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Abstract: A nonconforming finite element method (FEM) is proposed and analyzed for the clamped
thin elastic Kirchhoff plate unilaterally constrained by an elastic obstacle. The discrete scheme is
constructed by using the strongly discontinuous Bergan’s energy-orthogonal plate element, which has
simple degrees of freedom and about 25 percent fewer global dimension than that of the famous
triangular Morley element. A novel error analysis is presented to overcome the difficulties caused by
the strong discontinuity and derive the optimal estimate. Numerical experiments are carried out to
verify the theoretical analysis.
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1. Introduction

Let Ω ⊂ R2 be a bounded convex polygonal domain covered by a thin flat plate, and Γ = ∂Ω be the
Lipschitz continuous boundary of Ω. For a given loading function f ∈ L2(Ω), f ≤ 0 a.e. in Ω, and
an elastic obstacle ψ ∈ L2(Ω), we consider the following clamped Kirchhoff plate problem with elastic
unilateral obstacle (refer to [1, 2]): {

Find u ∈ V, such that
J(u) ≤ J(v), ∀v ∈ V,

(1.1)

where

V = H2
0(Ω), J(v) =

1
2

a(v, v) +
1
2

j(v) − ( f , v),

a(w, v) =
∫
Ω

[∆w∆v + (1 − ν)(2wxyvxy − wxxvyy − wyyvxx)]dxdy, ∀w, v ∈ V,
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j(v) =
∫
Ω

κ[(v − ψ)−]2dxdy, ( f , v) =
∫
Ω

f vdxdy.

Here J(v) is the total energy, a(v, v) represents the strain energy corresponding to displacement v of
the plate, j(v) can be interpreted as the contribution from the contact with ψ and ( f , v) is the potential
energy. Moreover, the symbol v− = min{v, 0}, ν ∈ (0, 1/2) is the Poisson’s ratio, κ ∈ L∞(Ω) describes
the stiffness of the obstacle and satisfies κ ≥ κ0 > 0 a.e. in Ω. In the limiting case κ → ∞, the obstacle
becomes rigid and the problem (1.1) reduces to a constrained minimisation: Find u ∈ K∗, such that

u = arg min
v∈K∗

[
1
2

a(v, v) − ( f , v)]
(1.2)

with K∗ = {v ∈ V : v ≥ ψ in Ω}. (1.2) is a classical displacement obstacle model of clamped Kirchhoff
plate (cf. [3]) and equivalent to a fourth-order variational inequality:{

Find u ∈ K∗, such that
a(u, v − u) ≥ ( f , v − u), ∀v ∈ K∗.

(1.3)

Different with the displacement obstacle model (1.2), the elastic obstacle problem (1.1) can be
investigated based on the following weak formulation [1]:

Find u ∈ V, such that a(u, v) +
∫
Ω

κ(u − ψ)−vdxdy = ( f , v), ∀v ∈ V, (1.4)

which has a unique solution [2] and is equivalent to another fourth-order variational inequality:
Find u ∈ V, such that ∀v ∈ V

a(u, v − u) +
∫
Ω

κ

2
[(v − ψ)−]2dxdy −

∫
Ω

κ

2
[(u − ψ)−]2dxdy ≥ ( f , v − u).

(1.5)

As we all know, analytical solutions to obstacle problems are always difficult to obtain. In this
case, the study of numerical solutions has attracted a lot of attention. The finite element method
(FEM) is a popular numerical method to solve obstacle problems [3–8]. In the last decades, more
efforts have devoted to FEM analysis for the limit form of elastic obstacle problem (1.1), i.e.,
displacement obstacle problem (1.2), see [9–17] and references therein. But works focusing on FEMs
of the elastic obstacle problem (1.1) are relatively rather few in the existing literature. From [1], the
convergence analysis of a mixed FEM for the elastic obstacle problem (1.1) was obtained, where
elements employed must satisfy C0 continuous. In [18], a stabilized FEM was constructed for (1.1)
with a C1 continuous requirement. [2] provided a general framework of optimal error estimates for
FEM, where the continuous requirement is relatively relaxed but continuity at each element’s vertex
of the subdivision is indispensable. In this situation, a natural question is whether these requirements
for continuity can be completely removed. In other words, a key difficulty is how to get the optimal
error estimates for a strongly discontinuous element dissatisfying above continuity requirements,
which is just the motivation of this work.

