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Abstract: In this paper, a robust adaptive grid method is developed for solving first-order nonlinear
singularly perturbed Fredholm integro-differential equations (SPFIDEs). Firstly such SPFIDEs are
discretized by the backward Euler formula for differential part and the composite numerical quadrature
rule for integral part. Then both a prior and an a posterior error analysis in the maximum norm are
derived. Based on the prior error bound and the mesh equidistribution principle, it is proved that there
exists a mesh gives optimal first-order convergence which is robust with respect to the perturbation
parameter. Finally, the posterior error bound is used to choose a suitable monitor function and design
a corresponding adaptive grid generation algorithm. Numerical results are given to illustrate our
theoretical result.
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1. Introduction

Consider the following singularly perturbed Fredholm integro-differential equation (SPFIDE) in the
interval Ī = [0,T ]:Lu (t) := εu′ (t) + f (t, u (t)) + λ

∫ T

0
K (t, s, u (s)) ds = 0, t ∈ I = (0,T ] ,

u (0) = A,
(1.1)

where 0 < ε ≪ 1 is a perturbation parameter, A is a given constant and λ is a real parameter. We
assume that f (t, u) ∈ C1

(
Ī × R

)
, K (t, s, u) ∈ C1

(
Ī × Ī × R

)
and there exist constants α, β such that

0 < α ≤ |∂ f /∂u|, |∂K/∂u| ≤ β. Under these assumptions, the problem (1.1) has a unique solution
(see [1]).
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It is well known that the SPFIDEs arise widely in scientific fields such as mathematical biology [2],
material mechanics [3], hydrodynamic [4] and so on.These problems depend on such a small positive
parameter ε that the solution varies rapidly when ε → 0. Due to the presence of this perturbation
parameter ε, classical numerical methods on a uniform mesh fail to give accurate results. Therefore, it
is necessary to develop suitable numerical methods that are ε-uniformly convergent for solving these
problems.

Over the past few years, there has been a growing interest in the numerical methods for Volterra
integro-differential equations (see,e.g., [5–10]) and Fredholm integro-differential equations (see,e.g.,
[11, 12]). When the differential term of these integro-differential equations contains a small positive
perturbation parameter ε, these problems are called singularly perturbed integro-differential equations.
Recently, some robust numerical methods are proposed to solve singularly perturbed Volterra integro-
differential equations [13–16]. Meanwhile, the authors in [17, 18] developed fitted finite difference
schemes on a uniform mesh for second-order SPFIDEs and gave some convergence results based on
the prior information of the exact solution. Durmaz, et.al., [19] proposed a second-order uniformly
convergent finite difference scheme on a Shishkin mesh for a singularly perturbed Fredholm integro-
differential equation with the reduced second type Fredholm equation. In [20], the authors presented
a fitted finite difference approach on a Shishkin mesh for a first-order singularly perturbed Fredholm
integro-differential initial value problem with integral condition. Kumar et al. [21] proposed a non-
standard finite difference scheme with Haar wavelet basis functions for a singularly perturbed partial
integro-differential equation. Recently, Cakir et al., [22] solved first-order nonlinear SPFIDEs on a
Sinshkin mesh with first-order convergence rate.

From the literatures we have mentioned above, the existing numerical methods of SPFIDEs given
in [19–21] are layer-adapted mesh approaches, which require a priori information about the location
and width of the boundary layer. Thus, adaptive grid methods by equidistributing monitor functions are
widely used to solve some singularly perturbed problems, see [25–29] for example. The advantages
of these adaptive grid methods is to cluster automatically the grid points within the boundary layer.
To the best of our knowledge, there is no report about this adaptive grid method for problem (1.1).
Therefore, the aim of this paper is to solve problem (1.1) numerically by a finite difference scheme
on an adaptive grid obtained by equidistributing a positive monitor function. The discrete scheme is
constructed by using the backward Euler formula and right rectangle formula to approximate derivative
term and nonlinear integral term, respectively. It is proved under some additional conditions that the
proposed adaptive grid method is first-order uniformly convergent, with respect to ε.

