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Abstract: In this paper, we consider a class of elliptic problems in a periodically perforated domain
with L1 data and nonlinear Robin conditions on the boundary of the holes. Using the framework
of renormalized solutions, which is well adapted to this situation, we show a convergence result for
the truncated energy in the quasilinear case. When the operator is linear, we also prove a corrector
result. Since we cannot expect to have solutions belonging to H1, the main difficulty is to express the
corrector result through the truncations of the solutions, together with the fact that the definition of a
renormalized solution contains test functions which are nonlinear functions of the solution itself.
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1. Introduction

The aim of this work is to prove convergence of energies and corrector results for an elliptic problem
with nonlinear Robin conditions and L1 data in a periodically perforated domain. This study completes
the homogenization results given by the authors in [11], where the convergence of the solutions to a
limit problem explicitly described, including its unfolded version, is proved.

More precisely, we consider the following elliptic problem in a periodically perforated domain Ω∗ε:
− div

(
A( x

ε
, uε)∇uε

)
= f in Ω∗ε,

uε = 0 on Γε0,

A( x
ε
, uε)∇uε · n + εγτ( x

ε
)h(uε) = εg( x

ε
) on Γε1,

(1.1)

where f ∈ L1(Ω), g ∈ L1(∂T ), A(·, t) is a coercive Y-periodic matrix which is bounded where t is
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bounded, h is a monotone continuous function verifying a sign condition and τ is a positive function in
L∞(∂T ).

Here, as in [11] (see also [4] and the references therein), the perforated domain is obtained by
removing from a fixed domain Ω a set of ε-periodic holes of size ε. Its boundary consists of two parts
on which we prescribe two different boundary conditions. Roughly speaking, on the boundary of the
holes which are completely contained in Ω, we prescribe the nonlinear Robin condition, and on the
remaining part of the boundary is a homogeneous Dirichlet condition. We refer the reader to Section 2
for a rigorous definition of the domain.

Heterogeneous media are widely studied since they have many interesting applications in sciences,
in industry and, more recently, even in biology and environmental sciences. Let us recall that the
mathematical homogenization theory (see, for instance, [3, 8]) allows to describe the microscopical
behavior of a problem with periodic oscillations in the coefficients and/or in the domain. Theory
provides a limit homogenized problem described through a problem posed in the periodicity reference
cell. It represents a good approximation of the initial problem, and it is easier to compute since it does
not present oscillations anymore.

It is well known already, in the classical case where f ∈ L2, that the gradient of the solution uε

converges weakly (never strongly) in L2 to that of the solution u0 of the homogenized problem. This
is the reason why one looks for corrector results improving the weak convergence. To do that, one
replaces ∇u0 by Cε∇u0, where Cε is the corrector matrix field, described via the cell problem. Hence,
one proves that ∇uε − Cε∇u0 strongly converges to zero in L1. As a first step of the proof, one has to
prove the convergence of the energy of the problem to the one of the homogenized problem.

In this paper, we prove similar results in the more delicate case where f is only in L1. For physical
motivations and references of related works, we refer the reader to [11].

As usual, the presence of the L1 data requires a specific framework: we use here that of renormalized
solutions (see [9] and the references therein and Definition 2.1 below). Since, in this case, the solution
does not belong to H1, the notion of a renormalized solution consists first of imposing the regularity
of the truncations of the solution, and second, of making use of test functions of the type S (u)ϕ where
S ∈ C1(R) has a compact support and ϕ ∈ L∞ ∩ H1. The test functions depend on the solution and
vanish for large values of the solution. To counterbalance the lack of information where |u| is large, a
decay of the truncated energy is imposed.

The existence and the uniqueness of a renormalized solution of this problem have been proved in
[12]. Successively, in [11], the authors, using the periodic unfolding method introduced in [5] (see for
a complete presentation the book [7]), studied the homogenization of problem (1.1), proving that the
renormalized solution converges to the renormalized solution of a homogenized problem posed in the
whole domain.

We prove first the convergence of the energies for problem (1.1) (see Theorem 3.1 and Theorem
3.3), and then a corrector result (Theorem 4.1) for the corresponding linear equation, where the matrix
field does not depend on the solution that is A(y, t) = A(y) (see Remark 4.2). As far as we know, the
results presented here are new, even in the case of a fixed domain (where there are no holes, so that
Ω∗ε = Ω). With respect to the classical situation with L2 data, since the solutions are not in H1, we
cannot expect to have for the renormalized solutions a convergence result for ∇uε −Cε∇u0, and we can
only describe the convergences in terms of the truncated solutions and of the truncated limit function
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(at a fixed level). Our corrector result states the following convergence:

lim
ε→0

∥∥∥∇Tk(uε) −Cε∇Tk(u0)
∥∥∥

L1(Ω∗ε)
= 0, (1.2)

where u0 is the solution of the homogenized problem, Tk is the truncation at level k and Cε is the
corrector matrix of the classical linear case in perforated domains (see [10]). This is not surprising,
since, in the homogenization results proved in [11] for the case f ∈ L1, all of the convergences concern
the truncations Tk(uε). In fact, the use of the truncation is standard in the literature of renormalized
solutions.

The proofs are quite technical, since one cannot merely replace the solutions by their truncations
and follow the usual arguments because the definition of a renormalized solution (see (2.21) in
Definition 2.1) contains test functions which are nonlinear functions of the solution itself. This is the
main difficulty all along the proofs. In addition, since the truncation function is not differentiable, we
need to approach it by using suitable and more regular functions.

In Section 2, we introduce the problem and we recall some results on the periodic unfolding method,
as well as the homogenization results from [11]. In Section 3, we prove the convergence of both
(unfolded and not) types of truncated energy to those of the homogenized problem. Section 4 and 5
are devoted to the statement of the corrector result, and to the related proofs.

2. Position of the problem and preliminaries

In this paper, we study some corrector results for an elliptic problem with nonlinear Robin
conditions and L1 data, in a periodically perforated domain Ω∗ε.

In Subsection 2.1, we define the perforated domain and set the problem, together with its variational
formulation. In Subsection 2.2, we recall the definition of the periodic unfolding operator and the
homogenization results obtained in [11].

2.1. Position of the problem

Let us introduce the geometrical framework used in [11] (see also [4]). In what follows, Ω is
a connected open bounded subset of RN (N ≥ 2) with a Lipschitz-continuous boundary and b =

(b1, . . . , bN) as a given basis of RN .
We define the reference periodicity cell Y by

Y =
{
` ∈ RN : ` =

N∑
i=1

libi , (l1, . . . , lN) ∈ (0, 1)N
}
,

and denote by {ε}ε>0 a positive sequence converging to zero. We set

G =
{
ξ ∈ RN : ξ =

N∑
i=1

kibi , (k1, . . . , kN) ∈ ZN
}
.

As is usual in the periodic unfolding method, (see for instance [6], and the exhaustive book [7]), we
construct the interior of the largest union of cells ε(ξ + Y) contained in Ω, as well as its complement,
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that is,

Ω̂ε = interior

⋃
ξ∈Ξε

ε(ξ + Y) ⊂ Ω

 , Λε = Ω\Ω̂ε, where Ξε =
{
ξ ∈ G : ε(ξ + Y) ⊂ Ω

}
. (2.1)

We now denote by T the reference hole, which is a compact subset of Y , and by Y∗ = Y\T the perforated
reference cell. We suppose that the boundary ∂T is Lipschitz-continuous with a finite number of
connected components.

