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1 CERMICS, École des Ponts ParisTech, 6–8, Avenue Blaise Pascal, Cité Descartes—Champs sur
Marne, 77455 Marne la Vallée, France.

2 Department of Mathematical Sciences and Center for Computational and Integrative Biology,
Rutgers University–Camden, 303 Cooper St, Camden, NJ, USA

3 School of Mathematical Sciences, Peking University, 100871, Beijing, P. R. China

* Correspondence: Email: amaury.hayat@enpc.fr.

Abstract: Traffic waves, known also as stop-and-go waves or phantom jams, appear naturally as traffic
instabilities, also in confined environments as a ring-road. A multi-population traffic is studied on a
ring-road, comprised of drivers with stable and unstable behavior. There exists a critical penetration
rate of stable vehicles above which the system is stable, and under which the system is unstable. In the
latter case, stop-and-go waves appear, provided enough cars are on the road. The critical penetration
rate is explicitly computable, and, in reasonable situations, a small minority of aggressive drivers
is enough to destabilize an otherwise very stable flow. This is a source of instability that a single
population model would not be able to explain. Also, the multi-population system can be stable below
the critical penetration rate if the number of cars is sufficiently small. Instability emerges as the number
of cars increases, even if the traffic density remains the same (i.e., number of cars and road size increase
similarly). This shows that small experiments could lead to deducing imprecise stability conditions.
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1. Introduction

Traffic jams that appear for seemingly no reason are a phenomenon that everyone has experienced.
Even though there are no accidents, no lane reductions, no highway exits, so called stop-and-go waves
form. This paradox has a mathematical answer: under certain conditions, traffic equilibrium states are
unstable. This phenomenon has been observed and studied in many works. The consequence of such
traffic instabilities are important: accelerating and decelerating increase strongly the fuel consumption
and the gas emissions compared to the associated equilibrium flow.
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In particular the study of [18], and the experiment associated, provided evidence that such waves
form on a circular road with only about twenty drivers starting from same spacing and speed. The
impact of the waves includes increased fuel consumption as measured in a similar experiment [17].
Reducing these instabilities by acting on the traffic, for instance rendering the equilibrium stable, would
have a strong impact. This is why many approaches have been considered to solve the problem, from
ramp-metering control [3, 10, 15, 19, 25–27] to the use of connected autonomous vehicles which act
as “wave-dampeners” in the traffic (see for instance [4, 17, 20, 22, 23, 28] and [5] for a more detailed
review). But, to be able to act on traffic efficiently, one needs to understand how these traffic waves
emerge and their stability.

The main trigger for the creation of waves is the collective behavior of human agents on the road,
which typically becomes unstable when the equilibrium velocity cross a certain threshold and becomes
too low. They have been extensively studied in the literature, see [7, 13, 14], and recently explained
theoretically in [4] in a ring-road framework similar to [17, 18]. These works study a single-phase
traffic where all drivers follow the same car-following model. However, in real life, it is likely that
the instability of equilibrium flows is strongly influenced by the differences in driving characteristics
among agents. These differences could occur due to the type of vehicle (trucks, SUV, small cars,
etc.) or differences in behavior between drivers. For instance, trucks platooning was studied for its
fuel-consumption impact in mixed traffic [6, 24]. Another interesting situation is when some drivers
adopt a collaborative way of driving [11]. In this case the traffic can be seen as a system with two
populations: the standard drivers and those who adopt the collaborative behavior. Several interesting
questions could be asked:

• Can the presence of two or several populations create some instabilities?
• Would a minority of collaborative drivers be able to render a stable traffic that would otherwise be

unstable? On the contrary, could a minority of aggressive drivers make an otherwise very stable
traffic unstable?

In this paper we provide some answers to these questions. Specifically, a mixed traffic on a ring-
road is analyzed, where two or more populations coexists. After characterizing the equilibrium flows,
we study the stability of the overall flow depending on the proportion of cars in each class of vehicles.
We show that, when an instable and a stable population co-exist, there is a critical penetration rate
above which the system is stable and under which the system is unstable, provided there are enough
cars on the road. This penetration rate is explicitly computable. We also provide qualitative bounds on
the critical penetration rate τ0, in order to elucidate what makes a collaborating behavior effective from
a traffic stability point of view.

For reasonable parameters, the critical penetration rate of stable vehicle is very high. This means
that, not taking into account the differences in dynamics, can lead to not understanding the source of
instability of the flow. Indeed, we show that a small minority of aggressive drivers, in an otherwise
very stable flow, is enough to break the stability. This is something that a single-population model
cannot grasp.

Surprisingly, we also show that the ability of a group of drivers to stabilize or destabilize the
system only depends on its penetration rate in the traffic and not on the order of the cars. One could
think for instance that three trucks in a row is less effective to stabilize the traffic than three trucks
equally distributed on the ring-road. But it is not.
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Finally, we also show that small experiments, as considered in [17,18], could lead to underestimate
the instability of the traffic flow and the critical penetration rate. More precisely, for a small number
of vehicles the system can still be stable even below the critical penetration rate, but becomes unstable
when the number of cars increases.

The paper is organized as follows: in Section 2 we present the framework and the system, in
Section 3 we state the main results, in Section 4 we provide an analysis of the traffic around its
equilibrium flows, while in Section 5 we show our results for a two-phase traffic flow and in Section 6
for a general multi-phase traffic flow. Finally, in Section 7 we provide some numerical simulations to
illustrate our results.

2. General traffic model on a ring-road

We study a general traffic model with n vehicles and a ring-road of length L. Mathematically this
means that we consider the system on the domain T = R/LZ. We denote by {x j(t)}nj=1 the location of
the cars. By further denoting the headway and velocity of the cars as

h j(t) = x j+1(t) − x j(t) and v j(t) = ẋ j(t), (2.1)

the traffic is generally described byḣ j(t) = v j+1(t) − v j(t),
v̇ j(t) = f j(h j(t), ḣ j(t), v j(t)),

∀ j ∈ {1, 2, ..., n} (2.2)

where f j is the car following model for the driver j and with the convention xn+1 = x1 + L on the ring
road (or, equivalently, xn+1 = x1 in T), which means that

n∑
j=1

h j(t) = L, ∀ t ≥ 0. (2.3)

For a general car following model we usually have the following physical conditions on f j(h, 0, v):

∂

∂h
f j(h, 0, v) > 0,

∂

∂v
f j(h, 0, v) < 0,

∂

∂ḣ
f j(h, 0, v) > 0. (2.4)

The first condition simply means that, for a given speed, the incentive to accelerate increases with the
headway. The second condition means that for a given headway the incentive to accelerate decreases
with the speed. And the third condition means that for a given headway and speed, the incentive to
accelerate increases if the headway is currently increasing (i.e., if the leading vehicle is moving away).
These conditions can be found in nearly all car following models (e.g., Intelligent Driver Models [21],
Follow-the-Leader [8], Bando–Follow-the-Leader [2, 4], etc.)

While, in most traffic analysis, the car following model f is chosen to be identical for all cars on
the road, in general the car-following model f j depends on the driving habit of the j-th driver, which
may differ from driver to driver. It can also depends on the j-th vehicle itself since different kinds of
cars may result in different parameters (e.g., one can simply compare a truck and a mini cooper on the
road). We summarize three typical cases below:
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• Unified model

This is the case that is most commonly considered, where f j does not depend on j ∈ {1, 2, ..., n}
and there is a single type of vehicle on the road. The stability of this system has been studied in [4]
and their results are recalled below. Under such a unified setting, a further special case can be the
so-called Bando–Follow-the-Leader model (Bando-FTL, or equivalently OV-FTL), that combines
a Bando (or Optimal Velocity) part introduced in [2] which represents the preference of a driver
to reach its “own” optimal velocity (that depends on the headway), and a “Follow-the-Leader”
(FTL) part introduced in [8] which represent the incentive of the driver to mimic its leader. More
precisely, we have

f j(h, ḣ, v) = a · (V(h) − v) + b ·
ḣ
h2 , (2.5)

the Bando part has a weight a and V is the optimal velocity function discussed in the next
paragraph, while the FTL part has a weight b. This model was studied for instance in [4, 5, 12].