The rest of this paper is as follows. In Section 2, preliminary results of the exact solution are laid
out. A discretization scheme is established in Section 3, in which a prior error analysis and a posterior
error estimate are carried out successively. Numerical results obtained by the adaptive gird algorithm
are given in Section 4 to support the theoretical analyses. The paper ends with a summary of the main
conclusions in Section 5.

Notation Throughout this paper, C which is not necessarily the same at each occurrence, indicates a
positive constant independent of the mesh division parameter N or the singular perturbation parameter
ε. To simplify the notation, we set vk = v (tk) for any function v(t). In our estimates, the maximum norm
of a continuous function v(t) with the domain [0,T ] is defined as ∥v (t)∥∞ = ess sup

t∈[0,T ]
|v (t)| as well as the

maximum norm of a discrete vector x = {xi}
N
i=0 with N + 1 elements is defined as ∥x∥∞ = max

i=0,1,2,··· ,N
|xi|.
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2. Preliminary results

In this section, we list the bounds for the exact solution u (t) and its first-order derivative.

Lemma 2.1. [22, Lemma 1] Assume the constant λ satisfies

|λ| <
α

max
0≤t≤T

∫ T

0
|G (t, s)| ds

. (2.1)

Then we have

∥u∥∞ ≤ C0, (2.2)

|u′ (t)| ≤ C
(
1 +

1
ε

e−
αt
ε

)
, 0 ≤ t ≤ T, (2.3)

where

C0 =
|A| + 1

α
∥q∥∞

1 − 1
α
|λ|max

0≤t≤T

∫ T

0
|G (t, s)| ds

,

G (t, s) =
∂

∂u
K (t, s, γu) , 0 < γ < 1,

q (t) = − f (t, 0) − γ
∫ T

0
K (t, s, 0) ds.

Corollary 2.1. For any two functions v (t) and w (t) satisfying

v (0) = w (0) = A, (2.4)

and
Lv (t) − Lw (t) = F̃ (t) , t ∈ I, (2.5)

where F̃(t) is a bounded piece-wise continuous function, we have

∥v (t) − w (t)∥∞ ≤ C ∥Lv (t) − Lw (t)∥∞ . (2.6)

Proof. The proof is similar to [15, Corollary 2.1]. □

3. Discretization and error analysis

3.1. Discrete scheme

Let Ω̄N := {0 = t0 < t1 < · · · < tN = T } be an arbitrary non-uniform mesh and hi = ti − ti−1 be the
local mesh size for i = 1, 2, · · · ,N. For a given mesh function {vi}

N
i=0, define the backward finite

difference operator as follows:

D−vi =
vi − vi−1

hi
, i = 1, 2, · · · ,N. (3.1)
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Then to construct the discretization scheme for problem (1.1), we integrate Eq (1.1) over (ti−1, ti) and
use the right rectangle rule to approximate the integral part, which yield,

εD−ui + f (ti, ui) + λ
N∑

j=1

h jK
(
ti, t j, u j

)
+ Ri = 0, i = 1, 2, · · · ,N,

u0 = A,

(3.2)

where
Ri := R(1)

i + R(2)
i + R(3)

i (3.3)

and

R(1)
i = −h−1

i

∫ ti

ti−1

(t − ti−1)
d
dt

f (t, u (t)) dt,

R(2)
i = −λh

−1
i

∫ ti

ti−1

(t − ti−1)
∫ T

0

∂

∂t
K (t, s, u (s)) dsdt,

R(3)
i = −λ

N∑
j=1

∫ t j

t j−1

(
s − t j−1

) d
ds

K (ti, s, u (s)) ds.

Neglecting the truncation error Ri in Eq (3.2), we obtain the discretization scheme of problem (1.1)
LNuN

i := εD−uN
i + f

(
ti, uN

i

)
+ λ

N∑
j=1

h jK
(
ti, t j, uN

j

)
= 0, i = 1, 2, · · · ,N,

u0 = A,

(3.4)

where uN
i is the approximation of u(t) at point t = ti.

