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Abstract: We propose an enriched microscopic heat conduction model that can account for size
effects in heterogeneous media. Benefiting from physically relevant scaling arguments, we improve
the regularity of the corrector in the classical problem of periodic homogenization of linear elliptic
equations in the three-dimensional setting and, while doing so, we clarify the intimate role that
correctors play in measuring the difference between the heterogeneous solution (microscopic) and the
homogenized solution (macroscopic). Moreover, if the data are of form f = div FFF with FFF ∈ L3(Ω,R3),
then we recover the classical corrector convergence theorem.
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1. Introduction

The analysis of correctors in periodic homogenization theory for second-order elliptic equations
with highly oscillatory coefficients plays a critical role in linking the microscopic and macroscopic
aspects of the problem by quantifying the disparity between the heterogeneous and homogenized
solutions. Moreover, it provides the key information needed to prove the convergence of multiscale
approximation schemes based on, e.g., the heterogeneous multiscale method or multiscale FEM.
Simultaneously, from a modeling perspective, correctors point out some of the limitations of such
second-order elliptic systems due to their lack of accounting for scale-size effects e.g.,
micro-heterogeneous bodies. The prototypical and landmark example for the homogenization of
second-order elliptic equations is Fourier’s law of heat conduction. In its simplest form, Fourier’s law
relates the heat flux qqq as a linear function of the temperature gradient, that is,

qqq = −κ∇u, (1.1)

where u is the absolute temperature and κ > 0 is the thermal conductivity that depends on the properties
of the material. In general, the proportionality coefficient κ (either scalar or tensor) may depend on
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temperature, space, and/or time variables, or other parameters, but it often varies so little in cases of
interest that it is reasonable to neglect this variation.

The theory of periodic homogenization led to a deeper exploration of Fourier’s heat conduction law
as it pertains to heterogeneous periodic material with different conductivities. Effective heat fluxes were
derived taking into account microstructure morphology and volume fraction. The classical problem in
the periodic homogenization for stationary heat conduction states the following: Find uε ∈ H1

0(Ω)
satisfying,

−div
(
K(

xxx
ε

).∇uε
)
= f in Ω,

uε = 0 on ∂Ω,
(1.2)

where K(yyy) ∈ L∞(Y,R3×3) is a uniformly elliptic, symmetric, and Y-periodic with Y = [0, 1)3, and
explore what happens with the situation when ε → 0. If Ω ⊂ R3 is uniformly Lipschitz open set, then
there exists a unique solution uε to Eq (1.2) such that it converges weakly to a function u in H1

0(Ω),
where the function u ∈ H1

0(Ω) is the unique solution to

−div
(
Keff .∇u

)
= f in Ω,

u = 0 on ∂Ω,
(1.3)

with Keff
ℓ j :=

∑3
i=1

∫
Y

Kℓi(yyy)(δ ji − ∂yiw j) dyyy and w j ∈ {H1
per(Y) |

∫
Y

w j dyyy = 0} is a solution to

−divy

(
K(yyy).(∇yw j − eee j)

)
= 0 in Y,

w j is Y − periodic.
(1.4)

The convergence of uε to u in H1
0(Ω) is only weak. If one seeks to improve the convergence then,

usually, a corrector type term is introduced:

uε − u − εû(·,
·

ε
)→ 0 in H1(Ω), (1.5)

where û(xxx,yyy):= −
∑N

k=1 wk(yyy) ∂u
∂xk

(xxx) is the correction term. For the expression to belong in H1(Ω) it is
required that wk ∈ W1,∞(Y) and u ∈ H2(Ω) (see [5, pp. 33]). With the introduction of two-scale
convergence in [32] (see also [2] and [28]) a rigorous justification was provided for the multiple-scale
method and the corrector result (in N-dimensional space) in Eq (1.5) was made rigorous through the
following theorem:

Proposition 1.1. [2, 10, 28] Let ũ1 ∈ Ls(Ω) and û be given by,

û(xxx,yyy) = −
N∑

k=1

wk(yyy)
∂u
∂xk

(xxx) + ũ1(xxx), (1.6)

and suppose that ∇ywk ∈ Lr(Y,RN), k = 1, . . . ,N and ∇u ∈ Ls(Ω,RN) with 1 < r, s < ∞ and such that,
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1
r
+

1
s
=

1
2
. (1.7)

Then,

∇uε − ∇u − ∇yû(·,
·

ε
)→ 0 in L2(Ω,RN). (1.8)

As one can immediately observe, the main unease with the above proposition is the higher
integrability required on both local and homogenized solutions. However, with the introduction of
periodic unfolding operators [12, 13], one can obtain a more general corrector result without requiring
any regularity assumption on the cell function wk, stating,

∇uε − ∇u −
N∑

k=1

Qε(
∂u
∂xk

)∇ywk(
·

ε
)→ 0 in L2(Ω,RN), (1.9)

where Qε is the scale-splitting operator defined in [27]; see the elegant proof in [14]. Moreover,
based on the scale-splitting operator, upper bound estimates on the convergence rate in terms of ε
were obtained in [27] (with some additional regularity assumptions on the homogenized solution).
Furthermore, the upper bound estimates on the convergence rate can be made tighter by using boundary
layer correctors (see, e.g., [3,31,36]). Therefore, it seems that in order to lift the (restrictive) regularity
conditions in Proposition 1.1 one must have knowledge of the operator Qε.