Then, the holes and the perforated domain Ω∗ε (see Figure 1) are defined by

Tε =
⋃
ξ∈G

ε(ξ + T ), Ω∗ε = Ω\Tε, (2.2)

respectively, while the perforated sets corresponding to (2.1) are

Ω̂∗ε = Ω̂ε\Tε and Λ∗ε = Ω∗ε\ Ω̂∗ε . (2.3)

Ω̂∗
ε

Λ∗
ε

Figure 1. The reference cell Y and the perforated domain Ω∗ε.

Finally, we decompose the boundary of the perforated domain Ω∗ε as

∂Ω∗ε = Γε0 ∪ Γε1, where Γε1 = ∂Ω̂∗ε ∩ ∂Tε and Γε0 = ∂Ω∗ε\Γε1. (2.4)

In the sequel, we denote by

• ṽ, the extension by zero outside B of a function v defined on any set B,

• θ =
|Y∗|
|Y |

, the proportion of the material,

• χ
A
, the characteristic function of a measurable set A,

• M∂T (v) =
1
|∂T |

∫
∂T

v(y)dσy, the mean value over ∂T of a function v ∈ L1(∂T ).

Let us recall that, as ε→ 0,
χ

Ω∗ε
⇀ θ weakly ? in L∞(Ω). (2.5)
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We are concerned with the following problem:


− div(Aε(x, uε)∇uε) = f in Ω∗ε,

uε = 0 on Γε0,

Aε(x, uε)∇uε · n + εγτε(x)h(uε) = gε on Γε1,

(2.6)

where γ ≥ 1 and n is the unit exterior normal to Ω∗ε.
We suppose that the following assumptions hold true:

• The functions f , g, h and τ are such that

1. f ∈ L1(Ω). (2.7)
2. h : R −→ R is an increasing continuous function, with h(0) = 0. (2.8)
3. τ is a positive Y-periodic function in L∞(∂T ) with (2.9)

τε(x) = τ
( x
ε

)
.

4. Either (2.10)

(i) gε(x) = εg
( x
ε

)
, with g ∈ L1(∂T ) Y-periodic withM∂T (g) , 0

or
(ii) gε ≡ 0.

• Let A : (y, t) ∈ Y × R 7−→ A(y, t) ∈ RN2
be a real matrix field such that the matrix field A(·, t) =

{ai j(·, t)}i, j=1...N is Y-periodic for every t.
We suppose that A is a Carathéodory function, i.e., for almost every y ∈ Y , the map t 7→ A(y, t) is
continuous, and for every t ∈ R, the map y 7→ A(y, t) is measurable.
For some constant α > 0, we suppose further that the matrix A satisfies the following:

1. A(y, t)ξ ξ ≥ α|ξ|2, for a.e. y ∈ Y , ∀ t ∈ R, ∀ ξ ∈ RN , (2.11)
2. ∀ k > 0, A(y, t) ∈ L∞(Y × (−k, k))N×N , (2.12)
3. The matrix field A(y, t) is locally Lipschitz-continuous with respect to the second variable,

that is, for every r > 0, there exists a positive constant Mr such that

|A(y, s) − A(y, t)| < Mr|s − t|, ∀s, t ∈ [−r, r], ∀y ∈ Y, (2.13)

and we set
Aε(x, t) = A

( x
ε
, t
)

for every (x, t) ∈ Ω × R. (2.14)

In order to define a renormalized solution of problem (2.6), let us introduce the space

Vε = { v ∈ H1(Ω∗ε) : v = 0 on Γε0 }, (2.15)

equipped with the norm
‖ v ‖Vε = ‖ ∇v ‖L2(Ω∗ε) for all v ∈ Vε. (2.16)

Observe that (2.16) defines a norm since a Poincaré inequality holds in Vε, namely,

‖ u ‖L2(Ω∗ε) ≤ C ‖ ∇u ‖L2(Ω∗ε) ∀u ∈ Vε, (2.17)
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where the constant C is independent of ε. Also, the Sobolev continuous and compact embedding
theorems on Vε hold with constants independent of ε.

We recall now the definition of the truncation, which plays a crucial role in our work. For any k > 0,
the truncation function Tk : R→ R at height ±k is given by

Tk(t) = min(k,max(t,−k)) (2.18)

for all t ∈ R (see Figure 2).

tk

k

−k

−k

Tk(t)

Figure 2. The function Tk.

Let us now present the definition of a renormalized solution to our problem, introduced in [12].

Definition 2.1. We say that uε is a renormalized solution of (2.6) if

Tk(uε) ∈ Vε for any k > 0, (2.19)

lim
n→+∞

1
n

∫
{ x∈Ω∗ε : |uε |<n }

Aε(x, uε)∇uε∇uε dx = 0, (2.20)

and for any ψ ∈ C1(R) (or equivalently for any ψ ∈ W1,∞(R)) with compact support, uε satisfies∫
Ω∗ε

ψ(uε)Aε(x, uε)∇uε∇v dx +

∫
Ω∗ε

ψ′(uε)Aε(x, uε)∇uε∇uεv dx

+

∫
Γε1

εγτε(x)ψ(uε)h(uε)v dσx =

∫
Ω∗ε

fψ(uε)v dx +

∫
Γε1

gεψ(uε)v dσx (2.21)

for all v ∈ Vε ∩ L∞(Ω∗ε).

Remark 2.2.

1. Proposition 2.3 in [12] (see also [2]) guarantees that the gradient and the trace along the
boundaries of any function verifying (2.19) and (2.20) are well defined almost everywhere in Ω∗ε
and Γε1, respectively. This shows that every term in (2.21) is well defined.

2. Observe that, for every k > 0, we have

∇v∇Tk(v) = ∇Tk(v)∇Tk(v) (2.22)

for any function v such that Tk(v) ∈ Vε for all k > 0.
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3. It has been proved in [12] that, under assumptions (2.7)–(2.12), there exists a renormalized
solution to (2.6) in the sense of Definition 2.1. Moreover, assumption (2.13) provides the
uniqueness of a solution.

2.2. Review of homogenization results

In this subsection, we recall the homogenization results proved in [11] by using the periodic
unfolding method, and we state them in the particular case where assumption (2.13) holds. This
condition is needed in the following sections, since it provides the uniqueness of the solution to the
problem we consider here.

Let us start by recalling the definitions of the unfolding operator and the boundary unfolding
operator. For a detailed and extensive presentation of the method, see [6, 4, 7]. For the properties used
in this paper, we refer the reader to [11, Section 3].

For a.e. z ∈ RN , we denote by [z]Y =
∑N

i=1 libi , li ∈ Z for i = 1, . . . , n, the unique integer combination
such that z − [z]Y ∈ Y and set {z}Y = z − [z]Y ∈ Y .

Thus, for a positive ε, we can write

x = ε
({ x
ε

}
Y

+

[ x
ε

]
Y

)
for a.e. x ∈ RN .