3.2. A prior error analysis

Let eN
i := uN

i − ui, i = 0, 1, · · · ,N, be the absolute error at ti of the numerical solution. Then we can
obtain the following error equationsLNuN

i − LNui = Ri, i = 1, 2, · · · ,N,
eN

0 = 0,
(3.5)

where Ri is the local truncation error defined in Eq (3.3) at ti.

Lemma 3.1. For i = 1, 2, · · · ,N, the truncation error Ri defined in Eq (3.3) satisfies

|Ri| ≤ C max
1≤i≤N

∫ ti

ti−1

(
1 + |u′ (t)|

)
dt. (3.6)

Proof. At first, based on the conditions f (t, u) ∈ C1(Ī × R) and 0 < α ≤ |∂ f /∂u|, we obtain∣∣∣R(1)
i

∣∣∣ ≤ h−1
i

∫ ti

ti−1

hi

(∣∣∣∣∣∂ f (t, u)
∂t

∣∣∣∣∣ + ∣∣∣∣∣∂ f (t, u)
∂u

∣∣∣∣∣ |u′ (t)|) dt

≤ C
∫ ti

ti−1

(
1 + |u′ (t)|

)
dt.

(3.7)
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Then, since K (t, s, u) ∈ C1
(
Ī × Ī × R

)
and |∂K/∂u| ≤ β, we have

∣∣∣R(2)
i

∣∣∣ ≤ |λ|∫ ti

ti−1

∫ T

0

∣∣∣∣∣ ∂∂t K (t, s, u (s))
∣∣∣∣∣ dsdt

≤ Chi.

(3.8)

and ∣∣∣R(3)
i

∣∣∣ ≤ |λ| N∑
j=1

T
∫ t j

t j−1

(∣∣∣∣∣∂K (ti, s, u)
∂s

∣∣∣∣∣ + ∣∣∣∣∣∂K (ti, s, u)
∂u

∣∣∣∣∣ |u′ (s)|
)

ds

≤ C max
1≤ j≤N

∫ t j

t j−1

(
1 + |u′ (t)|

)
dt.

(3.9)

Finally, the desired result of this lemma can be followed by Eqs (3.7), (3.8) and (3.9). □

Lemma 3.2. Under the assumption

|λ| <
1
α

max
1≤i≤N

N∑
j=1

h j

∣∣∣Gi j

∣∣∣ , (3.10)

we have ∥∥∥eN
∥∥∥
∞
≤

1
α

1 − 1
α
|λ| max

1≤i≤N

N∑
j=1

hi

∣∣∣Gi j

∣∣∣
−1

∥R∥∞ , (3.11)

where eN =
{
eN

i

}N

i=0
, R = {Ri}

N
i=0 and Gi j =

∂
∂u K

(
ti, s j, u j + ζeN

j

)
, 0 < ζ < 1.

Proof. Applying the mean value theorem to Eq (3.5), we get

εD−eN
i + aieN

i + λ

N∑
j=1

h jGi jeN
j = Ri, i = 1, 2, · · · ,N, (3.12)

where

ai =
∂

∂u
f
(
ti, ui + ξeN

i

)
, 0 < ξ < 1, (3.13)

Gi j =
∂

∂u
K

(
ti, s j, u j + ζeN

j

)
, 0 < ζ < 1. (3.14)

According to maximum principle for the operator εD−eN
i + aieN

i , we have

∥∥∥eN
∥∥∥
∞
≤

1
α
∥R∥∞ +

1
α
|λ|

∥∥∥eN
∥∥∥
∞

max
1≤i≤N

N∑
j=1

h j

∣∣∣Gi j

∣∣∣ , (3.15)

which immediately leads to the desired result with the assumption (3.10). □

Based on the above Lemmas 3.1–3.2, we get the following convergence results.
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Theorem 3.1. Let u(t) be the solution of problem (1.1) and uN
i be the solution of discrete scheme (3.4).