• Mixed traffic or Collaborative driving

In a mixed traffic, the functions { f j}
n
j=1 are chosen from a finite set. In other words, the drivers and

the vehicles can be classified in finitely many categories:

f j ∈ {Fk : k = 1, 2, ...,m}, ∀ j ∈ {1, 2, ..., n} (2.6)

with m ≪ n. A particular example is the two population traffic, where m = 2 while n might be
large. This situation corresponds for instance to a collaborative driving where some drivers follow
a collaborative behaviors and have a “good” function F1 while the rest of the traffic follows a
standard function F2 that would lead to instabilities and stop-and-go waves. We deal with this
case in Section 5. To illustrate the mixed traffic setting, we can look at the case where the { f j} are
given by the “general” Bando-FTL model, characterised by

f j(h, ḣ, v) = a j ·
(
V j(h) − v

)
+ b j ·

ḣ
h2 , (2.7)

(a j, b j,V j) ∈ {(Ak, Bk,Vk) : k = 1, 2, ...,m}, (2.8)

In this case, the weights (a j, b j) represents driving habit of the driver, and that the “Bando
function” V j(h) represents its velocity preference, which can depend for instance of the type of
vehicle (cars, trucks, etc.). This optimal velocity is typically taken as a C2 bounded and strictly
increasing function of the headway (the farther the leading vehicle, is the faster the velocity
preference is likely to be, up to a limit value which is our own speed limit in the absence of
traffic). We remark that in the literature for Bando model the function V(h) is fixed to a ratio of
hyperbolic tangents, however, in reality different types of vehicles may have direct influence,
that is the reason we call it “general” Bando and adapt it with different V j(h) functions. We
provide in Section 7 numerical simulations for this particular model.

• Mixed traffic with common velocity preference

This is a particular case of mixed traffic where all drivers have the same velocity preference. For
instance for the Bando-FTL model this means that V j = V and is the same across drivers, while a j
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and b j remain driver-dependent. As we will see in Section 4.1, in this case the equilibrium flows
are the same as the equilibrium flows in the unified model.

3. Main results

We are interested in the stability of the system (2.2) around its equilibrium flow. A precise
description of the equilibrium flows is given below in Section 4.1. In the unified model, where all
drivers have the same car-following model f j = f , the stability of the system was studied in [4].
Recall the physical “common sense” condition in (2.4). For any uniform flow (h̄, v̄), where h̄ and v̄ are
both constants that do not depend on time, we shall define

(α, β, γ) =
(
∂ f
∂h
,
∂ f
∂ḣ
−
∂ f
∂v
,
∂ f
∂ḣ

)
(h̄, 0, v̄), (3.1)

satisfying
α > 0, β > γ > 0. (3.2)

We have used here the notation convention where ( f1, f2, f3)(x, y, z) denotes ( f1(x, y, z), ..., f3((x, y, z))).
The authors of [4] showed the following results.

Theorem 3.1 ( [4], unified model). A uniform flow equilibrium (h̄, v̄) of the system (2.2) is

• locally stable around this flow, if
β2 − γ2 − 2α ≥ 0, (3.3)

• unstable around this flow provided n sufficiently large, if

β2 − γ2 − 2α < 0. (3.4)

The definition of local stability in this context is recalled in Definition 4.1. In this paper we
investigate what happens when there is not anymore a single population of vehicles but several. In
particular, what happens when vehicles with an unstable behavior (i.e., which satisfies Eq (3.4))
coexists with vehicles with a stable behavior (i.e., which satisfies Eq (3.3))?

Our main results are the following: consider first a two population system where the vehicles follow
either the car following model f 1 or the car following model f 2. In this case, any stationary state (or
equilibrium flow) can be described by (h̄i, v̄) with i ∈ {1, 2} (see Section 4.1). Define

(αi, βi, γi) =
(
∂ f i

∂h
,
∂ f i

∂ḣ
−
∂ f i

∂v
,
∂ f i

∂ḣ

)
(h̄i, 0, v̄), i ∈ {1, 2}, (3.5)

we have the following theorem when both populations have a stable behavior

Theorem 3.2. If (β1)2 − (γ1)2 − 2α1 ≥ 0 and (β2)2 − (γ2)2 − 2α2 ≥ 0, then the steady-state (h̄i, v̄)i∈{1,2}

of the ring road system (2.2) and (2.3) is locally exponentially stable.

When the population have different behaviors, we denote n1 and n2 the number of cars of each
population in the road, and we have the following theorem
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Theorem 3.3. Assume that ∆1 := (β1)2 − (γ1)2 − 2α1 > 0 and ∆2 := (β2)2 − (γ2)2 − 2α2 < 0. There
exists a critical penetration rate τ0 ∈ (0, 1) such that for any pair (n1, n2) ∈ N2 verifying

n1

n1 + n2
> τ0, (3.6)

the ring road traffic system (2.2) and (2.3) is locally exponentially stable around any equilibrium flow
(h̄i, v̄)i∈{1,2}, whatever the ordering of the cars.

On the other hand, for any fixed penetration rate

τ =
n1

n1 + n2
< τ0 (3.7)

there exists some M > 0 effectively computable such that for any n1, n2 ∈ N
2 satisfying n1 + n2 > M,

the ring road traffic system (2.2) and (2.3) is unstable around the equilibrium flow (h̄i, v̄)i∈{1,2}.
Moreover, the critical penetration rate τ0 is explicitly given by

τ0 = 1 −
(
1 +max

{
−

H2(y)
H1(y)

: y ∈
(
0,Γ2

]})−1

,

where Hi(y) : = log
(

(αi)2 + (γi)2y
(αi)2 + ((βi)2 − 2αi)y + y2

)
, for i ∈ {1, 2},

and Γ2 :=
−(α2)2 +

√
(α2)4 − (α2)2(γ2)2∆2

(γ2)2 ∈ (0,−∆2).

(3.8)

Even though τ0 can be computed easily through a minimization algorithm, we can also give some
practical upper and lower bounds for qualitative studies:

τ0 ≥
−∆2(α1)2

∆1(α2)2 − ∆2(α1)2 ,

and τ0 ≤
(−∆2)

(
(α1)2 + (γ1)2Γ2

) (
(α1)2 + ((β1)2 − 2α1)Γ2 + (Γ2)2

)
(β2)2(α1)2∆1 + (−∆2)

(
(α1)2 + (γ1)2Γ2) ((α1)2 + ((β1)2 − 2α1)Γ2 + (Γ2)2) .

(3.9)

This allows a remark: for a stable class of vehicles to be efficient at stabilizing a mixed traffic flow
with a small penetration rate, α1 should be small. This means that an efficient collaborating behavior
for stabilizing traffic flow will be composed of vehicles driving without taking much the headway into
consideration (apart for safety reasons).

Finally, when one of the populations has a stable behavior but corresponding to the critical case
(β1)2 − (γ1)2 − 2α1 = 0 and the other population has an unstable behavior, we have the following
theorem

Theorem 3.4. If ∆1 := (β1)2 − (γ1)2 − 2α1 = 0 and ∆2 := (β2)2 − (γ2)2 − 2α2 < 0, then provided
sufficiently many vehicles on the ring road, the traffic system (2.2)–(2.3) is unstable around the the
equilibrium flow (h̄i, v̄)i∈{1,2}.

This can be generalized for an multi-phase traffic with more than two populations (see Theorem 6.1
in Section 6).
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4. Analysis of the system

4.1. Characterization of the equilibrium flow

The aim of this section is to describe the stationary states, or equilibrium flows, of the ring road
traffic (2.2) and (2.3). Here, “stationary” and “equilibrium” means that the headway and the velocity
do not change with respect to time, hence, for an equilibrium flow (h̄ j, v̄ j) j∈{1,...,n}, we have h j(t) =
h̄ j and v j(t) = v̄ j, ∀t ∈ [0,+∞). Considering the fact that the headway between two cars does not
change, we know that the value of v̄ j does not depend on j ∈ {1, 2, ..., n}, therefore

h j(t) = h̄ j and v j(t) = v̄, ∀t ∈ [0,+∞). (4.1)

Before going into the details, let us introduce the “velocity preferred headway” of f j: for a given
velocity v, the so-called “velocity preferred headway” is given, when it exists, by h such that

f j(h, 0, v) = 0, (4.2)

which, according to Eq (2.4), admits at most a unique value, and we denote it by g j(v) when it exists.

