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Abstract: In this paper we consider some inverse problems of determining the diffusion matrix
between different structures for the time fractional diffusion equation featuring a Caputo derivative.
We first study an inverse problem of determining the diffusion matrix in the period structure using data
from the corresponding homogenized equation, then we investigate an inverse problem of determining
the diffusion matrix in the homogenized equation using data from the corresponding period structure of
the oscillating equation. Finally, we establish the stability and uniqueness for the first inverse problem,
and the asymptotic stability for the second inverse problem.
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1. Introduction

Fractional diffusion involves phenomena that have spatial and temporal correlations [1, 2].
Anomalous diffusion through fractional equations is associated with super-statistics and can be linked
to a generalized random walk [3]. The phenomenon of anomalous diffusion has received widespread
attention in the fields of natural sciences, engineering, technology, and mathematics [4–6]. The
fractional diffusion equations which serve as models for describing this phenomenon are of utmost
importance [7–11]. Numerous publications have been dedicated to this field so far (e.g., Sakamoto
and Yamamoto [12]). In contrast to classical parabolic equations, the time fractional diffusion
equations replace the traditional local partial derivative ∂t with the nonlocal fractional derivative ∂αt .
The fractional equations are highly regarded in mathematical physics and present distinct properties
that challenge conventional differential equations. Nevertheless, some properties, such as the
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maximum principle, remain valuable in our research. This paper plans to describe the behavior of
time fractional diffusion equations.

In this paper we consider the following initial boundary value problem (IBVP) of a time fractional
diffusion equation with a period structure

∂αt uϵ(x, t) − div(Bε(x)∇uε(x, t)) = f ε(x, t), x ∈ Ω, t ∈ (0,T ),
uε(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
uε(x, 0) = uε0(x), x ∈ Ω,

(1.1)

where 0 < α < 1, T > 0, Ω ⊂ Rd is bounded domain with C2−class boundary ∂Ω, ε > 0 is a scale
parameter, Bε(x) = B( x

ε
) is a diffusion matrix which satisfies some appropriate conditions, B(y) is

periodic, and f ε(x, t) and uε0(x) are the source function and the initial function, respectively.
The existence and uniqueness of solutions to the initial boundary value problem (1.1) have been

investigated widely. Sakamoto and Yamamoto [12] derived a kind of solution in terms of the Fourier
series; Kubicam, Ryszewska and Yamamoto [13] gave the variational formulation; Hu and Li [14]
gave the formally homogenized equation by the multiple scale expansion as ε → 0+ and Kawamoto,
Machida and Yamamoto [15] gave the homogenized equation

∂αt u0(x, t) − div(B0∇u0(x, t)) = f 0(x, t), x ∈ Ω, t ∈ (0,T ),
u0(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u0(x, 0) = u0(x), x ∈ Ω,

(1.2)

where B0 is the homogenized coefficient matrix, and then proved the precise homogenization theorem;
they also discussed the inverse problem between different structures in the one dimensional case and
in the layered material case where Bε(x) is a diagonal matrix with an unknown element when f = 0.
The aim of this paper is to generalize this result from the case with only one unknown element to the
case with multiple unknown elements.

The rest of this paper is organized as follows. In Section 2, we introduce some necessary tools,
including the well-posedness and homogenization of fractional diffusion equations with oscillating
diffusion matrix, the eigenvalue problem, and the Mittag-Leffler function. In Section 3 and Section 4
we state main results and prove them. In Section 5, we draw concluding remarks.

2. Preliminaries

In this section, we state some basic tools to investigate the inverse problems of the initial boundary
value problem (1.1) and its homogenized equation (1.2), including the well-posedness, homogenization
theory, the eigenvalue problem of the corresponding elliptic operator, and the Mittag-Leffler function,
see [13, 16].

