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Abstract: In this research, we constructed a class of nonlinear greedy average block Kaczmarz
methods to solve nonlinear problems without computing the Moore-Penrose pseudoinverse of the
Jacobian matrix. These kinds of methods adopt the average technique of the Gaussian Kaczmarz
method and combine the greedy strategy, which greatly reduces the amount of computation. The local
convergence analysis and numerical experiments of the proposed methods are given. The numerical
results show the effectiveness of the proposed methods.
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1. Introduction

Consider the problem of finding the roots of the system of the nonlinear equations

f(x) = 0,

where f : D ⊆ Rn → Rm. We assume throughout that f(x) = [ f1(x), · · · , fm(x)]T is a continuously
differentiable vector-valued function, and x = (x1, · · · , xn)T is an n-dimensional unknown vector. In
this article, we exclusively study the overdetermined (m ≥ n) nonlinear system, where there exists
a single solution x∗ such that f(x∗) = 0. This kind of nonlinear problem widely exists in practical
applications, such as machine learning [6], differential equations [26], convex optimization, and deep
neural networks [15].

The Newton-Raphson (NR) method, Broyden method [1], and directional secant method [2] are
some iterative methods for solving nonlinear equations. The iterative formula of the Newton-Raphson
method is as follows:

xk+1 = xk − (f′(xk))†f(xk),
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where f′(xk) = [∇f1(xk), · · · ,∇fm(xk)]T ∈ Rm×n is the Jacobian matrix of f at xk. ∇fi(xk)T is its i-th row
and (f′(xk))† is the Moore-Penrose pseudoinverse of f′(xk). This approach, of course, is highly
disadvantageous in the computation as it necessitates the computation of the full Jacobian matrix as
well as its Moore-Penrose pseudoinverse. This leads to high calculation costs. In recent years, the
nonlinear Kaczmarz method has also been developed. Wang, Li and Bao [28] proposed the nonlinear
Kaczmarz (NK) method by generalizing the Kaczmarz method [14] to the nonlinear case, which still
uses the core idea of the Kaczmarz method (i.e., only one row of the coefficient matrix is used in each
iteration). Furthermore, for the case where the Jacobian matrix in the problem is singular, this method
can be computed quickly and circumvents the shortcomings of classical methods such as the
Newton method.

In contrast to the nonlinear Kaczmarz methods, the linear Kaczmarz methods are now more
advanced. Next, we tried to get more efficient nonlinear Kaczmarz methods to use the optimization
idea of the linear Kaczmarz methods. It is commonly known that the Kaczmarz method [14], whose
main idea is to project the current point onto the solution space given by a row of the coefficient
matrix, has drawn a lot of attention lately due to its computational simplicity and efficiency. In 2009,
Strohmer and Vershynin proposed a randomized Kaczmarz (RK) [27] method, which selects row
indexes in a random order, rather than a cyclic order, during each iteration. They proved the linear
convergence of the method, which gave a great impetus to the research on the Kaczmarz
methods [7–10, 16, 18, 23, 35]. Some researchers have also extended the Kaczmarz method to solve
systems of inequality [21] and tensor equations [29].

Enhancing the Kaczmarz method includes two primary measures. One approach is to incorporate
certain criteria to the selection of the working rows so that the larger residuals can be quickly
eliminated. One of the most typical approaches is the greedy randomized Kaczmarz (GRK)
method [4]. In addition, six typical work row selection rules are summarized in [3], which are the
uniform, non-uniform, residual, distance, maximal residual, and maximal distance selection rules.

Another method is to select multiple working rows for each iteration, which we call the block
method. By adopting the block idea [5, 11, 25], many researchers have sped up the standard Kaczmarz
method’s convergence. The block technique involves using a few rows of the coefficient matrix A for
the linear system Ax = b at each iteration. The following is a description of the block Kaczmarz
technique [24]:

xk+1 = xk + A†τk
(bτk − Aτkxk), k = 0, 1, 2, · · · ,

where A†τk represents the Moore-Penrose pseudoinverse of the chosen submatrix Aτk and τk is a subset
of indicators selected according to some rule. However, the Moore-Penrose pseudoinverse must be
computed for each iteration in the block Kaczmarz approach, and this is typically rather costly.
Necoara [22] used some updated convex combinations as the new direction of the next iteration to
build a unified framework for the randomized average block Kaczmarz method [30]. The Gaussian
Kaczmarz method [13] can be regarded as another kind of block Kaczmarz method, that is

xk+1 = xk +
ηT (b − Axk)
‖ATη‖22

ATη,

where η is a Gaussian vector with mean 0 ∈ Rm and the covariance matrix I ∈ Rm×m so that η ∼ N(0, I).
In this paper, motivated by the above two ideas, we attempt to implement them in the nonlinear

Kaczmarz method. The main contributions of this paper are as follows:
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First, the common nonlinear block Kaczmarz method has the same drawback as the classical linear
block Kaczmarz method in that it requires the computation of matrix pseudoinverses. The computation
of the pseudoinverse of the Jacobian matrix requires a lot of computation, especially when the problem
dimension is large. To solve this issue, this paper extends the averaging technique from linear to
nonlinear methods.

