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Abstract: We consider a partial differential equation - ordinary differential equation system to describe
the dynamics of traffic flow with autonomous vehicles. In the model, the bulk flow of human drivers is
represented by a scalar conservation law, while each autonomous vehicle is described by an ordinary
differential equation. The coupled PDE-ODE model is introduced, and existence of solutions for this
model is shown, along with a proposed algorithm to construct approximate solutions. Next, we propose
a control strategy for the speeds of the autonomous vehicles to minimize the average fuel consumption
of the entire traffic flow. Existence of solutions for the optimal control problem is proved, and we
numerically show that a reduction in average fuel consumption is possible with an AV acting as a
moving bottleneck.
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1. Introduction

The advent of vehicle automation has the potential to substantially transform the management of
transportation systems. As disruptive technologies such as autonomous vehicles (AVs) come closer to
reality, the potential for improved traffic control using AVs as Lagrangian actuators in the traffic flow
has become a significant focus both theoretically [5, 7, 14–16, 26, 27] and experimentally [25].

Such control strategies rely on traffic models to capture the dynamics of the traffic flow. These
models generally can be categorized as either microscopic or macroscopic, referring to the resolution
at which the traffic is modeled. Microscopic traffic models use ordinary differential equations (ODEs)
to model the dynamics of each individual vehicle in the traffic flow as a function of the local traffic

http://http://www.aimspress.com/journal/nhm
http://dx.doi.org/10.3934/nhm.2023051


1191

state, while macroscopic traffic flow models use partial differential equations (PDEs) to model the
evolution of traffic density on a roadway using conservation of mass (vehicles). While microscopic
traffic flow models are able to capture the dynamics of each vehicle in the traffic flow, and allow for
differentiation between individual vehicle dynamics, they can become computationally intractable at
large scales. However, while computationally tractable at large scale, macroscopic models generally
do not allow for differentiation between different vehicles with unique dynamics.

In the context of a relatively small number of AVs that may soon be present in the traffic flow
navigating a bulk traffic that is made up primarily of human-piloted vehicles, the concept of coupled
micro-macro models has been proposed [9]. The motivation behind such models is to use a PDE to
model the density evolution of the primarily human-driven human traffic flow, and use a small number
of ODEs to model the trajectories of AVs through that bulk traffic flow. These models are referred to
as PDE-ODE or micro-macro models.

Recent results for weakly-coupled PDE-ODE systems, where the AV drives according to the local
density solution of the PDE but does not locally constrain the flux of vehicles in the PDE, have shown
that a fleet of such AVs can be used to estimate the traffic state between subsequent AVs [11]. Others
have shown that by considering the strongly coupled PDE-ODE system where the presence of AVs
locally acts as a moving bottleneck and restricts the traffic flux can be used for traffic control. In
particular, one can look at Lagrangian control where a certain number of vehicles are controlled
within the bulk traffic flow to act as bottlenecks. Recently, two seminal works [4, 21] have proposed
strategies to control traffic using such an approach. Both these works look to control traffic via means
of autonomous vehicles: in [21], Piacentini, et al., use a model predictive control (MPC) approach to
achieve a reduction in fuel consumption in congested traffic; Čicic et al. [4] dissipate a traffic jam via
the use of controlled autonomous vehicles.

We extend the existing work in [9] and consider the case of a fleet of multiple AVs acting as
moving bottlenecks in the traffic flow. Each AV will be described by a different ODE and several flux
constraints on the human-driven traffic PDE will be in place. We base our work on the results
available for the micro-macro models of [9]. In particular, existence and well-posedness of solution
were investigated in [10, 18, 19], the numerical aspects in [3, 8] and the existence of controls were
analyzed in [13]. Using those existing results, we are able to prove the existence of solution for the
extended coupled PDE-ODE model. Using this extended model, we study the control problem of how
to drive the AVs to achieve a certain traffic state to reduce the average fuel consumption of the overall
traffic flow. The underlying idea is to exploit the dynamics of the AV by controlling it to drive
according to a specific control law. In this way the interaction between the controlled vehicle and the
surrounding flow can be used to modify the traffic density and improve congestion and reduce fuel
consumption. We consider the speed of the moving bottleneck as the control variable when designing
the control law, and use this for traffic control.

The remainder of this article is organized as follows: Section 2 presents the modeling framework
and extends the framework to consider multiple AVs acting as moving bottlenecks in the flow while
also presenting an analytical method to find solutions to the Riemann problem of PDE-ODE systems.
In Section 2.3 we show how to compute approximate solutions to the coupled PDE-ODE system, and
in Section 3 we introduce an optimal control problem and prove that this optimal control problem has
at least one solution. Section 4 shows the numerical scheme and the simulations.
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2. Description of the model

2.1. Coupled PDE-ODE model for traffic with autonomous vehicles

When modeling the evolution of the macroscopic traffic state, a common choice of conservation
law used in traffic flow modeling is the Lighthill-Whitham-Richards (LWR) [20, 23] PDE:

∂tρ (t, x) + ∂x f (ρ (t, x)) = 0, t > 0, x ∈ IR,
ρ(0, x) = ρ0(x), x ∈ IR.