Definition 2.3. Suppose ϕ is a Lebesgue-measurable function. The unfolding operator T ∗ε is defined
as

T ∗ε (ϕ)(x, y) =


ϕ
(
ε
[ x
ε

]
Y

+ εy
)

for a.e. (x, y) ∈ Ω̂ε × Y∗ ,

0 for a.e. (x, y) ∈ Λε × Y∗ .
(2.23)

Definition 2.4. Suppose that ϕ is a Lebesgue-measurable function on ∂Ω̂∗ε ∩ ∂Tε. The boundary
unfolding operator T b

ε is defined as

T b
ε (ϕ)(x, y) =


ϕ
(
ε
[ x
ε

]
Y

+ εy
)

for a.e. (x, y) ∈ Ω̂ε ∩ ∂T ,

0 for a.e. (x, y) ∈ Λε × ∂T .

(2.24)

Remark 2.5. For a given a continuous function r(x), with r(0) = 0, one has

T ∗ε (r(uε)) = r
(
T ∗ε (uε)

)
(2.25)

in Ω × Y∗.
Nevertheless, for any Lebesgue measurable function ϕ, we can write

T ∗ε (r(uε))T ∗ε (ϕ) = r
(
T ∗ε (uε)

)
T ∗ε (ϕ) (2.26)

even if r(0) , 0. This is due to the fact that, if (x, y) ∈ Λε × Y∗, equality is still obtained since
T ∗ε (ϕ)(x, y) = 0. Further, this implies that (2.26) holds for all (x, y) ∈ Ω × Y∗.

Similar properties hold for T b
ε .

Let us state now the homogenization results proved in [11].
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Theorem 2.6 ([11]). Let uε be the renormalized solution of (2.6) under assumptions (2.7)–(2.14), with
γ ≥ 1. Set J(γ)

J(γ) =

 |∂T | if γ = 1 ,

0 if γ > 1 .
(2.27)

Then, as ε tends to zero, there exists u0 : Ω→ R, measurable and finite almost everywhere, and for
every k ∈ N, ûk ∈ L2(Ω,H1

per(Y
∗)) withMY∗(ûk) = 0 satisfying

(i). T ∗ε (uε) −→ u0 a.e. in Ω × Y∗,

(ii). T b
ε (uε) −→ u0 a.e. in Ω × ∂T,

(2.28)

and 

(i). T ∗ε (Tk(uε))→ Tk(u0) strongly in L2(Ω,H1(Y∗)),

(ii). T ∗ε (∇Tk(uε)) ⇀ ∇Tk(u0) + ∇yûk weakly in L2(Ω × Y∗),

(iii). Tk(ũε) = T̃k(uε) ⇀ θTk(u0) weakly in L2(Ω),

(iv).
∥∥∥ Tk(uε) − Tk(u0)

∥∥∥
L2(Ω∗ε)

→ 0.

(2.29)

Further, there exists a unique measurable function û : Ω × Y∗ → R such that, for every function
R ∈ W1,∞(R) with compact support such that supp R ⊂ [−n, n] for some n ∈ N, we have

R(u0) ûk = R(u0) û a.e. in Ω × Y∗, ∀k ≥ n. (2.30)

Moreover, if S , S 1 are functions in C1(R) with compact supports, then the pair (u0, û) is the unique
solution of the limit problem

∫
Ω×Y∗

A(y, u0)
(
∇u0 + ∇ŷu

) (
∇

(
S (u0)η0

)
+ S 1(u0)∇yΨ(x, y)

)
dx dy

+ J(γ)M∂T (τ)
∫

Ω

h(u0)S (u0)η0 dx

= |Y∗|
∫

Ω

f S (u0)η0 dx + |∂T |M∂T (g)
∫

Ω

S (u0)η0 dx,

for every η0 ∈ H1
0(Ω) ∩ L∞(Ω) and for every Ψ ∈ L2(Ω,H1

per(Y
∗)).

(2.31)

We also have the convergence

lim
k→∞

1
k

∫
Ω×Y∗

A(y, u0)
(
∇Tk(u0) + ∇yûk

) (
∇Tk(u0) + ∇yûk

)
dx dy = 0. (2.32)

As a consequence, we prove the following result, used in the sequel:

Corollary 2.7. Under the assumptions of Theorem 2.6, for any bounded continuous function H : R→
R such that H(0) = 0, we have

‖H(uε) − H(u0)‖L2(Ω∗ε) → 0. (2.33)

Consequently, using (2.5),
H̃(uε) ⇀ θH(u0) in L∞(Ω)-weak*. (2.34)
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Proof. Using the properties of H, from Remark 2.5, convergence (2.28)(i) and the dominated
convergence Lebesgue theorem, we get

T ∗ε (H(uε)) = H(T ∗ε (uε)) −→ wH(u0) strongly in L2(Ω × Y∗).

Applying Corollary 1.19 of [4], from the boundedness of H we derive convergence (2.33).
Convergence (2.34) is then straightforward. �

We also recall the next theorem, which identifies û in terms of the limit function u0.

Theorem 2.8 ([11]). Under the same assumptions and notations of Theorem 2.6, the function û can be
expressed as

û(y, x) = −

N∑
j=1

χ̂e j(y, u
0(x))

∂u0

∂x j
(x), (2.35)

where (e j)N
j=1

is the canonical basis of RN and χ̂e j(·, t) is the solution of

− div
(
A(·, t)∇yχ̂λ(·, t)

)
= − div (A(·, t)λ) in Y∗,

A(·, t)
(
λ − ∇yχ̂λ(·, t)

)
· n = 0 on ∂T,

χ̂λ(·, t) Y-periodic,

MY∗
(
χ̂λ(·, t)

)
= 0

(2.36)

for every t ∈ R and λ ∈ RN .

The next result shows that u0 is a renormalized solution to a homogenized elliptic problem
corresponding to the homogenized matrix A0.

Theorem 2.9 ([11]). Let u0 be the function given in Theorem 2.6. Then, u0 is the renormalized solution
of the problem

− div
(
A0(u0)∇u0

)
+

J(γ)
|Y |
M∂T (τ)h(u0) = θ f +

|∂T |
|Y |
M∂T (g) in Ω,

u0 = 0 on ∂Ω,

(2.37)

that is, u0 satisfies
Tk(u0) ∈ H1

0(Ω) for any k > 0, (2.38)

lim
n→+∞

1
n

∫
{ x∈Ω : |u0 |<n }

A0(u0)∇u0∇u0 dx = 0, (2.39)

and for every S ∈ C1(R) with compact support, u0 satisfies∫
Ω

S (u0)A0(u0)∇u0∇η0 dx +

∫
Ω

S ′0(u0)A0(u0)∇u0∇u0η0 dx

+
J(γ)
|Y |
M∂T (τ)

∫
Ω

S (u0)h(u0)η0 dx
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= θ

∫
Ω

f S (u0)η0 dx +
|∂T |
|Y |
M∂T (g)

∫
Ω

S (u0)η0 dx (2.40)

for all η0 ∈ H1
0(Ω) ∩ L∞(Ω).

The homogenized matrix A0(t) is defined, for every fixed t ∈ R, as

A0(t)λ =
1
|Y |

∫
Y∗

A(y, t)∇yŵλ(y, t) dy ∀λ ∈ RN , (2.41)

in which
ŵλ(y, t) = λy − χ̂λ(y, t), (2.42)

and where the function χ̂λ(·, t) is the solution of the problem (2.36).
Consequently, in view of Theorem 2.8,

A0(u0)∇u0 =
1
|Y |

∫
Y∗

A(y, u0)
(
∇u0 + ∇ŷu

)
dy, a.e. in Ω. (2.43)

The result below, proved in [11] (Proposition 6.1), plays an important role in the proof of the
corrector results to our problem.

