Research article

Isoperimetric planar clusters with infinitely many regions

Matteo Novaga ${ }^{1, *,}$, Emanuele Paolini ${ }^{1}$, Eugene Stepanov ${ }^{2,3,4}$ and Vincenzo Maria Tortorelli ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Pisa, Largo Bruno Pontecorvo 5, 56127, Pisa, Italy
${ }^{2}$ Scuola Normale Superiore, Piazza dei Cavalieri 6, Pisa, Italy
${ }^{3}$ St. Petersburg Branch of the Steklov Mathematical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
${ }^{4}$ Faculty of Mathematics, Higher School of Economics, Moscow, Russia

* Correspondence: Email: matteo.novaga@unipi.it.

Abstract

In this paper we study infinite isoperimetric clusters. An infinite cluster \mathbf{E} in \mathbb{R}^{d} is a sequence of disjoint measurable sets $E_{k} \subset \mathbb{R}^{d}$, called regions of the cluster, $k=1,2,3, \ldots$ A natural question is the existence of a cluster \mathbf{E} with given volumes $a_{k} \geq 0$ of the regions E_{k}, having finite perimeter $P(\mathbf{E})$, which is minimal among all the clusters with regions having the same volumes. We prove that such a cluster exists in the planar case $d=2$, for any choice of the areas a_{k} with $\sum \sqrt{a}_{k}<\infty$. We also show the existence of a bounded minimizer with the property $P(\mathbf{E})=\mathcal{H}^{1}(\tilde{\partial} \mathbf{E})$, where $\tilde{\partial} \mathbf{E}$ denotes the measure theoretic boundary of the cluster. Finally, we provide several examples of infinite isoperimetric clusters for anisotropic and fractional perimeters.

Keywords: isoperimetric clusters; isoperimetric sets; regularity

1. Introduction

A finite cluster \mathbf{E} is a sequence $\mathbf{E}=\left(E_{1}, \ldots E_{k}, \ldots, E_{N}\right)$ of Lebesgue measurable sets in \mathbb{R}^{d}, such that $\left|E_{k} \cap E_{j}\right|=0$ for $k \neq j$, where $|\cdot|$ denotes the Lebesgue measure (usually called volume). The sets E_{j} are called regions of the cluster \mathbf{E}, and $E_{0}:=\mathbb{R}^{d} \backslash \bigcup_{k=1}^{N} E_{k}$ is called the external region. We denote the sequence of volumes of the regions of the cluster \mathbf{E} as

$$
\begin{equation*}
\mathbf{m}(\mathbf{E}):=\left(\left|E_{1}\right|,\left|E_{2}\right|, \ldots,\left|E_{N}\right|\right) \tag{1.1}
\end{equation*}
$$

and call the perimeter of the cluster the quantity

$$
\begin{equation*}
P(\mathbf{E}):=\frac{1}{2}\left[P\left(E_{0}\right)+\sum_{k=1}^{N} P\left(E_{k}\right)\right], \tag{1.2}
\end{equation*}
$$

Figure 1. The Apollonian gasket; on the left, is a cluster with a minimal fractional perimeter. On the right is a similar construction with squares: this is a minimal cluster with respect to the perimeter induced by the Manhattan distance.
where $P(A)$ stands for the Caccioppoli perimeter of the set A. A cluster \mathbf{E} is called minimal, or isoperimetric, if

$$
P(\mathbf{E})=\min \{P(\mathbf{F}): \mathbf{m}(\mathbf{F})=\mathbf{m}(\mathbf{E})\} .
$$

In this paper we consider infinite clusters, i.e., infinite sequences $\mathbf{E}=\left(E_{k}\right)_{k \geq 1}$ of essentially pairwise disjoint regions: $\left|E_{j} \cap E_{i}\right|=0$ for $i \neq j$ (this can be interpreted as a model for a soap foam). We define $E_{0}:=\mathbb{R}^{d} \backslash \bigcup_{k=1}^{\infty} E_{k}$, i.e., the external region of the cluster \mathbf{E}. The perimeter of an infinite cluster \mathbf{E} is defined by $\mathrm{Eq}(1.2)$ with $N:=+\infty$. Note that a finite cluster with N regions can also be considered a particular case of an infinite cluster, for example by posing $E_{k}:=\emptyset$ for $k>N$. Clusters with infinitely many regions of equal area were considered in [13], where it has been shown that the honeycomb cluster is the unique minimizer with respect to compact perturbations. Infinite clusters have been considered also in [4, 14, 16], dealing with Apollonian packing, in [18] where variational curvatures are prescribed rather than volumes, and in [24], where the existence of generalized minimizers for both finite and infinite isoperimetric clusters has been proven in the general setting of homogeneous metric measure spaces.