Since the headway does not change, we have

ḣ j(t) = ẋ j+1(t) − ẋ j(t) = v j+1(t) − v j(t), (4.3)

which, to be combined with Eq (4.1), imply that there exists a constant v̄ such that,

v j(t) = v̄, ∀ j ∈ {1, 2, ..., n}, ∀t ∈ R+ (4.4)
h j(t) = h̄ j, ∀t ∈ R+. (4.5)

Furthermore, thanks to Eq (2.2), we have

f j(h̄ j, 0, v̄) = 0, (4.6)

thus v̄ needs to be chosen in such a way that g j(v̄) exists for all j ∈ {1, ..n} and that

h̄ j = g j(v̄). (4.7)

Therefore, the equilibrium flow of the traffic is given by,

(h j(t), v j(t)) = (g j(v̄), v̄) (4.8)

on a ring road having length

L =
n∑

j=1

g j(v̄). (4.9)

Keeping in mind the preceding characterization of equilibrium flow, we are able to address the
stability of the ring road traffic around such flows.

Networks and Heterogeneous Media Volume 18, Issue 2, 877–905.



884

Definition 4.1 (Local stability around the equilibrium flow). Let us consider an equilibrium flow,
{(x̄ j(t), v̄)}nj=1. The ring road traffic is said to be exponentially stable around this equilibrium flow, if
there exist some constant C > 0 and λ > 0 such that, for any initial state,
(x1(0), ..., xn(0), v1(0), ..., vn(0))T being sufficiently close to (x̄1(0), ..., x̄n(0), v̄, ..., v̄)T , the traffic satisfies

|(x1(t) − x̄1(t) − c, ..., xn(t) − x̄n(t) − c, v1(t) − v̄, ..., vn(t) − v̄)| (4.10)
≤ Ce−λt|(x1(0) − x̄1(0), ..., xn(0) − x̄n(0), v1(0) − v̄, ..., vn(0) − v̄)| (4.11)

with some constant c ∈ R depending on the initial state. The constant c comes from the fact that an
equilibrium flow defines a headway and a velocity, but the location of the cars is only defined up to a
constant.

We remark here that this definition is equivalent to Definition 4.5 given below of the stability of the
traffic in terms of headway-velocity.

Remark 4.1 (Ring road condition). We remark that for fixed { f j}
n
j=1 and L there is at most one

equilibrium flow, i.e., at most one value of v̄ such that Eq (4.9) holds. This means that the length of the
road imposes the equilibrium flow and the steady velocity v̄ and reciprocally that imposing a given
speed v̄ and a given system of n cars determines the length of the road. Since in reality we may want
to study the limit where both n and L go to∞, what really matters for us is the desired steady velocity.
For this reason we do not fix the value of L in this paper but we fix instead the value of v̄, which in
turns, defines the value of L via Eq (4.9). This situation will be named as “ring road condition” in the
following.

Another important property of the “ring road condition” is that the value of L, Eq (4.9), does not
depend on the order of { f j}

n
j=1, namely if { f̃ j}

n
j=1 = { f j}

n
j=1 up to some permutations then their lengths of

ring road coincide.

Remark 4.2 (Number of parameters describing the equilibrium flow). Looking at Eq (4.6), the
stationary headway h̄ j = g j(v̄) only depends on the driving characterization function f j. This means
that it is identical for all vehicles with the same class of parameters. In particular

• For unified model, g j(v̄) does not depend on j ∈ {1, 2, ..., n}. Thus, only 2 parameters describe the
n-vehicles equilibrium flow: v̄ and g(v̄).
• For general collaborative driving as indicated in Eq (2.6) or Eq (2.7) and (2.8), g j(v̄) has m

different choices. Hence, the n-vehicles equilibrium flow is described by m+1 parameters.
• For the unified car Bando-FTL model of collaborative driving described by Eqs (2.7) and (2.8)

with V j = V, where the drivers have different driving habits but the same velocity preference,
g j(v̄) does not depend on j ∈ {1, 2, ..., n} and the equilibrium flow is still only described by two
parameters, despite different driving habits. Actually, in this particular case, we observe from Eq
(2.7) that g j(v̄) = V−1(v̄). As a direct consequence, the “ring road condition” Eq (4.9) simply
becomes L = nV−1(v̄).

4.2. Traffic around equilibrium flow

In this section we describe the linearized system around the equilibrium flows presented in the
previous section. Let a general traffic model be given by Eqs (2.2) and (2.3). Let (h̄i, v̄) be an
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equilibrium flow. From the previous Section, (h̄i, v̄) satisfies (4.8) and (4.9). In particular, we remark
that (h̄i, v̄) is entirely parametrized by v̄.

By denoting the perturbation in headway and velocity as

y j(t) = h j(t) − h̄ j and u j(t) = v j(t) − v̄, (4.12)

the traffic flow characterized by Eqs (2.2) and (2.3) can be written in terms of (y j, u j):ẏ j = u j+1 − u j,

u̇ j = f j(h̄ j + y j, u j+1 − u j, v̄ + u j),
(4.13)

and Eq (2.3) becomes
n∑

j=1

y j(t) =
n∑

j=1

h j(t) −
n∑

j=1

h̄ j = 0. (4.14)

This condition is equivalent to say that the solutions of the preceding system always stay in the (2n−1)
dimensional subspace of C2:

H :=

(y1, y2, ..., yn, u1, u2, ..., un) ∈ C2n :
n∑

k=1

yk = 0

 , (4.15)

in particular, when the initial state takes value from H ∩ R2n, the solution also stays in H ∩ R2n.
Here, we introduce complex valued spaces for the ease of notations when considering eigenvectors
and eigenvalues.

Therefore the system (4.13) and (4.14) can be expressed as
ẏ j = u j+1 − u j,

u̇ j = f j(h̄ j + y j, u j+1 − u j, v̄ + u j),
(y j(t), u j(t)) ∈ H .

(4.16)

Linearized traffic around equilibrium flow

Next, standard linearization yields the linearized ring road traffic system
ẏ j = u j+1 − u j,

u̇ j = α jy j − β ju j + γ ju j+1,

(y j(t), u j(t)) ∈ H ,

(4.17)

where (α j, β j, γ j) (independent of time) are given by

(α j, β j, γ j) =
(
∂ f j

∂h
,
∂ f j

∂ḣ
−
∂ f j

∂v
,
∂ f j

∂ḣ

)
(g j(v̄), 0, v̄) (4.18)

which satisfies, from Eq (2.4),
α j > 0, β j > γ j > 0. (4.19)

Form now on, for the ease of notations, we will denote by Λi the set of parameters describing the
car following model fi and ∆ j the quantity describing its stability around the equilibrium flow.

Networks and Heterogeneous Media Volume 18, Issue 2, 877–905.



886

Definition 4.2. For any given trio
Λ j := (α j, β j, γ j) (4.20)

we define its discriminant as
∆ j := (β j)2 − (γ j)2 − 2α j. (4.21)

The expression of ∆ j comes from [4] (see Theorem 3.1), it describes the stability of f j around an
equilibrium flow in a single-phase traffic, i.e., when all cars have the same car-following model f := f j.
What we will see in the following is that ∆ j is also a good indicator of the stability in a multi-phase
traffic. For this reason, we introduce the following definition, inspired by Theorem 3.1,

Definition 4.3. We classify a trio, Λ :=(α, β, γ) ∈ R3 satisfying the “common sense” condition (3.2),
by the value of its discriminant as follows. We say that Λ is

• stable, if ∆ :=β2 − γ2 − 2α > 0.
• critical, if ∆ = 0.
• unstable, if ∆ < 0.

Finally, for a general traffic model (2.2) with n cars satisfying the ring road condition (4.1), note
that there is at most n different set of parameters Λ j (one per car). However, if we restrict it into some
m-phase mixed traffic model (2.6), where all the vehicles can be classified in m different types, then,
thanks to Eqs (4.6)–(4.8), Λ j only have at most m different values.

Let us now denote
z(t) = (y1, ..., yn, u1, ...un)T (t) ∈ H (4.22)

the linearized traffic system (4.17) becomes

ż(t) = Mnz(t), z(t) ∈ H , (4.23)

with

Mn :=
(
On An

Cn Bn

)
(4.24)

where

On :=


0

0
0
... ...

0


, An :=


−1 1
−1 1
−1 1
... ...