Proposition 2.10. Under the assumptions of Theorem 2.6, for every k ∈ N and ε > 0, we have

lim
k→+∞

lim sup
ε→0

1
k

∫
{|uε |<k}

Aε(x, uε)∇uε∇uε dx = 0. (2.44)

3. Convergence of the energies

The first result of this section states the convergence of the truncated energies associated with our
problem. This convergence is important in itself, and it is essential in the proof of our corrector results.

To this aim, for n ∈ N, we define the function ψn (see Figure 3) by

ψn(x) =



x
n

+ 2 , −2n ≤ x ≤ −n

1 , −n ≤ x ≤ n

−
x
n

+ 2 , n ≤ x ≤ 2n

0 , |x| ≥ 2n,

(3.1)

which is Lipschitz-continuous and has a compact support given by supp ψn = [−2n, 2n].

t

1

n 2n−n−2n

ψn(t)

Figure 3. The function ψn.

Further, ψn satisfies

0 ≤ ψn ≤ 1, |ψ′n(s)| ≤
1
n

for |s| ≤ 2n, a.e. in R. (3.2)
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Theorem 3.1. Under assumptions (2.7)–(2.14), let uε be the renormalized solution to (2.6). Let also
G ∈ W1,∞(R) be a nondecreasing function such that G′ has a compact support and G(0) = 0.

Then,

lim
ε→0

∫
Ω∗ε

Aε(x, uε)∇uε ∇G(uε) dx −→
∫

Ω

A0(u0)∇u0 ∇G(u0) dx (3.3)

as ε tends to zero, where u0 and A0 are given by Theorem 2.6.
In particular, for every fixed k ∈ N,∫

Ω∗ε

Aε(x, uε)∇Tk(uε)∇Tk(uε) dx =

∫
Ω∗ε

Aε(x, uε)∇uε∇Tk(uε) dx

−→

∫
Ω

A0(u0)∇Tk(u0)∇u0 dx =

∫
Ω

A0(u0)∇Tk(u0)∇Tk(u0) (3.4)

as ε tends to zero.

Proof. Let G ∈ W1,∞(R) be a nondecreasing function such that, for some k ∈ N, supp G′ ⊂ [−k, k].
Since, for n ≥ k, ∫

Ω∗ε

Aε(x, uε)∇uε ∇G(uε) dx =

∫
Ω∗ε

ψn(uε)Aε(x, uε)∇uε ∇G(uε) dx; (3.5)

it suffices to prove that

lim
n→+∞

lim
ε→0

∫
Ω∗ε

ψn(uε)Aε(x, uε)∇uε∇G(uε) dx =

∫
Ω

A0(u0)∇u0 ∇G(u0) dx, (3.6)

where ψn is defined by (3.1). Using ψ = ψn and v = G(uε) in (2.21), we have∫
Ω∗ε

ψn(uε)Aε(x, uε)∇uε∇G(uε) dx =

∫
Ω∗ε

fψn(uε)G(uε) dx +

∫
Γε1

gεψn(uε)G(uε) dσx

−

∫
Γε1

εγτε(x)ψn(uε)h(uε)G(uε) dσx −

∫
Ω∗ε

ψ′n(uε)Aε(x, uε)∇uε∇uε G(uε) dx. (3.7)

Let us first prove that, for any n ∈ N,

lim
ε→0

∫
Ω∗ε

fψn(uε)G(uε) dx +

∫
Γε1

gεψn(uε)G(uε) dσx −

∫
Γε1

εγτε(x)ψn(uε)h(uε)G(uε) dσx


= θ

∫
Ω

fψn(u0)G(u0) dx +
|∂T |
|Y |
M∂T (g)

∫
Ω

ψn(u0)G(u0) dx

−
J(γ)
|Y |
M∂T (τ)

∫
Ω

ψn(u0)h(u0)G(u0) dx, (3.8)

where J(γ) is given by (2.27).
Corollary 2.7 applied to ψnG, and the first convergence in (2.28), give

lim
ε→0

∫
Ω∗ε

fψn(uε)G(uε) dx = θ

∫
Ω

fψn(u0)G(u0) dx. (3.9)
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From the properties of the boundary unfolding operator (see [4]) and Remark 2.5, we have

ε

∫
Γε1

τε(x)ψn(uε)h(uε)G(uε) dσx =
1
|Y |

∫
Ω×∂T

τ(y)T b
ε (ψn(uε))T b

ε (h(uε))T b
ε (G(uε)) dx dσy

=
1
|Y |

∫
Ω×∂T

τ(y)ψn(T b
ε (uε))h(T b

ε (uε))G(T b
ε (uε)) dx dσy.

(3.10)

Using convergence (ii) of (2.28), we obtain

ψn(T b
ε (uε)) −→ ψn(u0) a.e. in Ω × ∂T, (3.11)

G(T b
ε (uε)) −→ G(u0) a.e. in Ω × ∂T. (3.12)

Also, from the assumptions on h and Remark 2.5, we have

T b
ε (h(uε)) = h(T b

ε (uε)) −→ h(u0) a.e. in Ω × ∂T. (3.13)

Thus, combining the convergences above, equality (3.10) gives

lim
ε→0

ε

∫
Γε1

τε(x)ψn(uε)h(uε)G(uε) dσx =
1
|Y |

∫
Ω×∂T

τ(y)ψn(u0)h(u0)G(u0) dx dσy

=
1
|Y |

(∫
∂T
τ(y) dσy

) (∫
Ω

ψn(u0)h(u0)G(u0) dx
)

=
|∂T |
|Y |
M∂T (τ)

∫
Ω

ψn(u0)h(u0)ϕ dx,

(3.14)

since u0 is independent of y. When γ > 1, we deduce from (3.14) that

lim
ε→0

εγ
∫

Γε1

τε(x)ψn(uε)h(uε)G(uε) dσx = 0. (3.15)

Concerning the second integral on the left-hand side of (3.8), for the caseM∂T (g) , 0, we again use
(2.10), Remark 2.5 and properties of the boundary unfolding operator to write

ε

∫
Γε1

g
( x
ε

)
ψn(uε)G(uε) dσx =

1
|Y |

∫
Ω×∂T

g(y)T b
ε (ψn(uε))T b

ε (G(uε)) dx dσy

=
1
|Y |

∫
Ω×∂T

g(y)ψn(T b
ε (uε))G(uε)

(
T b
ε

)
dx dσy.