Note that very few explicit examples of minimal clusters are known [11, 15,20,26,27], and only with a finite (and quite small) number of regions. An example of an infinite minimal cluster, described in details in Example 4.1, is the Apollonian packing of a circle shown in Figure 1 (see [16]). In fact, this cluster is composed of isoperimetric regions and hence should trivially have minimal perimeter among clusters with regions of the same areas. However, it turns out that this cluster has an infinite perimeter; hence all clusters with the same prescribed areas have an infinite perimeter too. Nevertheless, quite curiously, Apollonian packings of a circle give nontrivial examples of infinite isoperimetric clusters for fractional perimeters [5, 7, 8], as shown in Example 4.1. An even simpler example of an infinite isoperimetric planar cluster is given in Example 4.2 (see Figure 1) where the Caccioppoli perimeter is replaced by an anisotropic perimeter functional. For general results about finite clusters minimizing anisotropic perimeters, we refer to [1,6,9, 17, 22,23].

Our main result, Theorem 3.1, states that if $d=2$ (the planar case), given any sequence of positive numbers $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ such that $\sum_{k=0}^{\infty} \sqrt{a_{k}}<+\infty$, there exists a minimal cluster \mathbf{E} in \mathbb{R}^{2} with $\mathbf{m}(\mathbf{E})=\mathbf{a}$ and with finite perimeter. The assumption on \mathbf{a} in fact is necessary to have at least a competitor cluster with a finite perimeter. The proof relies on two facts that are only available in the
planar case: the isodiametric inequality for connected sets and the semicontinuity of the length (i.e., the one-dimensional Hausdorff measure) of connected sets (Gołąb theorem).

In dimension $d>2$, very few results are currently known. Existence can be obtained only in a generalized sense, as shown in [24], and we cannot even exclude that $\tilde{\partial} \mathbf{E}=\mathbb{R}^{d}$.

2. Notation and preliminaries

2.1. Perimeters and boundaries

For a set $E \subset \mathbb{R}^{d}$ with finite perimeter one can define the reduced boundary $\partial^{*} E$ as the set of boundary points x where the outer normal vector $v_{E}(x)$ can be defined. One has $D 1_{E}=v_{E} \cdot \mathcal{H}^{d-1}\left\llcorner\partial^{*} E\right.$ where 1_{E} is the characteristic function of E and $D 1_{E}$ is its distributional derivative (the latter is a vector valued measure and its total variation is denoted by $\left.\left|D 1_{E}\right|\right)$. We use a version of the measure theoretic boundary of a measurable set E defined by

$$
\tilde{\partial} E:=\left\{x \in \mathbb{R}^{d}: 0<\left|E \cap B_{\rho}(x)\right|<\left|B_{\rho}(x)\right| \quad \text { for all } \rho>0\right\} .
$$

The respective notions for clusters can be defined by setting

$$
\begin{aligned}
\partial^{*} \mathbf{E}:= & \bigcup_{k=1}^{+\infty} \bigcup_{j=0}^{k-1} \partial^{*} E_{k} \cap \partial^{*} E_{j}, \\
\tilde{\partial} \mathbf{E}:= & \left\{x \in \mathbb{R}^{d}: 0<\left|E_{k} \cap B_{\rho}(x)\right|<\left|B_{\rho}(x)\right|\right. \\
& \quad \text { for all } \rho>0 \text { and some } k=k(\rho, x) \in \mathbb{N}\} .
\end{aligned}
$$

Clearly $\partial^{*} \mathbf{E} \subseteq \tilde{\partial} \mathbf{E}$ because given an $x \in \partial^{*} \mathbf{E}$, there exists a k such that $x \in \partial^{*} E_{k}$, while $\tilde{\partial} E_{k} \subseteq \tilde{\partial} \mathbf{E}$ for all k. Also it is easy to check that $\tilde{\partial} \mathbf{E}$ is closed (and in fact is the closure of the union of all the measure theoretic boundaries $\tilde{\partial} E_{k}$). Moreover the following result holds true.
Proposition 2.1. If \mathbf{E} is a cluster with finite perimeter, then $P(\mathbf{E})=\mathcal{H}^{d-1}\left(\partial^{*} \mathbf{E}\right)$.
Proof. Consider the sets X_{n}, defined for $1 \leq n \leq \infty$ by

$$
X_{n}:=\left\{x \in \mathbb{R}^{d}: \#\left\{k \in \mathbb{N}: x \in \partial^{*} E_{k}\right\}=n\right\}
$$

(notice that $k=0 \in \mathbb{N}$, the external region, is included in the count). It is clear that $X_{n}=\emptyset$ for all $n \geq 3$ because in every point of $\partial^{*} E_{k}$ there is an approximate tangent hyperplane which can only be shared by two regions.