(2.1)

where ρ = ρ(t, x) ∈ [0, ρmax] denotes the macroscopic traffic density at time t ≥ 0 and position x ∈ IR,
and f = f (ρ) is the density dependent flux function. The flux is given by f (ρ) = ρv(ρ) with v the
mean speed of cars. In this paper we assume that the speed v depends linearly on the density of cars as
follows:

v(ρ) = Vmax

(
1 −

ρ

ρmax

)
, (2.2)

with constant maximal density ρmax and constant maximal speed Vmax.
Then, we assume that N controlled autonomous vehicles (AVs) are present on the road and their

position is indicated by yi. The trajectory of the ith autonomous vehicle, for i ∈ {1, · · · ,N}, is modeled
by the following ODE

ẏi(t) = min{Vi(t), v(ρ(t, yi(t)+))}, t > 0,
yi(0) = y0

i .
(2.3)

Above, Vi(t) is the control function, selecting the desired speed of the vehicle. The ith AV drives at its
maximum desired speed Vi except when the traffic in front is too dense. In that case, the autonomous
vehicle has to reduce its velocity accordingly. The notation ρ(t, yi(t)+) indicates the right trace of ρ
with respect to the variable x, i.e., v(ρ(t, yi(t)+)) := lim

x→yi(t)
x>yi(t)

ρ(t, x). This allows us to assume that the

autonomous vehicles are affected only by the downstream density.
To describe the influence of the ith AV on the evolution of traffic we introduce the following flux

constraint:
f (ρ (t, yi(t))) − ẏi(t)ρ (t, yi(t)) ≤ Fα (ẏi(t)) , t > 0. (2.4)

The function Fα, α ∈ (0, 1), models the maximal road capacity reduction due to the presence of the ith

autonomous vehicle, that acts as a moving bottleneck which imposes unilateral constraints at the AVs
positions. In accordance to [9], Fα, is defined as follows:

Fα(ẏi(t)) := α max
ρ∈[0,ρmax]

( f (ρ) − ẏi(t)ρ) .

For simplicity of notation, in the rest of this section we drop the index i and use Vi and V
interchangeably.

Thus, following the model proposed in [9], we model the impact of N ∈ IN\{0} autonomous vehicles
(AVs) on traffic flow via the following model:

∂tρ (t, x) + ∂x f (ρ (t, x)) = 0,
ẏi(t) = min{Vi(t), v(ρ(t, yi(t)+))},
f (ρ (t, yi(t))) ,−ẏi(t)ρ (t, yi(t)) ≤ Fα (ẏi(t)) ,
ρ(0, x) = ρ0(x),
yi(0) = y0

i ,

(2.5)
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Figure 1. The flux function f and ρ̌α(V) ⩽ ρ̂α(V) ⩽ ρ∗(V).

with all terms as defined above.

2.2. The Riemann problem with moving constraints

In view of the construction of the Riemann solver, let us define ρ̌α(V) and ρ̂α(V) as the two
intersections point of the flux function f (ρ) with the line Fα(V) + Vρ such that ρ̌α(V) < ρ̂α(V) (see
Figure 1). And let us fix ρ∗(V) to be the solution of Vρ = f (ρ). Then, for every V ∈ [0,Vmax], we
obtain:

ρ̌α(V) = ρmax(Vmax − V)
1 −

√
1 − α

2Vmax

 , (2.6)

ρ̂α(V) = ρmax(Vmax − V)
1 +

√
1 − α

2Vmax

 , (2.7)

ρ∗(V) = ρmax

(
1 −

V
Vmax

)
. (2.8)

Let us now recall how to construct the solution of a Riemann problem for a constrained system.
Consider the coupled PDE-ODE (2.1), (2.3) and (2.4) system equipped with Riemann type initial data

ρ0(x) =
{
ρL if x < 0
ρR if x > 0

and y0 = 0. (2.9)

Following [9, Section 3] and [13], we denote as R the standard Riemann solver for the simple PDE
(2.1) with ρ0 as in Eq (2.9) and we denote as RV the constrained Riemann problem.

Definition 2.1. Let V ∈ [0,Vmax]. The constrained Riemann solver RV : [0, ρmax]2 7→ L1
loc(IR; [0, ρmax])

for (2.1), (2.3), (2.4) and (2.9) is defined as follows:

1. If f (R(ρL, ρR)(V)) > Fα(V) + VR(ρL, ρR)(V), then

RV(ρL, ρR)(x/t) =
{
R(ρL, ρ̂α(V))(x/t) if x < Vt,
R(ρ̌α(V), ρR)(x/t) if x ⩾ Vt,

and y(t) = Vt.