Second, there are certain benefits for choosing the greedy criteria in this research. To avoid
calculating the Frobenius norm of the entire Jacobian matrix, we used the second greedy rule in [33]
as the criterion in the first method. In [32], Zhang et al. proposed a nonlinear Kaczmarz method with
a greedy selection strategy, which is specified as follows:

ik = arg max
1≤i≤m

| fi(xk)|2,

which aims at choosing the maximum component of the residual vector. They also showed that in
terms of numerical experiments and theoretical analysis, the methods with greedy rules are faster than
the NK method. Therefore, we used it as the second greedy criterion in this paper.

In summary, inspired by [32, 33], we extended the pseudoinverse-free block Kaczmarz method for
solving linear equations to the nonlinear situation and incorporated greedy principles to accelerate the
convergence of algorithms. We presented two kinds of pseudoinverse-free greedy block nonlinear
Kaczmarz methods: the nonlinear greedy average block Kaczmarz (NGABK) method and the
maximum residual nonlinear average block Kaczmarz (MRNABK) method. The convergence
analyses of the two algorithms are given in detail. Numerical experiments showed that our proposed
methods are more effective than the previous methods. In most cases, the MRNABK method was
better than the NGABK method, and both of them were better than several state-of-the-art solvers.

The rest of this paper is organized as follows: In Section 2, the notations and preliminaries are
provided. In Section 3, we provide the two pseudoinverse-free greedy block nonlinear Kaczmarz
methods. We establish their convergence theorems in Section 4. The numerical experiments are given
in Section 5. Finally, we make a summary of the whole work in Section 6.

2. Notations and preliminaries

For any matrix A ∈ Rm×n, we use σmax(A), σmin(A), ‖A‖2, ‖A‖F =
√∑m

i=1
∑n

j=1 |ai j|
2, A†, and Aτ

to denote the maximum and minimum nonzero singular values of A, the spectral norm, the Frobenius
norm, the Moore-Penrose pseudoinverse, and the row submatrix of matrix A indexed by the index set
τ. rk denotes the residual vector of the k-th iteration. ei ∈ R

m denotes the unit vector where the i-th
element is 1 and the rest are 0. For an integer m ≥ 1, let [m] := {1, . . . ,m}. At the k-th iteration, |τk| is
the cardinal number of the set τk. Set γ > 0, B(x∗, γ) , {x ∈ Rn | ‖x − x∗‖2 ≤ γ}.

Definition 1 ([28]). If for every i ∈ [m] and ∀x1, x2 ∈ D ⊆ R
n, there exists ξi ∈ [0, ξ) satisfying

ξ = max
i
ξi <

1
2 such that

| fi(x1) − fi(x2) − ∇fi(x1)T (x1 − x2)| ≤ ξi| fi(x1) − fi(x2)|,

then the function f : D ⊆ Rn → Rm is referred to satisfy the local tangential cone condition.
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Lemma 1 ([34]). If the function f satisfies the local tangential cone condition, then for ∀x1, x2 ∈ D ⊆

Rn and an index subset τ ⊆ [m], we have

‖fτ(x1) − fτ(x2)‖22 ≥
1

1 + ξ2 ‖f
′
τ(x1)(x1 − x2)‖22.

Lemma 2 ([19]). Let ρ1 ≥ · · · ≥ ρn and ζ1 ≥ · · · ≥ ζn be the singular values of the matrices A and B
respectively. Then

‖A − B‖ ≥ ‖diag(ρ1 − ζ1, . . . , ρn − ζn)‖.

Lemma 3. Suppose f′(x) is a full column rank matrix for ∀x ∈ D ⊆ Rn. Then there exist σ and σ such
that

inf
x∈D

σmin(f′(x)) = σ > 0,

sup
x∈D

σmax(f′(x)) = σ < ∞.

Proof. For any x ∈ D, f′(x) is full column rank, then we have
σmax(f′(x)) = σ1(f′(x)) ≥ · · · ≥ σn(f′(x)) = σmin(f′(x)) > 0. By Lemma 2, σi(f′(x))(i = 1, . . . , n) is a
continuous function of f′(x). In addition, f′(x) continuously depends on x. Then, σi(x)(i = 1, . . . , n) is
a continuous function of x.

SinceD is bounded closed and σmin(x) is a continuous function of x, there exists a point x ∈ D such
that σ = σmin(x) = inf

x∈D
σmin(x) > 0. Then, we have

σmin(f′(x)) ≥ inf
x∈D

σmin(f′(x)) = σ > 0.