In this paper, as an attempt, we will investigate the FEM approximation for the elastic obstacle
problem (1.1) by using Bergan’s energy-orthogonal element. This element is constructed through an
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energy-orthogonal free formulation (cf. [19, 20]), which is convergent for arbitrary meshes. Its
degrees of freedom are all defined on the element’s vertex, including the function values and the two
first derivatives at the three vertices of each element, which are very simple and can be used
conveniently. Moreover, the global dimension of the vector of unknowns is only 3NP (NP denotes the
number of vertex in mesh subdivision), about 25 percent fewer than that of the famous triangular
Morley element (about 4NP). This property is very useful for a reduction the amount of computation.
But the element has strong discontinuous, that is, the shape function and its first derivatives are no
longer continuous at the element’s the vertex. This element does not satisfy the above mentioned
continuity requirements. Despite so high discontinuity, Bergan’s energy-orthogonal plate element has
been applied to the FEM approximate for the displacement obstacle problem (1.2) (see [12]). The
authors developed a convergence analysis method and obtained the optimal error estimate of order
O(h) in [12]. We note that the convergence analysis relied on two additional introduced tools, i.e., an
approximation subset and an enriching operator from Bergan’s energy-orthogonal FE space to
C1-conforming Bell FE space and the process is very complicated.

This paper aims to develop a new error analysis of Bergan’s energy-orthogonal element
approximation for the elastic obstacle problem (1.1). Unlike the convergence analysis in [12], we
make full use of some special approaches, including interpolation operator splitting and energy
orthogonality, to derive the optimal error estimates of order O(h) in the broken energy norm. The
theoretical analysis is very simple and clear. The numerical results demonstrate the proposed method
not only enjoys one-order accuracy but also can well reflect the influence brought by the obstacle
stiffness parameter κ.

The organization of this paper is as follows: In Section 2, Bergan’s energy-orthogonal plate element
and its typical properties are briefly introduced. Then we propose a novel error analysis approach and
obtain the optimal error estimate of order O(h) successfully in Section 3. At last, Section 4 provides
some numerical results to illustrate the validity of the theoretical analysis.

2. The Bergan’s energy-orthogonal plate element approximation scheme

Bergan’s energy-orthogonal element was first proposed by Bergan et al. in [19] using the free
formulation scheme. Then Shi et al. [20] proved that this element is equivalent to a nonconforming
element constructed based on a specific interpolation ΠK (see Eq (2.3) below), where ΠK is introduced
to form the shape function. It is shown in [20] that the special construction of interpolation ΠK makes
the two components of the shape function energy-orthogonal and the stiffness matrix consistent with
that in the free formulation scheme. In the following, we will introduce Bergan’s energy-orthogonal
plate element briefly, and the readers can refer to [19, 20] for details.

Assume that Th is a regular triangulation of Ω with mesh size h. For a given K ∈ Th, let its diameter
be hK , three vertices be pi(xi, yi) and the area coordinates be λi for i = 1, 2, 3. Firstly, we select nine
nodal parameters set as Σ(v) = {v1, v1x, v1y, v2, v2x, v2y, v3, v3x, v3y}, where vi = v(pi), vix =

∂v
∂x (pi), viy =

∂v
∂y (pi), i = 1, 2, 3. The shape function space is taken as same as that of Zienkiewicz element, i.e.,
P̃(K) = span{Ñ1, Ñ2, · · · , Ñ9}, here Ñ j = λ j, Ñ4+ j = λ jλ j+1, Ñ6+ j = λ2

jλ j+1 − λ j+1λ
2
j , j = 1, 2, 3 and
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λ4 = λ1. Then the associated conventional interpolation operator Π̃K : H3(K)→ P̃(K) satisfies

Π̃Kv =
6∑

i=1

αi(v)Ñi +

9∑
i=7

αi(v)Ñi ≜ rK(v) + r′K(v), ∀v ∈ H3(K), (2.1)

where rK(v) and r′K(v) are the quadratic and cubic terms respectively, and the coefficients αi(v) can

be written as: α j(v) = v j, α3+ j(v) =
c( j+2)

2
(v jx − v( j+1)x) −

b( j+2)

2
(v jy − v( j+1)y), α6+ j(v) = v j − v( j+1) +

c( j+2)

2
(v jx + v( j+1)x)−

b( j+2)

2
(v jy + v( j+1)y) with b j = y( j+1) − y( j+2) and c j = −(x( j+1) − x( j+2)) for j = 1, 2, 3,

here and later subscripts ( j + i) will be replaced with ( j + i)(mod 3) when ( j + i) > 3 for i = 1, 2.
Next we introduce another shape function space P(K) = span{N1,N2, · · · ,N9}, where Ni = Ñi, i =