We claim that $\mathcal{H}^{d-1}\left(X_{1}\right)=0$. To this aim suppose by contradiction that $\mathcal{H}^{d-1}\left(X_{1}\right)>0$. Then there exists a $j \in \mathbb{N}$ such that

$$
\left|D 1_{E_{j}}\right|\left(X_{1}\right)=\mathcal{H}^{d-1}\left(X_{1} \cap \partial^{*} E_{j}\right)>0,
$$

because X_{1} is contained in the countable union $\left(\cup_{j=0}^{\infty} X_{1}\right) \cap \partial^{*} E_{j}$. Hence there is a subset $A \subset X_{1} \cap \partial^{*} E_{j}$ such that $D 1_{E_{j}}(A) \neq \mathbf{0}$. Notice that $\sum_{k=0}^{\infty} 1_{E_{k}}=1$, hence also $\sum_{k} D 1_{E_{k}}=\mathbf{0}$ in the sense of distributions. Moreover, if $P(\mathbf{E})<+\infty$ the above convergence holds also in the sense of vector measures (in total variation), hence $\sum_{k} D 1_{E_{k}}(A)=\mathbf{0}$. Since $D 1_{E_{j}}(A) \neq \mathbf{0}$, there must exist at least another index $k \neq j$ such that $D 1_{E_{k}}(A) \neq \mathbf{0}$, and therefore $\mathcal{H}^{d-1}\left(A \cap \partial^{*} E_{k}\right)>0$. But then

$$
\emptyset \neq A \cap \partial^{*} E_{k} \subset X_{1} \cap \partial^{*} E_{j} \cap \partial^{*} E_{k}, \quad j \neq k,
$$

contrary to the definition of X_{1}, which proves the claim. In conclusion, the union of all the reduced boundaries $\partial^{*} E_{k}$ is contained in X_{2} up to an \mathcal{H}^{d-1}-negligible set. Hence

$$
\begin{aligned}
P(\mathbf{E}) & =\frac{1}{2} \sum_{k=0}^{+\infty} P\left(E_{k}\right)=\frac{1}{2} \sum_{k=0}^{+\infty} \mathcal{H}^{d-1}\left(\partial^{*} E_{k} \cap X_{2}\right)= \\
& =\frac{1}{2} \sum_{k=0}^{+\infty} \sum_{j \neq k} \mathcal{H}^{d-1}\left(\partial^{*} E_{k} \cap \partial^{*} E_{j}\right)=\sum_{k=0}^{+\infty} \sum_{j=k+1}^{+\infty} \mathcal{H}^{d-1}\left(\partial^{*} E_{k} \cap \partial^{*} E_{j}\right)= \\
& =\mathcal{H}^{d-1}\left(\bigsqcup_{k=0}^{+\infty} \bigsqcup_{j=k+1}^{+\infty} \partial^{*} E_{k} \cap \partial^{*} E_{j}\right)=\mathcal{H}^{d-1}\left(\partial^{*} \mathbf{E}\right)
\end{aligned}
$$

as claimed.

2.2. Auxiliary results

In the following theorem we collect some known existence and regularity results for finite minimal clusters from [19, 21].
Theorem 2.2 (existence and regularity of planar N-clusters). Let $a_{1}, a_{2}, \ldots, a_{N}$ be given positive real numbers. Then there exists a minimal N-cluster $\mathbf{E}=\left(E_{1}, \ldots E_{N}\right)$ in \mathbb{R}^{d}, with $\left|E_{k}\right|=a_{k}$ for $k=1, \ldots, N$. If \mathbf{E} is a minimal N-cluster and $d=2$, then $\tilde{\partial} \mathbf{E}$ is a pathwise connected set composed by circular arcs or line segments joining in triples at a finite number of vertices. Moreover in this case $P(\mathbf{E})=\mathcal{H}^{1}(\tilde{\partial} \mathbf{E})$.
Proposition 2.3 (cluster truncation). Let $\mathbf{E}=\left(E_{1}, \ldots, E_{k}, \ldots\right)$ be a (finite or infinite) cluster and let $T_{N} \mathbf{E}$ be the N-cluster $\left(E_{1}, \ldots, E_{N}\right)$. Then

$$
P\left(T_{N} \mathbf{E}\right) \leq P(\mathbf{E})
$$

Proof. For measurable sets E, F the inequality

$$
P(E \cup F)+P(E \cap F) \leq P(E)+P(F)
$$

holds, hence if $|E \cap F|=0$, one has

$$
P(E)=P\left((E \cup F) \cap\left(\mathbb{R}^{d} \backslash F\right)\right) \leq P(E \cup F)+P(F) .
$$

It follows that

$$
\begin{aligned}
2 P\left(T_{N} \mathbf{E}\right) & =\sum_{k=1}^{n} P\left(E_{k}\right)+P\left(\bigcup_{k=1}^{n} E_{k}\right) \\
& \leq \sum_{k=1}^{n} P\left(E_{k}\right)+P\left(\bigcup_{k=1}^{\infty} E_{k}\right)+P\left(\bigcup_{k=n+1}^{\infty} E_{k}\right) \\
& \leq \sum_{k=1}^{n} P\left(E_{k}\right)+P\left(\bigcup_{k=1}^{\infty} E_{k}\right)+\sum_{k=n+1}^{\infty} P\left(E_{k}\right) \\
& =\sum_{k=1}^{\infty} P\left(E_{k}\right)+P\left(\bigcup_{k=1}^{\infty} E_{k}\right)=2 P(\mathbf{E})
\end{aligned}
$$

as claimed.

