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Abstract: In this study, a novel method enabled by estimation of initial value guess at nonequilibrium
was proposed to accelerate drift-diffusion equations in semiconductor device simulation. The initial
value guess was obtained by solving analytical model about electrical potential with the decoupling
algorithm. By obtaining the initial value directly at the target bias voltage, the proposed method
eliminated time-consuming bias ramping process in the classical method starting from the equilibrium
state, thereby accelerating the whole process. The method has been applied to a junction barrier
Schottky (JBS) diode for validation. Numerical results showed that the proposed method achieves
convergence within 10 iterations at several reverse bias voltages, achieving significant reduction of
iteration number compared to the classical method using the bias ramping process. It demonstrated that
the proposed method holds high feasibility to facilitate the semiconductor device property prediction in
relatively regular device structure in the case of low current. With further improvements, this method
can also be applied to more complex devices.

Keywords: drift-diffusion equations; finite element method; nonlinear iteration; nonequilibrium
initial guess; semiconductor device simulation

1. Introduction

Semiconductor device simulation plays a crucial role in fostering the next-generation device
technology development, and is therefore widely used in the industry and academia [1–3]. Despite the
recent trend of device miniaturization that requires simulators to account for quantum transport
effects, many devices with larger dimensions (at the scale of 1 µm) and with more complex
geometries are being designed and implemented for various applications. Among the semiclassical
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approaches developed for modeling charge carrier transport, the drift-diffusion (DD) equations are
among the most popular ones because of its simplicity while being capable of explaining many
essential characteristics of semiconductor devices. The nonlinear iterative approach, composed of
inner iterations and outer iterations, is typically employed to solve the strongly coupled nonlinear DD
equations of the semiconductor devices [4–6]. Each inner iteration solves a linearized version of the
entire nonlinear algebraic system based on numerical methods, such as finite element method (FEM)
and finite volume method (FVM) [7, 8], consuming a lot of time to achieve a stable convergence. The
selection of outer iteration method will affect the number of times the inner iterations are solved.
Therefore, a high-speed outer iteration method is urgently required to reduce the iteration number and
accelerate the simulation process of semiconductor devices. For the outer iteration method, an
effective initial value is the key-point to improve simulation efficiency without divergence in the
iteration process.

In the classical method, the self-consistent solution is obtained through bias ramping process in
the outer iterations. The previous solution is generally adopted as the initial guess or as the basis for
extrapolating the initial value to solve the equations under current bias voltage on devices. The bias
ramping process increases bias from the equilibrium state and repeats a series of outer iterations, which
is a time-consuming computational process [2]. By contrast, obtaining an effective initial value directly
from a nonequilibrium state at the target bias voltage can bypass the tedious bias ramping process.
However, it is a challenge to acquire such initial value due to the nonlinearity of the DD equations.

Nowadays, the prediction of initial value in semiconductor simulation has been approached
through two new methods, consisting of the neural networks method [9] and analytical models
method [10, 11]. The neural networks method could efficiently generate initial guesses when provided
with sufficient training data and device parameters. However, the process of preparing the training
dataset is often time-consuming. Compared to the neural networks method that requires a
time-consuming training process, physics-based analytical models can obtain a more unconstrained
initial guess of device by solving simplified coupled nonlinear partial differential equations that
describe the physics of the semiconductor devices. A straightforward initial guess, including both
potential and carrier density distribution for simulating the P-N junction, which is a simple device
composed of two semiconductor materials with different doping types, p-type and n-type, was
proposed to accelerate device simulation based on physical perspective [10]. Another analytical
models method based on the compact charge model was proposed to predict an initial guess for
gate-all-around metal-oxide-semiconductor field-effect transistors [11]. Instead of the compact charge
model derived from the density-gradient equation, the potential analytical model based on the Poisson
equation is a better way to construct a new initial guess. Since the range of potential variation is
relatively smaller compared to the carrier concentration, it is less likely to cause a divergence
problem, and the carrier concentration distribution could be numerically obtained in our analytical
models method automatically.

In this paper, a novel estimation of initial value at nonequilibrium for semiconductor device
simulation, which caused by applied bias voltage, is proposed based on analytical models about
electrical potential. To validate this method, a commonly encountered junction barrier Schottky (JBS)
device has been simulated. Numerical experiments show that this method can significantly reduce the
number of inner iterations required for convergence and possesses strong robustness in this
application scenario. To extend this method to handle more complex devices, one can start by
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establishing a more extensive unified analytical model of electrical potential or even combining some
neural networks methods, although it may bring additional training computational costs.

The organization of this article is as follows. In Section 2, the mathematical model employed in
semiconductor device simulations and several types of boundary conditions is introduced. Section 3
discusses the numerical methods regarding the finite element discretization and iterative schemes. The
potential analytical model of JBS devices before punch through is proposed in Section 4. Finally,
numerical simulation results of the two-dimensional JBS device are presented in Section 5 to evaluate
the effectiveness of this method.