The widely accepted understanding of Fourier’s law of heat conduction is that it represents a
limiting case approximation of a more comprehensive, potentially nonlinear, constitutive law for the
heat flux, which may depend on higher-order gradients (see, e.g., [9, 15, 37]). For instance, the
temperature of a rarefied gas at the slip regime, namely when 0.001 < Kn < 0.3, where Kn is the
non-dimensional Knudsen number, deviates from Fourier’s law of heat conduction (see, e.g., [37]).
Moreover, in the same article a generalized heat conduction model, from a phenomenological point of
view, was postulated under the assumption that the gas is isotropic. The authors’ speculation was that
the heat flux in a rarefied gas in the slip regime, depends linearly on the temperature gradient but also
on higher-order temperature derivatives,

qqq = K.∇u + L:∇∇u +M...∇∇∇u, (1.10)

where K is the classical second order heat conduction tensor*, while L and M are third and fourth order
material parameter tensors, respectively (the notation ., :, and ... denote first, second, and third order
contractions). The structure of such material parameter tensors can be determined by considering
proper orthogonal transformations (compare [41]). Moreover, if we request that the material be centro-
symmetric (meaning it is invariant under reflections), then the tensor L ≡ 0 (cf. [41]). Furthermore, if
the material is isotropic then reflections are not relevant since the only isotropic third order tensor is
the Levi-Civita tensor which is anti-symmetric and, hence, L:∇∇u ≡ 0 since it would be the product

*Interestingly, unlike the case of Fickian diffusion, a rigorous microscopic interpretation of the classical linear Fourier law (and of
its variations) done at the level of stochastically interacting particles is still lacking in spite of sustained efforts in both probability and
statistical physics communities (cf. e.g. [7]). It would be interesting to see, for instance, whether the simplified mechanistic approach
from [38] unveiling connections between Hamiltonian chains of coupled mechanical systems and the linear Fourier law can be eventually
extended to capture at least some of the second gradient effects postulated in Eq (1.10).
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of a symmetric and an antisymmetric matrix which is zero. Additionally, the tensor M has a physical
meaning–it is often referred to as the spatial retardation (see the context of [9]).

Henceforth, we assume isotropy of the medium. Thus, the higher-gradient heat flux can reduce
further,

qqq = K.∇u +M...∇∇∇u, (1.11)

where Ki j:=ηδi j and Mi jkl:=ℓ1δikδ jl+ℓ2δilδ jk+ℓ3δi jδkl for scalars η and ℓi, i = 1, 2, 3 that will be assumed
to be constant or piece-wise constant with the heat conduction inequality asserting,

qqq.∇u ≤ 0, (1.12)

for all temperature fields.
Non-classical laws of Fourier’s heat conduction have, for many years now, attracted considerable

attention from the theoretical mechanics community (see, e.g., [1, 6, 21, 22]). In recent years, the
motivation for deriving non-classical heat conduction models in the mechanics field stemmed from
trying to understand the presence of thermal fluctuation fields in heterogeneous materials with a
microstructure. Specifically, the authors in [22] postulate the existence of a free energy function that
has an added dependence on the gradient of the entropy density variable. Based on this enhanced free
energy, an enhanced heat equation was derived containing a term with a characteristic length related
to material parameters that can account for scale-size thermal effects in micro-heterogeneous bodies.
Finally, all of the above theoretical or computational non-classical approaches seem to have found
some validation in recent experimental work where evidence of size-dependent thermal effects were
reported in heterogeneous materials (see, e.g., [18, 19] ).

In this work, we commence with a higher-gradient heat equation model. By introducing physically
relevant scaling arguments related to the absolute size of the constituents, we point out a new length
scale parameter that models scale-dependent thermal effects (see, e.g., [18, 19]). Hence, by arguing as
in the work of [34], the solution of the enriched microscopic problem can be seen as a
vanishing-viscosity solution that coincides with the classical homogenized solution of (1.3).
However, unlike in the classical case, the local solutions wk satisfy a higher-gradient local problem
and, hence, possess better regularity properties than classical local solutions. What is remarkable is,
that this aforementioned higher regularity of the local solution compensated by the mild assumption
that the data are of the form f := div FFF, FFF ∈ L3(Ω,R3) allows us to prove Proposition 1.1 under the
minimal assumptions of a uniformly Lipschitz open set Ω and non-smooth material coefficients.

We have organized the paper as follows: In Section 2 we explain in detail the scaling argument
we employ, present the enriched microscopic model, provide some motivation for its use, and prove
some general qualitative results as they pertain to existence and uniqueness of solution as well as the
variational nature of the problem. In Section 3 we state the main results, we discuss their consequences,
and demonstrate symmetry relations for the higher-gradient effective coefficients as well as explore
their variational structure. Section 4 is dedicated to proving the main results in Section 3. Finally, we
reserve Section 5 for some discussion and remarks.

Networks and Heterogeneous Media Volume 18, Issue 3, 1207–1225.
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2. Problem set-up

2.1. Scale-dependent thermal effects

In this paragraph, we postulate the modified heat flux in (1.11) and derive an additional length
scale parameter that encapsulates the size-dependent thermal effects in the context of an idealized
periodic microstructure. The approach is motivated from generalized continuum mechanic theories
(see, e.g., [20]) since it is well understood that the effective properties of heterogeneous materials can
depend not only on the volume fraction of the phases or their geometrical distribution but also on the
absolute size of the constituents (see, e.g., [23]).