2. If VR(ρL, ρR)(V) ⩽ f (R(ρL, ρR)(V)) ⩽ Fα(V) + VR(ρL, ρR)(V), then

RV(ρL, ρR) = R(ρL, ρR) and y(t) = Vt.

Networks and Heterogeneous Media Volume 18, Issue 3, 1190–1206.
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3. If f (R(ρL, ρR)(V)) < VR(ρL, ρR)(V), then

RV(ρL, ρR) = R(ρL, ρR) and y(t) = v(ρR)t.

Note that when the constraint is enforced (1. in the above definition), a non-classical shock arises,
which satisfies the Rankine-Hugoniot condition but violates the Lax entropy condition [17].

An illustration of each case in Definition 2.1 is shown in Figure 2. In particular, in Figure 2a, a
non-classical shock (ρ̂α, ρ̌α) is shown.

x

t

0

ρ̄

ρ̄

ρ̌α(V )

ρ̂α(V ) ẏ = V

(a) Case (1) of Definition 2.1: ρL = ρR =

ρ̄ ∈ (ρ̌α(V), ρ̂α(V)).

x

t

0

ρR

ρL

ẏ = V

(b) Case (2) of Definition 2.1: 0 < ρL <
ρ̌α(V) and ρ̂α(V) < ρR ⩽ ρmax.

x

t

0

ρL

ρR ẏ = v(ρR)

(c) Case (3) of Definition 2.1: ρ∗(V) < ρL < ρR.

Figure 2. Possible different solutions of the Riemann problem.

2.3. Wave-front tracking solution method

In this section, we describe how to construct solutions to the coupled PDE-ODE system (2.5)
adapting the wave front tracking method found in [6].
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Let the initial density ρ0 and the initial trajectories of the autonomous vehicle (y0
i )i∈{1,··· ,N} be known.

Following [13], we can construct a density meshMn on the interval [0, ρmax] and a velocity mesh Vn

on the interval [0,Vmax] such that (ρ̌α(Vi), ρ̂α(Vi)) ∈ (Mn)2 for every i ∈ {1, · · · ,N} and for every
Vi ∈ Vn. We recall that Vi(t) is the speed of the ith autonomous vehicle at time t. Simultaneously, for
every i ∈ {1, · · · ,N}, we consider a sequence of piecewise constant functions (Vn

i )n∈IN and a sequence
(ρn

0)n∈IN having both a finite number of discontinuities such that

lim
n→+∞

∥ρn
0 − ρ0∥L1(IR) = 0 and TV(ρn

0) ⩽ TV(ρ0), (2.10)

lim
n→+∞

∥Vn
i − Vi∥L1(IR+) = 0 and TV(Vn

i ) ⩽ TV(Vi). (2.11)

Remark 1. Hereafter, the term “approximately” means that a rarefaction wave is split into a fan of
rarefaction shocks such that the left and the right densities of each rarefaction shock belongs to the
state meshMn.

Next, we describe the steps to construct the solution of the PDE-ODE system using the wave-front
tracking method.
Step 1 For every AV i ∈ {1, · · · ,N}, we solve approximately the constrained Riemann problem at
x = y0

i as described in Section 2.2. This is done for t ∈ [0, tn
1] with V = Vi(0+) where tn

1 is the first time
when one of the AVs changes its speed.
Step 2 At each point of discontinuity of ρn

0 different from (y0
i )i=1,··· ,N , we solve approximately the

standard Riemann problem over [0, tn
1].

Step 3 By piecing solutions together, we construct a solution ρn and for every i ∈ {1, · · · ,N}, yn
i is

solution of {
ẏn

i (t) = min(Vn
i (t), v(ρn(t, yn

i (t)+))),
yn

i (0) = y0
i ,

until two waves meet at tI .
Step 4 Now we check the value of tI:

(a) If tI < tn
1, then the approximate solution ρn(tI , ·) is still a piecewise constant function verifying

ρn(tI , x) ∈ Mn for almost every x ∈ IR. Thus, Step 1, Step 2 and Step 3 are repeated until two
waves meet at a new tI , which is repeated until tI ⩾ tn

1.

(b) If tI ⩾ tn
1, the constrained Riemann problem is solved over [tn

1, t
n
2] as previously replacing Vi(0+)

by Vi(tn
1+) for every i ∈ {1, · · · ,N} where tn

2 is the second time when one of the AVs changes its
speed.

Using this approach, we construct an approximate solution (ρn, yn
1, · · · , y

n
N) of Eqs (2.1), (2.3) and (2.4).

3. Optimal control problem

In this section, we first present the Cauchy problem and prove existence of solutions. Next, building
on this, we present and prove existence of solutions for the optimal control problem.

Networks and Heterogeneous Media Volume 18, Issue 3, 1190–1206.
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3.1. Cauchy problem

Let TV be the total variation and BV the set of functions of bounded variation endowed with the
norm ∥u∥BV = ∥u∥L1 + TV(u), (for more details, see [12]). Consider an initial density
ρ0 ∈

(
L1 ∩ BV

)
(IR; [0, ρmax]) and initial positions of the AVs (y0

i )i=1,··· ,N ∈ IRN each of which has the
following maximal speeds (Vi)i=1,··· ,N ∈ BV

(
IR+; [0,Vmax]

)N .