Similarly, sinceD is bounded closed and σmax(x) is a continuous function of x, there exists a point
x ∈ D such that σ = σmax(x) = sup

x∈D
σmax(x) < ∞. Then, we have

σmax(f′(x)) ≤ sup
x∈D

σmax(f′(x)) = σ < ∞.

�

3. Pseudoinverse-free greedy block nonlinear Kaczmarz methods

Yuan et al. developed a randomized NR method based on the sketch-and-project technique [31],
which is called the sketched Newton-Raphson (SNR) method. The formula of the SNR method is
written as follows,

xk+1 = xk − (f′(xk))T Sk(ST
k f ′(xk)(f′(xk))T Sk)†ST

k f(xk). (3.1)

When Sk = ηk =
∑

i∈τk
(− fi(xk))ei in Eq (3.1), we get an iterative formula as follows:

xk+1 = xk −
ηT

k f(xk)

‖f′(xk)Tηk‖
2
2

f′(xk)Tηk.

Based on the greedy randomized Kaczmarz method [4], the block indices Ik in distance-residual
capped nonlinear Kaczmarz (DR-CNK) method [33] is chosen by

Ik = {i
∣∣∣| fi(xk)|2 ≥ δk‖f(xk)‖22‖∇fi(xk)‖22}

Networks and Heterogeneous Media Volume 19, Issue 1, 305–323.



309

Algorithm 1: The NGABK/MRNABK algorithm
Require: The initial estimate x0 ∈ B(x∗, γ) ⊆ D ⊆ Rn

1: for k = 1, 2, · · · until convergence, do
2: Compute and determine the index subset

case 1: the NGABK method
τk = {i

∣∣∣| fi(xk)|2 ≥ δk‖f(xk)‖22},

where δk = 1
2

(max
i∈m
| fi(xk)|2

‖f(xk)‖22
+ 1

m

)
.

case 2: the MRNABK method

τk = {i
∣∣∣| fi(xk)|2 ≥ % max

1≤i≤m
| fi(xk)|2}

3: Compute
ηk =

∑
i∈τk

(− fi(xk))ei

4: Set

xk+1 = xk −
ηT

k f(xk)

‖f′(xk)Tηk‖
2
2

f′(xk)Tηk (3.2)

5: end for

with

δk =
1
2

(
1

‖f(xk)‖22
max
i∈[m]

| fi(xk)|2

‖∇fi(xk)‖22
+

1
‖f′(xk)‖2F

)
,

that is, the information of the entire Jacobian matrix is required. This will result in a large amount of
computation. Now, by choosing the τk by

τk = {i
∣∣∣| fi(xk)|2 ≥ δk‖f(xk)‖22}

with

δk =
1
2

(
max

i∈m
| fi(xk)|2

‖f(xk)‖22
+

1
m

),

we get a nonlinear greedy average block Kaczmarz (NGABK) method which is described in case 1 of
Algorithm 1. At the k-th iteration, a random vector ηk is drawn and a search direction is formed by
f′(xk)Tηk. When f′(xk)Tηk = 0, no line search is performed.

Remark 1. The computational complexity of the iterative formula of our proposed method is O(|τk|n)
much smaller than that of the Newton-Raphson method O(n2) at each iteration. Here, in conjunction
with the numerical experiments later, the size of τk is usually m/3.

Remark 2. The index set τk is always nonempty. Because

max
i∈[m]
| fi(xk)|2 ≥

m∑
i=1

| fi(xk)|2

m
=
‖f(xk)‖22

m
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and then

| fik(xk)|2 = max
i∈[m]
| fi(xk)|2 ≥

1
2

(
max
i∈[m]
| fi(xk)|2 +

‖f(xk)‖22
m

)

implies ik ∈ τk. Therefore, the method is well-defined.

According to the maximum residual rule, we establish the maximum residual nonlinear average
block Kaczmarz (MRNABK) method in case 2 of Algorithm 1. In this method, % ∈ [0, 1] is the
relaxation parameter, which can be determined in numerical experiments. It is obvious that in the k-th
iteration of the MRNABK Algorithm, the set τk is also non-empty. This is because

| fik(xk)| = max
1≤i≤m

| fi(xk)|.

That is to say, the largest residual component ik is always in the set τk.

From the MRNABK method, we can see that the larger components of the residual are eliminated
preferentially, which greatly improves the efficiency of the algorithm. We establish its convergence
theorem in Section 4.

4. Convergence analysis

Lemma 4. If the function f satisfies the local tangential cone condition, then for i ∈ [m], ξ = max
i∈[m]

ξi <

1
2

, ∀x1, x2 ∈ B(x∗, γ) ⊆ D and the updating formula (3.2), we have

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 − (1 − 2ξ)
|ηT

k f(xk)|2

‖f′(xk)Tηk‖
2
2

.