We assume that our working domain Ω has a periodic microstructure with period ℓ and overall
characteristic length L. This introduces a natural periodicity of the tensors K and M. We scale all the
parameters in the model, including the material parameters, the following way:

xxx∗=
xxx
L
, u∗(xxx∗)=

u(xxx)
U
, (2.1)

whereU := maxzzz∈Ω |u(zzz)|. While for the material parameters we can define the normalized tensors,

K∗=K/K , M∗=M/M, (2.2)

whereK :=maxzzz∈Yℓ |K(zzz)|,M:=maxzzz∈Yℓ |M(zzz)| with Yℓ:=(−ℓ/2, ℓ/2]3 the periodic cell characterizing the
body Ω. We can now introduce an additional length scale relation between K andM as follows:

M = ℓ2TEK . (2.3)

The characteristic intrinsic length ℓTE accounts for scale-size effects in heat conduction problems
of heterogeneous media. When it is identically zero Fourier’s classical law of heat conduction is
recovered.

Remark 2.1. We chose to work with the above scaling because of its physical interpretation. The
scaling indicates that the size of the heterogeneities are comparable to the order of the period.
Naturally, one could consider a different scaling than the one proposed above and arrive at different
mascroscopic heat conduction problems. We will not address other type of scalings here. We leave the
interested reader to consult the work in [34] for different type of scalings and their influence on
effective equations within the context of second gradient elasticity. Moreover, the works in [1, 21]
provide a theoretical framework as to why such internal lengths are needed and how they can account
for thermal scale-size effects, while the works in [18, 19] provide an experimental justification.

Thus, the scaled heat flux becomes:

qi =

3∑
j=1

KUL K∗i j
∂u∗

∂x∗j
+

3∑
k,l=1

KU
(ℓTE

L

)2 ∂

∂x∗j

(
M∗i jkl

∂2u∗

∂x∗k∂x
∗
l

) . (2.4)

If we use the notation, qqq∗:=(KU)−1qqq then we have a scaled form of the heat flux,

qqq∗ =
1
L

K∗∇∗u∗ +
(ℓTE

L

)2
div∗ (M∗:∇∗∇∗u∗) . (2.5)
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To simplify our presentation, henceforth, we absorb the factor 1/L into the notation K∗. Moreover,
we remark that since the coefficients K and M are Yℓ periodic the corresponding scaled coefficients K∗

and M∗ are Y∗ periodic where Y∗:= ℓLY with Y:=(−1/2, 1/2]3. Finally, hereon, if no confusion arises we
will drop the ∗ notation in order to expedite our presentation.

2.2. The microscopic problem

We consider a material with a periodic microstructure of period ε:=ℓ/L≪1 occupying a region
Ω ⊂ R3. The region Ω that the heterogeneous material occupies is assumed to be a uniformly Lipschitz
open set (see [17, Definition 2.65]). The exterior boundary component will be denoted by Σ:=∂Ωwhile
the vector nnn will denote the unit normal on Σ pointing in the outward direction. The ε periodic problem,
generated by defining the non-dimensional number ε as the ratio of ℓ/L, will permit us to obtain an
effective equation when ε→ 0. However, unlike in classical homogenization problems, different cases
ought to be considered depending on how the intrinsic length scale ℓTE scales with ℓ (or L). Here, since
we are interested in recovering Fourier’s classical law of heat conduction as an effective limit, we will
only consider the scaling,

ℓTE/ℓ ∼ 1. (2.6)

The physical meaning of the above scaling, is that the intrinsic length ℓTE is comparable with the
length of the heterogeneities. Naturally, other type of scalings are possible, however, we will not
address other cases here. We refer the reader to [34] for different type of scalings in the context of
generalized continuum mechanics.

Therefore, under the scaling in Eq (2.6), the (generalized) heat flux becomes,

qqqε = K(
xxx
ε

).∇uε + ε2div
(
M(

xxx
ε

):∇∇uε
)
. (2.7)

The microscopic problem is then characterized by the following equation and boundary conditions,

−div
(
K(

xxx
ε

).∇uε − ε2div
(
M(

xxx
ε

):∇∇uε
))
= f in Ω,

ε2M(
xxx
ε

)∇∇uε:nnn ⊗ nnn = 0 on Σ,

uε = 0 on Σ,

(2.8)

where f is some given source that belongs in L2(Ω). We remark, that prescribing a homogeneous
Dirichlet boundary condition, as is usually the case, is no longer sufficient. We require, additionally,
to prescribe a zero heat flux for what we refer to as a normal double heat flux that is directly related
to the spatial retardation coefficient M. It describes that the internal structure of the material has an
effect on the heat flow. It is connected to the choice of the scaling ε2 in front of the higher gradient
term in the flux. It plays here the role of a natural boundary condition as one can see at the level of
the weak formulation of the problem. It is also a convenient choice of boundary condition as it cancels
any surface or line integrals. In direct analogy with second-gradient elasticity, such a term is referred
to as normal double traction (see, in particular, [24, 25, 30]).

Networks and Heterogeneous Media Volume 18, Issue 3, 1207–1225.
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2.2.1. Notation and assumptions

- We employ the Einstein notation of repeated indices unless otherwise stated.
- Throughout the work we assume that the uniform strong ellipticity condition holds, i.e., there

exist positive (generic) constants c1 and c2 such that:

c1|www|2 ≤ www.K(xxx).www ≤ c2|www|2,

c1|www|2|qqq|2 ≤ www ⊗ qqq:M(xxx):www ⊗ qqq ≤ c2|www|2|qqq|2,
(2.9)

for all www,qqq ∈ R3 − {000}.