2.1. Weak solution for fractional diffusion equation

We recall the Riemann-Liouville fractional integral operator

(Jαu)(t) =
1
Γ(α)

∫ t

0
(t − τ)α−1u(τ)dτ, u ∈ L2(0,T ), 0 < α < 1, (2.1)
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then the domainD(Jα) = L2(0,T ) and the range R(Jα) = Hα(0,T ) with

Hα(0,T ) :=


Hα(0,T ), 0 ≤ α < 1

2 ,{
u ∈ H

1
2 (0,T )|

∫ T

0
|u(t)|2

t dt < ∞
}
, α = 1

2 ,{
u ∈ Hα(0,T )|u(0) = 0

}
, 1

2 < α ≤ 1,
(2.2)

where Hα(0,T ) is the Sobolev space. Moreover, Jα : L2(0,T )→ Hα(0,T ) is a homeomorphism with

∥u∥Hα(0,T ) =


∥u∥Hα(0,T ), 0 ≤ α ≤ 1, α , 1

2 ,(
∥u∥2H 1

2
(0,T ) +

∫ T

0
|u(t)|2

t dt
) 1

2
, α = 1

2 .
(2.3)

Therefore, the general fractional derivative of the Caputo type is defined by

∂αt = (Jα)−1 : Hα(0,T )→ L2(0,T ). (2.4)

Obviously, ∂αt is also a homeomorphism.
We now consider the initial boundary value problem

∂αt u(x, t) − div(B(x)∇u(x, t)) = f (x, t), x ∈ Ω, t ∈ (0,T ),
u(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x, 0) = u0(x), x ∈ Ω,

(2.5)

where u0(x) ∈ L2(Ω), f (x, t) ∈ L2(0,T ; H−1(Ω)), and the matrix B(x) = (bi j(x))d×d satisfies that{
(i) bi j ∈ L∞(Ω), bi j = b ji,

(ii) B(x)η · η ≥ ν|η|2, |B(x)η| ≤ µ|η|, x ∈ Ω, η ∈ Rd,
(2.6)

for 0 < ν < µ. From [13, 15], we know that there exists a weak solution u ∈ L2(0,T ; H1
0(Ω)) satisfying

u − u0 ∈ Hα(0,T ; H−1(Ω)), and〈
∂αt (u − u0), ϕ

〉
H−1(Ω),H1

0 (Ω) + (B∇u,∇ϕ)L2(Ω) = ⟨ f , ϕ⟩H−1(Ω),H1
0 (Ω) (2.7)

for a.e. t ∈ (0,T ) and ∀ϕ ∈ H1
0(Ω).

2.2. Homogenization for fractional diffusion equation

For Y = (0, l1) × · · · × (0, ld), we say that a function f (x) is Y-periodic if

f (x) = f (x + kliei), a.e. x ∈ Rd, i = 1, · · · , d, k ∈ Z.

Theorem 2.1. [15] For Bε(x) = B( x
ε
), assume that B(y) = (bi j(y))d×d is Y-periodic and satisfies Eq

(2.6), uε0 ∈ L2(Ω), and f ε ∈ L2(0,T ; H−1(Ω)). If{
uε0 ⇀ u0 weakly in L2(Ω),
f ε → f 0 in L2(0,T ; H−1(Ω)),

(2.8)

Networks and Heterogeneous Media Volume 19, Issue 1, 291–304.



294

and uε is the weak solution of IBVP (1.1), then{
uε ⇀ u0 weakly in L2(0,T ; H1

0(Ω)),
uε → u0 in L2(0,T ; L2(Ω)),

(2.9)

where u0 is the weak solution of the homogenized problem (1.2), and B0 is the homogenized coefficient
matrix. Furthermore, for the layered material, that is, B(y) is a diagonal matrix

B(y) = diag{b11(y1), · · · , bdd(y1)},

then

B0 = diag{
1

M(0,l1)( 1
b11

)
,M(0,l1)(b22), · · · ,M(0,l1)(bdd)}, (2.10)

whereMΩ(b) = 1
|Ω|

∫
Ω

b(x)dx.

2.3. Eigenvalue problem

For the diagonal matrix Bp =diag{p1, · · · , pd}, pi are constants and ν ≤ pi ≤ µ, denote a vector
p = (p1, p2, · · · , pd) ∈ Rd and an operator Bp(·) = −div(Bp∇·), we consider an eigenvalue problem of
the operator Bp on Ω =

∏d
i=1(0, δi).