Arguing as above, we obtain

lim
ε→0

ε

∫
Γε1

g
( x
ε

)
ψn(uε)G(uε) dσx =

|∂T |
|Y |
M∂T (g)

∫
Ω

ψn(u0)ϕ(x) dx, (3.16)

which completes the proof of (3.8).
Now, using the properties of ψn and setting mG = max

R
|G|, we obtain∣∣∣∣∣∣

∫
Ω∗ε

ψ′n(uε)Aε(x, uε)∇uε∇uεG(uε) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
{|uε |<2n}

ψ′n(uε)Aε(x, uε)∇uε∇uεG(uε) dx

∣∣∣∣∣∣
≤

mG

n

∫
{|uε |<2n}

Aε(x, uε)∇uε∇uε dx.
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Then, from Proposition 2.10, we deduce that

lim sup
ε→0

∣∣∣∣ ∫
Ω∗ε

ψ′n(uε)Aε(x, uε)∇(uε)∇(uε)G(uε) dx
∣∣∣∣ = ω1(n), (3.17)

where ω1(n) goes to zero as n→ ∞. On the other hand, taking η0 = G(u0) and S = ψn as test functions
in (2.40) gives∫

Ω

ψn(u0)A0(u0)∇u0∇G(u0) dx = θ

∫
Ω

fψn(u0)G(u0) dx

+
|∂T |
|Y |
M∂T (g)

∫
Ω

ψn(u0)G(u0) dx −
J(γ)
|Y |
M∂T (τ)

∫
Ω

ψn(u0)h(u0)G(u0) dx

−

∫
Ω

ψ′n(u0)A0(u0)∇u0∇u0G(u0) dx. (3.18)

This, combined with (3.7), and using (3.8) and (3.17), yields

lim
ε→0

∫
Ω∗ε

ψn(uε)Aε(x, uε)∇uε∇G(uε) dx =

∫
Ω

ψn(u0)A0(u0)∇u0∇G(u0) dx + ω1(n).

Now, since ψn → 1 as n→ ∞, by the Lebesgue dominated convergence theorem,

lim
n→∞

∫
Ω

ψn(u0)A0(u0)∇u0∇G(u0) dx =

∫
Ω

A0(u0)∇u0∇G(u0) dx. (3.19)

Therefore, passing to the limit as n → +∞ in (3.19), we get (3.6), which, in view of (3.5), proves
(3.3). �

Proposition 3.2. Under the assumptions of Theorem 3.1, for every k ∈ N, we have∫
Ω

A0(u0)∇Tk(u0)∇Tk(u0) dx =
1
|Y |

∫
Ω×Y∗

A(y, u0)
(
∇Tk(u0) + ∇yûk

) (
∇Tk(u0) + ∇yûk

)
dx dy (3.20)

and∫
Ω×Y∗

A(y, uε)T ∗ε (∇Tk(uε))T ∗ε (∇Tk(uε)) dx dy

−→
1
|Y |

∫
Ω×Y∗

A(y, u0)
(
∇Tk(u0) + ∇yûk

) (
∇Tk(u0) + ∇yûk

)
dx dy (3.21)

as ε tends to zero.

Proof. We prove first the following inequality for the two energies:∫
Ω

A0(u0)∇Tk(u0)∇Tk(u0) dx

=
1
|Y |

∫
Ω×Y∗

χ
{|u0 |<k}

A(y, u0)
(
∇Tk(u0) + ∇yûk

) (
∇Tk(u0) + ∇yûk

)
dx dy

≤
1
|Y |

∫
Ω×Y∗

A(y, u0)
(
∇Tk(u0) + ∇yûk

) (
∇Tk(u0) + ∇yûk

)
dx dy.

(3.22)
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Observe that
∇Tk(u0) = ∇u0 χ{|u0 |<k}

a.e in Ω. (3.23)

Then, using (2.30) and equality (2.43) from Theorem 2.8, we can write

1
|Y |

∫
Ω×Y∗

χ
{|u0 |<k}

A(y, u0)
(
∇Tk(u0) + ∇yûk

)
∇Tk(u0) dx dy

=
1
|Y |

∫
Ω×Y∗

A(y, u0)
(
∇u0 + ∇ŷu

)
∇Tk(u0) dx dy

=

∫
Ω

A0(u0)∇u0∇Tk(u0) dx =

∫
Ω

A0(u0)∇Tk(u0)∇Tk(u0) dx.

Hence, to prove the equality in (3.22), it suffices to show that

1
|Y |

∫
Ω×Y∗

χ
{|u0 |<k}

A(y, u0)
(
∇Tk(u0) + ∇yûk

)
∇yûk dx dy

=
1
|Y |

∫
Ω×Y∗

χ
{|u0 |<k}

A(y, u0)
(
∇Tk(u0) + ∇ŷu

)
∇yûk dx dy = 0, (3.24)

where, again, we used (2.30) in the first equality.
To do that, for any δ > 0, let S 1

δ ∈ C1(R) be a bounded sequence function with compact support
contained in [−k, k], and such that

0 ≤ S 1
δ(r) ≤ 1, and lim

δ→0
S 1
δ(r)→ χ

{|r|<k}
for every r ∈ R. (3.25)

Then, choosing in (2.31) η0 = 0, Ψ = ûk and S 1 = S 1
δ, we obtain∫

Ω×Y∗
A(y, u0)

(
∇Tk(u0) + ∇ŷu

)
S 1
δ(u

0)∇yûk dx dy =

∫
Ω×Y∗

A(y, u0)
(
∇u0 + ∇ŷu

)
S 1
δ(u

0)∇yûk dx dy = 0.

Passing to the limit as δ→ 0, from (3.25), we deduce (3.24), which concludes the proof of (3.22).
Let us prove now convergence (3.21). From (2.11)–(2.12), by the lower semi-continuity of the limit

and using convergence (2.29)(ii), the properties of the unfolding operator and convergence (3.4) from
Theorem 3.1, we have ∫

Ω×Y∗
A(y, u0)

(
∇Tk(u0) + ∇yûk

) (
∇Tk(u0) + ∇yûk

)
dx dy

≤ lim inf
ε→0

∫
Ω×Y∗

A(y, uε)T ∗ε (∇Tk(uε))T ∗ε (∇Tk(uε)) dx dy

≤ lim sup
ε→0

∫
Ω×Y∗

A(y, u0)T ∗ε (∇Tk(uε))T ∗ε (∇Tk(uε)) dx dy

= lim sup
ε→0

|Y |
∫

Ω̂ε

Aε(x, uε)∇Tk(uε)∇Tk(uε) dx

= |Y |
∫

Ω

A0(u0)∇Tk(u0)∇Tk(u0) dx

≤

∫
Ω×Y∗

A(y, u0)
(
∇Tk(u0) + ∇yûk

) (
∇Tk(u0) + ∇yûk

)
dx dy,
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where we also used (3.22). This implies the equality of all terms above and proves both equality (3.20)
and convergence (3.21). �

The following result shows that convergence (ii) of (2.29) is actually strong.

Theorem 3.3. Under the assumptions of Theorem 3.1, for all k ∈ N,

T ∗ε (∇Tk(uε)) −→ ∇Tk(u0) + ∇yûk strongly in L2(Ω × Y∗). (3.26)

Proof. By the ellipticity of A, we have

α
∥∥∥T ∗ε (∇Tk(uε)) − (∇Tk(u0) + ∇yûk)

∥∥∥2

L2(Ω×Y∗)
≤ Jε, (3.27)

where

Jε =

∫
Ω×Y∗

A(y, uε)
(
T ∗ε (∇Tk(uε)) − (∇Tk(u0) + ∇yûk)

)
·
(
T ∗ε (∇Tk(uε)) − (∇Tk(u0) + ∇yûk)

)
dx dy. (3.28)

It suffices to show that
Jε → 0 as ε→ 0. (3.29)

Now, from (3.28), we can write Jε as

Jε = Jε,1 − Jε,2 − Jε,3 + Jε,4, (3.30)

where

Jε,1 =

∫
Ω×Y∗

A(y, uε)T ∗ε (∇Tk(uε))T ∗ε (∇Tk(uε)) dx dy,

Jε,2 =

∫
Ω×Y∗

A(y, uε)T ∗ε (∇Tk(uε))
(
∇Tk(u0) + ∇yûk

)
dx dy,

Jε,3 =

∫
Ω×Y∗

A(y, uε)
(
∇Tk(u0) + ∇yûk

)
T ∗ε (∇Tk(uε)) dx dy,

Jε,4 =

∫
Ω×Y∗

A(y, uε)
(
∇Tk(u0) + ∇yûk

) (
∇Tk(u0) + ∇yûk

)
dx dy.