Then

max
1≤i≤N

∣∣∣uN
i − ui

∣∣∣ ≤ C max
1≤i≤N

∫ ti

ti−1

(
1 + |u′ (t)|

)
dt. (3.16)

Corollary 3.1. Under the conditions of Theorem 3.1, there exists an adaptive grid {ti}
N
i=0 such that

max
1≤i≤N

∣∣∣uN
i − ui

∣∣∣ ≤ CN−1. (3.17)

Proof. Based on the mesh equidistribution principle presented in [29], the mesh {ti}
N
i=0 given by our

adaptive grid algorithm satisfies∫ ti

ti−1

M (t) dt =
1
N

∫ T

0
M (t) dt, i = 1, 2, · · · ,N, (3.18)

where M(t) is called the monitor function, which can be chosen as

M (t) = 1 + |u′ (t)| . (3.19)

Therefore, it follows from Lemma 2.1 that

max
1≤i≤N

∣∣∣uN
i − ui

∣∣∣ ≤ C max
1≤i≤N

∫ ti

ti−1

(
1 + |u′ (t)|

)
dt

=
C
N

∫ T

0

(
1 + |u′ (t)|

)
dt

≤
C
N

∫ T

0

(
1 +

1
ε

exp
(
−
αt
ε

))
dt

≤
C
N

(
T +

1
α

(
1 − exp

(
−
αT
ε

)))
≤

C
N
.

(3.20)

□

3.3. A posteriori error analysis

In this section, we shall derive an a posteriori error estimation for the numerical solution
{
uN

i

}N

i=0
.

Recall that ũN (t) is a piece-wise linear interpolation function through knots
(
ti, uN

i

)
, i = 0, 1, · · · ,N.

Then, for any t ∈ Ji := [ti−1, ti], we obtain

ũN (t) = uN
i + D−uN

i (t − ti) , i = 1, 2, · · · ,N. (3.21)

Theorem 3.2. Let u(t) be the exact solution of problem (1.1),
{
uN

i

}N

i=0
be the discrete solution of problem

(3.4) and ũN(t) be its piece-wise linear interpolation function defined in Eq (3.21). Then we have∥∥∥ũN (t) − u (t)
∥∥∥
∞
≤ C max

1≤i≤N

(
hi + hi

∣∣∣D−uN
i

∣∣∣) . (3.22)
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Proof. For any t ∈ (ti−1, ti], it follows from Eq (1.1) and Eq (3.4) that

LũN (t) − Lu (t) = εD−uN
i + f

(
t, ũN (t)

)
+ λ

∫ T

0
K

(
t, s, ũN (s)

)
ds

= − f
(
ti, uN

i

)
− λ

N∑
j=i

h jK
(
ti, t j, uN

j

)
+ f

(
t, ũN (t)

)
+ λ

∫ T

0
K

(
t, s, ũN (s)

)
ds

= P (t) + Q (t) ,

(3.23)

where

P (t) = f
(
t, ũN (t)

)
− f

(
ti, uN

i

)
, (3.24)

Q (t) = λ
∫ T

0
K(t, s, ũN (s)) ds − λ

N∑
j=1

h jK
(
ti, t j, uN

j

)
. (3.25)

With the assumptions of functions f (t, u), K (t, s, u) and the definition of ũN (t), we have

|P (t)| =

∣∣∣∣∣∣∣∣ f
(
ti, uN

i

)
+

∫ t

ti

d f
(
τ, ũN (τ)

)
dτ

dτ − f
(
ti, uN

i

)∣∣∣∣∣∣∣∣
≤

∫ ti

t


∣∣∣∣∣∣∣∣
∂ f

(
τ, ũN

)
∂τ

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣
∂ f

(
τ, ũN

)
∂u

∣∣∣∣∣∣∣∣
∣∣∣D−uN

i

∣∣∣ dτ

≤ Chi

(
1 +

∣∣∣D−uN
i

∣∣∣)
(3.26)

and

|Q (t)| =

∣∣∣∣∣∣∣λ
N∑

j=1

∫ t j

t j−1

(
K

(
t, s, ũN (s)