Bpφ = λφ, φ ∈ H2(Ω) ∩ H1
0(Ω). (2.11)

According to the domain Ω, we consider the sub-eigenvalue problems

−φ′′i (xi) = σiφi(xi), φi ∈ H2(0, δi) ∩ H1
0(0, δi), i = 1, · · · , d. (2.12)

Then, we can verify that φ(x) =
∏d

i=1 φi(xi) is a solution of eigenvalue problem (2.11) with
λ =

∑d
i=1 piσi, i.e., Bpφ = (

∑d
i=1 piσi)φ. Denote by φki

i the ki−th simple eigenvalue of the i−th
sub-eigenvalue problem, that is, − d2

dx2
i
φki

i (xi) = σ
ki
i φ

ki
i (xi). It is known that φi(xi) are the sine functions.

Since the eigenfunctions {φk
i }
∞
k=1 are an orthonormal basis of L2(0, δi), so {

∏d
i=1 φ

ki
i (xi)}k1,...,kd∈N is an

orthonormal basis of L2(Ω). Then, we can prove that the all eigenvalues λ of Bp have following form:

λ =

d∑
i=1

piσ
ki
i , k1, . . . , kd ∈ N.

In fact, for Bpφ = λφ, φ , 0, there exists
∏d

i=1 φ
ki
i such that (φ,

∏d
i=1 φ

ki
i )L2(Ω) , 0. Taking inner product

of L2(Ω) with respect to
∏d

i=1 φ
ki
i on both sides of equation (2.11) and integration by parts, we can

complete the proof.
For example, for d = 3, pi = 1, i = 1, · · · , d, we have Bp = −∆. Taking δ1 = δ2 = δ3, we have

0 < σ1
i < σ

2
i < · · · → +∞, i = 1, 2, 3, σk

1 = σ
k
2 = σ

k
3, and φk

1 = φ
k
2 = φ

k
3, k ∈ N. Then we can write the

eigenvalue of Eq (2.11) as

λl = σ
n
1 + σ

m
2 + σ

k
3, l = n + m + k − 2, n,m, k ∈ N
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and the corresponding eigenfunctions are

φnmk = φ
n
1(x1)φm

2 (x2)φk
3(x3), φnkm = φ

n
1(x1)φk

2(x2)φm
3 (x3), φmnk = φ

m
1 (x1)φn

2(x2)φk
3(x3),

φmkn = φ
m
1 (x1)φk

2(x2)φn
3(x3), φknm = φ

k
1(x1)φn

2(x2)φm
3 (x3), φkmn = φ

k
1(x1)φm

2 (x2)φn
3(x3).

Thus, we know that some eigenvalues of problem (2.11) have more than one geometric multiplicity,
which is different from the eigenvalues of problem (2.12) such that all eigenvalues are simple.

Returning to the general operator Bp on a bounded domainΩ ⊂ Rd, we rearrange the eigenvalues of
Bp without multiplicity, 0 < λ1 < λ2 < · · · → +∞, and rearrange the eigenvalues {σk

i }
∞
k=1(i = 1, · · · , d)

such that

λ j
n =

d∑
i=1

σ
n j

i , j = 1, · · · ,mn, n ∈ N,

where mn is the multiplicity of the eigenvalue λn = λ
1
n = λ

2
n = · · · = λ

mn
n . Note that λ1 is simple, i.e.

m1 = 1 and σ11
i < σ

n j

i , n > 1, j = 1, · · · ,mn. Set

φn j(x) =
d∏

i=1

φ
n j

i , j = 1, · · · ,mn, n ∈ N,

where φn j

i (xi) is the eigenfunction corresponding to eigenvalue σn j

i , and {φn j}
dn
j=1 is the orthonormal

basis of ker(Bp − λnI).
We introduce a projection operator Pn : L2(Ω)→ ker(Bp − λnI) such that

Pnv =
mn∑
j=1

(v, φn j)φn j , v ∈ L2(Ω),

is an eigenprojection. We note that the eigenfunctions of −∆ and Bp are identical indeed, but their
eigenvalues are not identical.

