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Abstract: Opinion dynamics in social networks are fast becoming an essential instrument for
concentrating on the effect of individual choices on external public information. One of the main
challenges in seeing the dynamics is reaching an opinion consensus acceptable to managers in a social
network. This issue is referred to as a consensus-reaching process (CRP). Most studies of CRP focus
only on network structure and ignore the effect of agent opinions. In addition, existing methods ignore
the diversities between divided communities. How to synthesize individual opinions with community
diversities to solve CRP issues has remained unclear. Using the DeGroot model for opinion control,
this paper considers the effects of network structures and agent opinions when dividing communities,
incorporating community classification and targeted opinion control strategies. First, a community
classification enhancement approach is utilized, introducing the concept of ambiguous nodes and their
division methods. Second, we separate all communities into three levels, Center, Base, and Fringe,
according to the logical regions for opinion control. Third, an edge expansion algorithm and three
opinion control strategies are proposed based on the community levels, which can significantly reduce
the time it takes for the network to reach a consensus. Finally, numerical analysis and comparison are
given to verify the feasibility of the proposed opinion control strategy.
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1. Introduction

Social networks play a critical role in our daily life. A wide variety of social network platforms
allows people to express their opinions, emotions, and sentiments about events or products, those
opinions influence the actions of others. Many studies on social networks including dynamic network
embedding [1], user relationships [2], influence maximization [3] and opinion dynamics. The opinion
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dynamics problem in social networks aims to study the evolution of opinions when a group of people
discusses a topic, which has attracted research attention due to its significant challenges and practical
value. The research carriers of the problem are usually represented as direct graphs in which nodes
and edges symbolize agents and their interactions. Agents constantly update their opinions based
on the established rules leading to a consensus. Based on different update rules, a large number of
opinion dynamics models, including DeGroot model [4], Friedkin-Johnsen (FJ) model [5, 6], have
been presented and revealed the necessity of opinion dynamics. In previous opinion dynamics studies,
the process of forming opinions has been analyzed by investigating the conditions leading to consensus
or discord among agents. Furthermore, managers are interested in how opinions are formed and guided
in reaching a given consensus value.

The effects of group pressure in a dynamic society were investigated by Asch [7]. The task of
opinion dynamics was initially introduced by French [8], who accurately explained the influence
process in interpersonal relationships. Then, the famous and fundamental DeGroot [4] model was
proposed to solve the opinion dynamics problem. Many DeGroot variants and extensions have been
developed. For example, the Friedkin-Johnsen (FJ) model [5, 6] introduces the concept of
stubbornness degree, the Deffuang-Weisbuch (DW) model [9] defines finite confidence bound, and
Hegselmann-Krause (HK) model [10] provides a paradigm for the dynamic evolution of opinions and
its further research including [11]. The presence of absolutely stubborn agents in the DeGroot model
was detected by Abrahamsson et al. [12]. Zhou et al. [13] studied the influence of partially stubborn
agents in tuning the DeGroot model and considering the influence of two jump agent neighbors.
Li et al. [14] considered the multi-attribute group decision problem in dynamic opinions. These
studies have enriched the theoretical results and contributed to the development of opinion dynamics.
SNA and CRP are also hot research topics recently, and they also can be used for conflict elimination,
as in [15–18].

The consensus reaching progress (CRP) derived from group decision making [19] is one of the
main challenges in opinion dynamics problems. CRP is an iterative and dynamic process guided by
a manager consisting of several rounds in which individuals discuss and update their opinions until
a consensus is reached. Several researchers have studied the consensus-reaching process (CRP) or
its application to group decision-making problems (GDM). Li et al. [20] developed some models to
manage incomplete information and consensus for GDM with IHFLPRs. Gai et al. [21] propose a
consensus-trust driven framework of bidirectional interaction for social network large-group decision
making. Zhang et al. [22] developed a two-consensus-based TOPSIS-Sort-B algorithms to deal with
MCS-GDM problems. A social network analysis method based on conflict surveys and group decision-
making problems was presented by Ding et al. [23]. Li et al. [24] proposed a two-stage dynamic
influence model for achieving consensus among large groups working under incomplete information.
Several studies have also examined how network structure and agents affect CRP. Tian and Wang [25]
summarized the impact of stubborn agents on opinion formation and suggested criteria for achieving
consensus. Specifically, Ding et al. [26] investigated the influence of agent self-adherence on consensus
convergence speed. Cho et al. [27] treated informed agents as stubborn agents. Social opinion and self-
persistence have also received a lot of attention from researchers. The DeGroot-Friedkin (DF) model
is used in Jia et al. [28] to demonstrate the evolutionary process of self-persistence, social power, and
interpersonal influence in opinion dynamics. Accordingly, Chen et al. [29] and Ye et al. [30] discuss
the DF model with self-persistence.
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Existing research suggests that network structures are one of the main factors affecting CRP.
Typically, social network agents can be classified into leaders and followers, where the leaders play a
decisive role in the evolution of opinions [31]. Dividing the network into subnets(communities) by
these two categories allows for studying of opinion dynamics efficiently at a local level, avoiding the
loss of important information in the early iterations. In order to delineate reasonable communities,
existing studies [24,30,31] focus on the structure of social networks. These methods divide a network
into different communities according to the aggregation of nodes in the network. However, they all
focus on the structure but ignore the opinion of agents. Despite existing studies on CRP, there still
exist several challenges that have not yet been fully addressed:

1. How to divide followers influenced by multiple communities? Existing research identifies
different approaches to simultaneously divide followers who belong to multiple communities.
Several studies divide followers into multiple communities simultaneously. Others separate them
on the basis of the network structure. However, the influence of agent opinions is ignored by all
of the follower divisions.

2. Hierarchical classification of communities is lacking. Communities with different
characteristics play distinct roles in the CRP problem, and the possess distinct attitudes toward a
particular event or topic. However, existing studies of opinion dynamics ignore the differences
between communities, managing them uniformly.

3. How to effectively control the evolution of opinions in a network to reach a consensus? CRP
research aims to assist a network in reaching a consensus. It is necessary to propose a model that
optimizes agent opinions and network structure so that the opinion diffusion in the network will
stay in control. This optimization process is often insufficiently targeted due to the neglect of
community types. The model might be more accurate if community classification is incorporated
into it.

Based on these research needs, this paper addresses the CRP problem from a multiview perspective:
First, we model the opinions of all agents in the interval [0,1]. Second, to introduce fuzzy agents
into CRP to facilitate the guidance and construction of consensus in opinion dynamics, a community
identification algorithm is proposed based on the concept of fuzzy agents in social networks to provide
a framework for consensus-building strategies in opinion dynamics. Finally, a generalized strategy for
guiding the process of opinion dynamics until consensus is reached with the stated goal is proposed

The primary contributions of this study are itemized as follows:

1. We propose a community recognition algorithm with ambiguous node division, which takes into
account both the network structure and the agents’ opinion values to keep the community
classification more rational.

2. Network communities can be differentiated in the CRP problem by introducing community
levels Center, Base, and Fringe. The hierarchical division contributes a concise framework for
constructing opinion control algorithms.

3. An opinion optimization model is presented, and three community levels, Center, Base and
Fringe, are introduced to facilitate network structure expansion to quickly control public
opinions to reach the desired consensus.
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The remainder of this paper is structured as follows. Section 2 reviews basic concepts in graph
theory and opinion dynamics. Section 3 discusses the consensus process on the evolution of opinions
in social networks. Section 4 details the adding edges algorithm and opinion control strategy based on
community classification. Section 5 provides several numerical analyses to demonstrate the
effectiveness of the strategy. Section 6 compares and analyzes the differences and links between the
opinion control strategy proposed in this paper and other strategies. Section 7 presents the conclusion.

2. Preliminaries

This section formalizes the basic concepts and opinion dynamics addressed in this paper. More
details can be found in [4, 31, 32]. Basically, the two-tuple G(V, E) has been applied to represent a
directed graph with the finite agent (node) set V = {v1, v2, . . . , vn} and the edge set E ⊆ {(vi, v j)|vi, v j ∈

V}. A graph G(V, E) can be denoted by the adjacency matrix pattern A = (ai j)n×n(i, j = 1, 2, . . . , n). For
any pair (vi, v j), we have ai j = 1 if the expression (vi, v j) ∈ E is true; otherwise, ai j = 0. The weight
matrix W = (w1,w2, . . . ,wn) is introduced to represent the tightness of the relationship between the
agents in V . For any pair (vi, v j), wi j ∈ {0, 1} if the relation (vi, v j) ∈ E is satisfied; otherwise, wi j = 0.
Let square B = (bi j)n×n(i, j = 1, 2, . . . , n) be the accessibility matrix of a directed graph G(V, E). For
any pair (vi, v j), we define bi j = 1 if there is a reachable path from vi to v j; otherwise, bi j = 0. This
paper also considers the following boundary condition that any node to itself is assumed reachable. As
a result, the main diagonal elements of B equals 1. The accessibility matrix facilitates the calculation
of node degrees. The in-degree and out-degree of an agent vi can be obtained by the simple summation
calculations deg−i =

∑n
i=1 bi j and vi is deg+i =

∑n
j=1 bi j, respectively. This study performs a binary

division V = V l ∪ V f for social network G(V, E) with leader set V l and follower set V f . An agent
v ∈ V l ⊆ V is called a leader if any other agent v̄ ∈ V/v can reach it. An agent v ∈ V f ⊂ V is called a
follower if v < V l is satisfied.

