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Abstract: In this paper we study infinite isoperimetric clusters. An infinite cluster E in Rd is a
sequence of disjoint measurable sets Ek ⊂ R

d, called regions of the cluster, k = 1, 2, 3, . . . A natural
question is the existence of a cluster E with given volumes ak ≥ 0 of the regions Ek, having finite
perimeter P(E), which is minimal among all the clusters with regions having the same volumes. We
prove that such a cluster exists in the planar case d = 2, for any choice of the areas ak with

∑ √
ak < ∞.

We also show the existence of a bounded minimizer with the property P(E) = H1(∂̃E), where ∂̃E
denotes the measure theoretic boundary of the cluster. Finally, we provide several examples of infinite
isoperimetric clusters for anisotropic and fractional perimeters.
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1. Introduction

A finite cluster E is a sequence E = (E1, . . . Ek, . . . , EN) of Lebesgue measurable sets in Rd, such
that |Ek ∩ E j| = 0 for k , j, where | · | denotes the Lebesgue measure (usually called volume). The sets
E j are called regions of the cluster E, and E0 := Rd \

⋃N
k=1 Ek is called the external region. We denote

the sequence of volumes of the regions of the cluster E as

m(E) := (|E1|, |E2|, . . . , |EN |) (1.1)

and call the perimeter of the cluster the quantity

P(E) :=
1
2

P(E0) +
N∑

k=1

P(Ek)

 , (1.2)
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Figure 1. The Apollonian gasket; on the left, is a cluster with a minimal fractional perimeter.
On the right is a similar construction with squares: this is a minimal cluster with respect to
the perimeter induced by the Manhattan distance.

where P(A) stands for the Caccioppoli perimeter of the set A. A cluster E is called minimal, or
isoperimetric, if

P(E) = min {P(F) : m(F) = m(E)} .

In this paper we consider infinite clusters, i.e., infinite sequences E = (Ek)k≥1 of essentially pairwise
disjoint regions:

∣∣∣E j ∩ Ei

∣∣∣ = 0 for i , j (this can be interpreted as a model for a soap foam). We define
E0 := Rd \

⋃∞
k=1 Ek, i.e., the external region of the cluster E. The perimeter of an infinite cluster E is

defined by Eq (1.2) with N := +∞. Note that a finite cluster with N regions can also be considered a
particular case of an infinite cluster, for example by posing Ek := ∅ for k > N. Clusters with infinitely
many regions of equal area were considered in [13], where it has been shown that the honeycomb
cluster is the unique minimizer with respect to compact perturbations. Infinite clusters have been
considered also in [4, 14, 16], dealing with Apollonian packing, in [18] where variational curvatures
are prescribed rather than volumes, and in [24], where the existence of generalized minimizers for both
finite and infinite isoperimetric clusters has been proven in the general setting of homogeneous metric
measure spaces.

Note that very few explicit examples of minimal clusters are known [11,15,20,26,27], and only with
a finite (and quite small) number of regions. An example of an infinite minimal cluster, described in
details in Example 4.1, is the Apollonian packing of a circle shown in Figure 1 (see [16]). In fact, this
cluster is composed of isoperimetric regions and hence should trivially have minimal perimeter among
clusters with regions of the same areas. However, it turns out that this cluster has an infinite perimeter;
hence all clusters with the same prescribed areas have an infinite perimeter too. Nevertheless, quite
curiously, Apollonian packings of a circle give nontrivial examples of infinite isoperimetric clusters
for fractional perimeters [5, 7, 8], as shown in Example 4.1. An even simpler example of an infinite
isoperimetric planar cluster is given in Example 4.2 (see Figure 1) where the Caccioppoli perimeter is
replaced by an anisotropic perimeter functional. For general results about finite clusters minimizing
anisotropic perimeters, we refer to [1, 6, 9, 17, 22, 23].