Proof. From the updating formula (3.2), we have

‖xk+1 − x∗‖22 = ‖xk −
ηT

k f(xk)

‖f′(xk)Tηk‖
2
2

f′(xk)Tηk − x∗‖22

= ‖xk − x∗‖22 − 2
〈

ηT
k f(xk)

‖f′(xk)Tηk‖
2
2

f′(xk)Tηk, xk − x∗
〉

+
|ηT

k f(xk)|2

‖f′(xk)Tηk‖
2
2
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According to the definition of ηk and fi(x∗) = 0, we have

‖xk+1 − x∗‖22

= ‖xk − x∗‖22 − 2
ηT

k f(xk)

‖f′(xk)Tηk‖
2
2

(−
∑
i∈τk

fi(xk)eT
i (f′(xk)))(xk − x∗) +

|ηT
k f(xk)|2

‖f′(xk)Tηk‖
2
2

= ‖xk − x∗‖22 + 2
ηT

k f(xk)

‖f′(xk)Tηk‖
2
2

(
∑
i∈τk

fi(xk)∇fi(xk)T ))(xk − x∗) +
|ηT

k f(xk)|2

‖f′(xk)Tηk‖
2
2

= ‖xk − x∗‖22 − 2
ηT

k f(xk)

‖f′(xk)Tηk‖
2
2

∑
i∈τk

fi(xk)( fi(xk) − fi(x∗) − ∇fi(xk)T (xk − x∗))

+ 2
ηT

k f(xk)

‖f′(xk)Tηk‖
2
2

∑
i∈τk

f 2
i (xk) +

|ηT
k f(xk)|2

‖f′(xk)Tηk‖
2
2

.

From Definition 1, we have

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 + 2
|ηT

k f(xk)|2

‖f′(xk)Tηk‖
2
2

ξ −
|ηT

k f(xk)|2

‖f′(xk)Tηk‖
2
2

= ‖xk − x∗‖22 − (1 − 2ξ)
|ηT

k f(xk)|2

‖f′(xk)Tηk‖
2
2

.

�

Remark 3. It follows from Lemma 4 that xk+1 ∈ B(x∗, γ) ⊆ D when xk ∈ B(x∗, γ) ⊆ D. So, if f′(x) is a
full column rank matrix, the iterative sequence {xk} generated by the algorithm is well-defined.

Theorem 1. Consider that the nonlinear system of equations f(x) = 0, f : D ⊆ Rn → Rm on a bounded
closed setD, and there exists x∗ such that f(x∗) = 0. For ∀x ∈ D, the nonlinear function f satisfies the

local tangential cone condition given in Definition 1, ξ = max
i∈[m]

ξi <
1
2

and f′(x) is a full column rank

matrix. Assume that x0 ∈ B(x∗, γ) ⊆ D ⊆ Rn, then the iterations of the NGABK method in case 1 of
Algorithm 1 satisfy

‖xk+1 − x∗‖22 ≤
(
1 −

1 − 2ξ
1 + ξ2

σ2

mσ2

)
‖xk − x∗‖22.

Proof. Let Ek ∈ R
m×|τk | be the matrix whose columns consist of all the vectors ei ∈ R

m with i ∈ τk.
Denote f′τk

(xk) = ET
k f′(xk), η̂k = ET

k ηk, then

‖η̂k‖
2
2 = ηT

k EkET
k ηk = ‖ηk‖

2
2 =

∑
i∈τk

| fi(xk)|2

and
‖f′(xk)Tηk‖

2
2 = ηT

k f′(xk)f′(xk)Tηk = η̂T
k ET

k f′(xk)f′(xk)T Ekη̂k

= η̂T
k f′τk

(xk)f′τk
(xk)T η̂k = ‖f′τk

(xk)η̂k‖
2
2.

Therefore, we have

‖ f ′τk
(xk)T η̂k‖

2
2 = η̂T

k f ′τk
(xk) f ′τk

(xk)T η̂k ≤ σ
2
max( f ′τk

(xk))‖η̂k‖
2
2,
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where σmax(f′τk
(xk)) is the largest singular value of submatrix f′τk

(xk) of the Jacobian matrix f′(xk). From
the definition of ηk, we have

ηT
k (−f(xk)) =

∑
i∈τk

(− fi(xk))eT
i

 (−f(xk))

=
∑
i∈τk

fi(xk)eT
i (f(xk))

=
∑
i∈τk

| fi(xk)|2

= ‖η̂k‖
2
2.