1 −1


. (4.25)

Cn :=


α1

α2

α3

... ...

αn


, Bn :=


−β1 γ1

−β2 γ2

−β3 γ3

... ...

γn −βn


. (4.26)

The following definitions describe stability properties of both the linearized and nonlinear systems
around equilibrium flows.
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Definition 4.4 (Linearized stability around the equilibrium flow). Let us consider an equilibrium flow
on the ring road: {(h̄ j, v̄)}nj=1. The linearized ring road traffic (4.17) is said to be exponentially stable
around this equilibrium flow, if there exist some λ > 0 and C > 0 such that for any initial state,
z(0) = (y1(0), ..., yn(0), u1(0), ..., un(0))T ∈ H , the solution of the Cauchy problem (4.23) (by recalling
Eqs (4.17)–(4.26)) satisfies

|z(t)| ≤ Ce−λt|z(0)|,∀t ∈ R+. (4.27)

The preceding definition describes the stability of the linearized system (4.17). Actually, thanks to
the standard linearization argument, when the linearized system is stable in the sense of Definition 4.4,
the original nonlinear system (4.13) is automatically locally stable inH in the following sense:

Definition 4.5 (Local stability around the equilibrium flow: an alternative definition). Let us consider
an equilibrium flow of the ring road: {(h̄ j, v̄)}nj=1. The ring road traffic (4.16) is said to be locally
exponentially stable around this equilibrium flow, if there exist some ε > 0, λ > 0 and C > 0 such that
for any initial state, z(0) = (y1(0), ..., yn(0), u1(0), ..., un(0))T ∈ H , satisfying

|z(0)| ≤ ε, (4.28)

the solution of the Cauchy problem (4.13) satisfies

|z(t)| ≤ Ce−λt|z(0)|,∀t ∈ R+. (4.29)

Let us remark that in the preceding two definitions, it is equivalent to express the stability in terms
of position-velocity around the equilibrium flow, {(x̄ j(t), v̄)}nj=1, like Definition 4.1.

Remark 4.3. One can note that we do not look here at the well-posedness in general of the nonlinear
system. The reason is that we look at the local stability around steady-states, and the well-posedness
in this framework is immediate if the stability guaranteed. However, it would be interesting to know
whether the nonlinear system is well-posed for any initial condition or any reasonable initial
condition. When using Bando-Follow the leader model, the single population system has been shown
to be well-posed as long as h j are initially above a lower bound in [9] (for the IDM the situation is
more complicated, one can look at [1] for instance). It would be interesting to investigate whether the
same type of argument would work in the multi-population case.

4.3. On the characterization of eigenvalues (counting multiplicity)

Since the local exponential stability of the nonlinear system (4.16) can be directly deduced from the
exponential stability of the linearized system (4.23) we are going to focus on the latter. Using Routh–
Hurwitz criterion the exponential stability of the linearized system (4.23) depends on the spectrum of
the operator

L : H → H
x 7→ Mnx.

(4.30)

Therefore we investigate the spectrum of the matrix Mn onH .
In this section we provide a two-step approach to find the eigenvalues of the matrix Mn. In particular,

the second approach gives a full description of the multiplicity of the eigenvalues. We first look at the
spectrum of Mn on C2n and then see which eigenvalue remains when we restrict Mn toH .
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The spectrum of Mn on C2n.

A first method consists in considering the eigen-pairs (ω, z) of the matrix Mn:

Mnz = ωz. (4.31)

We know from the preceding equation that, for any j ∈ {1, 2, ..., n},

ωy j = u j+1 − u j, (4.32)
ωu j = α jy j − β ju j + γ ju j+1, (4.33)

which further implies
(ω2 + β jω + α j)u j = (γ jω + α j)u j+1. (4.34)

Therefore
n∏

j=1

F j(ω) = 1, F j(ω) :=
γ jω + α j

ω2 + β jω + α j
, (4.35)

which algebraically provides 2n solutions (with multiplicity). However, this approach does not yet give
any information on the multiplicity of the eigenvalues: indeed, we only know that any eigenvalue ω
should satisfy Eq (4.35). Thus, we use a second method to obtain this piece of information.

Recall that the full spectrum information of a matrix is given by the roots of the characteristic
polynomial. Thus we shall this direct method to find all eigenvalues (counting multiplicity) of the
matrix Mn. We are going to compute

χ(λ) :=det
(
λIn −An

−Cn λIn − Bn

)
(4.36)

Notice that λInCn = CnλIn, we know that

det
(
λIn −An

−Cn λIn − Bn

)
= det ((λIn)(λIn − Bn) − (−Cn)(−An)) = det(λ2In−λBn−CnAn) = det(M̃n), (4.37)

where, M̃n is given by
λ2 + β1λ + α1 −γ1λ − α1

λ2 + β2λ + α2 −γ2λ − α2

λ2 + β3λ + α3 −γ3λ − α3

... ...

−γnλ − αn λ2 + βnλ + αn


. (4.38)

By considering the first column of the matrix, its determinant read as

χ(λ) = det(M̃n) =
n∏

i=1

(λ2 + βiλ + αi) + (−1)n−1(−γnλ − αn)
n−1∏
j=1

(−γ jλ − α j)

=

n∏
i=1

(λ2 + βiλ + αi) −
n∏

j=1

(γ jλ + α j). (4.39)
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Therefore, all the eigenvalues are given by

n∏
j=1

γ jλ + α j

λ2 + β jλ + α j
= 1, (4.40)

which is coincident with Eq (4.35).

Remark 4.4 (Independence of the stability with the order of the cars). Similarly to the length of the
road for a given steady-state (see Remark 4.1), again, we remark that the spectrum information of
the traffic does not depend on the order of { f j}

n
j=1. Namely, for a given desired steady velocity v̄, if

{ f̃ j}
n
j=1 = { f j}

n
j=1 up to some permutations, then their stability around the related equilibrium flows

coincide. This means that, in the mixed-traffic setting, the stability only depends on the penetration
rate of the different types of cars.

The spectrum of Mn onH

By looking at Eq (4.40), it is easy to observe that λ = 0 is an eigenvalue of the matrix Mn. In the
following, we prove that λ = 0 is a simple eigenvalue of the matrix Mn acting on C2n however, it is
not a eigenvalue of Mn acting onH . This is an important point as, otherwise, we would not be able to
deduce the stability of the system (4.23) from the eigenvalue analysis.

Let us start by showing that λ = 0 is a simple eigenvalue of the matrix Mn. By comparing the
coefficients of the characteristic polynomial χ(λ) given by Eq (4.39), we immediately notice that χ(0) =
0. Then it suffices to show that χ′(0) , 0. Indeed, suppose that λ = 0 has (at least) multiplicity two,
then the characteristic polynomial can be written as χ(λ) = λ2P(λ) where P is again a polynomial, and
consequently χ′(0) = 0. Proving that χ′(0) , 0 is equivalent to prove that

n∑
i=1

βi

(∏n
k=1 αk

αi

)
,

n∑
i=1

γi

(∏n
k=1 αk

αi

)
, (4.41)

which is guaranteed by the “common sense” condition (4.19).
Next, we show that even though 0 is a simple eigenvalue of the matrix Mn, it is not included in

the finite spectrum of the operator Mn acting on H . Indeed, suppose by contradiction that there exists
z = (y1, ..., yn, u1, ..., un)T ∈ H such that z is an eigenvector of Mn associated to the eigenvalue 0. We
have

Mnz = 0. (4.42)

As z , 0 and using Eqs (4.25) and (4.26) we deduce that there exists some C , 0 such that for any
j ∈ {1, 2, ..., n},

u j = C, y j =
β j − γ j

α j
C. (4.43)

Without loss of generality, we assume that C > 0. By recalling the “common sense” condition (4.19),
this implies that

n∑
j=1

y j > 0, (4.44)
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but as z ∈ H we know from Eq (4.15) that
n∑

j=1

y j = 0, (4.45)

which leads to a contradiction. This implies that

SpH (Mn) ⊆ SpC2n(Mn) \ {0}, (4.46)

where SpH (Mn) is the spectrum of Mn onH and SpC2n(Mn) is the spectrum of Mn on C2n. On the other
hand, for any λ ∈ SpC2n(Mn) \ {0} we can find at least one related eigenvector z ∈ C2n. It is clear that
Mnz ∈ H , thus z ∈ H . Therefore,

SpH (Mn) = SpC2n(Mn) \ {0}. (4.47)

5. Two-phase traffic flow

In this section, we study the stability of the equilibrium flows in a two-phase traffic flow. This
situation represents for instance two class of vehicles such as trucks and cars, or also the coexistence
of vehicles with and without a collaborative driving behavior. In the following, these two classes of
vehicles will be called Type 1 vehicles and Type 2 vehicles. Let v̄ be an equilibrium velocity, from
Eq (4.8) this imposes the equilibrium headway h̄1 (resp. h̄2) of the Type 1 vehicles (resp. Type 2
vehicles). Thus, we are looking at a situation where, for every j ∈ {1, 2, ..., n}, using the notation (4.20)
and (4.21),

Λ j = (α j, β j, γ j) ∈ {Λ1,Λ2} = {(α1, β1, γ1), (α2, β2, γ2)}. (5.1)

Let us denote by n1 the number of Type 1 vehicles with parameters Λ1 and n2 the number of Type 2
vehicles with parameters Λ2 such that the total number of vehicles is n = n1 + n2.