Lemma 2.4. Let E be a measurable set and Ω be an open connected set. If $\tilde{\partial} E \cap \Omega=\emptyset$, then either $|\Omega \cap E|=0$ or $|\Omega \backslash E|=0$.
Proof. Notice that $\Omega \backslash \tilde{\partial} E=A_{0} \cup A_{1}$, where

$$
\begin{aligned}
& A_{0}:=\left\{x \in \Omega:\left|B_{\rho}(x) \cap E\right|=0 \quad \text { for some } \rho>0\right\}, \\
& A_{1}:=\left\{x \in \Omega:\left|B_{\rho}(x) \backslash E\right|=0 \quad \text { for some } \rho>0\right\} .
\end{aligned}
$$

It is clear that A_{0} and A_{1} are open disjoint sets, and if $\tilde{\partial} E \cap \Omega=\emptyset$, then their union is the whole set Ω. If Ω is connected, it implies that either A_{0} or A_{1} is equal to Ω which means that either $|\Omega \cap E|=0$ or $|\Omega \backslash E|=0$.

3. Main result

The statement below provides existence of infinite planar isoperimetric clusters.
Theorem 3.1 (existence). Let $\mathbf{a}=\left(a_{1}, \ldots, a_{k}, \ldots\right)$ be a sequence of nonnegative numbers such that $\sum_{k=1}^{\infty} \sqrt{a_{k}}<\infty$. Then there exists a minimal cluster \mathbf{E} in \mathbb{R}^{2}, with $\mathbf{m}(\mathbf{E})=\mathbf{a}$ satisfying additionally

$$
\begin{gather*}
\bigcup_{k=1}^{\infty} E_{k} \text { is bounded } \tag{3.1}\\
\tilde{\partial} \mathbf{E} \text { is pathwise connected, } \tag{3.2}\\
\mathcal{H}^{1}\left(\tilde{\partial} \mathbf{E} \backslash \partial^{*} \mathbf{E}\right)=0 \tag{3.3}
\end{gather*}
$$

Remark 3.2. In view of Eq (3.3) and Proposition 2.1, for the minimal cluster provided by Theorem 3.1, one has

$$
\begin{equation*}
P(\mathbf{E})=\mathcal{H}^{1}(\tilde{\partial} \mathbf{E})=\mathcal{H}^{1}\left(\partial^{*} \mathbf{E}\right) . \tag{3.4}
\end{equation*}
$$

Of course there exists a set with finite perimeter E such that $P(E)<\mathcal{H}^{1}(\tilde{\partial} E)$, so that Eq (3.4) is false for general clusters that are not minimal.

It is interesting to note that, as shown in Example 4.3, there exists a finite cluster \mathbf{E} satisfying Eq (3.4), for which one does not have $P\left(E_{k}\right)=\mathcal{H}^{1}\left(\tilde{\partial} E_{k}\right)$ for all k. It would be interesting to see whether these equalities hold for minimal clusters.

Proof. Let $\bar{p}:=2 \sqrt{\pi} \sum_{k=1}^{\infty} \sqrt{a_{k}}<+\infty$, and

$$
\begin{aligned}
p & :=\inf \left\{P(\mathbf{E}): \mathbf{E} \text { cluster in } \mathbb{R}^{2} \text { with }\left|E_{k}\right|=a_{k}, k=1,2, \ldots, n, \ldots\right\}, \\
p_{n} & :=\inf \left\{P(\mathbf{E}): \mathbf{E} n \text {-cluster in } \mathbb{R}^{2} \text { with }\left|E_{k}\right|=a_{k}, k=1, \ldots, n\right\},
\end{aligned}
$$

so that a cluster \mathbf{E} with measures $\mathbf{m}(\mathbf{E})=\mathbf{a}$ is minimal, if and only if $P(\mathbf{E})=p$, while an n-cluster \mathbf{E} with measures $\left|E_{k}\right|=a_{k}$ for $k=1, \ldots, n$ is minimal, if and only if $P(\mathbf{E})=p_{n}$.

If \mathbf{E} is a competitor for p, then $T_{n} \mathbf{E}$ is a competitor for p_{n} and, by Proposition 2.3, one has $P\left(T_{n} \mathbf{E}\right) \leq$ $P(\mathbf{E})$. Hence $p_{n} \leq p$. Moreover one can build a competitor for p which is composed by circular disjoint regions $\left(B_{1}, \ldots, B_{j}, \ldots\right)$, where B_{j} are disjoint balls of radii $\sqrt{\frac{a_{j}}{\pi}}$, to find that $p \leq \bar{p}<+\infty$.