Definition 3.1. The (N + 1)-tuple (ρ, y1, · · · , yN) provides a solution to Eqs (2.1), (2.3) and (2.4) if the
following conditions hold.

1. ρ ∈ C0
(
IR+;

(
L1 ∩ BV

)
(IR; [0, ρmax])

)
.

2. For every i ∈ {1, · · · ,N}, yi ∈ W1,1
loc (IR+; IR).

3. ρ is a weak solution of ∂tρ + ∂x f (ρ) = 0, (x, t) ∈ IR+ × IR.

4. For every κ ∈ IR, for all φ ∈ C1
c (IR2; IR+) and for every i ∈ {1, · · · ,N}, it holds∫

IR+

∫
IR

(
|ρ − κ|∂tφ + sgn(ρ − κ)( f (ρ) − f (κ))∂xφ

)
dx dt (3.1)

+ 2
∫

IR+
( f (κ) − ẏi(t)κ −min{hi(k), Fα(ẏi(t))})φ(t, yi(t)) dt

+

∫
IR
|ρ0 − κ|φ(0, x) dx ⩾ 0 .

5. For a.e. t > 0, for every i ∈ {1, · · · ,N},

ẏi(t) = min (Vi(t), v (ρ (t, yi(t)+))) .

6. For a.e. t > 0, for every i ∈ {1, · · · ,N},

f (ρ (t, yi(t)±)) − ẏi(t)ρ (t, yi(t)±) ≤ Fα (ẏi(t)) .

Remark 2. Note that the Cauchy problem (2.1), (2.3) and (2.4) has previously been studied in [9, 13,
18, 19] with only one autonomous vehicle (N = 1 in (2.3) and (2.4)). In the case where the maximum
speed of the AV is constant in time, the existence and the stability of solutions for (2.1), (2.3) and
(2.4) in the sense of Definition 3.1 has been proven in [9, 18, 19], while when the maximum speed of
the AV depends on time, the existence of solutions for (2.1), (2.3) and (2.4) has been proven in [13].
Therefore, the focus of this article is to extend the theory to the case of N > 1.

Let ϵ > 0 and introduce the class of admissible maximal speed VϵN ⊂ BV
(
IR+; [0,Vmax]

)N . The
sequence (Vi)i∈{1,··· ,N} ∈ V

ϵ
N if, for every t ⩾ 0 and for every i ∈ {1, · · · ,N − 1},

yi(t) − ϵ < yi+1(t),

Networks and Heterogeneous Media Volume 18, Issue 3, 1190–1206.
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with yi is solution of Eq (2.3). Note that the set VϵN depends on the initial density ρ0 and the initial
position of the N autonomous vehicles (y0

i )i∈{0,··· ,N}. When (Vi)i∈{1,··· ,N} ∈ V
ϵ
N , an autonomous vehicle

can never catch up with the autonomous vehicle in front. Similarly, mathematically speaking, two
non-classical shocks cannot interact.
Let us now prove the existence of solutions.

Theorem 3.2. Let ϵ > 0, N ∈ IN\{0} and let us assume that ρ0 ∈ BV(IR, [0, ρmax]), (y0
i )i=1,··· ,N ∈ IRN and

(Vi)i∈{1,··· ,N} ∈ V
ϵ
N . Then, the Cauchy problem (2.1), (2.3) and (2.4) admits a solution in the sense of

Definition 3.1.

Proof. Let us construct piecewise constant approximate solutions (ρn, yn) of (2.1), (2.3) and (2.4) using
the wave-front tracking method described in Section 2.3. Then, let us introduce the following Glimm
functional Γ(t) defined by

Γ(t) = TV (ρn(t, ·)) + 2ρmax +

N∑
i=1

γi(t) +
3ρmax

Vmax

N∑
i=1

TV
(
Vn

i (·); [t,+∞[
)
. (3.2)

Roughly speaking, γi is a function created to compensate the possible interactions between the classical
wave-fronts (shocks and rarefaction) and the ith autonomous vehicle. Moreover,

γi(t) =


−2

(
ρ̂α(Vn

i (t)) − ρ̌α(Vn
i (t))

)
if ρn(t, yn

i (t)−) = ρ̂α(Vn
i (t)), and

ρn(t, yn
i (t)+) = ρ̌α(Vn

i (t)),
0 otherwise

It is clear that Γ is well-defined for a.e. t ⩾ 0 and it changes only at discontinuity points of Vn
i with

i ∈ {1, · · · ,N} or when two wave-fronts interacts (shocks, rarefaction and non-classical shocks). Hence,
we have the following possibilities:

a) Let us assume that an interaction occurs at time t = t̄ at some distance from (yi(t̄))i∈{1,··· ,N}. In this
case, either two shocks collide or a shock and a rarefaction interact. In both cases, we have
TV(ρn(t̄+, ·)) ⩽ TV(ρn(t̄−, ·)) and, for every i ∈ {1, · · · ,N}, γi(t̄+) = γi(t̄−) and
TV