From the definition of τk, we have

|ηT
k (−f(xk))|2

‖f′(xk)Tηk‖
2
2

=

(∑
i∈τk
| fi(xk)|2

)
‖η̂k‖

2
2

‖f′τk
(xk)T η̂k‖

2
2

≥

∑
i∈τk
| fi(xk)|2

σ2
max(f′τk

(xk))

≥

∑
i∈τk

δk‖f(xk)‖22
σ2

max(f′τk
(xk))

=
δk|τk|

σ2
max(f′τk

(xk))
‖f(xk) − f(x∗)‖22.

|ηT
k f(xk)|2

‖f′(xk)Tηk‖
2
2

≥
δk|τk|

σ2
max(f′τk

(xk))
·

1
1 + ξ2 ‖f

′(xk)(xk − x∗)‖22

≥
δk|τk|

σ2
max(f′τk

(xk))
·

1
1 + ξ2 · σ

2
min(f′(xk))‖xk − x∗‖22.

Further, using Lemma 4, we can obtain

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 −
(1 − 2ξ)δk|τk|σ

2
min(f′(xk))

(1 + ξ2)σ2
max(f′τk

(xk))
‖xk − x∗‖22

=

(
1 −

(1 − 2ξ)δk|τk|σ
2
min(f′(xk))

(1 + ξ2)σ2
max(f′τk

(xk))

)
‖xk − x∗‖22.

In addition, we have σ2
max(f′τk

(xk)) = ‖f′τk
(xk)‖22 ≤ ‖f

′(xk)‖22 ≤ σ
2 and δk = 1

2 (
max
i∈m
| fi(xk)|2

‖f(xk)‖22
+ 1

m ) ≥ 1
m and use

Lemma 3, so

‖xk+1 − x∗‖22 ≤
(
1 −

(1 − 2ξ)δk|τk|σ
2
min(f′(xk))

(1 + ξ2)σ2
max(f′τk

(xk))

)
‖xk − x∗‖22

≤

(
1 −

1 − 2ξ
1 + ξ2

σ2

mσ2

)
‖xk − x∗‖22.

So, the convergence of the NGABK method is proved. �
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Remark 4. Since 1 − 2ξ < 1 < 1 + ξ2 and σ2 < mσ2, we have

ρNGABK = 1 −
1 − 2ξ
1 + ξ2

σ2

mσ2 < 1.

This shows that the convergence factor of our method is strictly smaller than 1.

Now, we give the convergence theorem of the MRNABK method.

Theorem 2. Consider that the nonlinear system of equations f(x) = 0, f : D ⊆ Rn → Rm on a bounded
closed setD, and there exists x∗ such that f(x∗) = 0. For ∀x ∈ D, the nonlinear function f satisfies the

local tangential cone condition given in Definition 1, ξ = max
i∈[m]

ξi <
1
2

and f′(x) is a full column rank

matrix. Assume that x0 ∈ B(x∗, γ) ⊆ D ⊆ Rn, then the iterations of the MRNABK method in case 2 of
Algorithm 1 satisfy

‖xk+1 − x∗‖22 ≤
(
1 −

(1 − 2ξ)%σ2

(1 + ξ2)mσ2

)
‖xk − x∗‖22.

Proof. Following an analogous proof process to the NGABK method, we get the following formula:

|ηT
k (−f(xk))|2

‖f′(xk)Tηk‖
2
2

=

(∑
i∈τk
| fi(xk)|2

)
‖η̂k‖

2
2

‖f′τk
(xk)T η̂k‖

2
2

≥

∑
i∈τk
| fi(xk)|2

σ2
max(f′τk

(xk))

≥

∑
i∈τk

% max
1≤i≤m

| fi(xk)|2

σ2
max(f′τk

(xk))

≥
%|τk|

mσ2
max(f′τk

(xk))
‖f(xk) − f(x∗)‖22.

The second inequality follows from the definition of τk. Using max
1≤i≤m

| fi(xk)|2 ≥ 1
m‖f(xk)‖22, we can get

the third inequality.
From Lemma 1, it follows that

|ηT
k f(xk)|2

‖f′(xk)Tηk‖
2
2

≥
%|τk|

mσ2
max(f′τk

(xk))
·

1
1 + ξ2 ‖f

′(xk)(xk − x∗)‖22

≥
%|τk|

mσ2
max(f′τk

(xk))
·

1
1 + ξ2 · σ

2
min(f′(xk))‖xk − x∗‖22.

Further, using Lemmas 4 and 3, we obtain

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 −
(1 − 2ξ)%|τk|σ

2
min(f′(xk))

(1 + ξ2)mσ2
max(f′τk

(xk))
‖xk − x∗‖22

=

(
1 −

(1 − 2ξ)%|τk|σ
2
min(f′(xk))

(1 + ξ2)mσ2
max(f′τk

(xk))

)
‖xk − x∗‖22

≤

(
1 −

(1 − 2ξ)%σ2

(1 + ξ2)mσ2

)
‖xk − x∗‖22.