By Proposition 3.2, we get
Jε,1 −→ Jε,4. (3.31)

From the convergences of (2.29) in Theorem 2.6, we also have

Jε,2 −→ Jε,4, (3.32)
Jε,3 −→ Jε,4. (3.33)

Hence, using (3.31)–(3.33), from (3.30), we get (3.29). �
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4. The corrector result

In this section, we suppose that the equation is linear, that is, A(y, t) = A(y). Then, (2.12) reads as
A ∈ (L∞(Y))N×N , and we set

β = ‖A‖L∞(Y). (4.1)

Moreover, the homogenized matrix A0 is constant and is given by

A0λ =
1
|Y |

∫
Y∗

A(y)∇yŵλ(y) dy ∀λ ∈ RN . (4.2)

We recall the well-known inequality (see, for instance, [8, Prop. 8.3])

‖A0‖L∞(Y) ≤
β2

α
. (4.3)

In this case, the functions χ̂λ and ŵλ defined in (2.36) and (2.42), respectively, are the classical
functions used in the linear homogenization. That is, for any λ ∈ RN , the function χ̂λ is the unique
solution of 

− div
(
A∇χ̂λ

)
= − div (Aλ) in Y∗,

A
(
λ − ∇χ̂λ

)
· n = 0 on ∂T,

χ̂λ Y-periodic,

MY∗
(
χ̂λ

)
= 0,

(4.4)

and ŵλ is defined in Y∗ by
ŵλ(y) = λy − χ̂λ(y). (4.5)

Moreover, setting
ŵε
λ(x) = εŵλ(

x
ε

) (4.6)

in Ω∗ε, one has
Aε∇̃wε

λ ⇀ A0λ weakly in (L2(Ω))n, (4.7)

and ∫
Ω∗ε

Aε∇wε
λ ∇v dx = 0, ∀v ∈ Vε. (4.8)

For any ε, the corrector matrix for perforated domain Cε = (Cε
i j)1≤i, j≤N , introduced in [10], is

defined by 
Cε(x) = C

( x
ε

)
a.e. in Ω∗ε,

Ci j(y) =
∂ŵ j

∂yi
(y) i, j = 1, . . . ,N a.e. on Y,

(4.9)

where ŵ j = ŵe j and {e j}
N
j=1 is the canonical basis of RN.

We are now ready to present our main corrector result.
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Theorem 4.1. Let uε be the renormalized solution to (2.6) under the assumptions of Theorem 2.6.
Then, for any fixed k ∈ N, we have

lim
ε→0

∥∥∥∇Tk(uε) −Cε∇Tk(u0)
∥∥∥

L1(Ω∗ε)
= 0. (4.10)

The proof of Theorem 4.1 is given at the end of this section and makes use of the following results
whose proof is given in next section. It makes use of a somehow “regularized truncation” function Hδ

k
(see (4.12)–(4.13)).

Hδ
k

k − 2δ k

−k + 2δ

−k

k − 2δ
k − δ

−k + 2δ
−k + δ

Figure 4. The function Hδ
k .

Remark 4.2. Let us observe that, in the quasilinear case, the corrector would have the form Cε(x, t) =

C
(

x
ε
, t
)
, and then, in the corrector result, one should replace t by a function of x. To do that, it is

necessary to have at least the measurability of C with respect to t, and the proof requires that C
(hence, each derivative of w j) is Lipschitz-continuous in t. This is not the case under our assumptions
on A, since this regularity is essentially true only under very strong and global regularity assumptions
on A, as proved in [1]. This is not adapted to homogenization, and this is why, in this section, we
suppose that A is independent of t.

Theorem 4.3. Let uε be the renormalized solution to (2.6) under the assumptions of Theorem 2.6. Let
k ∈ N be fixed, and let H be a nondecreasing function in C2(R) such that H(0) = 0, and such that H′

has a compact support included in [−k, k]. Then, for any Φ = (Φ1,Φ2, . . . ,ΦN) ∈ (D(Ω))N ,

lim sup
ε→0

‖ ∇H(uε) −CεΦ ‖L2(Ω∗ε) ≤
β

α

∥∥∥∇H(u0) − Φ
∥∥∥

L2(Ω)
,

where α and β are given by (2.11) and (4.1), respectively.

Proof of Theorem 4.1. For a fixed k, for all δ > 0, there exists Φδ ∈ (D(Ω))N such that∥∥∥ Φδ − ∇Tk(u0)
∥∥∥

L2(Ω)
≤ δ. (4.11)

Further, for any δ > 0, let Hδ
k ∈ C2(R) be a smooth approximation of Tk verifying (see Figure 4)

Hδ
k (r) =


r, if |r| ≤ k − 2δ,

k − δ, if r ≥ k,

−k + δ, if r ≤ −k

(4.12)
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with
0 ≤ (Hδ

k )′ ≤ 2 in R. (4.13)

Observe that, by construction, Hδ
k satisfies the assumptions of Theorem 4.3; in particular, its support is

contained in [−k, k].
In view of the regularity of Tk(u0), and by construction of the function Hδ

k , we have∥∥∥∇Hδ
k (u0) − ∇Tk(u0)

∥∥∥
L2(Ω)

= ω2(δ), (4.14)

with lim
δ→0

ω2(δ) = 0. Let us prove that

lim sup
ε→0

∥∥∥∇Hδ
k (uε) − ∇Tk(uε)

∥∥∥
L2(Ω∗ε)

≤
β

α
ω2(δ). (4.15)

By the definitions of Hδ
k and Tk, and using the ellipticity condition (2.11), we have∥∥∥∇Hδ

k (uε) − ∇Tk(uε)
∥∥∥2

L2(Ω∗ε)
=

∫
Ω∗ε

∇uε∇Gδ
k(u

ε) dx =

∫
Ω∗ε

(Gδ
k)
′(uε)|∇uε|2 dx

≤
1
α

∫
Ω∗ε

(Gδ
k)
′Aε∇uε∇uε dx =

1
α

∫
Ω∗ε

Aε∇uε∇Gδ
k(u

ε) dx,
(4.16)

where
Gδ

k =

∫ r

0

(
(Hδ

k )′ − χ
{|s|≤k}

)2
ds.