)
− K

(
ti, t j, uN

j

))
ds

∣∣∣∣∣∣∣
≤ |λ|

N∑
j=1

∫ t j

t j−1

(∣∣∣∣∣ ∂∂t K
(
ξ1t + (1 − ξ1) ti, s, ũN (s)

)
(t − ti)

∣∣∣∣∣
+

∣∣∣∣∣ ∂∂s K
(
ti, ξ2s + (1 − ξ2) t j, ũN (s)

) (
s − t j

)∣∣∣∣∣
+

∣∣∣∣∣ ∂∂uK
(
ti, t j, ξ3ũN (s) + (1 − ξ3) uN

j

) (
ũN (s) − uN

j

)∣∣∣∣∣) ds

≤ C
(
hi + max

1≤ j≤N
h j

(
1 +

∣∣∣D−uN
j

∣∣∣)) ,

(3.27)

where 0 < ξ1 < 1, 0 < ξ2 < 1, and 0 < ξ3 < 1. The result can be derived from Eqs (3.23), (3.26), (3.27)
and Corollary 2.1. □

From Corollary 3.1, it is easy to conclude that there exists a mesh {ti}
N
i=0 and a monitor function

M (t) given in Eq (3.19) such that the inequality (3.17) holds true. However, u′ (t) is not available.
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Therefore, based on the a posterior error estimation (3.22), we choose the discrete analogue of M (t) as

M̃i = 1 +
∣∣∣D−uN

i

∣∣∣ , i = 1, 2, · · · ,N. (3.28)

Therefore, the idea is to adaptively design a mesh in which the values of monitor function tildeMi are
the same on each mesh interval. This is equivalent to find

{(
ti, uN

i

)}N

i=0
, such that

hiM̃i =
1
N

N∑
j=1

h jM̃ j, i = 1, 2, · · · ,N. (3.29)

Furthermore, to obtain this equidistributed mesh {ti}
N
i=0 and the corresponding numerical solution uN

i ,
we give the following iteration algorithm:

Algorithm 1 Steps of adaptive grid algorithm

1: Step 1: For a given N, let {t(0)
i }

N
i=0 be an initial mesh with mesh step 1

N . Choose a constant µ∗ > 1
that controls when the algorithm terminates.

2: Step 2: For a given mesh {t(k)
i }

N
i=0 and numerical solution {uN,(k)

i }Ni=0, compute M̃(k)
i , i = 1, 2, · · · ,N

in Eq (3.28) and set M̃(k)
0 = 0.

3: Step 3: Set h(k)
i = t(k)

i − t(k)
i−1 for each i and set L(k)

0 = 0 and L(k)
i =

∑i
j=1 h(k)

j M̃(k)
j for i = 1, 2, · · · ,N.

Define
µ(k) :=

N

L(k)
N

max
i=0,1,··· ,N

h(k)
i M̃(k)

i . (3.30)

4: Step 4: Set Y (k)
i = iL(k)

N /N for i = 0, 1, · · · ,N. Interpolate (see [30, Remark 5.1]) to the
points (L(k)

i , t
(k)
i ). Generate the new mesh {t(k+1)

i }Ni=0 by evaluating this interpolant at the Y (k)
i for

i = 0, 1, · · · ,N.
5: Step 5: If µ(k) ≤ µ∗, then take {t(k+1)

i }Ni=0 as the final mesh and compute {uN,(k+1)
i }Ni=0. Otherwise

return to Step 2.

4. Numerical experiments and discussion

In Section 4.1, We first present the iterative scheme. Then numerical experiments are given in
Section 4.2 to validate the theoretical result of this paper. All experiments were performed on a
Windows 10 (64 bit) PC-Intel(R) Core(TM) i5-4200H CPU 2.80 GHz, 8 GB of RAM using
MATLAB R2021a.