2.4. Mittag-Lefler function

From [17], the Mittag-Leffler function is defined by

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
, α, β > 0, z ∈ C,

which is an entire function in the complex plane.
When α = β = 1, Eα,β is precisely an exponential function. What is more, we have the asymptotic

expansion and estimate

Eα,1(z) = −
K∑

k=1

z−k

Γ(1 − αk)
+ O(|z|−1−K), |z| → ∞, θ ≤ |arg z| ≤ π, (2.13)

Eα,1(z) ≤
C

1 + |z|
, θ ≤ |arg z| ≤ π, (2.14)

where K ∈ N, 0 < α < 2, and πα2 < θ <min{π, απ}.
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3. Statement of main results

We now consider problem (1.1) on the domain Ω =
∏d

i=1(0, δi), δi > 0, d < 4. In order to state the
main results, we first give a definition.

Definition 3.1. For the matrices A = (ai j)N×M and B = (bi j)N×M, we say A ≥ B if

ai j ≥ bi j, i = 1, . . . ,N, j = 1, . . . ,M.

We say A > B if A ≥ B and there exists an index i or j such that ai j > bi j.

We consider the IBVP with a periodic structure
∂αt uεp(x, t) − div(Bεp(x)∇uεp(x, t)) = 0, x ∈ Ω, t ∈ (0,T ),
uεp(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
uεp(x, 0) = uε0,p(x), x ∈ Ω,

(3.1)

with unknown initial function uε0,p and unknown diffusion matrix Bεp with layer structure

Bεp(x) = Bp(
x
ε

) = diag{p1(
x1

ε
), p2(

x1

ε
), · · · , pd(

x1

ε
)} (3.2)

satisfying

pi(y1) is l1-periodic, pi ∈ L∞(0, l1), ν ≤ pi(y1) ≤ µ, y1 ∈ [0, l1], i = 1, · · · , d. (3.3)

Due to Theorem 2.1, we get uεp → u0
p in L2(0,T ; L2(Ω)), where u0

p(x) is a weak solution of the
homogenized equation

∂αt u0
p(x, t) − div(B0

p∇u0
p(x, t)) = 0, x ∈ Ω, t ∈ (0,T ),

u0
p(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T ),

u0
p(x, 0) = u0,p(x), x ∈ Ω,

(3.4)

where u0,p(x) is the L2(Ω) limit of uε0,p(x), B0
p =diag{p0

1, p
0
2, . . . , p

0
d} and

p0
1 =

1
M(0,l1)( 1

p1(y1) )
, p0

2 =M(0,l1)(p2(y1)), · · · , p0
d =M(0,l1)(pd(y1)) (3.5)

satisfying ν ≤ p0
i ≤ µ, i = 1, . . . , d. By Eq (3.5) and simple calculation, we have

|p0
i − q0

i | ≤ C∥pi − qi∥L1(0,l1), i = 1, . . . , d, (3.6)

with C = C(ν, µ, l1) > 0. Moreover, if

Bp(y) ≥ Bq(y) a.e. y ∈ Y, (3.7)

we have

C−1∥pi − qi∥L1(0,l1) ≤ p0
i − q0

i ≤ C∥pi − qi∥L1(0,l1), i = 1, · · · , d, (3.8)
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with C = C(ν, µ, l1) ≥ 1. These can be seen in the proof of [15, Lemma 3.11].
For simplicity of notation, we set p = (p1, · · · , pd) ∈ Rd

+. We first consider several inverse problems
of determining the diffusion matrix of the following IBVP:

∂αt up(x, t) − div(Ap∇up(x, t)) = 0, x ∈ Ω, t ∈ (0,T ),
up(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
up(x, 0) = u0,p(x), x ∈ Ω,

(3.9)

where Ap = diag{p1, · · · , pd} and ν ≤ p1, · · · , pd ≤ µ.
Inverse problem I: Let x0 ∈ Ω , t0 ∈ (0,T ). We will determine the diffusion matrix Ap by the single

data point up(x0, t0) of problem (3.9).

