution to Eq (5.3) can be written as a linear 
combination of each mode as 

         
1 1

, , cos sin sin sinmn mn mn mn
m n

w x y t A t B t mx ny 
 

 

   
 

(5.10) 

and initial conditions can be written as 

     0
1 1

, sin sinmn
m n

w x y A mx ny
 

 


 

(5.11a) 

     0
1 1

, sin sinmn mn
m n

v x y B mx ny
 

 


 

(5.11b) 

where the coefficients can be obtained as 

     

     

0

0 0

0

0 0

4
, sin sin

4 1
, sin sin

b a

mn

b a

mn

mn

A w x y mx ny dxdy
ab

B v x y mx ny dxdy
ab 





 

 
 

(5.12a) 

(5.12b) 

In summary, the complete solution for CCCC is: 
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         

     

     

       

1 1

0

0 0

0

0 0

2 2 3
1 2 1 2

4
0 0 0

1 2

, , cos sin sin sin

4
, sin sin

4 1
, sin sin

1 cos cos 1 cos cos

cos s

mn mn mn mn
m n

b a

mn

b a

mn

mn

mn I O

w x y t A t B t mx ny

A w x y mx ny dxdy
ab

B v x y mx ny dxdy
ab

m n m n
k d d k d d

   



 



         
  

    

 

 

   





 
 

 



 

 

   

 
 

2 22
2 2

2 3 2 3

26 1
in

ln /I O

m n
m n k c k c

a b

   
     


   

 

(5.13) 

In particular, by setting 𝜀 ൌ 𝛿 , Eq (5.13) reduces to the solution of the classical PD model. 
Regarding boundary conditions of CCFF and CCCF, the corresponding solutions can be obtained from 
Eq (5.13) by letting: 

CCFF:
  

 2 1

2

m
m

a




   
and

    

 2 1

2

n
n

b




 
(5.14a) 

CCCF:
 

m
m

a




 
and

  

 2 1

2

n
n

b




 
(5.14b) 

5.2. Rectangular membrane with mixed boundary conditions (CFCF) 

Comparing Eq (5.6b) with (2.17b), if we consider 𝑊ሺ𝑥, 𝑦ሻ  as an analogue to 𝑤ሺ𝑥,𝑦ሻ  and 
𝜆𝑤ሺ𝑥,𝑦ሻ as an analogue to 𝑓ሺ𝑥, 𝑦ሻ, the following can be obtained by utilising Eqs (4.11) and (4.13) 
as 

2 2 3
1 2 1 2

3
1 0 0 0 0

1 0

1 cos cos 1 cos cos
sin cos

sin cos

mn I O
m n

mn
m n

m n m n
A k d d k d d mx ny

A mx ny

   



         
  



 

 

 

 

  
 

 



    


 

(5.15) 

By comparing corresponding coefficients on both sides, the eigenvalues can be obtained as 

       2 2 3
1 2 1 2

3
0 0 0

1 cos cos 1 cos cos
mn I O

m n m n
k d d k d d

   



         
  

 
    

 
(5.16) 

The general solution to Eq (5.6a) is: 

     cos sinmn mn mn mn mnT t A t B t  
 

(5.17) 
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According to the superposition principle, the general solution to Eq (5.3) can be written as a linear 
combination of each mode: 

     
1 0

, , cos sin sin cosmn mn mn mn
m n

w x y t A t B t mx ny 
 

 

   
 

(5.18) 

and initial conditions can be written as 

 0
1 0

, sin cosmn
m n

w x y A mx ny
 

 


 

(5.19a) 

 0
1 0

, sin cosmn mn
m n

v x y B mx ny
 

 


 

(5.19b) 

According to orthogonality, one can obtain: 

 

 

 

 

0

0 0

0 0

0 0

0

0 0

0 0

0 0

4
, sin cos , 1

2
, sin 1, 0

4 1
, sin cos , 1

2 1
, sin 1, 0

b a

mn

b a

m

b a

mn

mn

b a

m

mn

A w x y mx nydxdy m n
ab

A w x y mxdxdy m n
ab

B v x y mx nydxdy m n
ab

B v x y mxdxdy m n
ab





 

  

 

  

 

 

 

 
 

(5.20) 

In summary, the complete solution for CFCF is: 

     

 

 

 

 

1 0

0

0 0

0 0

0 0

0

0 0

0 0

0 0

, , cos sin sin cos

4
, sin cos , 1

2
, sin 1, 0

4 1
, sin cos , 1

2 1
, sin 1,

mn mn mn mn
m n

b a

mn

b a

m

b a

mn

mn

b a

m

mn

w x y t A t B t mx ny

A w x y mx nydxdy m n
ab

A w x y mxdxdy m n
ab

B v x y mx nydxdy m n
ab

B v x y mxdxdy m n
ab

 





 

 

   

 

  

 

 





 

 

 
       

 
 

2 2 3
1 2 1 2

3
0 0 0

2 22
2 2

1 2 2 3 2 3

0

1 cos cos 1 cos cos

26 1
cos sin

ln /

mn I O

I O

m n m n
k d d k d d

m n
m n k c k c

a b

   



         
  

        
     



 
 


     

   

 