2. Mathematical model

2.1. The DD equations

The DD equations, simplified from the Boltzmann transport equation, is a semi-classical model
for the mathematical description and numerical simulation for semiconductor devices. It expresses the
potential and the carrier concentration relationships with the Poisson equation and continuity equations
respectively. The equations read as follows [12]:

−∇ · ε∇ψ = q(p − n + C)
1
q∇ · Jn = Rn

−1
q∇ · J p = Rp

(2.1)

with {
Jn = −qnµn∇ψ + qDn∇n
Jp = −qpµp∇ψ − qDp∇p

(2.2)

where ψ is the electrostatic potential, ε[CV−1cm−1] is the dielectric constant, q[C] is the fundamental
electron charge, n and p are the electron and hole concentrations inside the semiconductor, and C =

ND − NA [cm−3] is the doping profile. C is assumed to be a given datum of the problem in terms of
the donor and acceptor concentrations ND and NA. Source terms Rn,Rp [cm−3s−1] can be interpreted as
the net recombination/generation rate of carriers per unit time and volume. In addition, assuming the
temperature T [K] of the crystal is constant, carrier mobilities µn, µp [cm2 V−1 s−1] and carrier diffusion
coefficients Dn,Dp [cm2 s−1] follow Einstein’s relations,

Dn = µn
kBT

q
, Dp = µp

kBT
q

(2.3)

where kB [VCK−1] is the Boltzmann constant. The carrier mobilities are treated as constant and
calculated with the low field mobility model [2], Eq (2.4):

µn = µn,300(T/300)−γn , µp = µp,300(T/300)−γp (2.4)

where µn,300, µp,300, γn, and γp are low-field mobility parameters.

Networks and Heterogeneous Media Volume 19, Issue 1, 456–474.



459

2.2. Pretreatment of DD equations

First, the dimensionless electrostatic potential is treated with the following scaling for
computational simplicity:

ψ←
qψ
kBT

. (2.5)

By taking Eqs (2.3) and (2.5) into DD Eqs (2.1) and (2.2), the scaled DD equations could be
summarized as follows: 

−∇ · ε∇ψ =
q2

kBT (p − n + C)
1
q∇ · Jn = ∇ · (Dn(∇n − n∇ψ)) = Rn

−1
q∇ · Jp = ∇ · (Dp(∇p + p∇ψ)) = Rp

. (2.6)

Second, the following scaled Slotboom variables in Eq (2.7) are introduced [13], which has been
proven to be very useful and was adapted by many researchers [14, 15]:

Φn = n · exp(−ψ), Φp = p · exp(ψ) (2.7)

aiming at eliminating the cross terms, which is the advective terms in the flux density and transforming
the continuity equations in Eq (2.6) into a set of self-adjoint second-order elliptic partial differential
equations with exponential coefficients exp(−ψ) and exp(ψ):

−∇ · ε∇ψ =
q2

kBT [Φpexp(−ψ) − Φnexp(ψ) + C]
1
q∇ · Jn = ∇ · (Dnexp(ψ)∇Φn) = Rn

−1
q∇ · Jp = ∇ · (Dpexp(−ψ)∇Φp) = Rp

. (2.8)

2.3. Generation-recombination terms of continuity equations

Carrier generation-recombination is a process in which the semiconductor material attempts to
return to equilibrium after being disturbed from it. In this study, the generation-recombination
mechanisms mainly include Shockley-Read-Hall (SRH) and Auger recombination [2]. The SRH
model was introduced in 1952 [12, 16] to describe the statistics of the recombination and generation
of holes and electrons in semiconductors occurring through the mechanism of trapping. This model is
an important ingredient of simulation models for semiconductor devices, especially the wide bandgap
semiconductors such as gallium nitride (GaN) devices discussed in this paper. The net SRH
recombination rate is written as

RS RH =
np − nie

2

τp(n + nieexp( Et−Ei
kBT )) + τn(p + nieexp( Ei−Et

kBT ))
(2.9)

where nie is the effective intrinsic carrier concentration of the semiconductor, Et is the trap energy level
involved, Ei is the intrinsic Fermi level, and τn and τp are the electron and hole lifetimes, which are
related to the doping concentration:

τn =
τn0

1 + ND+NA
NS RH

n

, τp =
τp0

1 + ND+NA
NS RH

p

(2.10)

where τn0, τp0, NS RH
n , and NS RH

p are appropriate constants relating to materials.
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For simplicity, in this paper, Et is set as Ei, which corresponds to the most efficient
recombination center.

Auger generation-recombination mechanisms occurs through a three-particle transition whereby a
mobile carrier is either captured or emitted [4]. Auger recombination is commonly modeled by the
expression:

RAuger = Augn(pn2 − nnie
2) + Augp(np2 − pnie

2) (2.11)

where Augn and Augp are appropriate constants relating to materials.