4.1. Iterative scheme

In order to avoid solving the nonlinear equations (3.4), we apply the quasilinearization technique
that performs a first-order Taylor expansion on the last iteration values and obtainuN,(k)

i =
ε/hiu

N,(k)
i−1 + Biu

N,(k−1)
i +Ci

ε/hi + Bi
, i = 1, 2, · · · ,N,

uN,(k)
0 = A,

(4.1)

Networks and Heterogeneous Media Volume 18, Issue 3, 1006–1023.
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where

Bi =
∂

∂u
f
(
ti, u

N,(k−1)
i

)
, (4.2)

Ci = − f
(
ti, u

N,(k−1)
i

)
− λ

N∑
j=1

h jK
(
ti, t j, u

N,(k−1)
j

)
. (4.3)

4.2. Numerical examples

For all the numerical experiments below, we choose µ∗ = 1.1, which is defined in Step 4 in
Algorithm 1.

Example 4.1. We consider a SPFIDE in the form [22]εu
′ (t) + 2u (t) + tanh (u (t)) − et +

1
4

∫ 1

0
t2 sin (u (s)) ds = 0, t ∈ (0, 1] ,

u(0) = 1.
(4.4)

Since the analytic solution of this problem is not available, we use the following formulas to
calculate the errors and the corresponding convergence rates:

eN
ε =

∥∥∥û2N
− uN

∥∥∥
∞
, pN
ε = log2

(
eN
ε

e2N
ε

)
, (4.5)

where û2N is the numerical solution obtained on the fine mesh Ω̄2N = Ω̄N
⋃{

ti+ti+1
2

}N−1

i=0
. The maximum

errors and ε-uniform rates of the convergence are respectively defined as

eN = max
ε

eN
ε , pN = log2

(
eN

e2N

)
. (4.6)

In the numerical experiments, we apply the presented adaptive grid algorithm to solve this problem.
The resulting errors eN

ε and the orders of the convergence pN
ε , for particular values of ε and N are listed

in Table 1. In addition, to compare the performance of the presented adaptive mesh with the Shishkin
mesh [22] and the Bakhvalov mesh [23], some numerical results are given in Table 2.

According to the results in Table 1, for fixed N, the error increases with a diminishing speed and
the convergence rate goes away from 1 as ε decreases , while for fixed ε, the error deceases to half
as N doubles and the convergence rate is getting closer to 1. According to the results in Table 2,
our adaptive mesh demonstrates both less error and more accurate first-order convergence rate than
Shishkin mesh. In general, the performance of our adaptive grid algorithm is better when µ∗ which is
used to distribute the grid uniformly is closer to 1. However, the enhance becomes very limited after
certain threshold and it can not work out successfully when µ∗ is so close to 1 due to the enormous
amount of calculations. Here the limitation of the adaptive mesh lies.

The behaviors of the numerical solution are presented in Figures 1, 2. Obviously, it can be seen
that in these two figures the solution of the test problem decreases successively near to 0 at first and
increases progressively close to 1 then and has a boundary layer at t = 0. Figure 3 shows the ε-uniform
convergence of the method with different ε. To be more physical, the first-order uniform convergence
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Table 1. The errors and corresponding convergence rates for Example 4.1.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 0.004663 0.002384 0.001222 0.000619 0.000312
0.9680 0.9637 0.9811 0.9903 -

2−4 0.00595 0.003152 0.00163 0.000801 0.000412
0.9167 0.9515 1.0244 0.9610 -

2−6 0.006539 0.003482 0.001818 0.000939 0.000477
0.9089 0.9373 0.9532 0.9769 -

2−8 0.006711 0.003633 0.001893 0.000979 0.000501
0.8853 0.9404 0.9514 0.9667 -

2−10 0.006799 0.003635 0.001913 0.000996 0.000509
0.9035 0.9258 0.9424 0.9667 -

2−12 0.006881 0.003649 0.001926 0.000996 0.000512
0.9151 0.9221 0.9505 0.9606 -

2−14 0.006854 0.003683 0.001924 0.001 0.000513
0.8963 0.9365 0.9447 0.9633 -

2−16 0.00672 0.003752 0.001934 0.000999 0.000515
0.8411 0.9562 0.9526 0.9560 -

eN 0.006881 0.003752 0.001934 0.001 0.000515
pN 0.8751 0.9562 0.9517 0.9569 -

Table 2. Comparisons of errors and corresponding convergence rates for Example 4.1.