Theorem 3.1. Let u0,p = u0,q = u0 ∈ H2(Ω)∩H1
0(Ω) and up(x, t) be a solution of problem (3.9). Assume

p ≥ q and

u0 . 0, x ∈ Ω, ∂2
1u0 ≥ 0, · · · , ∂2

du0 ≥ 0, a.e. x ∈ Ω. (3.10)

Then there exists a constant C(ν, µ) > 0 such that

N∑
i=1

|pi − qi| ≤ C|up(x0, t0) − uq(x0, t0)|. (3.11)

Inverse problem II: Let ω ⊂ Ω , I ⊂ (0,T ). We will determine the diffusion matrix Ap by the data∫
I

∫
ω

up(x, t)dxdt of problem (3.9). Note that the measurement data is an integral expression. Thus, it
is more useful for applications.

Theorem 3.2. Let u0,p = u0,q = u0 ∈ H2(Ω)∩H1
0(Ω) and up(x, t) be a solution of problem (3.9). Assume

p ≥ q and

u0 . 0, x ∈ Ω, ∂2
1u0 ≥ 0, · · · , ∂2

du0 ≥ 0, a.e. x ∈ Ω. (3.12)

Then there exists a constant C(ν, µ) > 0 such that

N∑
i=1

|pi − qi| ≤ C
∣∣∣∣ ∫

I

∫
ω

up(x, t)dxdt −
∫

I

∫
ω

uq(x, t)dxdt
∣∣∣∣. (3.13)

Inverse problem III: Let x0 ∈ Ω , t1 ∈ (0,T ). We determine the diffusion matrix Ap by the time
trice data up(x0, t), 0 < t < t1 of problem (3.9). We can only get uniqueness here.

Theorem 3.3. Let up(x, t) be a solution of problem (3.9) and u0,p, u0,q ∈ H2(Ω) ∩ H1
0(Ω) such that

P1u0,p(x0) , 0 and P1u0,q(x0) , 0. (3.14)

If up(x0, t) = uq(x0, t), 0 < t < t1, then Ap = Aq.

Remark 3.1. Let Ω = (0, π)× (0, π). The eigenfunction corresponding to λ1 = 2 is φ1 =
2
π
sinxsiny and

the eigenfunction corresponding to λ2 = 5 is φ2 =
2
π
sin2xsiny and φ3 =

2
π
sinxsin2y. We take u0,p = φ1

and u0,q = φ2. We have

up = Eα,1(−(p1 + p2)tα)φ1, uq = Eα,1(−(4q1 + q2)tα)φ2

Networks and Heterogeneous Media Volume 19, Issue 1, 291–304.
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and
P1u0,p = (u0,p, φ1)φ1, P1u0,q = 0.

If p = (4, 1), q = (1, 1), and (x0, y0) = (π3 ,
π
2 ), we have up(x0, y0, t) = uq(x0, y0, t), t > 0, but Ap , Aq.

Thus, condition (3.14) is necessary.

We will present the proof of these theorems later in Section 4.
Following Theorems 3.1–3.3 and the estimates (3.8), we can immediately obtain the following

corollaries of the inverse problem determining the diffusion matrix between different structures to
problem (3.1) and problem (3.4). First, we present the inverse problem of determining the period
coefficient matrix by the homogenized data.

Corollary 3.1. Let u0
p(x, t) be a solution of problem (3.4) and u0,p = u0,q = u0 ∈ H2(Ω)∩H1

0(Ω). Under
the condition (3.7) and

u0 . 0, x ∈ Ω, ∂2
1u0 ≥ 0, · · · , ∂2

du0 ≥ 0, a.e. x ∈ Ω.

Then there exists a constant C(ν, µ, l1) > 0 such that

N∑
i=1

∥pi − qi∥L1(0,l1) ≤ C|u0
p(x0, t0) − u0

q(x0, t0)|.