2.4. Boundary conditions

Multiple boundary conditions are presented for kinds of semiconductor devices. In this paper, two
main types of boundary conditions are taken into account: The nonhomogeneous Dirichlet conditions
for ideal Ohmic contacts and Schottky contacts, and the homogeneous Neumann conditions for
boundaries without contacts.
Ohmic contacts: Denoted with ΓO, on which external voltages Vext are applied to electrically drive the
device. The boundary conditions for the electrostatic potential ψ and concentrations of carriers n, p are
all Dirichlet conditions:

n|ΓO =
C +

√
C2 + 4nie

2

2
, p|ΓO =

C +
√

C2 + 4nie
2

2
,

ψ|ΓO +
kBT

q
ln(

n
nie

) = Vext|ΓO −
kBT

q
ln(

n
nie

).
(2.12)

Shottky contacts: Denoted with ΓS , on which the applied external voltages are consistent with those
on the Ohmic contact in JBS. According to the theory of hot electron emission, the boundary
conditions are:

n|ΓS = Ncexp(−
ΦB

kBT
), p|ΓS = Nvexp(−

Eg − ΦB

kBT
),

ψ|ΓS = χ +
Eg

2q
+

kBT
2q

ln
Nc

Nv
−W f + Vext

(2.13)

where χ is the electron affinity of the semiconductor material, Eg is the bandgap, Nc is the conduction
band density of states, Nv is the valence band density of states, and ΦB is the barrier height at the
metal-semiconductor interface in eV . The parameter of the working function, W f , is used to specify a
Schottky contact, which is defined as:

W f = χ + ΦB. (2.14)

The above equation is formally similar to the metal work function. However, the barrier height is
not strictly equal to the difference between the electron affinity and the metal work function, owing to
the presence of interface states. In this paper, the parameter W f is set to 5.3938 eV to have a Schottky
barrier of 1.0838 eV .

The specific relevant parameters used in this paper are listed in Table 1.
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Table 1. Electrical properties parameters for GaN [17].

Parameter Unit Value Parameter Unit Value
µn,300 cm2V−1s−1 400 γn - 1.5
µp,300 cm2V−1s−1 8 γp - 1.5
τn0 s 10−9 Augn cm6s−1 10−31

τp0 s 2 × 10−9 Augp cm6s−1 10−31

NS RH
n cm−3 4 × 1018 χ eV 4.31

NS RH
p cm−3 4 × 1018 Eg eV 3.43

nie cm−3 1.06 × 10−10 Nc cm−3 2.24 × 1018

- - - Nv cm−3 2.51 × 1019

Boundaries without contacts: All the external boundaries of the device without contacts, are denoted
with ΓN . These boundaries are treated as ideal Neumann boundary conditions:

∂ψ

∂n
|ΓN = 0, Jn · n|ΓN = J p · n|ΓN = 0. (2.15)

3. Numerical framework

Approximate solutions of DD equations are computed using numerical techniques as it is
impractical to get analytical solutions. Various discretization methods such as finite difference
method (FDM), FVM, and FEM are available to obtain numerical solutions. Many modern devices
involve geometrically intricate structures. Therefore, FVM and FEM, which allow for unstructured
meshes, have drawn more attention in recent years [18–20].

3.1. FEM discretization for the DD equations

Let Ω ⊂ R2 denote the whole semiconductor domain, H1(Ω) = {u : Ω → R|u, ∂u
∂x ,

∂u
∂y ∈ L2(Ω)} be

the Sobolev space of weakly differentiable functions, and H1
D(Ω) = {v ∈ H1(Ω)|v = 0 on ΓO ∪ ΓS }.

The variational formulas of the continuity equations in Eq (2.8) are used to find Φn ∈ H1
D(Ω) and

Φp ∈ H1
D(Ω), satisfying {

−
∫

Ω
Dn exp(ψ)∇Φn · ∇vdΩ =

∫
Ω

RnvdΩ∫
Ω

Dp exp(−ψ)∇Φp · ∇vdΩ =
∫

Ω
RpvdΩ

. (3.1)

Let us assume that Ω is polygonal (as is often the case in practice), so that the domain could be tiled
with a set of triangles 4k, k = 1, · · · ,K, defining a triangulation Th. The points where triangle vertices
meet are called nodes, denoted as qi, i = 1, · · · ,N. The test function v is chosen in the piecewise linear
finite element space Vh ⊂ H1

D(Ω), which is denoted as vh. The Slotboom variables Φn and Φp are
discretized by Φnh = ΣiΦnh(qi)φi and Φph = ΣiΦph(qi)φi, respectively. In these equations, φi denotes the
linear Lagrangian basis function at qi, then the discrete forms of the left-hand side of Eq (3.1) become, −

∑
∆k∈Th

∫
∆k

Dn exp(ψ)∇Φnh · ∇vd4k ≈ −
∑

∆k∈Th
Dn exp (ψ∗)

∫
∆k
∇Φnh · ∇vhd4k∑

∆k∈Th

∫
∆k

Dp exp(−ψ)∇Φph · ∇vd4k ≈
∑

∆k∈Th
Dp exp (−ψ∗)

∫
∆k
∇Φnh · ∇vhd4k

(3.2)
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where ψ∗ is the corresponding potential values at Gaussian points within a triangular region, extracted
by interpolating the potential values at the vertices of 4k.