(
Vn

i (·); [t̄+,+∞[
)
= TV

(
Vn

i (·); [t̄−,+∞[
)

leading to Γ(t̄+) ⩽ Γ(t̄−).

b) Since (Vi)i∈{1,··· ,N} ∈ V
ϵ
N , all possible interactions between classical waves (shocks and rarefaction)

and the ith autonomous vehicle are described in [9, 18]. In that case, for every i ∈ {1, · · · ,N},
Vn

i (t̄−) = Vn
i (t̄+). From [18, Lemma 2], TV (ρn(t̄+, ·)) + 2ρmax +

∑N
i=1 γi(t̄+) ⩽ TV (ρn(t̄−, ·)) +

2ρmax +
∑N

i=1 γi(t̄−). Therefore, Γ(t̄+) ⩽ Γ(t̄−).

c) If (Vi)i∈{1,··· ,N} ∈ V
ϵ
N , then we can refer to [13] when a jump occur in Vn

i . In fact, from [13, Lemma
3.1,Lemma 3.2,Lemma 3.3], Γ(t̄+) ⩽ Γ(t̄−).

From this we conclude that
Γ(t̄+) ⩽ Γ(t̄−). (3.3)

Then, from Eqs (2.10), (2.11) and (3.3), we get

TV(ρn(t, ·)) ⩽ TV(ρ0) + 2Nρmax +
3ρmax

Vmax

N∑
i=1

TV(Vi). (3.4)

Networks and Heterogeneous Media Volume 18, Issue 3, 1190–1206.
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(a) Fuel consumption of a vehicle as a function
of vehicle speed.

(b) Fuel consumption rate of the bulk traffic
flow as a function of traffic density.

Figure 3. Fuel consumption vs speed and density according to [22].

Since (Vi)i∈{1,··· ,N} ∈ V
ϵ
N and there exists C > 0 such that TV(ρn(t, ·)) ⩽ C, we can apply [13, Lemma

3.4]. Thus, up to a subsequence, we have

ρn → ρ, in L1
loc(IR

+ × IR; [0, ρmax]), (3.5a)

yn → y, in L∞loc(IR
+; IR), (3.5b)

ẏn → ẏ, in L1
loc(IR

+; IR), (3.5c)

with TV(ρ(t, ·)) ⩽ lim infn TV(ρn(t, ·)) ⩽ C. In [13, Proof of Theorem 3.1], it is shown that the limit
(ρ, y) is a solution of (2.1), (2.3) and (2.4) in the sense of Definition 3.1. This can be applied in this
context, since (Vi)i∈{1,··· ,N} ∈ V

ϵ
N . □

3.2. The optimal control problem

In this section we describe the optimal control problem and prove that it has at least one solution.
We want to minimize the fuel consumption of the overall traffic flow by controlling the maximal speed
of the AVs denoted by V1, · · · ,VN .

For this, we quantify the fuel consumption as a function of the vehicle density, which can be
integrated over the entire roadway to calculate the total fuel consumed. Generally, fuel consumption
increases with the speed of the vehicle, as shown by [1] and [2], with a nonlinear relationship between
speed and fuel consumption. Using the fuel consumption rates of four different commercially
available vehicles, [22] obtained the following best-fit model for fuel rate K(v) in liters per hour (ℓ/h)
as a function of speed v in kilometers per hour (km/h):

K(v) = 5.7 × 10−12v6 − 3.6 × 10−9v5 + 7.6 × 10−7v4

−6.1 × 10−5v3 + 1.9 × 10−3v2 + 1.6 × 10−2v + 0.99.

Using the relationship between speed and fuel rate (depicted in Figure 3a), as well as the relationship
between density and speed in Eq (2.2) obtained by assuming the LWR model, it is possible to compute

Networks and Heterogeneous Media Volume 18, Issue 3, 1190–1206.
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the fuel rate of the entire traffic flow, referred to as the bulk fuel rate F(ρ) as a function of traffic density
with units ℓ/h/km by computing:

F(ρ) = ρK(v(ρ)), (3.6)

where v(ρ) is specified by the fundamental diagram (2.2). The resulting fuel-density relationship for
the entire traffic flow is presented in Figure 3b.

The goal is to select the optimal AV trajectory to minimize the average fuel consumption of all
vehicles in the bulk traffic flow. Therefore, we solve the following problem.