So, the convergence of the MRNABK method is proved. �
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Remark 5. Similarly, we have

ρMRNABK = 1 −
(1 − 2ξ)%σ2

(1 + ξ2)mσ2 .

This shows that the convergence factor of our method is strictly smaller than 1.

5. Numerical examples

In this section, we primarily compare the efficiency of our new methods with the Broyden
method [1], the NRK method [28], the residual-distance capped nonlinear Kaczmarz (RD-CNK)
method, and the residual-based block capped nonlinear Kaczmarz (RB-CNK) method [33] for solving
the nonlinear systems of equations in the iteration steps (denoted as ‘IT’) and computing time in
seconds (denoted as ‘CPU’). The RD-CNK method and the NRK method are based on a single
sample. The RB-CNK method is based on multi-sampling and uses the following iteration scheme:

xk+1 = xk − (f′
Ik

(xk))†fIk(xk),

where Ik is the selected index subset. The target block in the MRNABK method is calculated by

Ik = {i
∣∣∣| fi(xk)|2 ≥ % max

1≤i≤m
| fi(xk)|2},

where % ∈ (0, 1]. However, the choice of % is only for the experiments in this paper.
In the numerical experiment, IT and CPU are the average of the results of 10 times repeated runs

of the corresponding method. All experiments are terminated when the number of iterations exceeds
200,000 or ‖f(xk)‖22 < 10−6. All of the tables below show the number of IT and CPU required for
several algorithms to reach the stop preparation (“–” indicates that the convergence cannot be
achieved under the stop criterion). Additionally, the logarithm diagram of the norm of the nonlinear
residual and the number of IT, as well as the connection diagram between the number of CPU or IT
and the number of equations, are provided for each experiment. Our experiment is implemented on
MATLAB (version R2018b).

Example 1. In this example, we consider the following equations:

fi(x) = xi − (1 −
c

2N

N∑
j=1

µix j

µi + µ j
)−1, i = 1, 2, . . . ,N.

The system of equations is called H-equation, which is usually used to solve the problem of outlet
distribution in radiation transmission [28]. In this problem, N represents the number of equations and
µi = (i − 1

2 )/N. When c ∈ (0, 1), the discrete problem has solutions. We set x0 be the zero vector
and c = 0.9. In the Broyden method, we set the approximate matrix for the Jacobian matrix to be the
identity matrix. First of all, we tested the value of parameter %. In Table 1, we observed that in most
cases, the MRNABK method required relatively less computing time, when % = 0.1, 0.2, 0.3. When
the number of equations was fixed, we found that the larger % was, the longer the calculation time of
the MRNABK method was. So, in this example, we set % = 0.1. Next, we tested the performance of
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our methods and other methods. The results of the numerical experiments are listed in Tables 2 and 3.
The results show that the NGABK method and the RB-CNK method based on multiple sampling were
substantially faster than the RD-CNK method and the NRK method based on single sampling, as shown
in Figure 1. Figure 2 plots the running time (CPU) and iteration steps (IT) of different methods for
different N. According to Figure 2, the NGABK method outperformed the RB-CNK method in terms
of CPU. From Table 4, the MRNABK method converged faster than the NGABK method in terms of
computing time and iteration steps. For H-equation with f : Rn → Rn, the Broyden method had a better
numerical result.

Table 1. CPU of MRNABK for the H-equation with c = 0.9, x0 = 0, and different %.

% 0.1 0.3 0.5 0.7 0.8 0.9
m = 50 0.018 0.0260 0.0218 0.0282 0.0334 0.0441
m = 100 0.0958 0.0863 0.1607 0.1440 0.2222 0.1946
m = 500 1.2712 1.2321 1.3973 1.5922 1.7479 2.0144
m = 1000 3.9016 4.1044 4.8689 5.1860 5.9891 6.7390
m = 1500 8.2839 8.9858 10.4272 11.0643 11.8178 13.9577

Table 2. IT comparison of Broyden method, NRK, RD-CNK, NGABK, RB-CNK, and
MRNABK for the H-equation.

m × n Broyden NRK RD-CNK NGABK RB-CNK MRNABK
50 × 50 5 970 864 70 62 21
100 × 100 5 2022 1814 66 66 21
300 × 300 5 6518 5838 72 76 24
500 × 500 6 11239 10027 78 81 24

Table 3. CPU comparison of Broyden method, NRK, RD-CNK, NGABK, RB-CNK, and
MRNABK for the H-equation.

m × n Broyden NRK RD-CNK NGABK RB-CNK MRNABK
50 × 50 0.0092 0.2646 0.5149 0.0640 0.0989 0.0593
100 × 100 0.0201 0.4751 1.6045 0.1064 0.1680 0.0754
300 × 300 0.1404 4.3069 26.9104 0.6370 0.8359 0.4770
500 × 500 0.5794 12.2161 95.7063 1.4577 1.9005 1.0813