For the Poisson’s equation in Eq (2.8), by treating with Slotboom variables, the nonlinear equation
in terms of the difference δ(x) between the available solution ψ and the exact solution [21] can be
expanded to

ψexact = ψ + δ. (3.3)

By adopting operations similar to those in the classical Newton method, neglecting terms of second
and higher orders, and substituting Eq (3.3) into Eq (3.2), the following linear differential equation for
δ is obtained:

−
ε

q
∇2(δ) +

q
kBT

[
Φp exp(−ψ) + Φn exp(ψ)

]
δ

=
ε

q
∇2(ψ) +

q
kBT

(
Φp exp(−ψ) − Φn exp(ψ) + C

)
.

(3.4)

The discrete variational form of the above equation is given by:

∑
4k∈Th

ε

q

∫
∆k

∇δh · ∇vhd4k +
q

kBT

[
Φp∗ exp (−ψ∗) + Φn∗ exp (ψ∗)

] ∑
∆k∈Th

∫
∆k

δh · vhd4k

= −
∑
4k∈Th

ε

q

∫
∆k

∇ψh · ∇vhd4k +
∑
4k∈Th

q
kBT

∫
4k

(
Φph exp (−ψh) − Φnh exp (ψh) + C

)
· vhd4k.

(3.5)

The complete coefficient matrices of Eqs (3.2) and (3.5) are constructed by the Galerkin finite
element method [22].

3.2. Outer iteration schemes

3.2.1. Outer iteration scheme based on the analytical models

The process of constructing the potential analytical model-based iteration is given as follows.
First, the analytical 2D potential distribution ψanalytical is obtained through the analytical model under a
certain reverse bias voltage, Vr, for a specified doping concentration and device size, then the
transitional Slotboom variables Φn,trans,Φp,trans are obtained by numerically solving the decoupled
continuity equations without generation terms using the potential distribution obtained in the previous
step. With one step of Gummel iteration considering the generation terms in Eqs (2.9)–(2.11), the
initial guess could be achieved. The combined ψinitial, Φn,initial, and Φp,initial are used as the initial guess
under this certain reverse bias. Finally, the classical outer iteration scheme is employed to further
iteratively solve the DD equations. The overall iteration procedure is shown in the flowchart in
Figure 1.
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Figure 1. Flow chart of overall iteration procedure in this work.

3.2.2. Classical outer iteration schemes for solving the DD equations

In classical nonlinear iterative schemes, the DD equations are mainly solved by the inner-outer
iterative methods [3, 5]. Among them, the Gummel or Newton iteration is used as the outer iteration,
and the conventional iterative methods are used as the inner iteration for solving the linearized systems.
In order to better compare our method with classical nonlinear iterative methods, three outer iterative
schemes based on Gummel or Newton iterations were adopted here.

Scheme G1: This scheme is based on the Gummel iteration, and the flowchart is shown in
Figure 2(a). Unlike our method, the classical outer iteration requires obtaining the initial guess from
previous data. In Scheme G1, the currently calculated solution is used as the initial guess at the next
bias. Scheme G1 adopts a simple damping method, which truncates corrections that exceed a
maximum allowable magnitude. Scheme G1 also limits the number of linearized Poisson solutions per
Gummel iteration to one, which leads to under-relaxation of the potential update.
This ‘single-Poisson’ solution mode extends the usefulness of Gummel’s method to higher currents.

Scheme G2: This scheme is also based on the Gummel iteration, but the difference from Scheme G1

is that the Poisson equation is solved repeatedly until convergence is reached as shown in Figure 2(b).
This is done because the nonlinear Poisson solver acts as a ‘preconditioner’ of Gummel’s fixed point
iteration. A more commonly used initial guess strategy, called linear extrapolation (LE), is adopted in
Scheme G2. In Scheme G2, an initial guess for a new bias is extrapolated from two previous solutions,
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that is 
ψi+2,initial = ψi+1 + (ψi+1 − ψi) ·

Vstep

Vi+1−Vi

Φn,i+2,initial = Φn,i+1 · exp(ψi+1 − ψi+2,initial)
Φp,i+2,initial = Φp,i+1 · exp(ψi+2,initial − ψi+1)

(3.6)

in which ψi+2,initial, Φn,i+2,initial, and Φp,i+2,initial are initial guesses for the new bias and the other variables
with subscripts i and i + 1 are the convergent solutions of the two previous iterations, with Vi and Vi+1

representing their corresponding bias voltages.