Problem. Let ϵ > 0, T f > 0, C > 0 and x1, x2 ∈ IR such that x1 < x2. Fix ρ0 ∈
(
L1 ∩ BV

)
(IR; [0, ρmax])

and for every i ∈ {1, · · · ,N}, y0
i ∈ IR. Find V = (V1, · · · ,VN) ∈ VϵN such that

inf
(Vi)i=1,··· ,N∈V

ϵ
N

∥Vi∥BV⩽C

AFC(V) :=
∫ T f

0

∫ x2

x1

F(ρ(t, x))
ρ(t, x)

dtdx =
∫ T f

0

∫ x2

x1

K(v(ρ(t, x)))dtdx, (3.7)

where (ρ, y1, · · · , yN) is the solution of (2.1), (2.3) and (2.4) associated to (ρ0, y0
1, · · · , y

0
N).

The functional AFC represents the average fuel consumption computed on a highway section of
length x2 − x1 km between time 0 and T f . With this problem identified, we prove the main result:

Theorem 3.3. The optimal control problem Eq (3.7) has at least one optimal solution.

Proof. There exists a minimizing sequence (Vm)m∈IN verifying that

inf
V

AFC(V) ⩽ AFC(Vm) ⩽ inf
V

AFC(V) +
1
m
.

with Vm = (Vm
i )i=1,··· ,N ∈ V

ϵ
N and for every i ∈ {1, · · · ,N}, ∥Vm

i ∥BV ⩽ C.
Fix m ∈ IN. Since ρ0 ∈ BV (IR; [0, ρmax]) and Vm

i ∈ BV([0,T f ]; [0,Vmax]), there exists an
approximate density ρn

0 of ρ0 and an approximate maximum speed Vm,n
i of Vm

i such that

lim
n→+∞

∥ρn
0 − ρ0∥L1(IR) = 0 and TV(ρn

0) ⩽ TV(ρ0), (3.8)

limn→+∞ ∥Vm,n
i − Vm

i ∥L1(IR+) = 0 and TV(Vm,n
i ) ⩽ TV(Vm

i ). (3.9)

for every i ∈ {1, · · · ,N}. As in the proof of Theorem 3.2, we construct an approximate solution
(ρm,n, ym,n

1 , · · · , y
m,n
N ) of (2.1), (2.3) and (2.4) such that

TV(ρm,n(t, ·)) ⩽ TV(ρ0) + 2Nρmax +
3ρmax

Vmax

N∑
i=1

TV(Vm
i ). (3.10)

Then, up to a subsequence, (ρm,n, ym,n
1 , · · · , y

m,n
N ) converges to a solution (ρm, ym

1 , · · · , y
m
N) of (2.1), (2.3)

and (2.4) with V = Vm as n→ ∞ and

TV(ρm(t, ·)) ⩽ lim inf
n

TV(ρm,n(t, ·)). (3.11)

In particular, we have
lim
n→∞
∥ρm,n(t, ·) − ρm(t, ·)∥L1([x1,x2];[0,ρmax]) = 0.
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Moreover, using Eqs (3.10), (3.11) and ∥Vm
i ∥BV ⩽ C, there exists a positive constant, still denoted by

C > 0, independent of n and m such that

max(TV(ρm),TV(ρm,n)) ⩽ C.

By the dominated convergence theorem,

lim
n→∞

∫ T f

0

∫ x2

x1

K(v(ρm,n))dtdx =
∫ T f

0

∫ x2

x1

K(v(ρm))dtdx. (3.12)

Using that Vm is a minimizing sequence and Eq (3.9), we deduce that, for every i ∈ {1, · · · ,N},

∥Vm,n
i ∥BV ⩽ C +

1
n
, (3.13)

and
ym,n

i (t) − ϵ +
1
n
⩽ ym,n

i+1(t). (3.14)

From Eq (3.12), there exists a function φ : m→ IN strictly increasing such that

|AFC(Vm,φ(m)) − AFC(Vm)| ⩽
1
m
. (3.15)

Using (3.13), we have

∥Vm,φ(m)
i ∥BV ⩽ C +

1
φ(m)

, (3.16)

Note that (Vm,φ(m))m∈IN is not a minimizing sequence. Helly’s Theorem, see [24, Theorem 7.25], implies
that there exists a function V̄ ∈ BV

(
[0,T f ]; [0,Vmax]

)N
and a subsequence of Vm,φ(m), still denoted by

Vm,φ(m), such that Vm,φ(m)
i converges to V̄i in L1

(
[0,T f ]; [0,Vmax]

)
and TV(V̄i) ⩽ lim infm TV(Vm,φ(m)

i ) ⩽
C for any i ∈ {1, · · · , n}. From Eq (3.16), we have

∥V̄i∥BV ⩽ ∥V̄i − Vm,φ(m)
i ∥L1 + ∥Vm,φ(m)

i ∥L1 + TV(V̄i),
⩽ ∥V̄i − Vm,φ(m)

i ∥L1 + ∥Vm,φ(m)
i ∥L1

+ lim infm TV(Vm,φ(m)
i ),

= lim infm ∥V
m,φ(m)
i ∥L1 + lim infm TV(Vm,φ(m)

i ),
⩽ lim infm ∥V

m,φ(m)
i ∥BV ⩽ C.