Our main result, Theorem 3.1, states that if d = 2 (the planar case), given any sequence of positive
numbers a = (a1, a2, . . . , ak, . . . ) such that

∑∞
k=0
√

ak < +∞, there exists a minimal cluster E in R2

with m(E) = a and with finite perimeter. The assumption on a in fact is necessary to have at least a
competitor cluster with a finite perimeter. The proof relies on two facts that are only available in the

Networks and Heterogeneous Media Volume 18, Issue 3, 1226–1235.



1228

planar case: the isodiametric inequality for connected sets and the semicontinuity of the length (i.e.,
the one-dimensional Hausdorff measure) of connected sets (Goła̧b theorem).

In dimension d > 2, very few results are currently known. Existence can be obtained only in a
generalized sense, as shown in [24], and we cannot even exclude that ∂̃E = Rd.

2. Notation and preliminaries

2.1. Perimeters and boundaries

For a set E ⊂ Rd with finite perimeter one can define the reduced boundary ∂∗E as the set of
boundary points x where the outer normal vector νE(x) can be defined. One has D1E = νE · H

d−1⌞∂∗E
where 1E is the characteristic function of E and D1E is its distributional derivative (the latter is a vector
valued measure and its total variation is denoted by |D1E |). We use a version of the measure theoretic
boundary of a measurable set E defined by

∂̃E := {x ∈ Rd : 0 <
∣∣∣E ∩ Bρ(x)

∣∣∣ < ∣∣∣Bρ(x)
∣∣∣ for all ρ > 0}.

The respective notions for clusters can be defined by setting

∂∗E :=
+∞⋃
k=1

k−1⋃
j=0

∂∗Ek ∩ ∂
∗E j,

∂̃E :=
{
x ∈ Rd : 0 <

∣∣∣Ek ∩ Bρ(x)
∣∣∣ < ∣∣∣Bρ(x)

∣∣∣
for all ρ > 0 and some k = k(ρ, x) ∈ N

}
.

Clearly ∂∗E ⊆ ∂̃E because given an x ∈ ∂∗E, there exists a k such that x ∈ ∂∗Ek, while ∂̃Ek ⊆ ∂̃E for all
k. Also it is easy to check that ∂̃E is closed (and in fact is the closure of the union of all the measure
theoretic boundaries ∂̃Ek). Moreover the following result holds true.

Proposition 2.1. If E is a cluster with finite perimeter, then P(E) = Hd−1(∂∗E).

Proof. Consider the sets Xn, defined for 1 ≤ n ≤ ∞ by

Xn :=
{
x ∈ Rd : # {k ∈ N : x ∈ ∂∗Ek} = n

}
(notice that k = 0 ∈ N, the external region, is included in the count). It is clear that Xn = ∅ for all n ≥ 3
because in every point of ∂∗Ek there is an approximate tangent hyperplane which can only be shared
by two regions.

We claim that Hd−1(X1) = 0. To this aim suppose by contradiction that Hd−1(X1) > 0. Then there
exists a j ∈ N such that ∣∣∣D1E j

∣∣∣ (X1) = Hd−1(X1 ∩ ∂
∗E j) > 0,

because X1 is contained in the countable union
(
∪∞j=0X1

)
∩ ∂∗E j. Hence there is a subset A ⊂ X1 ∩ ∂

∗E j

such that D1E j(A) , 0. Notice that
∑∞

k=0 1Ek = 1, hence also
∑

k D1Ek = 0 in the sense of distributions.
Moreover, if P(E) < +∞ the above convergence holds also in the sense of vector measures (in total
variation), hence

∑
k D1Ek(A) = 0. Since D1E j(A) , 0, there must exist at least another index k , j

such that D1Ek(A) , 0, and thereforeHd−1(A ∩ ∂∗Ek) > 0. But then

∅ , A ∩ ∂∗Ek ⊂ X1 ∩ ∂
∗E j ∩ ∂

∗Ek, j , k,
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contrary to the definition of X1, which proves the claim. In conclusion, the union of all the reduced
boundaries ∂∗Ek is contained in X2 up to anHd−1-negligible set. Hence