We see that the condition for u0 is from Condition 3.10 and p(y), q(y) are vector-valued functions
over (0, l1) portraying the period structure. Further, we must guarantee uϵ0,p and uϵ0,p have the same limit
u0. Similarly, the following result also follows.

Corollary 3.2. Let u0,p = u0,q = u0 ∈ H2(Ω)∩H1
0(Ω), u0

p(x, t) be a solution of problem (3.4) and up(x, t)
be a solution of problem (3.9). Under condition (3.7) and

u0 . 0, x ∈ Ω, ∂2
1u0 ≥ 0, · · · , ∂2

du0 ≥ 0, a.e. x ∈ Ω.

Then there exists a constant C(ν, µ, l1) > 0 such that

N∑
i=1

∥pi − qi∥L1(0,l1) ≤ C
∣∣∣∣ ∫

I

∫
ω

u0
p(x, t)dxdt −

∫
I

∫
ω

u0
q(x, t)dxdt

∣∣∣∣.
Corollary 3.3. Let u0

p(x, t) be a solution of problem (3.4) and u0,p, u0,q ∈ H2(Ω) ∩ H1
0(Ω) such that

P1u0,p(x0) , 0 and P1u0,q(x0) , 0.

Then if u0
p(x0, t) = u0

q(x0, t), 0 < t < t1, we have Bp(y) = Bq(y) a.e. y ∈ Y.

Limited by our approach, as in Theorem 3.3, we can only obtain the uniqueness of this inverse
problem. We can also use the periodic structure data to determine the homogenized coefficient matrix
as the following result of asymptotic stability.
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Corollary 3.4. Let u0,p = u0,q = u0 ∈ H2(Ω)∩H1
0(Ω), uεp(x, t) be a solution of problem (3.1) and u0

p(x, t)
be a solution of problem (3.4). Under the condition (3.7) and

u0 . 0, x ∈ Ω, ∂2
1u0 ≥ 0, · · · , ∂2

du0 ≥ 0, a.e. x ∈ Ω.

Then there exists a constant C(ν, µ, l1) > 0 such that

N∑
i=1

|p0
i − q0

i | ≤ C
∣∣∣∣ ∫

I

∫
ω

uεp(x, t)dxdt −
∫

I

∫
ω

uεq(x, t)dxdt
∣∣∣∣ + θ(ε),

where θ(ε)→ 0 as ε→ 0.

4. Proof of Theorems 3.1–3.3

In this section, we give the proof of Theorems 3.1–3.3.
Proof of Theorem 3.1. We split the proof into the following three steps, and prove separately for each
step.
Step 1. We first prove that p ≥ q implies that up(x, t) ≥ uq(x, t). Set y = up − uq, then

∂αt y(x, t) − div(Ap∇y(x, t)) =
∑d

i=1(pi − qi)∂2
i uq, x ∈ Ω, t ∈ (0,T ),

y(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
y(x, 0) = 0, x ∈ Ω.

(4.1)

Denote v =
∑d

i=1(pi − qi)∂2
i uq =div(Ap−q∇uq) := −Ap−quq. Since

uq =

∞∑
n=1

mn∑
j=1

Eα,1(−(q1σ
n j

1 + · · · + qdσ
n j

d )tα)(u0, φ
n j)φn j ,

we get

−Ap−quq = −

∞∑
n=1

mn∑
j=1

Eα,1(−(q1σ
n j

1 + · · · + qdσ
n j

d )tα)(u0, φ
n j)Ap−qφ

n j

=

∞∑
n=1

mn∑
j=1

Eα,1(−(q1σ
n j

1 + · · · + qdσ
n j

d )tα)(−Ap−qu0, φ
n j)φn j .

Thus, by [12, Theorem 2.1], we know that v is a weak solution of the following problem
∂αt v(x, t) − div(Ap∇v(x, t)) = 0, x ∈ Ω, t ∈ (0,T ),
v(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
v(x, 0) = −Ap−qu0, x ∈ Ω.