Figure 2. Flowchart of two types of Gummel methods (a) Scheme G1, (b) Scheme G2.

In Scheme G2, an exponential decline search damping is adopted by introducing variable k and
a ‘residual’ function g(k). Derive the following equations from Eq (3.4):

F(ψ) =
ε

q
∇2(ψ) +

q
kBT

(
Φp exp(−ψ) − Φn exp(ψ) + C

)
, (3.7)

G(ψ) = F(ψ) +
dF(ψ)

dψ
δψ, (3.8)

Based on Eqs (3.7) and (3.8), the ‘residual’ function g(k) is expressed as Eq (3.9):

g(k) = G(F(ψi + kδψi)) = F(ψi) + k
dF(ψi)

dψi
· δψi, k ∈ [0, 1], (3.9)
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in which ψi represents the initial guess and δψi represents the correction for ψi. A particular ki is
accepted if

g(ki) ≤ g(0) + ki · α · g′(0). (3.10)

in which, α is a small positive parameter, set as 10−4.
The damping process starts from g(1). If g(1) is sufficiently small, then the full Newton step is

accepted, otherwise ki will be further reduced to ki+1 by ki+1 = ki/2, then test Eq (3.10) again.
Scheme N: This scheme is based on the Newton iteration. The Newton-like method usually has the

local quadratic convergency property if a suitable initial guess is given. According to Eq (2.8), let

Fψ(ψ,Φn,Φp) = ∇ · εq∇ψ +
q

kBT [Φpexp(−ψ) − Φnexp(ψ) + C],
FΦn(ψ,Φn,Φp) = ∇ · (Dnexp(ψ)∇Φn) − Rn,

FΦp(ψ,Φn,Φp) = ∇ · (Dpexp(−ψ)∇Φp) − Rp.

(3.11)

In each Newton iteration, the following Newton equations based on Eq (3.11) are solved:
∂Fψ
∂ψ

∂Fψ
∂Φn

∂Fψ
∂Φp

∂FΦn
∂ψ

∂FΦn
∂Φn

∂FΦn
∂Φp

∂FΦp

∂ψ

∂FΦp

∂Φn

∂FΦp

∂Φp



δψ

δΦn

δΦp

 = −


Fψ

FΦn

FΦp

 , (3.12)

where

∂Fψ
∂ψ

= ε
q∇ · ∇(·) − q

kT

(
Φp exp(−ψ) + Φn exp(ψ)

)
,
∂Fψ
∂Φn

= −
q

kT exp(ψ), ∂Fψ
∂Φp

=
q

kT exp(−ψ),
∂FΦn
∂ψ

= ∇ ·
(
Dn exp(ψ)(·)∇ (Φn)

)
,

∂FΦn
∂Φn

= ∇ ·
(
Dn exp(ψ)∇(·)

)
−

∂Rn
∂Φn
,

∂FΦn
∂Φp

= − ∂Rn
∂Φp

,
∂FΦp

∂ψ
= −∇ ·

(
Dp exp(−ψ)(·)∇

(
Φp

))
,

∂FΦp

∂Φn
= −

∂Rp

∂Φn
,

∂FΦp

∂Φp
= ∇ ·

(
Dp exp(−ψ)∇(·)

)
−

∂Rp

∂Φp
.

(3.13)

The same initial guess strategy, LE in Eq (3.6), as in Scheme G2, is adopted in Scheme N. The
damping method is based on Eqs (3.12) and (3.13), but it has been scaled to ensure that the corrections
of different variables are within the same magnitude. So, Eq (3.12) is transformed into

A∂Fψ
∂ψ

B∂Fψ
∂Φn

C ∂Fψ
∂Φp

A∂FΦn
∂ψ

B∂FΦn
∂Φn

C ∂FΦn
∂Φp

A
∂FΦp

∂ψ
B
∂FΦp

∂Φn
C
∂FΦp

∂Φp




1
Aδψ

1
BδΦn
1
CδΦp

 = −


Fψ

FΦn

FΦp

 , (3.14)

in which scale factor A is calculated by max(1, ψi+1
mmax), where mmax is the node, at which |ψi+1

m − ψ
i
m|

has its maximum value, and m is the node identifier. For scale factor B and C, they are calculated by
max(Φi

n) and max(Φi
p) respectively. By representing Eq (3.14) in the form of M ·δ = −F, the ‘residual’

function for the Newton iteration would be expressed as Eq (3.15):

G(k) = M · kδ + F, (3.15)

and the remaining processing of the damping method is consistent with Scheme G2.

Networks and Heterogeneous Media Volume 19, Issue 1, 456–474.