2.2.2. Auxiliary formulas

For the readers’ convenience and for the expediency of our results, we introduce certain formulas
that we will make use of in obtaining the variational formulation of (2.8). These formulas, among
others, can also be found in [24, Appendix].

For any smooth enough scalar function ξ defined on Σ or on a neighborhood of Σ, the tangential and
normal components of ∇ξ are,

(∇ξ)τ= − nnn × (nnn × ∇ξ)=∇ξ − (∇ξ)nnnn, (∇ξ)n:=∇ξ.nnn. (2.10)

Moreover, we introduce the surface gradient of ξ using the projection operator Π:=I − nnn ⊗ nnn,

∇sξ=(I − nnn ⊗ nnn)∇ξ=Π∇ξ. (2.11)

Thus, we can write down a useful integration by parts formula on surfaces,∫
Σ

∇sξ dσ =
∫
Σ

ξ(div nnn)nnn dσ +
∫
∂Σ

JξνννK dλ, (2.12)

where,

νi = ϵϵϵ i jkt jnk (2.13)

are the components of the unit normal vector on ∂Σ and tangent to Σ, ttt is the unit tangent vector to ∂Σ,
and ϵϵϵ is the Levi-Civita tensor. Lastly, we remark, the jump term on Eq (2.12) is on a ridge, i.e., the
line on Σ where the tangent plane of Σ is discontinuous.

Remark 2.2. The above formulas are used with a high degree of frequency in emulsions and capillary
fluids (see, e.g., [35]). We refer the reader to the appendix of reference [24] or [25] for an excellent
exposition of the above formulae and related topics.

2.3. Weak formulation

The primary setting for the variational formulation of (2.8) is the space H2(Ω) ∩ H1
0(Ω) where the

Sobolev space H2(Ω) is a Hilbert space with norm,

∥u∥H2(Ω) =
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω,R3) + ∥∇∇u∥2L2(Ω,R3×3)

)1/2
. (2.14)
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Since the variational formulation of (2.8) is not a standard one, we write down the details for the
readers convenience using the notation introduced in Section 2.2.2. Hence, if we multiply (2.8) by a
test function v ∈ {ϕ ∈ C∞(Ω) | ϕ = 0 on Σ} and integrate by parts several times (including integration
by parts on surfaces using formula (2.12)) we obtain,

−

∫
Σ

(
Ki j(

xxx
ε

)∂x juε−ε
2∂xk

(
Mikpq(

xxx
ε

)∂2
xp xq

uε
))

niv dσ

+

∫
Ω

Ki j(
xxx
ε

)∂x juε∂x jv dxxx−ε2
{ ∫
Σ

Mikpq(
xxx
ε

)∂2
xp xq

uεnknmni∂xmv dσ

+

∫
∂Σ

r
Mikpq(

xxx
ε

)∂2
xp xq

uεnkΠiℓνℓv
z

dλ−
∫
Σ

Πℓm∂xm(Mikpq(
xxx
ε

)∂2
xp xq

uεnkΠiℓ)v dσ
}

+ε2
∫
Ω

Mikpq(
xxx
ε

)∂2
xp xq

uε∂2
xi xk

v dxxx=
∫
Ω

f v dxxx.

(2.15)

Using the fact that we have imposed a homogeneous Dirichlet boundary condition and a zero normal
double heat flux for the spatial retardation on Σ, we can see that the variational formulation (in vectorial
form) reduces to the following: Find uε ∈ H2(Ω) ∩ H1

0(Ω) such that,∫
Ω

K(
xxx
ε

)∇uε.∇v dxxx+ε2
∫
Ω

M(
xxx
ε

)∇∇uε:∇∇v dxxx=
∫
Ω

f v dxxx, (2.16)

for all v ∈ H2(Ω) ∩ H1
0(Ω).

Remark 2.3. The weak form in Eq (2.15) also provides a way for recovering the strong form of problem
(2.8) in the sense of distributions. For more details, the interested reader can consult [34].

Remark 2.4. Existence and uniqueness of a solution in Eq (2.16) that belongs in H2(Ω) ∩ H1
0(Ω)

is a matter of applying the Lax-Milgram lemma together with Poincaré’s inequality in H1
0(Ω) and the

assumptions regarding the ellipticity of the tensors in Section 2.2.1. Hence, immediately, we can derive
the following estimate from Eq (2.16),(

∥uε∥2H1(Ω) + ε
2 ∥∇∇uε∥2L2(Ω,R3×3)

)1/2
≤ c(Ω) ∥ f ∥L2(Ω) . (2.17)

2.4. Variational formulation

The weak solution to Eq (2.16) can be classified as the unique minimum of the functional Jε(θ),

uε= arg min
θ∈H2(Ω)∩H1

0(Ω)
Jε(θ), (2.18)

where

Jε(θ):=
1
2

∫
Ω

K(
xxx
ε

)∇θ.∇θ dxxx+
1
2

∫
Ω

ε2M(
xxx
ε

)∇∇θ:∇∇θ dxxx−
∫
Ω

f θ dxxx. (2.19)

A standard computation of the variational derivative of Jε will recover Eq (2.16) and the
Euler-Lagrange equations in succession.