For each $n \geq 1$ consider a minimal n-cluster \mathbf{F}^{n} with $\left|F_{k}^{n}\right|=a_{k}$ for $k \leq n$, and $F_{k}^{n}:=\emptyset$ for $k>n$, so that $P\left(\mathbf{F}^{n}\right)=p_{n}$. By the regularity properties of minimal clusters (Theorem 2.2), the boundary $\tilde{\partial} \mathbf{F}^{n}$ is connected and composed by a finite union of circular arcs, hence diam $\tilde{\partial} \mathbf{F}^{n} \leq p_{n} \leq \bar{p}$. Up to translations, we shall suppose that all the regions F_{k}^{n} of all the clusters \mathbf{F}^{n} are contained in a ball of radius \bar{p}. In fact,

$$
\bar{p} \geq p \geq \sup _{n} p_{n}=\sup _{n} P\left(\mathbf{F}^{n}\right) \geq \sup _{n} \operatorname{diam} \tilde{\partial} \mathbf{F}^{n} .
$$

Up to a subsequence we can hence assume that the first regions F_{1}^{n} converge to a set E_{1} in the sense that their characteristic functions $\mathbf{1}_{F_{1}^{n}}$ converge to the characteristic function $\mathbf{1}_{E_{1}}$ in the Lebesgue space $L^{1}\left(\mathbb{R}^{2}\right)$ as $n \rightarrow \infty$ (we call this convergence L^{1} convergence of sets). Analogously, up to a sub-subsequence also the second regions F_{2}^{n} converge in L^{1} sense to a set E_{2}. In this way we define inductively the sets E_{k} for all $k \geq 1$. Then there exists a diagonal subsequence with indices n_{j} such that for all k one has $F_{k}^{n_{j}} \rightarrow E_{k}$ in L^{1} for all $k \geq 1$ as $j \rightarrow+\infty$.

Consider the cluster \mathbf{E} with the regions E_{k} defined above. By continuity we have $\mathbf{m}(\mathbf{E})=\mathbf{a}$ because $F_{k}^{n_{j}} \rightarrow E_{k}$ in L^{1} as $j \rightarrow \infty$ and $\left|F_{k}^{n_{j}}\right|=a_{k}$ for all j. We claim that the union of all the regions of $\mathbf{F}^{n_{j}}$ also converges to the union of all the regions of \mathbf{E}. For all $\varepsilon>0$ take N such that $\sum_{k=N+1}^{\infty} a_{k} \leq \varepsilon$ and notice that

$$
\left(\bigcup_{k=1}^{\infty} E_{k}\right) \Delta\left(\bigcup_{k=1}^{\infty} F_{k}^{n_{j}}\right) \subseteq \bigcup_{k=1}^{N}\left(E_{k} \Delta F_{k}^{n_{j}}\right) \cup \bigcup_{k=N+1}^{\infty} E_{k} \cup \bigcup_{k=N+1}^{\infty} F_{k}^{n_{j}} .
$$

Hence

$$
\lim \sup \left|\bigcup_{j=1}^{\infty} E_{k} \Delta \bigcup_{k=1}^{\infty} F_{k}^{n_{j}}\right| \leq \lim _{j} \sum_{k=1}^{N}\left|E_{k} \Delta F_{k}^{n_{j}}\right|+2 \varepsilon=2 \varepsilon .
$$

Letting $\varepsilon \rightarrow 0$ we obtain the claim.
By the lower semicontinuity of the perimeter, we have

$$
P\left(E_{k}\right) \leq \liminf _{j \rightarrow+\infty} P\left(F_{k}^{n_{j}}\right) \quad \text { and } \quad P\left(\bigcup_{k=1}^{+\infty} E_{k}\right) \leq \liminf _{j \rightarrow+\infty} P\left(\bigcup_{k=1}^{+\infty} F_{k}^{n_{j}}\right),
$$

and hence $P(\mathbf{E}) \leq \liminf _{j} P\left(\mathbf{F}^{n_{j}}\right) \leq p$, proving that \mathbf{E} is actually a minimal cluster. Since all the regions F_{k}^{n} are equibounded, we obtain Eq (3.1).

We are going to prove Eq (3.3). By Theorem 2.2 the minimal n-cluster \mathbf{F}^{n} has a measure theoretic boundary $\tilde{\partial} \mathbf{F}^{n}$ which is a compact and connected set such that $P\left(\mathbf{F}^{n}\right)=\mathcal{H}^{1}\left(\tilde{\partial} \mathbf{F}^{n}\right)$. Up to a subsequence, the compact sets $\tilde{\partial} \mathbf{F}^{n_{j}}$, being uniformly bounded, converge with respect to the Hausdorff distance, to a compact set K. Without loss of generality suppose n_{j} is labeling this new subsequence.