(4.2)

By [18, Theorem 2.1] and
∑d

i=1(pi − qi)∂2
i u0 ≥ 0, we have v ≥ 0. Applying [18, Theorem 2.1] to Eq

(4.1), we get y ≥ 0, i.e., up ≥ uq.
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Step 2. For p = (p1, · · · , pd), we prove the analyticity of up(x0, t0) with respect to every pi > 0.
Observe that

−Apup =

∞∑
n=1

mn∑
j=1

(p1σ
n j

1 + · · · + pNσ
n j

N )Eα,1(−(p1σ
n j

1 + · · · + pNσ
n j

N )tα)(u0, φ
n j)φn j ,

hence

∥Apup∥
2
L2(Ω) ≤ C

∞∑
n=1

mn∑
j=1

(u0, φ
n j)2

L2(Ω)(
(p1σ

n j

1 + · · · + pdσ
n j

d )tα

1 + (p1σ
n j

1 + · · · + pdσ
n j

d )tα
)2t−2α

≤ C∥u0∥
2
L2(Ω)t

−2α.

By the Sobolev embedding H2(Ω) ↪→ C(Ω), we have

|up(x, t)| ≤ Ct−α∥u0∥L2(Ω).

Thus, we get the convergent series

up(x0, t0) =
∞∑

n=1

mn∑
j=1

Eα,1(−(p1σ
n j

1 + · · · + pdσ
n j

d )tα0 )(u0, φ
n j)φn j(x0), (4.3)

and since Eα,1(z) is holomorphic in the complex plane, we see that h(p) = up(x0, t0) is analytic with
respect to pi, i = 1, . . . , d.

Step 3. We prove that p > q means h(p) > h(q). First, ∂2
i u0 ≥ 0, i = 1, · · · , d, so ∆u0 ≥ 0. Since

u0 ∈ H2(Ω) ⊂ C(Ω) and u0 ∈ H1
0(Ω), by the strong maximum principle [20], we have u0 ≤ 0. On the

basis of [19, Theorem 9], we know that up(x0, t0) < 0 for all p ∈ Rd
+.

If there exist p0, q0 such that p0 > q0 and up0(x0, t0) = uq0(x0, t0), then there is i ∈ {1, · · · , d} such
that p0

i > q0
i . Therefore, when q0

i < s < p0
i ,

h(p0
1, · · · , p

0
i , · · · , p

0
d) = h(p0

1, . . . , s, . . . , p
0
d).

Since h(p) is analytic with respect to pi, we have

h(p0) = h(p0
1, · · · , s, · · · , p

0
d), ∀s > 0.

Moreover,

|h(p0)| = |
∞∑

n=1

dn∑
j=1

Eα,1(−(p1σ
n j

1 + · · · + sσn j

i + · · · + pNσ
n j

N )tα0 )(u0, φ
n j)φn j(x0)|

≤ C
∞∑

n=1

dn∑
j=1

1
p1σ

n j

1 + · · · + sσn j

i + · · · + pNσ
n j

N

|(u0, φ
n j)|t−α0

≤ Ct−α0
1

p0
1σ

11
1 + · · · + sσ11

i + · · · + p11
N

, (4.4)
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where we use the fact that

|(u0, φ
n j)| = |(u0,

∂2
1φ

n j

σ
n j

1

)| =
|(∂2

1u0, φ
n j)|

σ
n j

1

≤
∥∂2

1u0∥L2(Ω)

σ
n j

1

,

and the series
∑∞

n=1
∑mn

j=1 σ
−n j

1 converges. Passing to the limit as s→ ∞ in Eq (4.4), we have up0(x0, t0) =
0, a contradiction. Therefore, p > q means that h(p) > h(q).
Step 4. By the last step, we have ∂ih(p) > 0 for all p ∈ Rd

+, i = 1, · · · , d.
Set g(t) = h(q + t(p − q)), then g′(t) = ∇h(q + t(p − q)) · (p − q). By the mean value theorem we get

|h(p) − h(q)| = ∇h(q + t(p − q)) · (p − q)

=

d∑
i=1

(pi − qi)∂ih(q + t(p − q)) ≥ C
d∑

i=1

(pi − qi),

where

C = min
1≤i≤d

inf
ν≤pi≤µ

∂ih(p) > 0.