P(E) =
1
2

+∞∑
k=0

P(Ek) =
1
2

+∞∑
k=0

Hd−1(∂∗Ek ∩ X2) =

=
1
2

+∞∑
k=0

∑
j,k

Hd−1(∂∗Ek ∩ ∂
∗E j) =

+∞∑
k=0

+∞∑
j=k+1

Hd−1(∂∗Ek ∩ ∂
∗E j) =

= Hd−1

 +∞⊔
k=0

+∞⊔
j=k+1

∂∗Ek ∩ ∂
∗E j

 = Hd−1(∂∗E)

as claimed. □

2.2. Auxiliary results

In the following theorem we collect some known existence and regularity results for finite minimal
clusters from [19, 21].

Theorem 2.2 (existence and regularity of planar N-clusters). Let a1, a2, . . . , aN be given positive real
numbers. Then there exists a minimal N-cluster E = (E1, . . . EN) in Rd, with |Ek| = ak for k = 1, . . . ,N.
If E is a minimal N-cluster and d = 2, then ∂̃E is a pathwise connected set composed by circular arcs
or line segments joining in triples at a finite number of vertices. Moreover in this case P(E) = H1(∂̃E).

Proposition 2.3 (cluster truncation). Let E = (E1, . . . , Ek, . . . ) be a (finite or infinite) cluster and let
TNE be the N-cluster (E1, . . . , EN). Then

P(TNE) ≤ P(E).

Proof. For measurable sets E, F the inequality

P(E ∪ F) + P(E ∩ F) ≤ P(E) + P(F)

holds, hence if |E ∩ F| = 0, one has

P(E) = P((E ∪ F) ∩ (Rd \ F)) ≤ P(E ∪ F) + P(F).

It follows that

2P(TNE) =
n∑

k=1

P(Ek) + P

 n⋃
k=1

Ek


≤

n∑
k=1

P(Ek) + P

 ∞⋃
k=1

Ek

 + P

 ∞⋃
k=n+1

Ek


≤

n∑
k=1

P(Ek) + P

 ∞⋃
k=1

Ek

 + ∞∑
k=n+1

P(Ek)

=

∞∑
k=1

P(Ek) + P

 ∞⋃
k=1

Ek

 = 2P(E)

as claimed. □
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Lemma 2.4. Let E be a measurable set and Ω be an open connected set. If ∂̃E ∩ Ω = ∅, then either
|Ω ∩ E| = 0 or |Ω \ E| = 0.

Proof. Notice that Ω \ ∂̃E = A0 ∪ A1, where

A0 :=
{
x ∈ Ω :

∣∣∣Bρ(x) ∩ E
∣∣∣ = 0 for some ρ > 0

}
,

A1 :=
{
x ∈ Ω :

∣∣∣Bρ(x) \ E
∣∣∣ = 0 for some ρ > 0

}
.

It is clear that A0 and A1 are open disjoint sets, and if ∂̃E ∩ Ω = ∅, then their union is the whole set Ω.
If Ω is connected, it implies that either A0 or A1 is equal to Ω which means that either |Ω ∩ E| = 0 or
|Ω \ E| = 0. □

3. Main result

The statement below provides existence of infinite planar isoperimetric clusters.

Theorem 3.1 (existence). Let a = (a1, . . . , ak, . . . ) be a sequence of nonnegative numbers such that∑∞
k=1
√

ak < ∞. Then there exists a minimal cluster E in R2, with m(E) = a satisfying additionally

∞⋃
k=1

Ek is bounded, (3.1)

∂̃E is pathwise connected, (3.2)
H1(∂̃E \ ∂∗E) = 0. (3.3)

Remark 3.2. In view of Eq (3.3) and Proposition 2.1, for the minimal cluster provided by Theorem 3.1,
one has

P(E) = H1(∂̃E) = H1(∂∗E). (3.4)

Of course there exists a set with finite perimeter E such that P(E) < H1(∂̃E), so that Eq (3.4) is false
for general clusters that are not minimal.