466

4. Analytical model about potential distribution of JBS with reverse voltage

The cross-sectional schematic diagram of the JBS device is shown in Figure 3, where the width and
junction depth of the P+ implantation region are denoted as w and X j, respectively. The three boundary
conditions described by Eqs (2.12)–(2.15) are represented by blue, red, and orange boundary lines in
The drift region with a depth of WD, which is a section designed to handle high voltages with low
implantaion, is divided into two parts: the grid area and the yellow area. The grid region between the
two P+ regions is part of the un-implanted n-drift region, with a width of S and a depth of d. This
grid region located beneath the anode Schottky contact is the most critical area of the JBS device. The
parameter d represents the maximum depth influenced by the P-N junctions on both sides. The drift
region outside this rectangular area is considered unaffected by the lateral P-N junctions and has the
same potential variation rate as the 1D Schottky junction diffusion region.

Figure 3. Size and boundary conditions of 2D JBS diode.

Setting the anode as the zero-potential reference, the potential distribution at a reverse bias voltage
Vr (Vr <

qNdW2
D

2ε ) is derived under several assumptions, which can be listed as follows:
•A1: The change rate of the longitudinal electric field is much greater than that of the transverse field
in this grid region.
•A2: The potential along the P-N interface is zero.
•A3: The implantation regions on both sides of JBS only affect the area where y < d, while the change
rate of the electric field in the region where y > d is the same as that of a Schottky barrier diode (SBD).

With the boundary conditions as in Section 2.4, the potential distribution in the grid area can be
concluded as follows [23, 24]:

ψ(x, y) = k1y −
qNd

2ε
y2 + k2cosh(

πx
d

)sin(
πy
d

), in grid area. (4.1)

The expressions for k1 and k2 are provided in Eq (4.4).
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The drift region outside the grid shaped area can be treated under the assumption that this region is
not affected by the transverse PN junction and complete depletion. Also, the continuity of the potential
needs to be maintained. So, the approach is to use a quadratic function with a second-order derivative
of −qNd

2ε to fit the potential at the upper and lower ends. The relevant formulas are concluded as follows,{
ψ = k3y − qNd

2ε y2 + k30, X j ≤ y < d, |x| > S
2 ,

ψ = k4y − qNd
2ε y2 + k40, d ≤ y < WD, |x| < S

2 .
(4.2)

The complete expressions for the coefficient k3, k30, k4, and k40 are provided in Eq (4.4).
The potential distribution on the remaining region, such as drift regions that only exhibit

one-dimensional effects and heavily doped regions, can be figured out with a physical explanation [2].
The n+ and p+ doping regions can be approximated to have uniformly distributed quasi-Fermi levels
EN

Fn
and EP

Fp
. Therefore, the potentials in n+ and p+ doping region can be denoted as constant ψN and

ψP, respectively, given by

ψN =
EN

Fn
− EF

q
= 0, in n+ area, ψP =

EF − EN
Fn

q
= Vr, in p+ area. (4.3)



k1 = Vr
W′d−2d + π

d
W′d−d

W′d−2d k2 +
qNd
2ε

2d2−W′2d
W′d−2d ,

k2 =
[

qNd
2ε

(
X jW ′

d − 2X jd + 2d2 −W ′
d

2
)
− Vr

]
/
[

W′d−2d
X j

cosh
(
πS
2d

)
sin

(
πX j

d

)
+ π

d

(
W ′

d − d
)]
,

k3 =
Vd−Vohm

d−X j
+

qNd
2ε

(
d + X j

)
, k30 = Vohm − k3X j +

qNd
2ε X2

j ,

k4 =
Vcathode −Vd

W′D−d
+

qNd
2ε (WD + d) , k40 = Vcathode − k4d +

qNd
2ε d2,

d = S
4 + 2X j, W ′

d ≈

√
2εVr
qNd

+ d,

(4.4)

in which, Vd, which could be calculated by Eq (4.1), represents the voltage at a distance of d from
the Schottky contact at the horizontal boundary of the grid area, Vohm ≈ Vr represents the voltage at a
distance of X j from the Ohmic contact, and Vcathode represents the voltage of the cathode voltage at the
bottom.

So, the Eqs (4.1)–(4.3) form the analytical model about potential, ψanalytical.

5. Numerical results

The parameters for simulating the GaN JBS regarding the dimensions and doping concentration are
presented herein. The substrate has an n-type doping concentration of 1 × 1019 cm−3. The drift region,
with a thickness of 1.5 µm, exhibits an n-type background carrier concentration of 2 × 1016 cm−3.
Additionally, the p+ implantation regions have a width of 1.4 µm and a depth of 0.2 µm, featuring a
p-type concentration of 3× 1017 cm−3. The channel region has a sub-micron dimension of 0.6 µm wide
and 0.2 µm deep, contributing to the realization of superior JBS rectifier characteristics [25].