1, 2, · · · , 6, N6+ j = (λ j − λ( j+1))3, j = 1, 2, 3 and λ4 = λ1. It is easy to verify that∫
K
∂xxNidxdy =

∫
K
∂yyNidxdy =

∫
K
∂xyNidxdy = 0, i = 7, 8, 9, (2.2)

and the associated traditional interpolation operator Π̂K : H3(K)→ P(K) is defined by

Π̂Kv =
6∑

i=1

βi(v)Ni +

9∑
i=7

βi(v)Ni ≜ S K(v) + S ′K(v), ∀v ∈ H3(K), (2.3)

where βi(v), i = 1, 2, ..., 9, can be expressed as:

β j(v) =
13
9

v j −
2
9

(v( j+1) + v( j+2)) +
1
9

[(c( j+2) − c( j+1))v jx + c( j+2)v( j+1)x − c( j+1)v( j+2)x]

+
1
9

[(b( j+1) − b( j+2))v jy − b( j+2)v( j+1)y + b( j+1)v( j+2)y],

β3+ j(v) = −
1
3

(v j + v( j+1) − 2v( j+2)) +
1
6

[(2c( j+2) − c j)v jx + (c( j+1) − 2c( j+2))v( j+1)x

+(c( j+1) − c j)v( j+2)x] +
1
6

[(b j − 2b( j+2))v jy + (2b( j+2) − b( j+1))v( j+1)y + (b j − b( j+1))v( j+2)y],

β6+ j(v) = −
2
9

(v j − v( j+1)) +
1

54
[(c j − 6c( j+2))v jx + (c( j+1) − 6c( j+2))v( j+1)x + c( j+2)v( j+2)x]

+
1

54
[(6b( j+2) − b j)v jy + (6b( j+2) − b( j+1))v( j+1)y − b( j+2)v( j+2)y],

for j = 1, 2, 3.
Now employing Eq (2.1) and Eq (2.3), we introduce an interpolation operator ΠK as

ΠK : H3(K)→ P(K), ΠKv = rK(v) + S ′K(v), ∀ v ∈ H3(K). (2.4)

Then taking ΠKv as the shape function on K and Σ(v) as its associated nodal parameters (vanishing
at nodes on the boundary Γ), and defining an interpolation operator Πh for every v ∈ H3(Ω) with
(Πhv)|K = ΠKv, we can obtain a piecewise cubic polynomial space on Ω denoted by Vh. It has been
shown in [20] that Vh is equivalent to the Bergan’s energy-orthogonal plate element first proposed by
Bergan etal through the free formulation scheme. Obviously, the construction process of Vh is quite
different from conventional element spaces. Herein the shape function on K is formulated through the
operator ΠK involving two interpolation operators Π̃K and Π̂K .
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It follows from Eqs (2.1), (2.4) and the formulas of αi(v) and βi(v) (i = 1, 2, · · ·, 9) that

ΠKv(p j) − v j = β6+ j(v) − β6+( j+2)(v),

∂ΠKv
∂x

(p j) − v jx

=
1

2△
[3(b j − b( j+1))β6+ j(v) + 3(b( j+2) − b j)β6+( j+2)(v) − b( j+1)α6+ j(v) + b( j+2)α6+( j+2)(v)],

∂ΠKv
∂y

(p j) − v jy

=
1

2△
[3(c j − c( j+1))β6+ j(v) + 3(c( j+2) − c j)β6+( j+2)(v) − c( j+1)α6+ j(v) + c( j+2)α6+( j+2)(v)]

(2.5)

for j = 1, 2, 3, where △ represents the area of K. Thus ΠKv and its two first derivatives are
discontinuous at vertices p j ( j = 1, 2, 3). Moreover, the mean value of ΠKv along the element’s each
edge F can be calculated as

1
|F|

∫
F
ΠKvds =

1
|F|

∫
F
(rK(v) + S ′K(v))ds =

1
|F|

∫
F

rK(v)ds +
1
4

(β7(v) − β9(v)).

Obviously, it is not continuous neither. In spite of so high discontinuity of the interpolation ΠKv, the
element space possesses the following special features (cf. [20]), which will play an important role in
the follow-up convergence analysis.