(5.21) 
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6. Numerical cases 

In order to validate the capability of the current formulation, several numerical cases are 
considered and compared against the corresponding classical solutions. The numerical solution of 
equations of peridynamics is usually done by using the meshless approach [36]. Lopez and 
Pellegrino [37] implemented a spectral method for the space discretization based on the Fourier 
expansion of the solution while considering the Newmark-β method for the time marching.  
Jafarzadeh et al. [38] introduced an efficient boundary-adapted spectral method for peridynamic 
transient diffusion problems with arbitrary boundary conditions. Without loss of generality, membrane 
dimensions a × b = 1 m × 1 m and parameter c = 1 Nm/kg are chosen throughout this section. The outer 

horizon size of 𝛿 ൌ 0.1𝑚 and varying inner horizon sizes of 𝜀 ൌ ఋ

ହ଴
, ఋ
ଵ଴

, ఋ
ହ
 and 𝜀 ൌ 𝛿 (i.e., classical 

PD model) are considered.  

6.1. Static condition  

6.1.1. Rectangular membrane with four fixed edges (CCCC) 

In this first numerical case, a rectangular plate with four fixed edges (CCCC) subjected to a 

loading of 𝑓ሺ𝑥,𝑦ሻ ൌ െ0.05 sin గ௫

௔
sin గ௬

௕
 is considered under static conditions. The deflection of the 

plate along the central x-axis for different inner horizon values is given in Figure 6a. As shown in 
Figure 6b, as the inner horizon size decreases, the peridynamic solution approaches the classical 
solution. 

 

Figure 6. (a) Comparison of PD deflection results with CCM results along x-axis; (b) zoomed view. 

6.1.2. Rectangular membrane with mixed boundary conditions (CFCF) 

In the second numerical case, for the same loading condition 𝑓ሺ𝑥, 𝑦ሻ ൌ െ0.05 sin గ௫

௔
sin గ௬

௕
 , the 
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rectangular plate is subjected to mixed boundary conditions (CFCF). Deflection values along the 
central x- and y-axes are given in Figure 7a,c. As in the previous case, the peridynamic solution 
converges to a classical solution as the inner horizon size decreases (see Figures 7b,d). 

 

Figure 7. (a) Comparison of PD deflection results with CCM results along x-axis; (b) 
zoomed view; (c) comparison of PD deflection results with CCM results along y-axis; (d) 
zoomed view. 

6.2. Free vibration condition  

6.2.1. Rectangular membrane with four fixed edges (CCCC) 

For the next numerical case, the dynamic behavior of the rectangular plate is investigated. The 
plate has fixed boundaries and is subjected to initial displacement and velocity conditions: 

ICs:        0 0, 0.05 , sin sin
x y

u x y x x a y y b v x y
a b

 
   

 

Figure 8a demonstrates the variation of the deflection at the center of the rectangular plate as time 
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progresses. Similar to the static cases, the peridynamic solution converges to the classical solution as 
the inner horizon size decreases as shown in Figure 8b. 

 

Figure 8. (a) Comparison of PD deflection results with CCM results at the center of the 
rectangular plate as time progresses; (b) zoomed view. 

6.2.2. Rectangular membrane with mixed boundary conditions (CFCF) 

For the second dynamic case, the rectangular plate is subjected to the same initial displacement 
and velocity conditions: 

ICs: 
     0 0, 0.05 , sin sin

x y
u x y x x a v x y

a b

 
   

 
but the edges are subjected to mixed boundary conditions (CFCF). For this boundary condition, the 
variation of deflection at the center of the plate as time progresses is given in Figure 9a. As shown in 
Figure 9b, peridynamic and classical solutions become closer as the inner horizon size decreases. 

 

Figure 9. (a) Comparison of PD deflection results with CCM results at the center of the 
rectangular plate as the time progresses; (b) zoomed view. 
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Figure 10. Comparison of PD deflection results with CCM results as the outer horizon size 
increases. (a) Mode m = 1, n = 0; (b) mode m = 1, n = 1; (c) mode m = 2, n = 1; (d) mode 
m = 2, n = 2; (e) mode m = 3, n = 2; (f) mode m = 3, n = 3. 
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6.3. Natural frequencies 

For the final numerical case, for the mixed boundary condition (CFCF) for the rectangular 
membrane, vibrational frequencies of the first 6 modes are compared in Figures 10a–f. According to 
these figures, it can be seen that as the outer horizon decreases, peridynamic solutions converge to 
classical solutions and, after certain outer horizon values, these two solutions start diverging due to 
nonlocal effects. On the other hand, a decreasing inner horizon size can allow representation of the 
classical behaviour although the outer horizon size is relatively large. 

7. Conclusions 

In the study, a newly proposed double-horizon peridynamics formulation was presented for two-
dimensional membranes subjected to fixed or mixed boundary conditions. Both analytical and 
numerical solutions are presented. According to the numerical results, it was shown that as the inner 
horizon size decreases, peridynamic solutions converge to a classical solution for different boundary 
conditions and both static and dynamic problems. Moreover, it was also demonstrated that for 
relatively large outer horizon sizes, the inner horizon can allow capturing classical behavior as the 
inner horizon size decreases. Therefore, it can be concluded that double-horizon peridynamics can 
provide an alternative platform to reduce computational time by allowing larger horizon sizes but still 
capturing classical behavior by reducing the inner horizon sizes. 
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