Networks and Heterogeneous Media Volume 18, Issue 3, 1207–1225.
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3. Main results

3.1. Homogenization via unfolding Γ–convergence

We define the following domain decompositions (see [12–14, 16]):

K−ε :=
{
ℓ ∈ Zd | ε(ℓ + Y) ⊂ Ω

}
, Ω−ε := int

(
∪ℓ∈K−ε ε(ℓ + Y)

)
, Λ−ε := Ω\Ω−ε . (3.1)

ε

ε

Ω

Ω−ε
0 ∈ R3

ε
[

x
ε

]
∈ Z3

εy ∈ εY
x ∈ Ω

Figure 1. Unfolding operator on a periodic grid.

Let [zzz]Y = (⌊z1⌋, ⌊z2⌋, ⌊z3⌋) denote the integer part of zzz ∈ R3 and denote by {zzz}Y the difference zzz− [zzz]Y

which belongs to Y . Regarding our multiscale problem that depends on a small length parameter ε > 0,
we can decompose any xxx ∈ R3 using the maps [·]Y : R3 7→ Z3 and {·}Y : R3 7→ Y the following way
(see Figure 1 (right)),

xxx = ε
([xxx
ε

]
Y
+

{xxx
ε

}
Y

)
. (3.2)

Definition 3.1. ( [13, Def. 2.1, pp. 1588]) For any Lebesgue measurable function φ on Ω we define
the periodic unfolding operator by,

Tε(φ)(xxx,yyy) =

φ
(
ε
[

xxx
ε

]
Y
+ εyyy

)
for a.e. (xxx,yyy) ∈ Ω−ε × Y

0 for a.e. (xxx,yyy) ∈ Λ−ε × Y.
(3.3)

Regarding properties of the unfolding operator, the reader can consult [12–14, 16].

Definition 3.2. ( [8, Def. 12 and Prop. 14, pp. 458]) Let Fε : Lp(Ω)→ R be a sequence of functionals
and F : Lp(Ω × Y)→ R (p > 1). We say that Fε unfolding Γ-converges to F if for all u ∈ Lp(Ω × Y):

1. For every sequence uε ∈ Lp(Ω) such that Tε(uε)⇀ u in Lp(Ω × Y) one has,

F(u) ≤ lim inf
ε→0

Fε(uε); (3.4)

2. there exists a sequence uε ∈ Lp(Ω) such that Tε(uε)⇀ u in Lp(Ω × Y) and

F(u) = lim
ε→0

Fε(uε). (3.5)

Networks and Heterogeneous Media Volume 18, Issue 3, 1207–1225.
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Theorem 3.1. The sequence of functionals Jε unfolding Γ-converge in the weak topology of H2(Ω) ∩
H1

0(Ω) to Jeff as ε→ 0,

Jε
Γ
→ Jeff, (3.6)

where

Jeff(θ):=
1
2

∫
Ω

Keff∇θ.∇θ dxxx −
∫
Ω

f θ dxxx, (3.7)

Keff
ik :=

∫
Y

K(yyy)(∇ywk − eeek).(∇ywi − eeei) +M(yyy)∇y∇ywk:∇y∇ywi dyyy, (3.8)

with wk ∈ H2(Y), k = 1, 2, 3 the Y-periodic local solution to,

−divy

(
K(yyy).(∇ywk − eeek) − divy(M(yyy):∇y∇ywk)

)
=0 in Y. (3.9)

Remark 3.1. The first part of Eq (3.8) is what one would expect as a result from the homogenization
of second order linear elliptic equations while the second part is new, specific to the inclusion of the
second-gradient thermal effects.

Theorem 3.2. Let uε and u be the unique minimizers of (2.19) and (3.7), respectively. Moreover, for
ũ1 ∈ Ls(Ω), let f :=div FFF, FFF ∈ L3(Ω,R3) then,

∇uε − ∇u − ∇yû(·,
·

ε
)→ 0 in L2(Ω,R3), (3.10)

as ε→ 0 with

û(xxx,yyy) = −wk(yyy)
∂u
∂xk

(xxx) + ũ1(xxx). (3.11)

Remark 3.2. We note in the above theorem, the assumptions that ∇ywk ∈ Lr and ∇u ∈ Ls with
1/r + 1/s = 1/2 are no longer needed. Furthermore, if we compare Eq (3.11) with G. Griso’s result
in Eq (1.9), we see that Eq (3.11) is more accessible to computations, hence, more practical. Note that
û ∈ L2(Ω,H1

per(Y)).

3.2. Remarks on the homogenized coefficients

3.2.1. Symmetry

Since we work within a variational framework, the homogenized coefficients inherit the symmetry
that is imposed on them from the framework. If one were to obtain the effective tensor through a
multiple scale expansion then the tensor would have the following, non-symmetric, form:

Keff
ik :=

∫
Y

Ki j(yyy)(δ jk −
∂wk

∂y j
) dyyy. (3.12)

Naturally, the two forms, (3.8) and (3.12), are equivalent (since the tensors K and M are assumed to be
isotropic). The proof is virtually identical to the classical case (see [39]), however, we feel it should
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be included here since it is a higher-gradient generalization of the classical case: Multiply with a test
function v ∈ H2

per(Y) equation (3.9) and integrate by parts to obtain,

0 =
∫

Y
Mm jpq

∂2wk

∂yp∂yq

∂2v
∂ym∂y j

dyyy +
∫

Y
Km j
∂(wk − yk)
∂y j

∂v
∂ym

dyyy. (3.13)

Selecting v = wi we have,

0 =
∫

Y
Mm jpq

∂2wk

∂yp∂yq

∂2wi

∂ym∂y j
dyyy +

∫
Y

Km j
∂(wk − yk)
∂y j

∂wi

∂ym
dyyy. (3.14)