Lemma 2.1. (R1) For any vh ∈ Vh, there exists a v ∈ H3(K) such that

vh|K = ΠKv, vh = v̄h + v′h, v̄h|K = rK(v), v′h|K = S ′K(v). (2.6)

When vh|K ∈ P2(K), there holds vh = v̄h. Moreover, ∂xxrK(v), ∂xyrK(v) and ∂yyrK(v) are constants, which
together with Eq (2.2) imply that rK(v) and S ′K(v) are energy-orthogonal, thus the element is called
energy-orthogonal. Let ∇2vh be the Hessian matrix of vh, then we have

∫
K
∇2v̄h : ∇2v′hdxdy = 0.

(R2) For j = 1, 2, 3, the quadratic term rK(v) satisfies

rK(v)(p j) = v j, (2.7)

rK(v)(
p j + p( j+1)

2
) =

v j + v( j+1)

2
+

(v jx − v( j+1)x)c( j+2)

8
−

(v jy − v( j+1)y)b( j+2)

8
, (2.8)

i.e., for any vh ∈ Vh, its quadratic term v̄h is continuous at the element’s vertices and midpoints of
edges. In other words, v̄h ∈ C0(Ω).
(R3) For any v ∈ H3(K) and integer m (0 ≤ m ≤ 3), there holds

|v − ΠK(v)|m,K + |v − rK(v)|m,K ≤ Ch3−m
K |v|3,K , (2.9)∣∣∣r′K(v)

∣∣∣
m,K
+
∣∣∣S ′K(v)

∣∣∣
m,K
≤ Ch3−m

K |ΠKv|3,K . (2.10)

Here and later, C denotes a positive constant independent of h and may be different at each appearance.
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We consider the Bergan’s energy-orthogonal plate element discrete approximation form of the
variational inequality (1.5) as:

Find uh ∈ Vh, such that ∀vh ∈ Vh

a(uh, vh − uh) +
∑
K∈Th

∫
K

κ

2
[(vh − ψ)−]2dxdy −

∑
K∈Th

∫
K

κ

2
[(uh − ψ)−]2dxdy ≥ ( f , vh − uh),

(2.11)

where ah(wh, vh) =
∑
K∈Th

∫
K
∆wh∆vh + (1 − ν)(2whxyvhxy − whxxvhyy − whyyvhxx)]dxdy.

3. The optimal error estimate

In this section, we will establish error estimates of Bergan’s energy-orthogonal FEM for the elastic
obstacle problem (1.1) in the energy norm.

Firstly, using the the similar argument to [2], we have

Theorem 3.1. The problem (2.11) is equivalent to the discrete approximation of plate problem:
Find uh ∈ Vh, such that ∀vh ∈ Vh

ah(uh, vh) +
∑
K∈Th

∫
K
κ(uh − ψ)−vhdxdy = ( f , vh),

(3.1)

which has a unique solution uh. Moreover, ∥uh∥h and ∥(uh−ψ)−∥0 are uniformly bounded independently
of h, where ∥·∥h = (

∑
K∈Th

|·|
2
2,K)

1
2 can be shown to be a norm over Vh by using (R1) and (R2) in

Lemma 2.1.

In what follows, we will give error estimate for Eq (2.11).

Theorem 3.2. Assume that u and uh are the solutions of Eqs (1.5) and (2.11) respectively, u ∈ H3(Ω)
and f , ψ ∈ L2(Ω), then we have

∥u − uh∥h ≤ Ch, (3.2)

where the constant C depends on the stiffness of the obstacle κ.

Proof. Since ∥u − uh∥h ≤ ∥u − Πhu∥h + ∥Πhu − uh∥h , in view of Eq (2.9) in (R3) of Lemma 2.1, we
only need to estimate the second term ∥Πhu − uh∥h . In fact, let wh = Πhu − uh and employ Eq (3.1),
we have

∥wh∥
2
h ≤ Cah(wh,wh) = C [ah(Πhu − u,wh) + ah(u,wh) − ah(uh,wh)]

≤ C ∥Πhu − u∥h ∥wh∥h +C

ah(u,wh) +
∑
K∈Th

∫
K
κ(uh − ψ)−whdxdy − ( f ,wh)

 . (3.3)

Now we concentrate on the estimate of the second term in the right hand of Eq (3.3). It follows
from (R1) in Lemma 2.1 that wh = w̄h + w′h and there exists a w ∈ H3(K) such that

wh|K = ΠKw, w̄h|K = rK(w), w′h|K = S ′K(w),
∫

K
∇2w̄h : ∇2w′hdxdy = 0. (3.4)
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Then we can deduce that

ah(u,wh) +
∑
K∈Th

∫
K
κ(uh − ψ)−whdxdy − ( f ,wh)

= ah(u, w̄h) − ( f , w̄h) + ah(u,w′h) − ( f ,w′h) +
∑
K∈Th

∫
K
κ(uh − ψ)−whdxdy.