We claim that $\tilde{\partial} \mathbf{E} \subseteq K$. In fact for any given $x \in \tilde{\partial} \mathbf{E}$ and any $\rho>0$ there exists $k=k(\rho)$ such that $B_{\rho}(x) \cap E_{k}$ and $B_{\rho}(x) \backslash E_{k}$ both have positive Lebesgue measure. Since $\left|B_{\rho}(x) \cap F_{k}^{n_{j}}\right| \rightarrow\left|B_{\rho}(x) \cap E_{k}\right|>0$ and $\left|B_{\rho}(x) \backslash F_{k}^{n_{j}}\right| \rightarrow\left|B_{\rho}(x) \backslash E_{k}\right|>0$ for $j=j(\rho)$ sufficiently large by Lemma 2.4, there is a point $x_{k}^{j} \in B_{\rho}(x) \cap \tilde{\partial} F_{k}^{n_{j}}$. As $\rho \rightarrow 0$ the sequence x_{k}^{j} converges to x, and since $\tilde{\partial} F_{k}^{n_{j}} \subseteq \tilde{\partial} \mathbf{F}^{n_{j}}$ we conclude that $x \in K$.

The sets $\tilde{\partial} \mathbf{F}^{n}$ are connected, and therefore, by the classical Goła̧b theorem on semicontinuity of one-dimensional Hausdorff measure over sequences of connected sets (see [3, Theorem 4.4.17] or [25, theorem 3.3] for its most general statement and a complete proof), one has

$$
\mathcal{H}^{1}(K) \leq \liminf _{n} \mathcal{H}^{1}\left(\tilde{\partial} \mathbf{F}^{n}\right)
$$

and K is itself connected. Summing up and using Proposition 2.1, we get

$$
\begin{align*}
P(\mathbf{E}) & =\mathcal{H}^{1}\left(\partial^{*} \mathbf{E}\right) \leq \mathcal{H}^{1}(\tilde{\partial} \mathbf{E}) \leq \mathcal{H}^{1}(K) \\
& \leq \liminf _{n} P\left(\mathbf{F}^{n}\right) \leq \underset{n}{\lim \sup _{n}} p_{n} \leq p \leq P(\mathbf{E}), \tag{3.5}
\end{align*}
$$

hence $\mathcal{H}^{1}\left(\partial^{*} \mathbf{E}\right)=\mathcal{H}^{1}(\tilde{\partial} \mathbf{E})=\mathcal{H}^{1}(K), p_{n} \rightarrow p$, and Eq (3.3) follows.
Finally, to prove that $\tilde{\partial} \mathbf{E}$ is connected, it is enough to show $\tilde{\partial} \mathbf{E}=K$. We already know that $\tilde{\partial} \mathbf{E} \subseteq K$ so we suppose by contradiction that there exists an $x \in K \backslash \tilde{\partial} \mathbf{E}$. Take any $y \in K$. The set K is arcwise connected by rectifiable arcs, since it is a compact connected set of finite one-dimensional Hausdorff measure (see e.g., [10, lemma 3.11] or [3, theorem 4.4.7]), in other words, there exists an injective continuous curve $\gamma:[0,1] \rightarrow K$ with $\gamma(0)=x$ and $\gamma(1)=y$. Since $\tilde{\partial} \mathbf{E}$ is closed in K there is a small $\varepsilon>0$ such that $\gamma([0, \varepsilon]) \subset K \backslash \tilde{\partial} \mathbf{E}$, and hence $\mathcal{H}^{1}(K \backslash \tilde{\partial} \mathbf{E})>0$ contrary to $\mathcal{H}^{1}(K)=\mathcal{H}^{1}(\tilde{\partial} \mathbf{E})$. This contradiction shows the last claim and hence concludes the proof.

4. Some examples

We collect here some interesting examples of infinite planar clusters.
Example 4.1 (Apollonian packing). A cluster E, as depicted in Figure 1, can be constructed so that each region $E_{k}=B_{r_{k}}\left(x_{k}\right), k \neq 0$, is a ball contained in the ball $B:=B_{1}(0)$. The balls can be chosen to be pairwise disjoint and such that $\left|B \backslash \bigcup_{k=1}^{\infty} E_{k}\right|=0$ (see [16]).

Clearly such a cluster must be minimal because each region E_{k} has the minimum possible perimeter among sets with the given area and the same is true for the complement of the exterior region E_{0} which is their union. However, one has $P(\mathbf{E})=+\infty$. In fact, $\mathcal{H}^{1}\left(\partial^{*} \mathbf{E}\right)=0$ since $\partial^{*} E_{k} \cap \partial^{*} E_{j}$ is either empty or a singleton for all $k \neq j$, and by Proposition 2.1 if $P(\mathbf{E})<+\infty$ one would have $P(\mathbf{E})=\mathcal{H}^{1}\left(\partial^{*} \mathbf{E}\right)=0$, while on the other hand $P(\mathbf{E})>P\left(E_{0}\right) / 2>0$, a contradiction.