Suppose that the mixed traffic on road is represented by the “ordering” (a1, a2, ..., an) that belongs
to

K :=

(a1, a2, ..., an) : ak ∈ {1, 2} ∀1 ≤ k ≤ n,
n∑

k=1

ak = n1 + 2n2

 , (5.2)

where ak ∈ {1, 2} implies that the k-th vehicle on the road is of Type ak: because there is no lane
changing in a single ring road, (a1, a2, ..., an) is invariant with respect to time. Consequently, there is a
unique equilibrium flow corresponding to v̄ (or equivalently there is a unique equilibrium flow
corresponding to L, from Remark 4.1): the headway before the k-th vehicle is given by h̄ak .
Furthermore, from Section 4.2, the linearized system around this equilibrium flow is

ẏ j = u j+1 − u j,

u̇ j = α jy j − β ju j + γ ju j+1,

(α j, β j, γ j) = (αa j , βa j , γa j),
(y j(t), u j(t)) j∈{1,...,n} ∈ H ,

(5.3)

which can be further represented in forms of Eqs (4.23)–(4.26).
We introduce the following Lemma

Networks and Heterogeneous Media Volume 18, Issue 2, 877–905.



891

Lemma 5.1. Let given (n1, n2) ∈ N2. If the following inequality holds,(
(α1)2 + (γ1)2x2

(α1)2 + ((β1)2 − 2α1)x2 + x4

)n1 ( (α2)2 + (γ2)2x2

(α2)2 + ((β2)2 − 2α2)x2 + x4

)n2

< 1,∀x ∈ R \ {0}, (5.4)

then System (5.2) and (5.3) is exponentially stable in the sense of Definition 4.4.
On the other hand, if for some x ∈ R we have(

(α1)2 + (γ1)2x2

(α1)2 + ((β1)2 − 2α1)x2 + x4

)n1 ( (α2)2 + (γ2)2x2

(α2)2 + ((β2)2 − 2α2)x2 + x4

)n2

> 1, (5.5)

then there exists some M0 ∈ N effectively computable such that for any integer M ≥ M0, the System
(5.2) and (5.3) with (n1, n2) being replaced by (Mn1,Mn2) is unstable.

Proof. This proof is essentially the same as the one given by [4, Section II] in a unified models
framework (namely n2 = 0). For readers’ convenience we sketch its proof as follows.

By representing System (5.2) and (5.3) in form of (4.23)–(4.26), thank to Section 4.3, the
eigenvalues (counting multiplicity) are explicitely characterized by Eq (4.40):(

γ1λ + α1

λ2 + β1λ + α1

)n1 ( γ2λ + α2

λ2 + β2λ + α2

)n2

= 1. (5.6)

Inspired by [4, Section II], we consider the following meromorphic function

G(z) =
(
γ1z + α1

z2 + β1z + α1

)n1 ( γ2z + α2

z2 + β2z + α2

)n2

, ∀z ∈ C. (5.7)

Since all the poles are located on the left half plane, G(z) is holomorphic on the right half plane
C+ = {z ∈ C : ℜ(z) ≥ 0}. We notice that |G(z)| tends to 0 as |z| tends to +∞. Then, thanks to the
maximum principle of holomorphic functions, the maximum of |G(z)| over C+ must takes place at the
imaginary axis. By considering z = ix we get

|G(z)|2 =
(

(α1)2 + (γ1)2x2

(α1)2 + ((β1)2 − 2α1)x2 + x4

)n1 ( (α2)2 + (γ2)2x2

(α2)2 + ((β2)2 − 2α2)x2 + x4

)n2

, (5.8)

which explains the inequality (5.4).
If Condition (5.4) is satisfied, then we know that |G(z)| ≤ 1 in C+ with |G(z)| equals to 1 only at

z = 0. Therefore, all the eigenvalues are located in {z ∈ C : ℜ(z) < 0} ∪ {0}, which, to be combined
with Eq (4.47), yields the required exponential stability.

On the other hand, if Condition (5.5) is satisfied, then |G(z)| is not always smaller than 1. As
n1 + n2 , 0, without loss of generality we assume that n2 , 0 and we define µ = n1/n2. Condition (5.5)
implies (

(α1)2 + (γ1)2x2

(α1)2 + ((β1)2 − 2α1)x2 + x4

)µ ( (α2)2 + (γ2)2x2

(α2)2 + ((β2)2 − 2α2)x2 + x4

)
> 1. (5.9)

We denote

Gµ(z) =
(
γ1z + α1

z2 + β1z + α1

)µ (
γ2z + α2

z2 + β2z + α2

)
, ∀z ∈ C. (5.10)
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We consider the curve C ⊂ C:
C := {z ∈ C : |Gµ(z)| = 1}. (5.11)

Let us further define an open subset of C by

C+ := {z ∈ C : ℜ(z) > 0}, (5.12)

which is not empty thanks to Condition (5.9), the fact that limRe(z)→+∞ |Gµ(z)| = 0 and the continuity of
Gµ. It is natural to consider the continuous function on C+ defined as

F1 : C+ → S1

z 7→ F1(z) := Gµ(z),
(5.13)

where S1 denotes the unit circle in the complex plane C. We can find a connected open set O ⊂ S1 such
that

O ⊂ F1(C+). (5.14)

By denoting the length of O as |O|, the value of M0 can be chosen as

M0 :=
[

2π
|O|

]
+ 1. (5.15)

Indeed, for any M ≥ M0, we know from the definition of M that

2π
M
< |O|. (5.16)

Therefore, the set
{e2kπ/M : k = 1, 2, ...,M} ∩ O (5.17)

is not empty. We assume that for some k, the point e2kπ/M belongs to O. Thus, by the definition of O
there exists some z0 ∈ C

+ such that

Gµ(z0) = F1(z0) = e2kπ/M. (5.18)

Meanwhile, we recall that for the ring road traffic with (Mµ) Type 1 vehicles and M Type 2 vehicles the
stability of the System (5.2) and (5.3) is determined by the solutions of GM(z) = 1:

GM(z) =
(
γ1z + α1

z2 + β1z + α1

)Mµ (
γ2z + α2

z2 + β2z + α2

)M

. (5.19)

The preceding equations immediately yield GM(z0) = 1 withℜ(z0) > 0: the system is unstable. □

This lemma allows us to show the Theorems 3.2–3.4 that we reformulate here for convenience in
Theorem 5.1,5.2:

Theorem 5.1. Let given v̄ > 0. If ∆1 ≥ 0 and ∆2 ≥ 0, then for any (n1, n2) ∈ N2 and any ordering of
the vehicles on the road, the ring road traffic system (4.16) is locally exponentially stable around the
equilibrium flow.
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Proof of Theorem 5.1. The proof is straightforward. Indeed, by the definition of ∆1 and the assumption
that ∆ ≥ 0 we know that for any x ∈ R \ {0} there is(

(α1)2 + (γ1)2x2

(α1)2 + ((β1)2 − 2α1)x2 + x4

)n1 ( (α2)2 + (γ2)2x2

(α2)2 + ((β2)2 − 2α2)x2 + x4

)n2

< 1.