It is interesting to note that, as shown in Example 4.3, there exists a finite cluster E satisfying Eq
(3.4), for which one does not have P(Ek) = H1(∂̃Ek) for all k. It would be interesting to see whether
these equalities hold for minimal clusters.

Proof. Let p̄ := 2
√
π

∞∑
k=1

√
ak < +∞, and

p := inf{P(E) : E cluster in R2 with |Ek| = ak, k = 1, 2, . . . , n, . . . },
pn := inf{P(E) : E n-cluster in R2 with |Ek| = ak, k = 1, . . . , n},

so that a cluster E with measures m(E) = a is minimal, if and only if P(E) = p, while an n-cluster E
with measures |Ek| = ak for k = 1, . . . , n is minimal, if and only if P(E) = pn.

If E is a competitor for p, then TnE is a competitor for pn and, by Proposition 2.3, one has P(TnE) ≤
P(E). Hence pn ≤ p. Moreover one can build a competitor for p which is composed by circular disjoint

regions (B1, . . . , B j, . . . ), where B j are disjoint balls of radii
√

a j

π
, to find that p ≤ p̄ < +∞.

Networks and Heterogeneous Media Volume 18, Issue 3, 1226–1235.



1231

For each n ≥ 1 consider a minimal n-cluster Fn with |Fn
k | = ak for k ≤ n, and Fn

k := ∅ for k > n,
so that P(Fn) = pn. By the regularity properties of minimal clusters (Theorem 2.2), the boundary
∂̃Fn is connected and composed by a finite union of circular arcs, hence diam ∂̃Fn ≤ pn ≤ p̄. Up to
translations, we shall suppose that all the regions Fn

k of all the clusters Fn are contained in a ball of
radius p̄. In fact,

p̄ ≥ p ≥ sup
n

pn = sup
n

P(Fn) ≥ sup
n

diam ∂̃Fn.

Up to a subsequence we can hence assume that the first regions Fn
1 converge to a set E1 in the

sense that their characteristic functions 1Fn
1

converge to the characteristic function 1E1 in the Lebesgue
space L1(R2) as n → ∞ (we call this convergence L1 convergence of sets). Analogously, up to a
sub-subsequence also the second regions Fn

2 converge in L1 sense to a set E2. In this way we define
inductively the sets Ek for all k ≥ 1. Then there exists a diagonal subsequence with indices n j such that
for all k one has Fn j

k → Ek in L1 for all k ≥ 1 as j→ +∞.
Consider the cluster E with the regions Ek defined above. By continuity we have m(E) = a because

Fn j

k → Ek in L1 as j→ ∞ and
∣∣∣Fn j

k

∣∣∣ = ak for all j. We claim that the union of all the regions of Fn j also
converges to the union of all the regions of E. For all ε > 0 take N such that

∑∞
k=N+1 ak ≤ ε and notice

that  ∞⋃
k=1

Ek

△  ∞⋃
k=1

Fn j

k

 ⊆ N⋃
k=1

(
Ek△Fn j

k

)
∪

∞⋃
k=N+1

Ek ∪

∞⋃
k=N+1

Fn j

k .

Hence

lim sup
j

∣∣∣∣∣∣∣
∞⋃

k=1

Ek△

∞⋃
k=1

Fn j

k

∣∣∣∣∣∣∣ ≤ lim
j

N∑
k=1

∣∣∣Ek△Fn j

k

∣∣∣ + 2ε = 2ε.