(3.5)

On one hand, from [2] we know that the solution u of the problem (1.5) satisfies

−

∫
Ω

∇∆u · ∇vdxdy +
∫
Ω

κ(u − ψ)−vdxdy = ( f , v) ∀v ∈ H1
0(Ω). (3.6)

On the other hand, (R2) in Lemma 2.1 implies w̄h ∈ H1
0(Ω). Thus applying Green formula and

Eq (3.6) yields

ah(u, w̄h) − ( f , w̄h)

=
∑
K∈Th

∫
∂K

(∆u − (1 − ν)
∂2u
∂s2 )

∂w̄h

∂n
ds + (1 − ν)

∑
K∈Th

∫
∂K

∂2u
∂n∂s

∂w̄h

∂s
ds

−

∫
Ω

∇(∆u) · ∇w̄hdxdy − ( f , w̄h)

=
∑
K∈Th

∫
∂K

(∆u − (1 − ν)
∂2u
∂s2 )

∂w̄h

∂n
ds + (1 − ν)

∑
K∈Th

∫
∂K

∂2u
∂n∂s

∂w̄h

∂s
ds −

∫
Ω

κ(u − ψ)−w̄hdxdy,

(3.7)

here n and s are the unit outward normal vector and tangential vector respectively.
Substituting Eq (3.7) into Eq (3.5) leads to

ah(u,wh) +
∑
K∈Th

∫
K
κ(uh − ψ)−whdxdy − ( f ,wh)

=
∑
K∈Th

∫
∂K

(∆u − (1 − ν)
∂2u
∂s2 )

∂w̄h

∂n
ds + (1 − ν)

∑
K∈Th

∫
∂K

∂2u
∂n∂s

∂w̄h

∂s
ds + ah(u,w′h) − ( f ,w′h)

+
∑
K∈Th

∫
K
κ(u − ψ)−w′hdxdy +

∑
K∈Th

∫
K
κ[(uh − ψ)− − (u − ψ)−]whdxdy ≜

6∑
j=1

(Er) j.

(3.8)

In what follows, we will estimate (Er) j one by one for j = 1, 2, ..., 6.
Firstly, applying Lemmas 3.5 and 3.6 in [21] yields

|(Er)1| ≤ Ch∥u∥3

∑
K∈Th

∣∣∣rK(w) + r′K(w)
∣∣∣2
2,K


1
2

. (3.9)

By use of Eq (3.4), we get

|rK(w)|22,K +
∣∣∣S ′K(w)

∣∣∣2
2,K
= |w̄h|

2
2,K +

∣∣∣w′h∣∣∣22,K
=

∫
K
∇2w̄h : ∇2w̄hdxdy +

∫
K
∇2w′h : ∇2w′hdxdy + 2

∫
K
∇2w̄h : ∇2w′hdxdy = |wh|

2
2,K .

(3.10)
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At the same time, employing Eq (2.10) in (R3) and the inverse estimate gives∣∣∣r′K(w)
∣∣∣
2,K
≤ ChK |ΠKw|3,K ≤ C |ΠKw|2,K = C |wh|2,K , (3.11)

which in conjunction with Eq (3.10) leads to |(Er)1| ≤ Ch∥u∥3∥wh∥h.

Secondly, the fact w̄h ∈ H1
0(Ω) implies (Er)2 = 0.

Thirdly, from Eq (2.2), we have ah(Πhu,w′h) = 0, which together with the Eq (2.10) in (R3) and Eq
(3.10) gives

|(Er)3| = |ah(u − Πhu,w′h)| ≤ ∥u − Πhu∥h∥w′h∥h ≤ Ch|u|3∥wh∥h. (3.12)

Moreover, it follows from Eq (3.4), Eq (2.10) in (R3) and the inverse estimate that∣∣∣w′h∣∣∣0,K = ∣∣∣S ′K(w)
∣∣∣
0,K
≤ Ch3

K |ΠKw|3,K ≤ Ch2
K |ΠKw|2,K = Ch2

K |wh|2,K , (3.13)

which reveals
|(Er)4| ≤ ∥ f ∥0∥w′h∥0 ≤ Ch2∥ f ∥0∥wh∥h, (3.14)

|(Er)5| ≤ C ∥ (u − ψ)− ∥0 ∥w′h∥0 ≤ Ch2 ∥ (u − ψ)− ∥0∥ wh ∥h . (3.15)