If we add and subtract coordinate yi on the wi term of the second integral we obtain,

∫
Y

Ki j(yyy)(δ jk −
∂wk

∂y j
) dyyy

=

∫
Y

Mm jpq
∂2wk

∂yp∂yq

∂2wi

∂ym∂y j
dyyy +

∫
Y

Km j
∂(wk − yk)
∂y j

∂(wi − yi)
∂ym

dyyy.
(3.15)

3.2.2. Variational characterization of the higher-order effective tensor

From equation (3.8), we can see that Keff is symmetric as well, and is determined in its entirety from
the knowledge of the quadratic form Keffξξξ · ξξξ for any constant vector ξξξ ∈ R3. Using definition (3.8) one
can check that,

Keffξξξ · ξξξ =

∫
Y

K(yyy)(−ξξξ+∇ywξ).(−ξξξ+∇ywξ) dyyy +
∫

Y
M(yyy)∇y∇ywξ:∇y∇ywξ dyyy, (3.16)

where wξ is the solution of the following cell problem,

−divy

(
K

(
∇ywξ−ξξξ

)
−divy

(
M:∇y∇ywξ

))
=0 in Y,

yyy 7→ wξ(yyy) is Y − periodic.
(3.17)

Using completely standard techniques stemming from the calculus of variations we can write for our
case,

Keffξξξ · ξξξ= inf
v∈H2

per(Y)

(∫
Y

K(yyy)(∇yv−ξξξ).(∇yv−ξξξ) dyyy+
∫

Y
M(yyy)∇y∇yv:∇y∇yv dyyy

)
, (3.18)

with H2
per(Y):={v ∈ H2(Y) | v is Y − periodic}. It follows immediately that the effective coefficients are

elliptic (they satisfy the Legendre condition), i.e., Keffξξξ · ξξξ ≥ K|ξξξ|2 where K=
∫

Y
K(yyy) dyyy.

4. Proof of the main results

4.1. Proof of Theorem 3.1

Theorem 3.1. The sequence of functionals Jε unfolding Γ-converge in the weak topology of H2(Ω) ∩
H1

0(Ω) to Jeff as ε→ 0,

Networks and Heterogeneous Media Volume 18, Issue 3, 1207–1225.



1218

Jε
Γ
→ Jeff, (3.6)

where

Jeff(θ):=
1
2

∫
Ω

Keff∇θ.∇θ dxxx −
∫
Ω

f θ dxxx, (3.7)

Keff
ik :=

∫
Y

K(yyy)(∇ywk − eeek).(∇ywi − eeei) +M(yyy)∇y∇ywk:∇y∇ywi dyyy, (3.8)

with wk ∈ H2(Y), k = 1, 2, 3 the Y-periodic local solution to,

−divy

(
K(yyy).(∇ywk − eeek) − divy(M(yyy):∇y∇ywk)

)
=0 in Y. (3.9)

Proof. Define,

Eε(θ):=

 1
2a(θ, θ) if θ ∈ H2(Ω) ∩ H1

0(Ω)
+∞ if θ ∈ L2(Ω)\H2(Ω) ∩ H1

0(Ω),
(4.1)

with

a(θ, θ):=
∫
Ω

K(
xxx
ε

)∇θ.∇θ dxxx+
∫
Ω

ε2M(
xxx
ε

)∇∇θ:∇∇θ dxxx, (4.2)

and

Eeff(θ):=

 1
2

∫
Ω

Keff∇θ.∇θ dxxx if θ ∈ H1
0(Ω)

+∞ if θ ∈ L2(Ω)\H1
0(Ω).

(4.3)

It suffices to show that Eε
Γ
→ Eeff where the energy Eε is finite. Γ-limit inferior inequality. Let uε ∈

H2(Ω) ∩ H1
0(Ω) be a solution to (2.8) then based on the estimates in (2.17) and properties of the periodic

unfolding operator Tε (see Definition 3.1) we have,

• Tε(uε)⇀ u in L2(Ω,H2(Y))
• Tε(∇uε)⇀ ∇xu + ∇yû in L2(Ω,H1(Y,R3))
• Tε(ε∇∇uε)⇀ ∇y∇yû in L2(Ω × Y,R3×3).

Then, for all φφφ ∈ L2(Ω,C1
per(Y,R

3)) we have,

0≤
1
2

∫
Ω

K(
xxx
ε

)(∇uε−φφφ(xxx,
xxx
ε

)).(∇uε−φφφ(xxx,
xxx
ε

)) dxxx

+
1
2

∫
Ω

ε2M(
xxx
ε

)(∇∇uε−∇φφφ(xxx,
xxx
ε

)):(∇∇uε−∇φφφ(xxx,
xxx
ε

)) dxxx.
(4.4)

Opening up the parentheses in the above expression, we obtain
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Eε(uε)≥
∫
Ω

K(
xxx
ε

)∇uε.φφφ dxxx−
1
2

∫
Ω

K(
xxx
ε

)φφφ.φφφ dxxx

+

∫
Ω

ε2M(
xxx
ε

)∇∇uε:∇φφφ dxxx−
1
2

∫
Ω

ε2M(
xxx
ε

)∇φφφ:∇φφφ dxxx

=

∫
Ω×Y

K(yyy)Tε(∇uε).Tε(φφφ) dyyydxxx −
1
2

∫
Ω×Y

K(yyy)Tε(φφφ).Tε(φφφ) dyyydxxx

+

∫
Ω×Y
ε2M(yyy)Tε(∇∇uε):Tε(∇φφφ) dyyydxxx−

1
2

∫
Ω×Y
ε2M(yyy)Tε(∇φφφ):Tε(∇φφφ) dyyydxxx

ε→0
→

∫
Ω×Y

K(yyy)(∇xu + ∇yû).φφφ dyyydxxx−
1
2

∫
Ω×Y

K(yyy)φφφ.φφφ dyyydxxx

+

∫
Ω×Y

M(yyy)∇y∇yû:∇yφφφ dyyydxxx−
1
2

∫
Ω×Y

M(yyy)∇yφφφ:∇yφφφ dyyydxxx.