Since the function G = Gδ
k satisfies the assumptions of Theorem 3.1, from (2.12) and (4.16), and by

using (4.3), we obtain

lim sup
ε→0

∥∥∥∇Hδ
k (uε) − ∇Tk(uε)

∥∥∥2

L2(Ω∗ε)
≤

1
α

∫
Ω

A0∇u0 ∇G(u0) dx

≤
β2

α2

∥∥∥∇Hδ
k (u0) − ∇Tk(u0)

∥∥∥2

L2(Ω)
,

which proves (4.15).
Hence, from Theorem 4.3, (4.11) and (4.15), we have

0 ≤ lim inf
ε→0

∥∥∥∇Tk(uε) −Cε∇Tk(u0)
∥∥∥

L1(Ω∗ε)

≤ lim sup
ε→0

∥∥∥∇Tk(uε) −Cε∇Tk(u0)
∥∥∥

L1(Ω∗ε)

≤ lim sup
ε→0

∥∥∥∇Tk(uε) − ∇Hδ
k (uε)

∥∥∥
L1(Ω∗ε)

+ lim sup
ε→0

∥∥∥∇Hδ
k (uε) −CεΦδ

∥∥∥
L1(Ω∗ε)

+ lim sup
ε→0

∥∥∥CεΦδ −Cε∇Tk(u0)
∥∥∥

L1(Ω∗ε)

≤ c1 lim sup
ε→0

∥∥∥∇Tk(uε) − ∇Hδ
k (uε)

∥∥∥
L2(Ω∗ε)

+ c1 lim sup
ε→0

∥∥∥∇Hδ
k (uε) −CεΦδ

∥∥∥
L2(Ω∗ε)

+ ‖Cε ‖L2(Ω)

∥∥∥∇Tk(u0) − Φδ

∥∥∥
L2(Ω)

≤ c1
β

α
ω2(δ) + c1

β

α

∥∥∥∇Hδ
k (u0) − Φδ

∥∥∥
L2(Ω)

+ c2

∥∥∥∇Tk(u0) − Φδ

∥∥∥
L2(Ω)

≤ cω3(δ),

(4.17)

where, for a fixed k, lim
δ→0

ω3(δ) = 0. This proves (4.10). �
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5. Proof of Theorem 4.3

For any ε > 0, let uε be a renormalized solution of (2.6). Let k ∈ N be fixed, and let H be a
nondecreasing function in C2(R) such that H(0) = 0 and H′ has a compact support included in [−k, k];
it follows that H(uε) = H(Tk(uε)) belongs to L∞(Ω?

ε ) ∩ H1
0(Ω?

ε ).
In the whole proof of Theorem 4.3, to shorten the notations, we set

uεk = Tk(uε) and u0
k = Tk(u0).

We consider the quantity α ‖ ∇H(uε) −CεΦ ‖2L2(Ω∗ε)
, where Φ = (Φ1,Φ2, . . . ,ΦN) ∈ (D(Ω))N .

Since Aε is uniformly coercive,

α ‖ ∇H(uε) −CεΦ ‖
2
L2(Ω∗ε)

≤

∫
Ω∗ε

Aε (∇H(uε) −CεΦ) (∇H(uε) −CεΦ) dx

=

∫
Ω∗ε

Aε∇H(uε)∇H(uε) dx −
∫

Ω∗ε

Aε∇H(uε) (CεΦ) dx

−

∫
Ω∗ε

Aε (CεΦ)∇H(uε) dx +

∫
Ω∗ε

Aε (CεΦ) (CεΦ) dx

� I1
ε − I2

ε − I3
ε + I4

ε .

(5.1)

We will pass to the limit in (5.1) in each term as ε→ 0.
Let us point out that the difficulties in our situation concern the first three terms studied below in

Step 1, Step 2 and Step 3, respectively. In particular, Step 2 requires the most delicate arguments due to
the fact that we are dealing with renormalized solutions. Passing to the limit in the last term is standard.
Step 1. Limit of I1

ε

By defining G(r) =
∫ r

0
H′(s)2ds and recalling that the support of H′ is included in [−k, k], we can

write
I1
ε =

∫
Ω∗ε

Aε∇H(uε)∇H(uε) dx =

∫
Ω∗ε

Aε∇uε∇uε(H′(uε))2 dx

=

∫
Ω∗ε

Aε∇uε∇G(uε) dx =

∫
Ω∗ε

Aε∇uε∇G(uε) dx.

Since G is a nondecreasing element of W1,∞(R) such that G(0) = 0, Theorem 3.1 leads to

lim
ε→0

I1
ε =

∫
Ω

A0∇u0∇G(u0) dx =

∫
Ω

A0∇H(u0)∇H(u0) dx. (5.2)

Step 2. Limit of I2
ε

For the second integral I2
ε on the right-hand side of (5.1), by the definition (4.9) of Cε, we have

I2
ε =

∫
Ω?
ε

Aε∇H(uε) (CεΦ) dx =

N∑
i=1

∫
Ω?
ε

Aε∇H(uε)
(
Φi∇ŵε

i
)

dx

=

N∑
i=1

( ∫
Ω?
ε

Aε∇H(uε)∇
(
Φiŵε

i
)

dx −
∫

Ω?
ε

Aε∇H(uε)∇Φiŵε
i dx

)
.

(5.3)
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Since H′ belongs to C1(R) and has a compact support, we have ∇H(uε) = H′(uε)∇uε almost
everywhere in Ω?

ε . On the other hand, the function ŵε
i given by (4.6) belongs to L∞(Ω?

ε ) ∩ H1(Ω?
ε ), so

that Φiŵε
i ∈ L∞(Ω?

ε ) ∩ H1
0(Ω?

ε ). Then, choosing Φiŵε
i as a test function and ψ = H′ in (2.21), we get,

for 1 ≤ i ≤ N,∫
Ω?
ε

H′(uε)Aε(x)∇uε∇(Φiŵε
i ) dx =

∫
Ω?
ε

f H′(uε)Φiŵε
i dx +

∫
Γε1

gεH′(uε)Φiŵε
i dσx

−

∫
Γε1

εγτε(x)H′(uε)h(uε)Φiŵε
i dσx −

∫
Ω?
ε

H′′(uε)Aε(x)∇uε∇uεΦiŵε
i dx. (5.4)

Thus, to study the behavior of I2
ε , it remains to determine the limit of

∫
Ω?
ε

Aε∇H(uε)∇Φiŵε
i dx and the

limit of the right hand-side of (5.4) as ε goes to zero.
By the properties of the unfolding operator, Remark 2.5, the convergences in (2.29) and definition

(4.6), we compute

lim
ε→0

∫
Ω?
ε

Aε∇H(uε)∇Φiŵε
i dx

= lim
ε→0

∫
Ω?
ε

H′(uε)Aε∇Tk(uε)∇Φiŵε
i dx

= lim
ε→0

1
|Y |

∫
Ω×Y∗

H′(T ∗ε (uε))T ∗ε (Aε)T ∗ε (∇Tk(uε))T ∗ε (∇Φi)T ∗ε
(
ŵε

i

)
dx dy

= lim
ε→0

1
|Y |

∫
Ω×Y∗

H′(T ∗ε (uε))A(y)T ∗ε (∇Tk(uε))T ∗ε (∇Φi) εŵi(y) dx dy

= lim
ε→0

1
|Y |

∫
Ω×Y∗

H′(T ∗ε (uε))A(y)T ∗ε (∇Tk(uε))T ∗ε (∇Φi) (xi − εχ̂i(y)) dx dy

=
1
|Y |

∫
Ω×Y∗

H′(u0)A(y)
(
∇Tk(u0) + ∇yûk

)
∇Φixi dx dy.