Table 4. IT and CPU comparison of MRNABK and NGABK with % = 0.1 and c = 0.9 for
the H-equation.

m × n MRNABK (IT) NGABK (IT) MRNABK (CPU) NGABK (CPU)
50 × 50 21 70 0.0433 0.0742
100 × 100 21 66 0.1067 0.1631
500 × 500 24 78 1.6064 1.1954
1000 × 1000 25 78 3.8946 5.0264
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Figure 1. The results of different methods for H-equation.
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Figure 2. CPU (left) and IT (right) of different methods with different N for H-equation.
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Example 2. In this example, we consider the Brown almost linear function [20],

fk(x) = x(k) +

n∑
i=1

x(i) − (n + 1), 1 ≤ k < n;

fk(x) =

 n∏
i=1

x(i)

 − 1, k = n.

In this experiment, we set the initial value x0 = 0.5 ∗ ones(n, 1). The solution of this problem is
x∗ = (1, 1, ..., 1)T . The number of equations and the number of unknowns is set to 50 × 50, 100 × 100,
150 × 150, 200 × 200, 250 × 250, 300 × 300, 350 × 350, and 400 × 400. We list the computing time
and iteration numbers of these methods, respectively, in Tables 5 and 6. The outcomes demonstrate
how much better our new approaches perform than the NRK method. Table 6 shows that the NGABK
method and the MRNABK method have almost identical iteration times, yet they are both superior to
the RB-CNK method.

Table 5. IT comparison of NRK, RD-CNK, NGABK, RB-CNK, and MRNABK for the
Brown almost linear function.

m × n NRK RD-CNK NGABK RB-CNK MRNABK
50 × 50 4660 755 1 1 1
100 × 100 15881 1308 1 1 1
150 × 150 35398 1904 1 1 1
200 × 200 58127 2506 1 1 1
250 × 250 85937 3128 1 1 1
300 × 300 116851 3750 1 1 1
350 × 350 156027 4372 1 1 1
400 × 400 196134 4992 1 1 1

Table 6. CPU comparison of NRK, RD-CNK, NGABK, RB-CNK, and MRNABK for the
Brown almost linear function.

m × n NRK RD-CNK NGABK RB-CNK MRNABK
50 × 50 0.7222 0.2290 0.0024 0.0049 0.0017
100 × 100 2.5929 1.2108 0.0050 0.0063 0.0045
150 × 150 7.5696 2.7863 0.0108 0.0149 0.0112
200 × 200 15.4563 5.9908 0.0187 0.0250 0.0188
250 × 250 24.4239 11.2057 0.0321 0.0446 0.0320
300 × 300 35.7111 17.4006 0.0630 0.0737 0.0530
350 × 350 53.0089 25.8307 0.0508 0.0775 0.0476
400 × 400 71.1793 36.0714 0.0626 0.0982 0.0699

Example 3. In this example, we consider the Singular Broyden problem [12],

fk(x) = ((3 − 2xk)xk − 2xk+1 + 1)2, k = 1;
fk(x) = ((3 − 2xk)xk − xk−1 − 2xk+1 + 1)2, 1 < k < n;
fk(x) = ((3 − 2xk)xk − xk−1 + 1)2, k = n.
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In this experiment, we set the initial value x0 = −0.5∗ones(n, 1) and n is the number of the equations.
The Singular Broyden problem [12] is a square nonlinear system of equations, and its Jacobian matrix
is singular at the solution. First, we conducted an experiment on the values of parameter %. From
Table 7, we can see that for a fixed number of equations, the CPU of the MRNABK method was better
when % ∈ [0.1, 0.3]. So, we set % = 0.2 in this example. Tables 8 and 9 demonstrate that, in terms
of both computation time and iteration steps, the NGABK approach converged more quickly than the
other three methods. The MRNABK method’s residuals fell the fastest, whereas the NRK method’s
residuals declined the slowest, as seen in Figure 3. It is evident from Figure 4 that all five approaches
may get the approximate results.

Table 7. CPU of MRNABK for the Singular Broyden problem with x0 =

(−0.5,−0.5, . . . ,−0.5)T and different %.

% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
m = 100 0.3300 0.1458 0.2690 0.2493 0.1607 0.1902 0.2775 0.4601
m = 500 1.1946 0.5796 0.5683 0.9989 3.0169 3.5255 4.1331 6.1652
m = 1000 1.9083 1.5407 1.5582 1.6074 8.0733 9.8453 15.4725 19.0392
m = 2000 5.3491 5.0097 5.0497 18.2991 24.9766 35.6343 83.4121 72.1692

Table 8. IT comparison of NRK, RD-CNK, NGABK, RB-CNK, and MRNABK for the
Singular Broyden problem.

m × n NRK RD-CNK NGABK RB-CNK MRNABK
500 × 500 18026 17138 4531 6841 31
1000 × 1000 37385 35613 8807 13502 37
1500 × 1500 57360 54562 13502 22743 34
2000 × 2000 77442 73764 12756 22528 42

Table 9. CPU comparison of NRK, RD-CNK, NGABK, RB-CNK, and MRNABK for the
Singular Broyden problem.

m × n NRK RD-CNK NGABK RB-CNK MRNABK
500 × 500 3.9115 7.7637 1.9330 3.8200 0.6114
1000 × 1000 12.2036 25.9053 6.0330 8.5914 1.2652
1500 × 1500 23.2143 47.4775 12.3048 19.0035 0.1047
2000 × 2000 38.2803 77.2462 19.5523 28.5388 4.7409
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Figure 3. The results of different methods for the Singular Broyden problem with n = 500
(left), 2000 (right).
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Figure 4. The results of the Singular Broyden problem with n = 500 (left), 2000 (right).

Example 4. Consider the following problem, which is a chained serpentine overdetermined
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problem [17],

fk(x) = 10
(

2xi

(1 + (xi)2)2 − xi+1

)
, mod(k, 2) = 1,

fk(x) = xi − 1, mod(k, 2) = 0,
m = 2(n − 1), i = div(k + 1, 2),

where m represents the number of equations. In this experiment, we set the initial value
x0 = 0.5 ∗ ones(n, 1), and n = 100, 300, 500, 1000, 2000, respectively. From Table 10, we set % = 0.2.
As we can see, when compared to the other four approaches, the NGABK method produced better
numerical results from Tables 11 and 12. Furthermore, we note that the NGABK method and the
MRNABK method required fewer iterations as the dimension of overdetermined issues grew, and the
NRK method’s iteration time was nearly equal to that of the NGABK method. The Broyden method
took too long when the problem’s dimension grew. The Broyden method took more than 10 minutes
to iterate when there were 1998 equations.

Table 10. CPU of MRNABK for the overdetermined nonlinear problem with x0 =

(0.5, 0.5, . . . , 0.5)T and different %.

% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
m = 200 - 0.0204 0.0210 0.0621 0.0714 0.0564 0.0631 0.0206
m = 1000 0.3791 0.8691 0.9148 0.2926 0.2762 0.2720 0.2789 0.2865
m = 1500 1.2465 1.0414 1.0892 1.0592 1.0487 1.0503 1.0440 3.7909
m = 2000 2.6784 2.3893 2.3766 2.3360 2.3923 2.3536 2.4215 8.3677

Table 11. IT comparison of NRK, RD-CNK, NGABK, RB-CNK, and MRNABK for the
overdetermined nonlinear problem with x0 = (0.5, 0.5, . . . , 0.5)T .

n Broyden NRK RD-CNK NGABK RB-CNK MRNABK
100 420 270 108 33 106 221
300 1180 769 827 29 344 742
500 1725 1336 2023 20 526 525
1000 - 2706 1857 18 1026 22
2000 - 5473 3137 19 2064 18

Table 12. CPU comparison of NRK, RD-CNK, NGABK, RB-CNK, and MRNABK for the
overdetermined nonlinear problem with x0 = (0.5, 0.5, . . . , 0.5)T .

n Broyden NRK RD-CNK NGABK RB-CNK MRNABK
100 1.6608 0.0546 0.0517 0.0312 0.0998 0.1155
300 44.7083 0.1871 0.3519 0.1786 0.3565 1.5205
500 241.7063 0.2970 2.4785 0.3102 0.6332 1.3255
1000 - 1.3988 1.8885 1.0953 2.8976 1.7912
2000 - 3.9915 7.5685 4.0058 11.1190 4.1889
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6. Conclusion

Based on the Gaussian Kaczmarz method and the RD-CNK method, we introduced a new class of
nonlinear Kaczmarz block approaches to solve nonlinear equations and investigated their convergence
theories. By employing an averaging technique, these methods avoid computing the Moore–Penrose
pseudoinverse of the Jacobian matrix at each iteration, significantly reducing the computational cost.
Experimental results demonstrated that the NGABK and MRNABK methods performed better in
terms of CPU and IT than the NRK method (and other methods) for the singular Jacobian matrix
issue and the overdetermined problem. For problems like the H-equation, several traditional methods,
including the Broyden method, and the Newton method perform well, but our proposed methods also
worked better than the other Kaczmarz methods. Additionally, selecting the ideal parameter % was a
crucial matter. We plan to keep working on the more significant research of the pseudoinverse-free
approach and the more effective greedy rules in the future.
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