(3.17)

Note that (ρm,φ(m), ym,φ(m)
1 , · · · , ym,φ(m)

N ) is an approximate solution of (2.1), (2.3) and (2.4) with V = V̄ .
As in the proof of Theorem 3.2, we have

TV(ρm,φ(m)(t, ·)) ⩽ TV(ρ0) + 2Nρmax +
3ρmax

Vmax

N∑
i=1

TV(V̄i). (3.18)

Then, up to a subsequence, (ρm,φ(m), ym,φ(m)
1 , · · · , ym,φ(m)

N ) converges to a solution (ρ, y1, · · · , yN) of Eqs
(2.1), (2.3) and (2.4) with V = V̄ as m→ ∞ and

TV(ρ(t, ·)) ⩽ lim inf
m

TV(ρm,φ(m)(t, ·)). (3.19)
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In particular, we have
lim

m→∞
∥ρm,φ(m)(t, ·) − ρ(t, ·)∥L1([x1,x2];[0,ρmax]) = 0.

and for every i ∈ {1, · · · ,N}
lim

m→∞
∥ym,φ(m)

i − yi∥L∞([0,T ];IR) = 0. (3.20)

Moreover, using Eqs (3.18), (3.19) and TV(V̄i) ⩽ C, there exists a positive constant, still denoted by
C > 0, independent of m such that

TV(ρ) ⩽ TV(ρm,φ(m)) ⩽ C.

By dominated convergence theorem,

lim
m→∞

∫ T f

0

∫ x2

x1

K(v(ρm,φ(m)))dtdx =
∫ T f

0

∫ x2

x1

K(v(ρ))dtdx, (3.21)

where (ρ, y1, · · · , yN) is a solution of Eqs (2.1), (2.3) and (2.4) with V = V̄ . Using that Vm is a
minimizing sequence, Eqs (3.15) and (3.21), we deduce that∫ T f

0

∫ x2

x1

K(v(ρ))dtdx = inf
V

AFC(V). (3.22)

From Eqs (3.20) and (3.14) with n = φ(m), for every i ∈ {1, · · · ,N}, we have

yi(t) − ϵ ⩽ yi+1(t). (3.23)

Combining Eqs (3.17), (3.22) and (3.23), we conclude that V̄ is an optimal solution of Eq (3.7). □

Lemma 3.4. The cost function AFC is not differentiable with respect to V ∈ BV
(
IR+; [0,Vmax]

)N .

Proof. To prove Lemma 3.4, it is enough to exhibit an example. Let Vmax = 1, ρmax = 1, V ∈ [0,Vmax]
and one autonomous vehicle drives on the road (N = 1), we assume that, for every x ∈ IR, ρ0(x) = ρ̌α(V)
where ρ̌α(V) is defined in Eq (2.6) and y0 = 0. Then the solution (ρ, y) of Eqs (2.1), (2.3) and (2.4)
associated to V , ρ0 and y0 is, for every (t, x) ∈ [0,T ] × [x1, x2],

ρ(t, x) = ρ̌α(V) and y(t) = Vt. (3.24)

Let ϵ > 0 and we denote by ρϵ the solution of Eqs (2.1), (2.3) and (2.4) associated to V + ϵ, ρ0 and y0.
In this case, we have ρ̌α(V + ϵ) < ρ̌α(V) < ρ̂α(V + ϵ) < ρ̂α(V). Thus the flux constraint is active and so
a non-classical shock (ρ̂α(V + ϵ), ρ̌α(V + ϵ)) is created. We deduce that, for every t ∈ [0,T ], for every
x ∈ [x1, x2], ρϵ(t, x) = ∣∣∣∣∣∣∣∣∣∣∣

ρ̌α(V), if x < (V + ϵC+α)t
ρ̂α(V) − ϵC+α , if (V + ϵC+α)t < x < (V + ϵ)t
ρ̌α(V) − ϵC−α , if (V + ϵ)t < x < ( f ′(ρ̌α(V)) + ϵC−α)t,
ρ̌α(V), if ( f ′(ρ̌α(V)) + ϵC−α)t < x,

(3.25)

with C−α =
1−
√

1−α
2Vmax

and C+α =
1+
√

1−α
2Vmax

. Using Eqs (3.24) and (3.25), we conclude that the expression

lim
ϵ→0

ρϵ(t, ·) − ρ(t, ·)
ϵ

(3.26)

does not define any Lp-function. □
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Remark 3. Note that the optimal control problem (3.7) may admit multiple solutions. For instance,
if the initial datum ρ0 = ρmax and N = 1, then V → AFC(V) is a constant function. Therefore, any
V ∈ BV([0,T f ], [0,Vmax]) such that ∥V∥BV ⩽ C is an optimal solution of (3.7).