Note that this is a quite pathological example of an infinite cluster for which $\mathcal{H}^{1}\left(\partial^{*} \mathbf{E}\right)=0$ but both $P(\mathbf{E})=+\infty$ and $\mathcal{H}^{1}(\tilde{\partial} \mathbf{E})=+\infty$. In fact, the measure theoretic boundary $\tilde{\partial} \mathbf{E}$ of this cluster is the residual set, i.e. the set of zero measure which remains when the balls E_{k} are removed from the large ball \bar{B} :

$$
\begin{equation*}
\tilde{\partial} \mathbf{E}=\bar{B} \backslash \bigcup_{k=1}^{+\infty} B_{r_{k}}\left(x_{k}\right) . \tag{4.1}
\end{equation*}
$$

This set has Hausdorff dimension $d>1$ (see [14]) and hence $\mathcal{H}^{1}(\tilde{\partial} \mathbf{E})=+\infty$.
However we can consider the fractional (nonlocal) perimeter P_{s} defined by

$$
P_{s}(E):=\int_{E} \int_{\mathbb{R}^{2} \backslash E} \frac{1}{|x-y|^{2+s}} d x d y
$$

which induces the respective nonlocal perimeter $P_{s}(\mathbf{E})$ of the cluster \mathbf{E} by means of definition (1.2) with P_{s} in place of P. If r_{k} is the radius of the k-th disk of the cluster it turns out (see [4]) that the infimum of all α, such that the series $\sum_{k} r_{k}^{\alpha}$ converges, is equal to d, the Hausdorff dimension of $\tilde{\partial} \mathbf{E}$. Since $d \in(1,2)$ for all $s<2-d$, we have

$$
\sum_{k} r_{k}^{2-s}<+\infty
$$

Figure 2. An example of a cluster \mathbf{E} with finite perimeter such that $P(\mathbf{E})=\mathcal{H}^{1}(\tilde{\partial} \mathbf{E})$, but $P\left(E_{3}\right)<\mathcal{H}^{1}\left(\tilde{\partial} E_{3}\right)$.
and since $P_{s}\left(B_{r}\right)=C \cdot r^{2-s}$ (with $\left.0<C<+\infty\right)$, we obtain $P_{s}(\mathbf{E})<+\infty$ for such s. It is well known (see [12]) that the solution to the fractional isoperimetric problem is given by balls, hence \mathbf{E} provides an example of an infinite minimal cluster with respect to the fractional perimeter P_{s}.
Example 4.2 (Anisotropic isoperimetric packing). We can find a similar example, if we consider an anisotropic perimeter such that the isoperimetric problem has the square (instead of the circle) as a solution. If ϕ is any norm on \mathbb{R}^{2}, one can define the perimeter P_{ϕ} which is the relaxation of the functional P_{ϕ} defined on regular sets $E \subset \mathbb{R}^{2}$ by the formula

$$
P_{\phi}(E):=\int_{\partial^{*} E} \phi\left(v_{E}(x)\right) d \mathcal{H}^{1}(x),
$$

where $v_{E}(x)$ is the exterior unit normal vector to the reduced boundary $\partial^{*} E$ in x. If $\phi(x, y)=|x|+|y|$ (the Manhattan norm) it is well known that the P_{ϕ}-minimal set with prescribed area (i.e., the Wulff shape) is a square with sides parallel to the coordinate axes (which is the ball for the dual norm). It is then easy to construct an infinite cluster $\mathbf{E}=\left(E_{1}, \ldots, E_{k} \ldots\right)$, where each E_{k} is a square and also the union of all such squares is a square, see Figure 1. By iterating such a construction it is not difficult to understand that given any sequence $a_{k}, k=1,2, \ldots$ of numbers such that their sum is equal to 1 and each number is a power of $\frac{1}{4}$, it is possible to find a cluster \mathbf{E} with $\mathbf{m}(\mathbf{E})=\mathbf{a}$ such that each E_{k} is a square and the union $\bigcup_{k} E_{k}$ is the unit square.

Example 4.3 (Cantor circles). See Figure 2 and [2, example 2 pp. 59]. Take a rectangle R divided in two by a segment S on its axis. Let C be a Cantor set with positive measure constructed on S. Consider the set E_{3} which is the union of the balls with diameter on the intervals composing the complementary set $S \backslash C$. Let E_{1} and E_{2} be the two connected components of $R \backslash \overline{E_{3}}$. It turns out that the 3-cluster $\mathbf{E}=\left(E_{1}, E_{2}, E_{3}\right)$ has finite perimeter and the perimeter of \mathbf{E} is represented by the Hausdorff measure of the boundary

$$
P(\mathbf{E})=\mathcal{H}^{1}(\tilde{\partial} \mathbf{E}) .
$$

However the same is not true for each region. In fact the boundary $\tilde{\partial} E_{3}$ of the region E_{3} includes C and hence

$$
P\left(E_{3}\right)<\mathcal{H}^{1}\left(\tilde{\partial} E_{3}\right) .
$$

Acknowledgments

The first and second authors are members of the INDAM/GNAMPA and were supported by the PRIN Project 2019/24. The work of the third author has been partially financed by the RFBR grant
\#20-01-00630 A