N ε = 2−6 ε = 2−8

Adaptive Bakhvalov Shishkin Adaptive Bakhvalov Shishkin

3 × 25 4.53E-03 2.81E-03 7.18E-03 4.66E-03 2.83E-03 7.16E-03
0.93 0.98 0.75 0.91 0.98 0.75

3 × 26 2.39E-03 1.42E-03 4.26E-03 2.48E-03 1.44E-03 4.25E-03
0.94 0.99 0.79 0.95 0.99 0.79

3 × 27 1.24E-03 7.16E-04 2.46E-03 1.29E-03 7.23E-04 2.45E-03
0.97 0.99 0.83 0.96 0.99 0.83

3 × 28 6.33E-04 3.59E-04 1.39E-03 6.62E-04 3.63E-04 1.38E-03
0.98 1.00 0.85 0.97 1.00 0.85

3 × 29 3.20E-04 1.80E-04 7.71E-04 3.37E-04 1.82E-04 7.69E-04
1.05 1.00 0.86 0.98 1.00 0.86

3 × 210 1.54E-04 9.01E-05 4.23E-04 1.71E-04 9.09E-05 4.22E-04
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stands for our method in spite of violent changes of the numerical solution in the bound layer at t = 0.
From Figure 3, no matter how close ε tends to zero, the maximum point-wise errors are bounded by
O

(
N−1

)
which validates our theoretical analyses. For ε = 2−8, Figure 4 displays how a mesh with

N = 64 evolves through successive iterations of the algorithm by using monitor function (3.28).
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Figure 1. Numerical results of
Example 4.1 for N = 64 and ε =
2−4.
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Figure 2. Numerical results of
Example 4.1 for N = 256 and
various ε.

Example 4.2. We consider a first-order nonlinear singularly perturbed mixed type integro-differential
equation in [24] in the form:εu

′ (t) + f (t, u (t)) +
1
2

∫ t

0
u2(s)ds +

1
2

∫ 1

0
u3 (s) ds = 0, t ∈ (0, 1] ,

u(0) = 1.
(4.7)

where
f (t, u (t)) =

ε

4
u2 (t) + u (t) +

ε

6
e−

3
ε −

5
12
ε. (4.8)

It is testified that it satisfies the assumption (3.10). The analytic solution of this problem is u (t) =
e−t/ε. We use the following formulas to calculate the errors and the corresponding convergence rates:

eN
ε = max

0≤i≤N

∣∣∣uN
i − ui

∣∣∣ , pN
ε = log2

(
eN
ε

e2N
ε

)
. (4.9)

The maximum errors and ε-uniform convergence rates are defined in Eq (4.6).
The resulting errors eN

ε and the orders of the convergence pN
ε , for particular values of ε and N are

listed in Table 3. In addition, to compare the performance of the presented adaptive mesh with the
Shishkin mesh [22] and the Bakhvalov mesh [23], some numerical results are given in Table 4.

Networks and Heterogeneous Media Volume 18, Issue 3, 1006–1023.



1017

Table 3. The errors and corresponding convergence rates for Example 4.2.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 0.008698 0.004386 0.002202 0.001103 0.000552
0.9880 0.9939 0.9969 0.9985 -

2−4 0.011073 0.00562 0.002799 0.001413 0.00071
0.9783 1.0057 0.9863 0.9929 -

2−6 0.012473 0.00639 0.003247 0.001638 0.0008
0.9648 0.9767 0.9876 1.0335 -

2−8 0.013236 0.006774 0.003463 0.00176 0.000887
0.9664 0.9681 0.9763 0.9881 -

2−10 0.013376 0.006909 0.003559 0.00181 0.000917
0.9530 0.9570 0.9755 0.9814 -

2−12 0.013461 0.006954 0.003575 0.001835 0.000929
0.9528 0.9601 0.9619 0.9822 -

2−14 0.013563 0.007002 0.003592 0.001836 0.000937
0.9540 0.9631 0.9680 0.9704 -

2−16 0.015521 0.007146 0.003596 0.001842 0.000935
1.1190 0.9908 0.9647 0.9784 -

eN 0.015521 0.007146 0.003596 0.001842 0.000937
pN 1.1190 0.9908 0.9647 0.9755 -

Table 4. Comparisons of errors and corresponding convergence rates for Example 4.2.