Similarly, (
(α2)2 + (γ2)2x2

(α2)2 + ((β2)2 − 2α2)x2 + x4

)n2

< 1,

thus Inequality (5.4) holds. The proof of this theorem concludes by applying Lemma 5.1. □

Remark 5.1. Note that, in the critical case, i.e. one or both of ∆1 and ∆2 equals to 0, the system is still
exponentially stable.

Theorem 5.2. Let given v̄ > 0. We assume that ∆1 ≥ 0 and ∆2 < 0.

(1) If ∆1 > 0 then there exists some effectively computable threshold constant τ0 ∈ (0, 1) depending
on Λ1 and Λ2 and given by Eq (3.8) such that for any pair (n1, n2) ∈ N2 verifying

n1

n1 + n2
> τ0, (5.20)

the inequality (5.4) is satisfied. In other words, for any ordering of the vehicles on the road
(a1, a2, ..., an) ∈ K , the ring road traffic system (4.16) is locally exponentially stable around the
equilibrium flow associated to v̄.

On the other hand, for any penetration rate

τ :=
n1

n1 + n2
< τ0 (5.21)

there exists M > 0 such that for any n1, n2 ∈ N
2 satisfying n1 + n2 > M, the ring road traffic

system (2.2) and (2.3) is unstable around the equilibrium flow (h̄i, v̄)i∈{1,2}.
(2) If ∆1 = 0 (namely, Λ1 is critical), then for any penetration rate τ = n1/(n1+n2) there exists M > 0

effectively computable such that if n > M the ring road traffic system (4.16) is unstable around
the equilibrium flow associated to v̄.

Finally, even though τ0 can be easily calculated with the help of a minimization algorithm we show
some simpler upper and lower bounds.

Corollary 5.3. The critical penetration rate τ0 defined in Theorem 5.2 satisfies

τ0 ≥
−∆2(α1)2

∆1(α2)2 − ∆2(α1)2 ,

and τ0 ≤
(−∆2)

(
(α1)2 + (γ1)2Γ2

) (
(α1)2 + ((β1)2 − 2α1)Γ2 + (Γ2)2

)
(β2)2(α1)2∆1 + (−∆2)

(
(α1)2 + (γ1)2Γ2) ((α1)2 + ((β1)2 − 2α1)Γ2 + (Γ2)2) .

(5.22)

As we can see that Theorem 3.2–3.4 in Section 3 are direct consequences of the more detailed
Theorems 5.1,5.2, in the following we only give the proofs of the latter theorems.
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Proof of Theorem 5.2. Note that it suffices to study the exponential stability of the linearized system
(5.3) since the local exponential stability of the nonlinear system follows: At first we prove point (1)
of this theorem. Looking at Lemma 5.1, it is thus sufficient to investigate Eq (5.4). Let us first get an
intuition about what happens depending on the proportion of stable and unstable vehicle. To simplify
the condition, we can set y = x2 and µ = n1/n2, namely µ/(1 + µ) is the proportion of stable vehicle in
the traffic. The condition (5.4) becomes(

(α1)2 + (γ1)2y
(α1)2 + ((β1)2 − 2α1)y + y2

)µ ( (α2)2 + (γ2)2y
(α2)2 + ((β2)2 − 2α2)y + y2

)
< 1,∀y ∈ R∗+. (5.23)

We set

h1(y) =
(

(α1)2 + (γ1)2y
(α1)2 + ((β1)2 − 2α1)y + y2

)
,∀y ∈ R∗+. (5.24)

and we h2 similarly. We observe that, for i ∈ {1, 2},

h′i(y) =
−(γi)2y2 − 2(αi)2y − (αi)2∆i(
(αi)2 + ((βi)2 − 2αi)y + y2)2 ,∀y ∈ R∗+. (5.25)

where, we recall that ∆i = (βi)2 − (γi)2 − 2αi. This means that hi has at most two points where its
derivative vanishes and these potential points are given by

y± = −
(αi)2

(γi)2

1 ∓
√

1 −
(γi)2

(αi)2∆
i

 . (5.26)

However, note that we are only interested in the values of hi on [0,+∞). This gives some insight
about what happens when ∆i moves from a positive value (stable region) to a negative value (possibly
unstable region): when ∆i is positive there is no non-negative vanishing points of h′i , which means that
hi start at the value hi(0) = 1 and then decrease strictly continuously until it reaches the limit
limy→+∞ hi(y) = 0. When ∆i is negative, then y+ is the only positive vanishing point of h′ which means
that hi still starts at the value hi(0) = 1 but increase strictly up to y = y+ and becomes larger than 1.
The critical case ∆i = 0 corresponds to the special case where y+ = 0 and therefore h still decreases
strictly on [0,+∞). Let us now prove (1) of Theorem 5.2.

Quantitative characterization of the optimal choice of τ0

We define

Hi(y) = log(hi) = log
(

(αi)2 + (γi)2y
(αi)2 + ((βi)2 − 2αi)y + y2

)
, i ∈ {1, 2}. (5.27)

then for any given y > 0, (5.4) is equivalent to

µH1(y) + H2(y) < 0, ∀ y > 0. (5.28)

Since H1(y) < 0 ∀y > 0, the preceding condition is equivalent to having

µ > −
H2(y)
H1(y)

, ∀ y > 0. (5.29)
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Therefore, it leads us to introduce the quantity

K := sup
{
−

H2(y)
H1(y)

: y ∈ (0,+∞)
}
, (5.30)

and to show that this quantity is finite. If so, it suffices to choose µ > K to conclude the exponential
stability. We will show the following: define

N0 = max
{
−

H2(y)
H1(y)

: y ∈
(
0,Γ2

]}
< +∞, (5.31)

Γ2 :=
−(α2)2 +

√
(α2)4 − (α2)2(γ2)2∆2

(γ2)2 ∈ (0,−∆2), (5.32)

τ0 :=
N0

N0 + 1
, (5.33)

then K = N0 < +∞ and if
n1

n1 + n2
> τ0, (5.34)

the condition (5.29) is satisfied and consequently the system is exponentially stable around the
considered equilibrium flow.

From (5.25)

H′1(y) =
−(γ1)2y2 − 2(α1)2y − (α1)2∆1(

(α1)2 + (γ1)2y
) (

(α1)2 + ((β1)2 − 2α1)y + y2) ,∀y ∈ R∗+, (5.35)

H′2(y) =
−(γ2)2y2 − 2(α2)2y − (α2)2∆2(

(α2)2 + (γ2)2y
) (

(α2)2 + ((β2)2 − 2α2)y + y2)∀y ∈ R∗+. (5.36)

And using this together with Eq (5.27), we deduce that

H1(0) = H2(0) = 0, (5.37)
H1(y) < 0, H′1(y) < 0, ∀y ∈ (0,+∞), (5.38)

H2(y) < 0, ∀y ∈ (−∆2,+∞). (5.39)

Concerning H2 observe that we have the following key symmetry

H2

(
(α2)2(−∆2 − y)
(α2)2 + (γ2)2y

)
= H2(y), ∀y ∈ [0,−∆2]. (5.40)

This implies, by recalling the definition of Γ2 in Eq (5.32),

sup
{
−

H2(y)
H1(y)

: y ∈
(
0,Γ2

]}
= sup

{
−

H2(y)
H1(y)

; y ∈ (0,+∞)
}
, (5.41)

or equivalently N0 = K. Considering the fact H2/H1 is a continuous function, in order to prove that N0

is bounded it only remains to show that there exists a finite limit as y tends to 0+. From Eq (5.35),

lim
y→0+
−

H2(y)
H1(y)

= −
H′2(0)
H′1(0)

=
−∆2(α1)2

∆1(α2)2 ∈ (0,+∞), (5.42)
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which concludes that N0 < +∞. As n1 = µn2, Eq (5.34) is equivalent to µ > N0.
To show such a choice of τ0 is optimal, is suffices to observe that if µ < N0 (or equivalently

n1/(n1 + n2) < τ0) then by continuity there exists a subset [y1, y2] ⊂ (0,Γ2] with y1 , y2 such that

µ < −
H1(y)
H2(y)

, for any y ∈ [y1, y2], (5.43)

which implies that for any y ∈ [y1, y2], y > 0 and(
(α1)2 + (γ1)2y

(α1)2 + ((β1)2 − 2α1)y + y2

)µ ( (α2)2 + (γ2)2y
(α2)2 + ((β2)2 − 2α2)y + y2

)
> 1. (5.44)

Setting x =
√

y, Eq (5.44) together with Lemma 5.1 and Eq (5.5) allows us to conclude that there exists
M large enough such that for any n1 > M and n2 > M satisfying n1/(n1 + n2) = τ, the system (4.16) is
unstable around the equilibrium flow (h̄i, v̄)i∈{1,2}.