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. L. Ambrosio, A. Braides, Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization, J. Math. Pures Appl., 69 (1990), 307-333.
2. L. Ambrosio, V. Caselles, S. Masnou, Jean-Michel Morel, Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc. (JEMS), 3 (2001), 39-92. https://doi.org/10.1007/PL00011302
3. L. Ambrosio, P. Tilli, Topics on analysis in metric spaces, In: Oxford Lecture Series in Mathematics and its Applications, Oxford: Oxford University Press, 2004.
4. D. W. Boyd, The sequence of radii of the Apollonian packing, Math. Comp., 39 (1982), 249-254. https://doi.org/10.1090/S0025-5718-1982-0658230-7
5. L. Caffarelli, J. M. Roquejoffre, O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.
6. D. G. Caraballo, Existence of surface energy minimizing partitions of \mathbb{R}^{n} satisfying volume constraints, Trans. Amer. Math. Soc., 369 (2017), 1517-1546. https://doi.org/10.1090/tran/6630
7. A. Cesaroni, M. Novaga, Nonlocal minimal clusters in the plane, Nonlinear Anal., 199 (2020), 111945. https://doi.org/10.1016/j.na.2020.111945
8. M. Colombo, F. Maggi, Existence and almost everywhere regularity of isoperimetric clusters for fractional perimeters, Nonlinear Anal., 153 (2017), 243-274. https://doi.org/10.1016/j.na.2016.09.019
9. G. De Philippis, A. De Rosa, F. Ghiraldin, Existence results for minimizers of parametric elliptic functionals, J. Geom. Anal., 30 (2020), 1450-1465. https://doi.org/10.1007/s12220-019-00165-8
10. K. J. Falconer, The Geometry of Fractal Sets, Cambridge: Cambridge University Press, 1986.
11. J. Foisy, M. Alfaro, J. Brock, N. Hodges, J. Zimba, The standard double soap bubble in \mathbf{R}^{2} uniquely minimizes perimeter, Pacific J. Math., 159 (1993), 47-59. https://doi.org/10.2140/pjm.1993.159.47
12. R. L. Frank, R. Seiringer, Sharp fractional Hardy inequalities in half-spaces, Around the research of Vladimir Maz'ya. I, 11 (2010), 161-167. https://doi.org/10.1090/surv/162/06
13. T. C. Hales, The honeycomb conjecture, Discrete Comput. Geom., 25 (2001), 1-22. https://doi.org/10.1007/s004540010071
14. K. E. Hirst, The Apollonian packing of circles, J. London Math. Soc., 42 (1967), 281-291. https://doi.org/10.1112/jlms/s1-42.1.281
15. M. Hutchings, F. Morgan, M. Ritoré, A. Ros, Proof of the double bubble conjecture, Ann. of Math., 155 (2002), 459-489.
16. E. Kasner, F. Supnick, The apollonian packing of circles, Proc. Natl. Acad. Sci. U.S.A., 29 (1943), 378-384. https://doi.org/10.1073/pnas.29.11.378
17. G. Lawlor, F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math., 166 (1994), 55-83. https://doi.org/10.2140/pjm.1994.166.55
18. G. P. Leonardi, Partitions with prescribed mean curvatures, Manuscripta Math., 107 (2002), 111133. https://doi.org/10.1007/s002290100230
19. F. Maggi, Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory, Cambridge: Cambridge University Press, 2012.
20. E. Milman, J. Neeman, The structure of isoperimetric bubbles on \mathbb{R}^{n} and \mathbb{S}^{n}, arXiv: 2205.09102, [Preprint], (2022), [cited 2023 Mar 31]. Available from: https://doi.org/10.48550/arXiv.2205.09102 .
21. F. Morgan, Geometric measure theory. A Beginner's guide, Cambridge: Academic Press, 1987.
22. F. Morgan, C. French, S. Greenleaf, Wulff clusters in \mathbb{R}^{2}, J. Geom. Anal., 8 (1998), 97-115. https://doi.org/10.1016/B978-0-12-506855-0.50005-2
23. M. Novaga, E. Paolini, Regularity results for boundaries in \mathbb{R}^{2} with prescribed anisotropic curvature, Ann. Mat. Pura Appl., 184 (2005), 239-261. https://doi.org/10.1007/s10231-004-0112x
24. M. Novaga, E. Paolini, E. Stepanov, V. M. Tortorelli, Isoperimetric clusters in homogeneous spaces via concentration compactness, J. Geometric Anal., 32 (2022), 263. https://doi.org/10.1007/s12220-022-00939-7
25. E. Paolini, E, Stepanov, Existence and regularity results for the steiner problem, Calc. Var. Partial. Differ. Equ., 46 (2013), 837-860.
26. E. Paolini, V. M. Tortorelli, The quadruple planar bubble enclosing equal areas is symmetric, Calc. Var. Partial Differ. Equ., 59 (2020), 1-9.
27. W. Wichiramala, Proof of the planar triple bubble conjecture, J. Reine Angew. Math., 567 (2004), 1-49. https://doi.org/10.1515/crll.2004.011
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