Letting ε→ 0 we obtain the claim.
By the lower semicontinuity of the perimeter, we have

P(Ek) ≤ lim inf
j→+∞

P(Fn j

k ) and P

 +∞⋃
k=1

Ek

 ≤ lim inf
j→+∞

P

 +∞⋃
k=1

Fn j

k

 ,
and hence P(E) ≤ lim inf j P(Fn j) ≤ p, proving that E is actually a minimal cluster. Since all the regions
Fn

k are equibounded, we obtain Eq (3.1).
We are going to prove Eq (3.3). By Theorem 2.2 the minimal n-cluster Fn has a measure theoretic

boundary ∂̃Fn which is a compact and connected set such that P(Fn) = H1(∂̃Fn). Up to a subsequence,
the compact sets ∂̃Fn j , being uniformly bounded, converge with respect to the Hausdorff distance, to a
compact set K. Without loss of generality suppose n j is labeling this new subsequence.

We claim that ∂̃E ⊆ K. In fact for any given x ∈ ∂̃E and any ρ > 0 there exists k = k(ρ) such that
Bρ(x)∩Ek and Bρ(x)\Ek both have positive Lebesgue measure. Since

∣∣∣Bρ(x) ∩ Fn j

k

∣∣∣→ ∣∣∣Bρ(x) ∩ Ek

∣∣∣ > 0
and
∣∣∣Bρ(x) \ Fn j

k

∣∣∣ → ∣∣∣Bρ(x) \ Ek

∣∣∣ > 0 for j = j(ρ) sufficiently large by Lemma 2.4, there is a point
x j

k ∈ Bρ(x) ∩ ∂̃Fn j

k . As ρ → 0 the sequence x j
k converges to x, and since ∂̃Fn j

k ⊆ ∂̃F
n j we conclude that

x ∈ K.
The sets ∂̃Fn are connected, and therefore, by the classical Goła̧b theorem on semicontinuity of

one-dimensional Hausdorff measure over sequences of connected sets (see [3, Theorem 4.4.17] or [25,
theorem 3.3] for its most general statement and a complete proof), one has

H1(K) ≤ lim inf
n
H1(∂̃Fn)
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and K is itself connected. Summing up and using Proposition 2.1, we get

P(E) = H1(∂∗E) ≤ H1(∂̃E) ≤ H1(K)
≤ lim inf

n
P(Fn) ≤ lim sup

n
pn ≤ p ≤ P(E), (3.5)

henceH1(∂∗E) = H1(∂̃E) = H1(K), pn → p, and Eq (3.3) follows.
Finally, to prove that ∂̃E is connected, it is enough to show ∂̃E = K. We already know that ∂̃E ⊆ K

so we suppose by contradiction that there exists an x ∈ K \ ∂̃E. Take any y ∈ K. The set K is arcwise
connected by rectifiable arcs, since it is a compact connected set of finite one-dimensional Hausdorff
measure (see e.g., [10, lemma 3.11] or [3, theorem 4.4.7]), in other words, there exists an injective
continuous curve γ : [0, 1] → K with γ(0) = x and γ(1) = y. Since ∂̃E is closed in K there is a small
ε > 0 such that γ([0, ε]) ⊂ K \ ∂̃E, and hence H1(K \ ∂̃E) > 0 contrary to H1(K) = H1(∂̃E). This
contradiction shows the last claim and hence concludes the proof. □

4. Some examples

We collect here some interesting examples of infinite planar clusters.

Example 4.1 (Apollonian packing). A cluster E, as depicted in Figure 1, can be constructed so that
each region Ek = Brk(xk), k , 0, is a ball contained in the ball B := B1(0). The balls can be chosen to
be pairwise disjoint and such that

∣∣∣B \⋃∞k=1 Ek

∣∣∣ = 0 (see [16]).
Clearly such a cluster must be minimal because each region Ek has the minimum possible perimeter

among sets with the given area and the same is true for the complement of the exterior region E0 which
is their union. However, one has P(E) = +∞. In fact, H1(∂∗E) = 0 since ∂∗Ek ∩ ∂

∗E j is either empty
or a singleton for all k , j, and by Proposition 2.1 if P(E) < +∞ one would have P(E) = H1(∂∗E) = 0,
while on the other hand P(E) > P(E0)/2 > 0, a contradiction.