□

Proof of Corollary 5.3. We have now proved the existence of the critical penetration rate τ0 and we
obtained a quantitative characterization. Note that τ0 can be easily computed by a minimization
algorithm using Eqs (5.31)–(5.33) and provides the optimal penetration rate of stable cars to stabilize
the traffic. In the following, for the qualitative study convenience, we also present some lower and
upper bounds of τ0 (or equivalently, some lower and upper bounds of N0).

A simple lower bound of τ0.

Thanks to Eq (5.42), we see that

N0 ≥
−∆2(α1)2

∆1(α2)2 , (5.45)

hence a lower bound of τ0 can be expressed by

Bl :=
−∆2(α1)2

∆1(α2)2 − ∆2(α1)2 . (5.46)

Recall that −∆2 is strictly greater than 0, so Bl ∈ (0, 1).

A simple upper bound of τ0.

The precise value of N0 is given by Eq (5.31), but it is rather difficult to determine by hand. Indeed,
to do so we would need to compare the extreme points of −H2/H1, which are given by

E := {z ∈ (0,Γ2) : H′2(z)H1(z) − H2(z)H′1(z) = 0}. (5.47)

In terms of those extreme points, N0 is further given by

N0 = max
{
−

H2(y)
H1(y)

: y ∈ E ∪ {0,Γ2}

}
, (5.48)

where

−
H2(0)
H1(0)

:= −
H′2(0)
H′1(0)

=
−∆2(α1

1)2

∆1(α2
1)2
. (5.49)
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Actually, we can exclude Γ2 in {0,Γ2} from the expression (5.48): suppose that Γ2 ∈ E then E∪{0,Γ2} =

E∪{0}; otherwise, there exists some y0 ∈ (Γ2−δ,Γ2+δ) such that −H2(y0)/H1(y0) is bigger than those of
Γ2, then thanks to the symmetric property of H2 and the monotonous property fo H1, Eqs (5.37)–(5.40),
there exists some y1 ∈ (Γ2 − δ,Γ2) such that −H2(y1)/H1(y1) is bigger than those of Γ2. Therefore,

N0 = max
{
−

H2(y)
H1(y)

: y ∈ E ∪ {0}
}
. (5.50)

Next, notice that for any extreme point z ∈ E we have

−
H2(z)
H1(z)

= −
H′2(z)
H′1(z)

, (5.51)

which, to be combined with Eq (5.49), yields

N0 = max
{
−

H′2(y)
H′1(y)

: y ∈ E ∪ {0}
}
. (5.52)

We remark here that, though it is relatively easy to get the maximum value of −H′2/H
′
1 in [0,Γ2] (as its

extreme points can be calculated explicitly via polynomials), this value is not necessarily equivalent to
N0. More precisely,

N0 ≤ max
{
−

H′2(y)
H′1(y)

: y ∈ [0,Γ2]
}
=: Ñ0. (5.53)

The value of Ñ0 can also be expressed in terms of extreme points:

Ñ0 = max
{
−

H′2(y)
H′1(y)

: y ∈ Ẽ
}
, (5.54)

Ẽ := {z ∈ [0,Γ2] : H′′2 (z)H′1(z) − H′2(z)H′′1 (z) = 0}. (5.55)

In the following we present a simple upper bound for Ñ0. Observe that −H′2(y)/H′1(y) is
characterized by

−(γ2)2y2 − 2(α2)2y − (α2)2∆2(
(α2)2 + (γ2)2y

) (
(α2)2 + ((β2)2 − 2α2)y + y2) ·

(
(α1)2 + (γ1)2y

) (
(α1)2 + ((β1)2 − 2α1)y + y2

)
(γ1)2y2 + 2(α1)2y + (α1)2∆1

, (5.56)

while for y ∈ [0,Γ2] there are

(γ1)2y2 + 2(α1)2y + (α1)2∆1 ≥ (α1)2∆1, (5.57)(
(α1)2 + (γ1)2y

) (
(α1)2 + ((β1)2 − 2α1)y + y2

)
≤

(
(α1)2 + (γ1)2Γ2

) (
(α1)2 + ((β1)2 − 2α1)Γ2 + (Γ2)2

)
, (5.58)

−(γ2)2y2 − 2(α2)2y − (α2)2∆2 ≤ −(α2)2∆2, (5.59)(
(α2)2 + (γ2)2y

) (
(α2)2 + ((β2)2 − 2α2)y + y2

)
≥ (α2)2(β2)2. (5.60)

Consequently,

Ñ0 ≤
(−∆2)

(
(α1)2 + (γ1)2Γ2

) (
(α1)2 + ((β1)2 − 2α1)Γ2 + (Γ2)2

)
(β2)2(α1)2∆1

, (5.61)
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which further implies the following upper bound of τ0:

Bu :=
(−∆2)

(
(α1)2 + (γ1)2Γ2

) (
(α1)2 + ((β1)2 − 2α1)Γ2 + (Γ2)2

)
(β2)2(α1)2∆1 + (−∆2)

(
(α1)2 + (γ1)2Γ2) ((α1)2 + ((β1)2 − 2α1)Γ2 + (Γ2)2) . (5.62)

Let us now prove point (2) of Theorem 5.2. We define again µ = n1/n2. Suppose that ∆1 = 0 and
∆2 < 0. Thanks to Eq (5.35), we know that

µH′1(0) + H′2(0) = −
∆2

(α2)2 > 0, (5.63)

which, to be combined with the fact that µH1(0) + H2(0) = 0, imply the existence of y > 0 such that

µH1(y) + H2(y) > 0. (5.64)

As a direct consequence, the system is not stable.
□

6. Multi-phase collaborative driving

In this section, analogy to the preceding Section, we study the stability of the equilibrium flows in
a multi-phase mixed traffic flow. For any given equilibrium velocity v̄, keeping the notation Λ j and
Eq (4.21), we have that

Λ j = (α j, β j, γ j) ∈ {Λ1, ...,Λm} = {(α1, β1, γ1), ..., (αm, βm, γm)}. (6.1)

Again, for k ∈ {1, 2, ...,m} we denote by nk the number of Type k vehicles with parameters Λk such
that the total number of vehicles is n =

∑m
j=1 n j.

For any ordering of the vehicle on road, i.e., the j-th vehicle is of Type a j, the linearized system
around the unique equilibrium flow is

ẏ j = u j+1 − u j,

u̇ j = α jy j − β ju j + γ ju j+1,

(α j, β j, γ j) = (αa j , βa j , γa j),
(y j(t), u j(t)) j∈{1,...,n} ∈ H .

(6.2)

Similar to Theorem 5.1 and Theorem 5.2 we have the following theorem concerning the stability of the
m-phase mixed ring road traffic.

Theorem 6.1. Let given v̄ > 0. We assume without loss of generality that ∆1 ≥ ∆2 ≥ ... ≥ ∆
m.

(1) If ∆m ≥ 0, then for any (n1, n2, n3, ..., nm) ∈ Nm and any ordering of the vehicles on the road, the
ring road traffic system (4.16) is locally exponentially stable around the equilibrium flow.
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(2) If ∆1 > 0 and ∆m < 0, then there exists some effectively computable threshold constant τ1 ∈ (0, 1)
depending on {Λ1, ...,Λm} such that for any m-tuple (n1, n2, ..., nm) ∈ N2 verifying

n1∑m
k=1 nk

> τ1, (6.3)

in other words, for any ordering of the vehicles on the road (a1, a2, ..., an) ∈ K , the ring road
traffic system (4.16) is locally exponentially stable around the equilibrium flow associated to v̄.
On the other hand, we further assume that for some p ∈ {1, ...,m − 1} there is ∆p > 0 ≥ ∆p+1.
Then, there exists some τ2 ∈ (0, 1) effectively computable such that for any fixed penetration rates(

n1∑m
j=1 n j

, ...,
nm∑m
j=1 n j

)
satisfying

∑P
j=1 n j∑m
j=1 n j

< τ2 (6.4)

there exists M > 0 such that for any n1, ..., nm ∈ N
m satisfying

∑m
k=1 nk > M, the ring road traffic

system (4.16) is unstable around the equilibrium flow associated to v̄.
(3) If ∆1 = 0 (namely, Λ1 is critical), then for any fixed penetration rate of the cars the ring road

traffic system (4.16) is unstable around the equilibrium flow associated to v̄ provided sufficiently
many cars on road.