In this test, the mesh consists of irregular triangular elements generated based on predefined
density distribution functions, while adhering to Delaunay triangulation. Figure 4 presents a
comparison between the initial guess obtained from the initial iteration scheme and the resulting
converged solution. The experiments are conducted on a grid scale consisting of 10398 points,
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referred to as the M2 grid scale. Since the analytical model is established before the device reaches
punch-through voltage, the following reverse bias voltages are considered: −5,−10, and −15 V .
Figure 4(a)–(c) illustrates the 2D results of potential, electron concentration, and hole concentration
for Vr = −10 V . In these figures, the red circle represents the initial value distribution and the grid
lines depict the final solution. To facilitate display, the number of initial guesses has been diluted by a
factor of 10. As depicted in these figures, the initial distribution of potential and carrier concentration
obtained through the improved initial guess strategy serves as an effective approximation of the final
solution. Only the minority carrier concentration, specifically the hole concentration, exhibits
noticeable variations in the channel region, such as the area between the p+ implantation regions.
Figure 4(d)–(f) displays the extracted data along the centerline traversing the channel region
(x = 0 µm). When the reverse bias voltage increases from −5 to −15 V , the 2D initial potential and
hole concentration values closely align with the final solution in Figure 4(d), and Figure 4(e),
demonstrating a significant match. As shown in Figure 4(f), the deviations are confined to the hole
concentration range of 0∼1 µm, with hole concentrations below 1 × 10−14 cm−3.

Figure 4. Initial values of potential and carrier distribution compared with final converged
solutions (a)–(c) under M2 grid scale for Vr = −10 V , (d)–(f) on the centerline: x = 0 for
Vr=−5,−10, and −15 V .

Figure 5 presents a 2D contour plot that illustrates the potential difference between the initial guess
and the final results. The plot demonstrates that near the lateral P-N junction interface, the maximum
potential deviation is approximately 0.88, 1.17, and 1.3 V , corresponding to Vr values of −5, −10, and
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−15 V , respectively. While certain regions exhibit some deviations, the majority of regions exhibit
deviations within 0.2 V , providing an effective initial potential value for subsequent nonlinear
iterations.

Figure 5. The differences of potential distribution between initial guess and final result for
(a) Vr = −5 V (b) Vr = −10 V (c) Vr = −15 V .

The iterative scheme utilized in this study, based on the analytical model, eliminates the need for a
ramping process and will be compared to the classical iteration method that starts from the equilibrium
state. For simplicity, the former method will be referred to as the AMmethod, while the latter will be
referred to as the ES method. Tables 2–4, respectively, display the number of inner iterations required
for these two methods in different outer itereation schemes (Scheme G1, Scheme G2 and Scheme N)
to achieve the same level of converence. It should be noted that due to the consistent system scale
processed in each iteration, the calculation time is similar in each iteration of the same outer iteration
scheme.

In the ES method using Scheme G1, a fixed bias increment of 0.5 V was used. The experiment
data in Table 2 revealed that for the ES method using Scheme G1, with each 5 V increment in reverse
bias voltage, the number of iterations increased by approximately 250. As the reverse bias voltage
increased, the ES method using Scheme G1 consistently required more iterations to achieve a self-
consistent solution, while the AMmethod never exceeded 10 iterations.

Table 2. Inner iteration numbers of Analytical model-based method and Equilibrium-based
method using Scheme G1.

Scheme G1 Vr (V)
- −5 −10 −15
AMmethod 9 10 10
ES method 274 527 757

For the ES method using Scheme G2, several bias steps have been used, ranging from −0.5 to −5 V .
Due to the use of the LE as the initial guess strategy for the ES method using Scheme G2, in addition to
the need to first calculate the equilibrium state in Scheme G1, an additional solution at Vr = −0.2 V was
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calculated as the basis for extrapolating initial guesses, which requires an additional 23 steps of solving
the Poisson equation and 4 steps of solving continuity equations. As shown in Table 3, for different
reverse biases, the lowest number of iterations occurs with the bias step, Vstep, at the maximum step
size. However, excessive bias step size may lead to divergence, making it a trade-off issue. Comparing
the data under Vstep = −0.5 V in Table 3 with the data in Table 2, it can be found that Scheme G2

reduces the number of times the Poisson’s equation is solved by more than half compared to Scheme
G1, and the number of times the continuity equations is solved is reduced by more than four fifths.

Table 3. Inner iteration numbers of Analytical model-based method and Equilibrium-based
method using Scheme G2 (Solved equations, P: Poisson equation, C: Continuity equations).