Note that this is a quite pathological example of an infinite cluster for whichH1(∂∗E) = 0 but both
P(E) = +∞ and H1(∂̃E) = +∞. In fact, the measure theoretic boundary ∂̃E of this cluster is the
residual set, i.e. the set of zero measure which remains when the balls Ek are removed from the large
ball B:

∂̃E = B \
+∞⋃
k=1

Brk(xk). (4.1)

This set has Hausdorff dimension d > 1 (see [14]) and henceH1(∂̃E) = +∞.
However we can consider the fractional (nonlocal) perimeter Ps defined by

Ps(E) :=
∫

E

∫
R2\E

1
|x − y|2+s dx dy

which induces the respective nonlocal perimeter Ps(E) of the cluster E by means of definition (1.2)
with Ps in place of P. If rk is the radius of the k-th disk of the cluster it turns out (see [4]) that the
infimum of all α, such that the series

∑
k rαk converges, is equal to d, the Hausdorff dimension of ∂̃E.

Since d ∈ (1, 2) for all s < 2 − d, we have ∑
k

r2−s
k < +∞,

Networks and Heterogeneous Media Volume 18, Issue 3, 1226–1235.
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E1

E2

E3E3 E3

Figure 2. An example of a cluster E with finite perimeter such that P(E) = H1(∂̃E), but
P(E3) < H1(∂̃E3).

and since Ps(Br) = C · r2−s (with 0 < C < +∞), we obtain Ps(E) < +∞ for such s. It is well known
(see [12]) that the solution to the fractional isoperimetric problem is given by balls, hence E provides
an example of an infinite minimal cluster with respect to the fractional perimeter Ps.
Example 4.2 (Anisotropic isoperimetric packing). We can find a similar example, if we consider an
anisotropic perimeter such that the isoperimetric problem has the square (instead of the circle) as a
solution. If ϕ is any norm on R2, one can define the perimeter Pϕ which is the relaxation of the
functional Pϕ defined on regular sets E ⊂ R2 by the formula

Pϕ(E) :=
∫
∂∗E
ϕ(νE(x)) dH1(x),

where νE(x) is the exterior unit normal vector to the reduced boundary ∂∗E in x. If ϕ(x, y) = |x|+ |y| (the
Manhattan norm) it is well known that the Pϕ-minimal set with prescribed area (i.e., the Wulff shape) is
a square with sides parallel to the coordinate axes (which is the ball for the dual norm). It is then easy
to construct an infinite cluster E = (E1, . . . , Ek . . . ), where each Ek is a square and also the union of all
such squares is a square, see Figure 1. By iterating such a construction it is not difficult to understand
that given any sequence ak, k = 1, 2, . . . of numbers such that their sum is equal to 1 and each number
is a power of 1

4 , it is possible to find a cluster E with m(E) = a such that each Ek is a square and the
union

⋃
k Ek is the unit square.

Example 4.3 (Cantor circles). See Figure 2 and [2, example 2 pp. 59]. Take a rectangle R divided in
two by a segment S on its axis. Let C be a Cantor set with positive measure constructed on S . Consider
the set E3 which is the union of the balls with diameter on the intervals composing the complementary
set S \ C. Let E1 and E2 be the two connected components of R \ E3. It turns out that the 3-cluster
E = (E1, E2, E3) has finite perimeter and the perimeter of E is represented by the Hausdorff measure
of the boundary

P(E) = H1(∂̃E).

However the same is not true for each region. In fact the boundary ∂̃E3 of the region E3 includes C and
hence

P(E3) < H1(∂̃E3).
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