Indeed, similar to the two-phase traffic, we look at the ring road traffic with m populations having
respectively (n1, n2, ..., nm) many vehicles. The local exponential stability of this system is still
equivalent to the study of the real part of eigenvalues of the linearized system that are explicitly given
by the roots of the polynomial (4.35) presented in Section 4.3:

n∏
j=1

F j(ω) = 1, F j(ω) :=
γ jω + α j

ω2 + β jω + α j
. (6.5)

It becomes more delicate to calculate the exact roots of the polynomial. Instead, again, we
investigate the value of the polynomial on the imaginary axis. The question becomes:

whether
m∏

k=1

(
(αk)2 + (γk)2x2

(αk)2 + ((βk)2 − 2αk)x2 + x4

)nk

< 1 holds for any x ∈ R \ {0}? (6.6)

Thanks to the same reasoning as in Lemma 5.1, we get the following conclusion.

• If Condition (6.6) is satisfied, then all the roots of the polynomial excluding 0 are distributed on
the left complex region i.e., {z ∈ C : ℜ(z) < 0}. Hence, the linearized system is exponentially
stable.
• If Condition (6.6) is not verified, and if further there exists some x0 ∈ R such that the value of the

function in (6.6) is strictly larger than 1, then the ring road traffic system with these penetration
rates of vehicles is not stable provided sufficiently many cars. This is obtained using the same
reasoning as in the two population case (see Eqs (5.9)–(5.19)).

Recalling Definitions 4.2, 4.3 concerning the classification of ∆k, we know that

• if ∆k > 0, then (
(αk)2 + (γk)2x2

(αk)2 + ((βk)2 − 2αk)x2 + x4

)nk

< 1,∀x ∈ R \ {0}; (6.7)
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• if ∆k = 0, then Inequality (6.7) is also satisfied;
• if ∆k < 0, then (

(αk)2 + (γk)2x2

(αk)2 + ((βk)2 − 2αk)x2 + x4

)nk

> 1, for some x ∈ R \ {0}. (6.8)

This observation, together with Condition (6.6), finally leads to Theorem 6.1 in a way that is very
similar to the proofs of Theorem 5.1, 5.2. The easier cases (1) and (3) are direct consequences of the
preceding observations. Concerning the mixed case (2) such that both stable and unstable vehicles
coexist, from a heuristic point of view the more stable cars there are on the road, the more likely it is
that Condition (6.6) is satisfied, i.e., that for any ordering of the vehicles on the road (a1, a2, ..., an) ∈ K ,
the ring road traffic system (4.16) is locally exponentially stable around the equilibrium flow associated
to v̄. Otherwise with fewer stable cars on road the unstable cars will dominate the traffic to prevent
us from getting Condition (6.6). This comes from the fact that we get the following condition for the
stability instead of Eq (5.28)

n∑
i=1

niHi(y) < 0, ∀y ≥ 0, (6.9)

where Hi(y) = log
(

(αi)2+(γi)2y
(αi)2+((βi)2−2αi)y+y2

)
is defined similarly as in Eq (5.27); in this specific case there is

Hi(0) = 0 and H′i (0) < 0,∀i ∈ {1, 2, ..., p}, (6.10)
Hi(0) = 0 and H′i (0) > 0,∀i ∈ {p + 1, p + 2, ...,m}. (6.11)

7. Numerical experiments

In this Section we present some numerical experiments to illustrate Theorems 3.2–3.4 with two type
of populations described by some set of parameters Λ1 and Λ2.

We assume for this example that the vehicles are described by the nonlinear Bando-FTL model (2.5)
and we consider two populations described by the parameters (a1, b1) and (a2, b2). We assume that they
have the same velocity preference V given by

V(h) = Vmax

tanh(h−lv
d0
− 2) + tanh(2)

1 + tanh(2)
, h ∈ (0,+∞), (7.1)

which is a usual choice for Bando-FTL [2]. The quantity Vmax corresponds to the maximal velocity
preference for a given car. It corresponds to the inner speed limit of a given driver with a given car
(which can be different from the official speed limit). lv is the length of the vehicle, while 2d0 is a safety
distance below which the feeling of unsafeness would make the driver wants to stop. Here, their values
are respectively taken as: Vmax = 9.25 m.s−1, lv = 4.5 m and d0 = 2.5. In all the numerical simulations
the cars are initially placed at an equal distance on the road with a random ordering between the two
types of drivers. The initial velocity is close to half the velocity preference with a small random
perturbation (between 0 and 0.3 m.s−1).

We study a case where the first population has a very stable behavior on the road with ∆1 > 0 while
the second population is made of slightly more aggressive driver that have a slightly unstable behavior
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such that ∆2 < 0 but |∆2| < |∆1|. To do so, we choose the parameters a1 = 4, b1 = 20, a2 = 0.5, b2 = 20,
thus the instability of the second population will simply come from a higher sensitivity to the velocity
preference rather than the “Follow-the-leader” behavior. We choose L and N such that L/N = 10.4 m,
which is a steady-state value similar to the setting of the real life experiment described in [17]. Note
that parameters (a2, b2) are typical values that were obtained in [16] after calibration on data from real
life experiments. From Theorem 5.2 we deduce the following:

∆1 = 7.28, ∆2 = −0.84, τ0 = 0.881 (7.2)

as we can see, although |∆1| is one order of magnitude above |∆2|, the penetration rate of stable vehicle
needed for having a stable flow is very high and above 88%. This means that even a very low proportion
of slightly more aggressive drivers in a large road can completely destabilize a traffic that would be
very stable otherwise. In Figure 1 (left) we show the instantaneous speed variance across drivers of
a traffic flow with 500 cars, a penetration rate of stable cars of 80% (τ = 0.802), and we see that
the system becomes quickly unstable as the speed variance only increase during the entire simulation.
In Figure 1 (right) we show the instantaneous speed variance of the same traffic when the penetration
rate of stable car is 88.2% instead and we see that the speed variance, already low at initial time,
decreases exponentially fast. Here we define the instantaneous speed variance across drivers as the
variance of the drivers’ velocity at a given time t, i.e., the quantity

Vs(t) =
1
N

N∑
i=1

vi(t) −
1
N

N∑
i= j

v j(t)


2

. (7.3)

Figure 1. Speed variance in m2.s−2 over time in a two population traffic flow: drivers with
stable behaviour (∆1 = 7.28) and drivers with unstable behavior (∆2 = −0.84). Predicted
critical penetration rate: τ0 = 0.881. Left: 80% drivers with stable behavior; Right: 88.2%
drivers with stable behavior.
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However, as highlighted in Theorem 3.3, this instability might only occur with a large enough
number of cars and might be missed when looking at experiments with a small number of cars such as
[17,18] rather than a real freeway with sufficiently many cars. To get some insight on this phenomenon,
we ran several numerical experiments where we kept the same steady state described by L/N = 10.4 m,
hence the same τ0 = 0.881, but we varied the number of cars N from 10 to 120. Moreover, for each
number of cars N we also ran several simulations with different proportions of cars exhibiting a stable
behavior. In Figure 2 we show for each fixed number of cars N, the minimal penetration rate of cars
with stable behavior above which we observe a terminal instantaneous speed variance of the system
(i.e., the variance of speeds taken across all cars of the system at the given final time) below 0.01 m2.s−2

after 2000s of simulations. Such a negligible terminal speed variance indicates the strong stability of
the whole system while a non-negligible speed variance indicates that the cars are not in the uniform
flow equilibrium at final time. We see that the effective penetration rate of stable cars above which the
total system is stable is significantly lower than τ0 for small number of cars, and this value becomes
quickly close to the theoretical value τ0 = 0.881 above N = 40 (to be compared with the values N ∼ 20
of [17, 18]).

Figure 2. Minimal penetration rate of cars with stable behavior to have a terminal
instantaneous speed variance of the system (i.e., taken across cars at the final time and not
across time) below 0.01 m2.s−2 after 2000 s.
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