(4.5)

Since the space L2(Ω,C1
per(Y,R

3)) is dense in L2(Ω × Y,R3), the above inequality holds for a sequence
of regular functions of the form φφφε(xxx,yyy) Y-periodic in yyy with the following convergence properties,

• Tε(φφφε)⇀ ∇xu + ∇yû in L2(Ω × Y,R3)
• Tε(ε∇φφφε)⇀ ∇y∇yû in L2(Ω × Y,R3×3).

Upon extracting a (non-relabeled) sub-sequence, we obtain in the limit inferior of (4.5),

lim inf
ε→0

Eε(uε)≥
1
2

∫
Ω×Y

(
K(yyy)(∇xu+∇yû).(∇xu+∇yû)

+M(yyy)∇y∇yû:∇y∇yû
)

dyyydxxx

≥
1
2

∫
Ω

inf
v∈H2

per(Y)

∫
Y

(
K(yyy)(∇xu+∇yv).(∇xu+∇yv)

+M(yyy)∇y∇yv:∇y∇yv
)
dyyydxxx

=
1
2

∫
Ω

Keff∇xu.∇xu dxxx

Γ-limit superior inequality.
We will construct the recovery sequence for smooth functions initially and then use a

diagonalization argument to complete the proof.
Let uuu ∈ H2(Ω) ∩ H1

0(Ω). Relying on the density of C∞0 (Ω) into H2(Ω) ∩ H1
0(Ω) we can suppose

without loss of generality that u ∈ C∞0 (Ω). Furthermore, let û ∈ C2
per(Y) be a minimizer of,

inf
v∈H2

per(Y)

{∫
Y

K(yyy)(∇xu+∇yv).(∇xu+∇yv) dyyy+M(yyy)∇y∇yv:∇y∇yv
}
. (4.6)

Existence of such a minimizer is shown using classical arguments of coercivity and lower semi-
continuity of,

v 7→ inf
v∈H2

per(Y)

(∫
Y

K(yyy)(∇yv−ξξξ).(∇yv−ξξξ) dyyy+
∫

Y
M(yyy)∇y∇yv:∇y∇yv dyyy

)
. (4.7)
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Define the sequence,

uε(xxx) = u(xxx) + εû(
xxx
ε

). (4.8)

Then,

• Tε(uε)→ u in L2(Ω,H2(Y))
• Tε(∇uε)→ ∇xu + ∇yû in L2(Ω,H1(Y,R3))
• Tε(ε∇∇uε)→ ∇y∇yû in L2(Ω × Y).

Thus,

Eε(uε) =
1
2

∫
Ω

(
K(

xxx
ε

)∇uε.∇uε+ε2M(
xxx
ε

)∇∇uε:∇∇uε
)

dyyydxxx

=
1
2

∫
Ω×Y

(
K(yyy)T (∇uε).T (∇uε)+ε2M(yyy)T (∇∇uε):T (∇∇uε)

)
dyyydxxx.

(4.9)

Hence, passing to the limit as ε→ 0 in the expression above we obtain,

lim
ε→0
Eε(uε)

=

∫
Ω×Y

(
K(yyy)(∇xu + ∇yû).(∇xu + ∇yû)+M(yyy)∇y∇yû):∇y∇yû

)
dyyydxxx

=
1
2

∫
Ω

inf
v∈H2

per(Y)

∫
Y

(
K(yyy)(∇xu+∇yv).(∇xu+∇yv)+M(yyy)∇y∇yv:∇y∇yv

)
dyyydxxx

=
1
2

∫
Ω

Keff∇xu.∇xu dxxx

(4.10)

We can conclude the proof using a density and diagonalization argument. □

Remark 4.1. The Euler-Lagrange equation of (3.7) is,

∫
Ω

Keff∇u.∇ϕ dxxx =
∫
Ω

f ϕ dxxx (4.11)

for all ϕ ∈ H1
0(Ω). In the sense of distributions we can recover,

−div
(
Keff .∇u

)
= f inD(Ω),

u = 0 on ∂Ω,
(4.12)

with Keff given in Eq (3.8).
The above equation is precisely the limit problem that has been obtained countless times in the

homogenization literature. The difference in this work is that the local solution used to construct the
effective tensor Keff satisfies a higher-gradient problem with wk ∈ H2

per(Y) (and not only in H1(Y)).
This newly found local solution regularity is combined with the theorem below to prove the classical
corrector convergence result.
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The next theorem is included only for completion purposes and is a consequence of G.
Stampacchia’s interpolation theorem [40]. Practically, it allows one to control the Lp norm of the
gradient of the weak solution of a second order elliptic system with constant coefficients, for
p ∈ [2,∞), by controlling the integrability of the data. We refer the interested reader to [4, Thm. 3.28,
pp. 76] (and references therein) for a modern treatment on the subject. Our aim here is to apply the
theorem below to the second order elliptic system with constant coefficients in (4.12) to obtain the
necessary integrability for the homogenized solution to compensate for the remaining regularity that
is needed in the classical corrector convergence theorem.