4. Simulation results

In this section, we present numerical examples to demonstrate how AVs can be used as moving
bottlenecks to control the flow of traffic and optimize the fuel consumption of not only the individual
AVs, but also the entire traffic flow. First we present the numerical method to implement the control and
then we introduce a numerical example to demonstrate the ability of AVs to act as moving bottlenecks
for traffic control.

4.1. Numerical methods

For a given initial traffic state (density distribution on the roadway) and starting position of the AVs,
the optimal trajectory of each AV is computed such that it minimizes the total fuel consumption of
the entire traffic flow. The optimal trajectory of each AV consists of a series of speeds to drive at for
a corresponding time interval. This is based on the predicted traffic state and position of each AV as
solved using the coupled ODE-PDE system.

Let M be the number of time intervals and N the number of autonomous vehicles. The AVs adjust
their driving speed M − 1 times during the experiment duration. We determine the speed profile for
each AV by solving the following approximate optimization problem

inf
{(Ci)i∈{1,··· ,N}/Ci∈[0,Vmax]M

T∈(0,T f )M−1
}
AFC(V1, · · · ,VN) (4.1)

where the cost function AFC is defined in Eq (3.7) and, for every t ∈ IR+,

Vi(t) =
M∑

k=1

Ci(k) 1(T (k−1),T (k))(t), (4.2)

with T (0) := 0 and T (M) = +∞.
The optimization problem (4.1) is solved using the genetic algorithm as implemented in the Matlab
Global Optimization Toolbox (ga()) while the the solution (ρ, y1, · · · , yN) of Eqs (2.1), (2.3) and (2.4)
with (Vi)i∈{1,··· ,N} as defined in Eq (4.2) is solved using the wave-front tracking algorithm described in
Section 2.3.

Remark 4. Note that in our algorithm, in contrast to the theory, two autonomous vehicles are allowed
to interact, leading to a possible interaction between two non-classical shocks since the constraint
yi(t) − ϵ < yi+1(t) does not appear explicitly. However, this will not happen given that each optimal
solution (Vopt

i )i∈{1,··· ,N} belongs to the class of admissible maximum speedVϵN , making it impossible for
two AVs to reach each other and interact.

4.2. Numerical example

Using the implementation of the numerical method described in Section 4.1, numerical examples
are conducted to demonstrate the control of AVs to act as a moving bottleneck and reduce the fuel
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(a) Uncontrolled traffic, AV drives at
maximum allowable speed.

(b) Controlled traffic, AV drives at optimal
speed to reduce average fuel consumption of
bulk traffic flow.

Figure 4. Numerical example results showing reduced average fuel consumption when the
AV acts as a moving bottleneck driving at an optimal speed.

consumption of the overall traffic flow. The numerical experiment is conducted over a stretch of
highway (x1 = 0 km and x2 = 50 km in Eq (3.7)) over the course of one hour (T f = 1 hour in Eq
(3.7)). The maximum speed of each AV on the roadway is Vmax = 120 km/h. The maximum (jam)
density on the roadway is considered to be 400 veh/km. Each AV has influence over one of the two
lanes (α = 0.5).

We consider two optimal control approaches for the AV: one in which each AV selects an optimal
constant speed for the duration of the experiment, and another in which two AVs are allowed to select
the optimal speed at up to six distinct points in the simulation.

4.2.1. Individualized optimal speed trajectories

We consider the initial traffic state

ρ0(x) =


400 veh/km, if x ⩽ 0 km,
51 veh/km, if 0 < x ⩽ 50 km,
374 veh/km, if x > 50 km,

and allow the AV to change control speed up to to three times in the one hour experiment.
As seen in Figure 4, if the AV drives at the maximum possible velocity at all times, the AV

encounters the leading edge of the shock wave after roughly 0.4 h. This results in an average fuel
consumption of 3.87 ℓ per vehicle. However, when the AV is acting as a moving bottleneck to control
the traffic and reduce the fuel consumption, it is able to achieve a lower density gap between the wave
and the AV as seen in Figure 4b. By using the control strategy optimized with the genetic algorithm,
the average fuel consumption for the same traffic flow is reduced to 3.72 ℓ per vehicle, a reduction of
3.7% on average across all vehicles.
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5. Conclusions

In this work we study a coupled PDE-ODE framework to model the impact of multiple AVs being
used as moving bottlenecks to control the flow of traffic and reduce the overall fuel consumption of
the entire traffic stream. The main traffic flow is described by a scalar conservation law while the
controlled vehicles are described via ODEs. The prove the existence of solutions for the coupled PDE-
ODE systems and show how to compute analytically solutions to the Riemann problem and to the
Cauchy problem via wave-front tracking approximations. We define an optimal control problem which
consists in minimizing the total fuel consumption, using the autonomous vehicles speeds as control
variables. We prove that the optimal control problem (3.7), admits at least one optimal solution. We
solve numerically the optimal control problem (3.7) by using a genetic algorithm. For the numerical
solution, the traffic flow and AVs as moving bottlenecks are simulated using wave-front tracking.
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