Scheme G2 Vr = −5 V
Vstep (V) −0.5 −1 −2.5 −5
ES method 125(P),49(C) 83(P),27(C) 59(P),15(C) 54P),11(C)
AMmethod 9(P),6(C)
Scheme G2 Vr = −10 V
ES method 215(P),89(C) 129(P),47(C) 83(P),23(C) 71(P),15(C)
AMmethod 10(P),6(C)
Scheme G2 Vr = −15 V
ES method 305(P),129(C) 174(P),67(C) 106(P),31(C) 84(P),19(C)
AMmethod 10(P),6(C)

For the ES method using Scheme N, only bias step of −0.5 and −1 V are adopted, and a lager bias
step size will lead to divergence. This is because the Newton method relies on more accurate initial
guesses than the Gummel method, and the initial guess obtained by the initial guess strategy, LE, still
cannot meet the needs of the converged solution by Newton’s iteration in this experiment. As shown
in Table 4, whether Vstep = −0.5 or −1 V , the number of iterations required for the ES method to reach
a converged solution under different reverse biases is more than ten times that of the AMmethod.

Table 4. Inner iteration numbers of Analytical model-based method and Equilibrium-based
method using Scheme N.

Scheme N at Vr (V) −5 −10 −15
Vstep (V) −0.5,−1 −0.5,−1 −0.5,−1
ES method 73, 62 122, 93 162, 119
AMmethod 5 6 6

These results clearly demonstrate that the ES method necessitates a significantly greater number of
iterations to produce converged results comparable to those obtained using the AMmethod.

In addition, the convergence behavior of the AMmethod using Scheme G1 is depicted in Figure 6.
In Figure 6(a), it is evident that the differences in root mean square (RMS) values of the potential
update δ become significantly pronounced after the sixth iteration. To enhance clarity in the
presentation, Figure 6(b) was created to display the RMS values associated with the number of
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iterations with different bias voltages, starting from the seventh iteration. Specifically, at the ninth
iteration, the corresponding RMS values are 2.321 × 10−9, 1.976 × 10−7, and 7.816 × 10−7 for
Vr = −5,−10,−15 V , respectively. The convergence rate is faster for lower reverse bias voltages,
indicating a relatively quicker attainment of the same RMS condition through nonlinear iterations.
This can be attributed to the increased nonlinearity of the DD equations with higher bias voltages. In
Figure 6(c), the RMS curves for different grid scales, namely, M1 = 4674, M2 = 10398 and
M3 = 20881, at three bias voltages almost overlap. This suggests that the grid scale size, under the
same grid generation method, has minimal impact on the convergence rate of nonlinear iterations in
semiconductor simulation. The convergence rate of the solving process primarily depends on the
inherent complexity of the problem itself and the employed nonlinear iteration strategy.

Figure 6. Root Mean Square of potential update δ versus number of Gummel iteration in
Scheme G1 for (a) ang (b) different Vr with M2 grid scale (c) different scales of grid nodes
(M1 = 4674, M2 = 10398 and M3 = 20881).

6. Conclusions

In conclusion, a novel estimation of initial value at nonequilibrium for solving the DD equations is
presented based on analytical models about electrical potential. The method starts by deriving an
analytical potential distribution, taking into account the device dimensions, shape, and electrical
parameters. Subsequently, the transient carrier concentration distribution is obtained by solving the
decoupled continuity equations without the generation terms. By taking generation terms into
account, a complete initial value under the specified bias is achieved.

Our method was verified on JBS devices under reverse bias voltage and compared with classical
semiconductor device simulation methods that start from equilibrium state. The results indicate that
regardless if the outer iteration is a Gummel iteration or Newton iteration with damping, our method
saves more than ten times the number of iterations compared to classical methods.

Since one step of our method needs to ignore the generation and combination terms in solving the
continuity equation. The proposed method is more applicable under reverse bias voltage. Specifically,
it is most effective when there is minimal recombination of charge carriers. In the cases where the
generation and recombination effect is significant, it is recommended to use the Scheme G1, which
limits the number of linearized Poisson solutions per Gummel iteration to one, to do the outer iteration.
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For grid area of arbitrary shape, which is caused by different shapes of p+ implantation region in
JBS, it is convenient to continue using the method in the paper by adjusting the parameter d to match
different grid shapes. Since d is a quantity strongly correlated with dimensions, it will be obtained using
a fitting approach with experimental data. For more complex situations, such as nonuniform doping or
more complex physical shapes, which can cause great difficulties in constructing analytical models. In
this situation, neural networks, which require some time for training, can be used to solve the problem
of getting an appropriate initial potential distribution, and then combined it with our nonlinear iteration
scheme for a converged solution.

The proposed method offers a substantial reduction in simulation time for semiconductor device
simulations, such as reverse leakage and reverse breakdown voltage, as it eliminates the need for a
bias ramping process. It also eliminates the need to build a complex charge model from the beginning.
Instead, it solely relies on the analytical model about electrical potential, leading to a significant
reduction in the number of iterations required to achieve convergence for the desired bias voltage.
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