This ends the proof of Theorem 3.1. □
Proof of Theorem 3.2. Referring to Theorem 3.8(ii) in [15], we can similarly verify that the

function H(p) =
∫

I

∫
ω

up(x, t)dxdt satisfies ∂iH(p) > 0 for all p ∈ Rd
+, i = 1, · · · , d. Thus, we can

complete the proof similarly to that of Theorem 3.1. □
Proof of Theorem 3.3. From up(x0, t) = uq(x0, t) for 0 < t < t1 and the analyticity of up(x, t) with

respect to t, we have up(x0, t) = uq(x0, t) for t > 0. Since

uq(x0, t) =
∞∑

n=1

mn∑
j=1

Eα,1(−(q1σ
n j

1 + · · · + qdσ
n j

d )tα)(u0, φ
n j)φn j(x0)

and by the asymptotic expansion (2.13), we have that

K∑
k=1

(−1)k+1

Γ(1 − αk)tαk

∞∑
n=1

mn∑
j=1

(u0,q, φ
n j)φn j(x0)

(q1σ
n j

1 + · · · + qdσ
n j

d )k

=

K∑
k=1

(−1)k+1

Γ(1 − αk)tαk

∞∑
n=1

dn∑
j=1

(u0,p, φ
n j)φn j(x0)

(p1σ
n j

1 + · · · + pdσ
n j

d )k
+ O(

1
tα(K+1) )

holds for K ∈ Z+. We equate the coefficients of t−αk, which yields

∞∑
n=1

mn∑
j=1

(u0,q, φ
n j)φn j(x0)

(q1σ
n j

1 + · · · + qdσ
n j

d )k
=

∞∑
n=1

mn∑
j=1

(u0,p, φ
n j)φn j(x0)

(p1σ
n j

1 + · · · + pdσ
n j

d )k
, k ∈ Z+.

If q > p, we have

(u0,p, φ
11)φ11(x0) +

∞∑
n=2

mn∑
j=1

(
p1σ

11
1 + · · · + pdσ

11
d

p1σ
n j

1 + · · · + pdσ
n j

d

)k(u0,p, φ
n j)φn j(x0)
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=

∞∑
n=1

mn∑
j=1

(
p1σ

11
1 + · · · + pdσ

11
d

q1σ
n j

1 + · · · + qdσ
n j

d

)k(u0,q, φ
n j)φn j(x0), k ∈ Z+. (4.5)

We observe that

p1σ
11
1 + · · · + pdσ

11
d

p1σ
n j

1 + · · · + pdσ
n j

d

< 1, n ≥ 2, j = 1, · · · ,mn,

p1σ
11
1 + · · · + pdσ

11
d

q1σ
n j

1 + · · · + qdσ
n j

d

< 1, n ≥ 1, j = 1, · · · ,mn.

Taking k → ∞ in Eq (4.5), we get

P1u0,p(x0) = (u0,p, φ
11)φ11(x0) = 0,

this yields a contradiction. Thus, q ≤ p. Similarly, we can prove p ≤ q. This ends the proof of
Theorem 3.3. □

5. Conclusions

We should mention that our work is done under some constraints. We require the diffusion
coefficient matrix to be diagonal and the area considered to be a rectangular area. This is because our
method relies on the expansion of the eigenfunction, and only under these constraints can we clarify
our eigenfunction, which is very advantageous for our proof. In addition, we only consider the case of
layered matter, that is, the diffusion matrix only depends on one variable. Only in this way can we
obtain formula (3.8). In order to break through these limitations, we believe that we can only seek
other more difficult methods. Besides, we can also consider other more general problems. For
example, we can consider the inverse problem of the variable-order time-fractional equation [21] in
the current frame, but we do not discuss these problem in this paper. Moreover we also consider the
inverse problem of determining the variable order and diffusion matrix simultaneously, such as in
article [22], which investigates this problem in one space dimension. We also hope to expand their
results to the situation of high-dimensional situations in the future.
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