N ε = 2−6 ε = 2−8

Adaptive Bakhvalov Shishkin Adaptive Bakhvalov Shishkin

3 × 25 8.43E-03 2.15E-02 1.91E-02 8.95E-03 2.69E-02 1.67E-02
0.97 0.90 1.28 0.97 0.65 0.11

3 × 26 4.31E-03 1.15E-02 7.85E-03 4.58E-03 1.72E-02 1.54E-02
0.98 0.94 1.29 0.97 0.67 0.80

3 × 27 2.18E-03 6.00E-03 3.21E-03 2.33E-03 1.08E-02 8.88E-03
1.04 0.97 1.00 0.98 0.90 1.28

3 × 28 1.06E-03 3.06E-03 1.61E-03 1.18E-03 5.78E-03 3.65E-03
0.97 0.98 0.85 0.99 0.93 1.32

3 × 29 5.39E-04 1.55E-03 8.88E-04 5.93E-04 3.02E-03 1.46E-03
0.98 0.99 0.87 1.00 0.97 1.41

3 × 210 2.72E-04 7.78E-04 4.87E-04 2.98E-04 1.54E-03 5.51E-04
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Figure 3. Maximum point-wise errors of log-log plot for Example 4.1.

The behaviors of the numerical solution are presented in Figures 5, 6. Obviously, it can be seen
that in these two figures the solution of the test problem gradually decreases to zero with a decreasing
velocity rate as well as has a boundary layer at t = 0. Figure 7 shows the ε-uniform convergence of the
method with different ε. From Figure 7, no matter how close ε tends to zero, the maximum point-wise
errors are bounded by O

(
N−1

)
which validates our theoretical analyses. For ε = 2−8, Figure 8 displays

how a mesh with N = 64 evolves through successive iterations of the algorithm by using monitor
function (3.28).

The unique but significant difference between these two examples can be found in Table 4. At
the situation ε = 2−8, adaptive mesh demonstrates better than Bakhvalov mesh. This is because the
construction of the Bakhvalov mesh is based on prior information of the exact solution. Therefore the
effect of this method is tightly relevant to the form of equation. The existing Bakhvalov mesh may
display wonderful at suitable equations but poor when it is adverse. However, the adaptive mesh based
on posterior error estimate requires none of prior information of the exact solution and displays steadily
at various equations.
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Figure 4. Evolution of the mesh for Example 4.1.
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Figure 5. Numerical results of
Example 4.2 for N = 64 and ε =
2−4.
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Figure 6. Numerical results of
Example 4.2 for N = 256 and
various ε.
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Figure 7. Maximum point-wise errors of log-log plot for Example 4.2.
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Figure 8. Evolution of the mesh for Example 4.2.
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5. Concluding remarks

This paper considers a nonlinear singularly perturbed Fredholm integro-differential equation for a
first-order initial value problem. A first-order ε-uniformly convergent numerical method for solving
this problem is presented, which comprises an adaptive grid based on the posterior error estimate and
the mesh equidistribution principle. The difference scheme including the weights and the remainders
is established using the backward Euler formula for the derivative term, together with the composite
right rectangle quadrature rule for the integral term. A theoretical analysis based on prior error bound
is conducted to prove the first-order convergence of the proposed method. Two examples show that
our adaptive mesh demonstrates better than Shishkin mesh and performs as well as Bakhvalov mesh.
In the future, we will try to extend the proposed adaptive grid method for solving other related integro-
differential equations which can be found in [5, 6, 31].
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