(5.5)

We now study the behavior of the terms on the right-hand side of (5.4) when ε goes to zero. In view of
(4.6) and the properties of H′, and applying Corollary 2.7, we have

lim
ε→0

∫
Ω?
ε

f H′(uε)Φiŵε
i dx =

|Y∗|
|Y |

∫
Ω

f H′(u0)Φixi dx. (5.6)

The boundary unfolding operator properties and Remark 2.5 give∫
Γε1

gεH′(uε)Φiŵε
i dσx = ε

∫
Γε1

g
( x
ε

)
H′(uε)Φiŵε

i dσx

=
1
|Y |

∫
Ω×∂T

g(y)T b
ε

(
H′(uε)

)
T b
ε (Φi)T b

ε

(
ŵε

i
)

dx dσy

=
1
|Y |

∫
Ω×∂T

g(y)H′
(
T b
ε (uε)

)
T b
ε (Φi)

(
xi − ε̂ξ(y)

)
dx dσy.

Next, due to (3.11) and the properties of the boundary unfolding operator, we obtain

lim
ε→0

∫
Γε1

gεH′(uε)Φi(x)ŵε
i dσx =

1
|Y |

∫
Ω×∂T

g(y)H′(u0)Φixi dx dσy.
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Since H′(u0), Φi and x 7→ xi are independent of y, we get, at last,

lim
ε→0

∫
Γε1

gεH′(uε)Φi(x)ŵε
i dσx =

|∂T |
|Y |
M∂T (g)

∫
Ω

H′(u0)Φi(x)xi dx. (5.7)

Using similar arguments, we get

lim
ε→0

∫
Γε1

εγτε(x)H′(uε)h(uε)Φiŵε
i dσx =

J(γ)
|Y |
M∂T (τ)

∫
Ω

H′(u0)h(u0)Φixi dx, (5.8)

where J(γ) is given by (2.27).
We now turn to the last term of the right-hand side of (5.4). Again, the unfolding operator and

Remark 2.5 allow us to write∫
Ω?
ε

H′′(uε)Aε(x)∇uε∇uεΦiŵε
i dx

=
1
|Y |

∫
Ω×Y∗

H′′(T ∗ε (uε))T ∗ε (Aε)T ∗ε (∇Tk(uε))T ∗ε (∇Tk(uε))T ∗ε (Φi)T ∗ε
(
ŵε

i

)
dx dy

=
1
|Y |

∫
Ω×Y∗

H′′(T ∗ε (uε))A(y)T ∗ε (∇Tk(uε))T ∗ε (∇Tk(uε))T ∗ε (Φi) (xi − εχ̂i(y)) dx dy.

(5.9)

From Theorem 3.3, we have

T ∗ε (∇Tk(uε)) −→ ∇Tk(u0) + ∇yûk strongly in L2(Ω × Y∗) as ε→ 0,

and since H′′ is a continuous and bounded function, convergence (2.28) implies that

H′′(T ∗ε (uε)) −→ H′′(u0) in L∞(Ω × Y∗) weak star as ε→ 0.

By the properties of the unfolding operator, the function T ∗ε (Φi) goes to Φ in L∞(Ω × Y∗) weak star as
ε→ 0. It follows that

lim
ε→0

∫
Ω?
ε

H′′(uε)Aε(x)∇uε∇uεΦiŵε
i dx

=
1
|Y |

∫
Ω×Y∗

H′′(u0)A(y)
(
∇Tk(u0) + ∇yûk

)(
∇Tk(u0) + ∇yûk

)
Φ(x)xi dx dy.

(5.10)

Gathering (5.3), (5.4), (5.5), (5.6), (5.7), (5.8) and (5.10), we obtain

lim
ε→0

I2
ε =

N∑
i=1

(
|Y∗|
|Y |

∫
Ω

f H′(u0)Φixi dx

+
|∂T |
|Y |
M∂T (g)

∫
Ω

H′(u0)Φi(x)xi dx −
1
|Y |

J(γ)M∂T (τ)
∫

Ω

H′(u0)h(u0)Φixi dx

−
1
|Y |

∫
Ω×Y∗

H′′(u0)A(y)
(
∇Tk(u0) + ∇yûk

)(
∇Tk(u0) + ∇yûk

)
Φ(x)xi dx dy

−
1
|Y |

∫
Ω×Y∗

H′(u0)A(y)
(
∇Tk(u0) + ∇yûk

)
∇Φixi dx dy

)
.

(5.11)
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For 1 ≤ i ≤ N, using η0 = Φixi and Ψ = ûkΦixi as test functions in (2.31) with S = H′ and S 1 = H′′,
and recalling that supp(H′) ⊂ [−k, k], we get∫

Ω×Y∗
H′′(u0)A(y)

(
∇Tk(u0) + ∇yûk

)(
∇Tk(u0) + ∇yûk

)
Φ(x)xi dx dy

+

∫
Ω×Y∗

H′(u0)A(y)
(
∇Tk(u0) + ∇yûk

)
∇(Φixi) dx dy + J(γ)M∂T (τ)

∫
Ω

H′(u0)h(u0)Φixi dx

= |Y∗|
∫

Ω

f H′(u0)Φixi dx + |∂T |M∂T (g)
∫

Ω

H′(u0)Φi(x)xi dx.

Because ∇(Φixi) = ∇Φixi + Φiei, using (2.43) written for Tk(u0), we obtain

lim
ε→0

I2
ε =

N∑
i=1

(
1
|Y |

∫
Ω×Y∗

H′(u0)A(y)
(
∇Tk(u0) + ∇yûk

)
eiΦi dx dy

)

=

N∑
i=1

(∫
Ω

H′(u0)A0∇Tk(u0)eiΦi dx
)

=

∫
Ω

H′(u0)A0∇Tk(u0)Φ dx =

∫
Ω

A0∇H(u0)Φ dx.

(5.12)

Step 3. Limit of I3
ε and I4

ε

From (4.8), we have

I3
ε =

n∑
i=1

∫
Ω∗ε

Aε∇wε
λΦi∇H(uε) dx = −

n∑
i=1

∫
Ω∗ε

Aε∇wε
λH(uε)∇Φi dx.

(5.13)

Using convergence (2.34) given in Corollary 2.7, and (4.7), we can pass to the limit in (5.13). Since,
here, A0 is constant, we obtain

lim
ε→0

I3
ε = −

∫
Ω

A0 H(u0)∇Φ dx =

∫
Ω

A0 Φ∇H(u0) dx. (5.14)

On the other hand, it has been proved in [10] that

lim
ε→0

I4
ε =

∫
Ω

A0ΦΦ dx, (5.15)

which ends this step.

Step 4. Conclusion

Collecting (5.2), (5.12), (5.14) and (5.15), we have

lim
ε→0

(
I1
ε − I2

ε − I3
ε + I4

ε

)
=

∫
Ω

A0∇H(u0)∇H(u0) dx −
∫

Ω

A0∇H(u0)Φ dx

−

∫
Ω

A0 Φ∇H(u0) dx +

∫
Ω

A0ΦΦ dx

=

∫
Ω

A0
(
∇H(u0) − Φ

) (
∇H(u0) − Φ

)
dx

=

∫
Ω

A0
(
∇H(u0) − Φ

) (
∇H(u0) − Φ

)
dx.

(5.16)
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From (5.1), the ellipticity of the matrix A (see (2.11)) and (4.3), we obtain

α lim sup
ε→0

‖ ∇H(uε) −CεΦ ‖
2
L2(Ω) ≤ lim sup

ε→0

(
I1
ε − I2

ε − I3
ε + I4

ε

)
≤
β2

α

∫
Ω

∣∣∣∇H(u0) − Φ
∣∣∣2 dx,

(5.17)

which concludes the proof. �
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