Theorem 4.1. Let u ∈ H1
0(Ω,R3) be a weak solution of the Dirichlet problem

−div(A∇u) = −div FFF, (4.13)

where the constant coefficients Ai jαβ satisfy the Legendre-Hadamard condition, and FFF ∈ Lp(Ω,R3) for
some 2 ≤ p < ∞. Then, ∇u ∈ Lp(Ω,R3×3) and

∥∇u∥Lp(Ω,R3×3) ≤ c ∥FFF∥Lp(Ω,R3) (4.14)

A proof of this theorem can be found in [26, Thm. 7.1, pp. 138] and [4, Thm. 3.29, pp. 79 and
discussion on Sect. 3.5, pp. 78].

4.2. Proof of Theorem 3.2

Theorem 3.2. Let uε and u be the unique minimizers of (2.19) and (3.7), respectively. Moreover, for
ũ1 ∈ Ls(Ω), let f :=div FFF, FFF ∈ L3(Ω,R3) then,

∇uε − ∇u − ∇yû(·,
·

ε
)→ 0 in L2(Ω,R3), (3.10)

as ε→ 0 with

û(xxx,yyy) = −wk(yyy)
∂u
∂xk

(xxx) + ũ1(xxx). (3.11)

Proof. The main idea of the proof essentially amounts to a compensated regularity argument, where
the burden of regularity is split (un-equally) between the local solution and the homogenized solution.
We argue as follows: by the assumption on the body force f we can apply Theorem 4.1 and obtain
∇u ∈ L3(Ω,R3). Moreover, since the local solution belongs in H2

per(Y), wk ∈ H2
per(Y), we extend it by

periodicity to the entire space. By applying standard Sobolev embedding theory we can obtain ∇ywk ∈

L6(R3,R3) (see e.g. [17, Theorem 2.31]). Therefore, the above compensated regularity argument makes
the expression ∇uε − ∇u − ∇yû(·, ·

ε
) well defined in the L2 norm and hence, we can prove Proposition

9.12 in [10, pp. 185] directly. In what follows, we provide the actual steps of the argument that is given
in [10, Proposition 9.12, pp. 185] with the appropriate adjustments that the second-gradient thermal
effects introduce.

Embarking from the ellipticity of the second order tensor K we are led to,
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c1

∥∥∥∥∥∇uε(xxx)−∇u(xxx) − ∇yû(xxx,
xxx
ε

)
∥∥∥∥∥2

L2(Ω,R3)

≤

∫
Ω

K(
xxx
ε

)(∇uε(xxx)−∇u(xxx)−∇yû(xxx,
xxx
ε

)).(∇uε(xxx)−∇u(xxx)−∇yû(xxx,
xxx
ε

)) dxxx

≤

∫
Ω

K(
xxx
ε

)(∇uε(xxx) − ∇u(xxx) − ∇yû(xxx,
xxx
ε

)).(∇uε(xxx) − ∇u(xxx) − ∇yû(xxx,
xxx
ε

)) dxxx

+

∫
Ω

M(
xxx
ε

)(ε∇∇uε−∇y∇yû(xxx,
xxx
ε

)):(ε∇∇uε−∇y∇yû(xxx,
xxx
ε

)) dxxx,

(4.15)

where the last inequality is due to the ellipticity condition of the tensor M. Hence, opening up the
expression above, using the structure of Eq (2.8), and the symmetry of the tensors K and M we have,

c1

∥∥∥∥∥∇uε(xxx)−∇u(xxx)−∇yû(xxx,
xxx
ε

)
∥∥∥∥∥2

L2(Ω,R3)

≤

∫
Ω

f uε dxxx−2
∫
Ω

K(
xxx
ε

)∇uε.(∇u+∇yû)dxxx+
∫
Ω

K(
xxx
ε

)(∇u+∇yû).(∇u+∇yû)dxxx

−2
∫
Ω

εM(
xxx
ε

)∇∇uε:∇y∇yûdxxx+
∫
Ω

M(
xxx
ε

)∇y∇yû:∇y∇yûdxxx.

(4.16)

By unfolding, we can see that we are able to pass to the limit in each expression due to estimate (2.17).
Thus,

lim
ε→0

c1

∥∥∥∇uε−∇u−∇yû
∥∥∥2

L2(Ω,R3)
≤

∫
Ω×Y

f udyyydxxx

−

∫
Ω×Y

K(yyy)(∇u+∇yû).(∇u+∇yû)dyyydxxx

−

∫
Ω×Y

M(yyy)∇y∇yû:∇y∇yûdyyydxxx=0.

(4.17)

On the last step we made use of Eq (4.10). □

5. Discussion

By enriching a microscopic model with higher-gradient contributions, we have obtained an
upscaled Fourier’s law of heat conduction, which exhibits thermal effects at varying length scales
through the effective conductivity tensor. The inherent higher gradient regularity of the enriched
microscopic model is transferred to the local problem, enabling us to use a compensated regularity
argument and establish the classical corrector result in homogenization with less stringent regularity
assumptions. By and large, we expect that the results can be extended to the time-dependent case,
benefiting from the natural gradient flow structure of the problem (see [33]). Most likely the
techniques of evolutionary Γ-convergence (see e.g., [29]) would be applicable. Naturally, the
technique here can be extended to perforated domains by adjusting the unfolding operator as in [11].
The challenge is to handle interface terms.
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