Finally, by use of the elementary inequality (t− − s−)(t − s) ≥ 0 and Theorem 3.1, we have

(Er)6 =
∑
K∈Th

∫
K
κ[(uh − ψ)− − (u − ψ)−](Πhu − u + u − uh)dxdy

≤
∑
K∈Th

∫
K
κ[(uh − ψ)− − (u − ψ)−](Πhu − u)dxdy

≤ C(∥ (uh − ψ)− ∥0 + ∥ (u − ψ)− ∥0)∥Πhu − u∥0

≤ C ∥ (u − ψ)− ∥0 ∥Πhu − u∥0.

(3.16)

Then combining Eq (3.8) and the above bounds of (Er)1–(Er)6 results in

ah(u,wh) +
∑
K∈Th

∫
K
κ(uh − ψ)−whdxdy − ( f ,wh)

≤ Ch(∥u∥3 + h ∥ f ∥0 +h ∥ (u − ψ)− ∥0)∥wh∥h +C ∥ (u − ψ)− ∥0 ∥Πhu − u∥0.
(3.17)

Therefore, the desired result Eq (3.2) follows from (R3), Eqs (3.3) and (3.17) immediately. □

Remark. The analysis presented herein is also valid to the elastic obstacle problem (1.1) with
j(v) =

∫
Ω
κ[(v − ψ)+]2dxdy, v+ = max{v, 0} and f ∈ L2(Ω), f ≥ 0 a.e. in Ω.

4. Numerical results

We consider the elastic obstacle problem (1.1) with Ω = (0, 1)2, f = −10, ν = 0.25 and an elastic

obstacle defined by the function ψ =
{

0 if (x, y) ∈ [0.3, 0.7]2,

−1 otherwise.
The domain Ω is firstly divided into

N × N rectangles. Then each rectangle is further divided along its diagonal into two equal triangles.
Since it is not easy to derive the exact solution, we denote uN as the N-th level discrete solution

and take ∥eN∥h = ∥uN − uN−1∥h as the error in the broken energy norm. The numerical results ∥eN∥h for
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different obstacle stiffness parameter κ = 10 j ( j = 0, 1, 3, 4) with N = 16, 32, 64, 128 are given in Table
1 and further plotted in the logarithm scales in Figure 1. We observed that the errors in the energy
norm are indeed convergent at optimal order O( 1

N ), i.e., O(h), as h =
√

2
N → 0. This result is consistent

with the theoretical analysis in Theorem 3.2.

Table 1. Numerical results of ∥ eN ∥h and Orders under different κ

κ N ∥ eN ∥h Order κ N ∥ eN ∥h Order

κ = 1 16 0.1258 – κ = 103 16 0.1084 –
32 0.0647 0.9593 32 0.0517 1.0681
64 0.0326 0.9889 64 0.0259 0.9972
128 0.0163 1.0000 128 0.0128 1.0168

κ = 10 16 0.1255 – κ = 104 16 0.0974 –
32 0.0645 0.9603 32 0.0402 1.2767
64 0.0325 0.9889 64 0.0202 0.9928
128 0.0162 1.0044 128 0.0100 1.0144

Figure 1. Errors with different parameter κ.
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Figure 2. The discrete solution uN with κ = 1.
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Moreover, the discrete solution uN with N = 64 is also depicted in Figures 2–4, where the parameter
κ is chosen as 1, 103 and 104, respectively. We can see that the bigger parameter κ, the more obvious the
influence of obstacles. From Figure 2 (κ = 1) and Figure 3 (κ = 103), we observe that the difference
of κ makes the minimum value of the discrete solution change, but the shape of the solution does not
change significantly. In Figure 4 (κ = 104), it is easy to see that the elastic obstacle has a very obvious
effect on the solution, which is agrees with the fact that the elastic obstacle will become a rigid obstacle
when κ → ∞. This phenomenon further indicates the proposed numerical method in this paper can
also be used for approximated simulation of the displacement obstacle problem by taking a relatively
large obstacle stiffness parameter κ.

In a word, the numerical results in this section confirm the theoretical analysis in Section 3 and
indicate the effectiveness of the numerical method.
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Figure 3. The discrete solution uN with κ = 103.
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Figure 4. The discrete solution uN with κ = 104.
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