2.1. Opinion dynamics

This section formalizes the fundamental elements relating to opinion dynamics. More subtleties
can be viewed in [10, 13, 33, 34]. The opinion dynamics describe the opinion evolution of an agent
group that discuss the same topic. The investigation of opinion dynamics will contribute to a deeper
understanding of the evolution of each agent’s opinion when the group’s goal is to find a solution to
opinion evolution problems. Existing opinion dynamics methods recognize the critical role played by
DeGroot models. They assumed that the agents in a network would influence or be influenced by their
neighbors. Hence, a stable weight as the standard parameter is applied to represent their influences.

Let G(V, E) be a network with n agents, xi(t) be the opinion value of an agent vi ∈ V , X(t) be the
opinion value vector of the whole agent set V at time t, and W = (wi j)n×n be the weight matrix with
non-negative elements for the n agents, where the matrix component wi j denotes the influence weight
of agent vi on agent v j. Suppose that the sum of each row in W equals 1, i.e.,

∑n
j=1 wi j=1. The evolution

process of agent opinions can be described as:

xi(t + 1) = wi1x1(t) + wi2x2(t) + . . .winxn(t), t = 0, 1, . . . (2.1)
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Their matrix pattern can be represented as:

X(t + 1) = W × X(t), t = 0, 1, . . . (2.2)

Definition 1. [10] Let X(0) = (x1(0), x2(0), . . . , xn(0))T be an initial opinion vector with respect to n
agents in a network. Opinion vector C = limt→∞X(t) = (x1(t), x2(t), . . . , xn(t))T is called a consensus
reached by the entire network if x1(t) = x2(t) = · · · = xn(t) = c at a time t from the initial t = 0, where
c is a constant opinion value and generality called the consensus value.

The process of all agents reaching consensus in the DeGroot model can be expressed according to
Equ. 2.2 and Definition 1:

C = lim
t→∞

X(t) =
∞∏

t=1

W × (W × X(0)) = (c, c, . . . , c)T (2.3)

The conditions for reaching consensus in the DeGroot model can be illustrated in the following two
Lemmas.

Lemma 2.1. [34] All agents in a network can reach a consensus if and only if the weight matrix W∗

contains at least one column of elements strictly positive.

Lemma 2.2. [35] Let µ = (µ1, µ2, . . . , µn) be the stationary probability vector for the weight matrix W
of a network, where ∀µi ∈ µ, µi ≥ 0, and

∑n
i=1µi = 1. If the agents reach a consensus in the DeGroot

model, then consensus value c can be expressed by:

c =
n∑

i=1

µixi(0) (2.4)

According to Lemma 2.1, agents in the network must have at least one trusted object, and the entire
network can reach a consensus only if the initial opinions of all agents are the same if the condition is
not satisfied. According to Lemma 2.2, we can derive the following conclusion that an agent is affected
by all its neighbors, and the final consensus value c is a linear combination of the initial opinions for
all agents.

3. Opinion consensus problems in social networks

Consensus issues in social networks are seeking agreement interactively through the evolutionary
features of network structures and attributes. Opinion consensus models are the core of decision-
making research, which aims to explain the overall tendency of Internet users’ opinions on online
hot events. These opinions may change depending on the influence of their surroundings due to the
subjective nature of agents. They may drive new decisions favorable to the event through opinion
iterations based on quantifiable parameters, thus forming a macroscopic evolution of goal-oriented
opinions. Several consensus models [14, 36–39] for opinion evolution issues have been proposed.
Most of them follow the flow chart of CRP shown in Figure 1. Their primary concepts are depicted as
follows:
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(i) Agent’s opinion. The opinion of an agent for a specific topic is normally denoted by a real
number x ∈ [0, 1]. A higher value of x indicates that the agent is more supportive of the topic.

(ii) Social networks. The graphical representation G(V, E) of social platform data is a class of
bigraph computing systems abstracted from the information propagation and the related
interaction between agents, known as social networks. The dynamic analysis of a social network
has brought benefits to capturing micro and macro agent opinions for its great graphical style,
timely dynamic updating, and a wide variety of topics.

(iii) Opinion evolution. Opinion evolution is a dynamic procedure of developing opinions among a
group of interactive agents in a social network. In general, decision agents recognize the
opinions of other adjacent agents in a network to form or evolve their views. All the agents will
update their opinions by the pre-designed iteration rules to generate a consensus, polarization, or
splitting. This study describes the evolutionary process formally in terms of the DeGroot
paradigm. Previous studies [4, 5, 24, 40, 41] primarily defined the ability of an agent vi ∈ V in a
network G(V, E) to maintain his/her current attitude as “self-persistence” that can be depicted by
a real number αi ∈ [0, 1]. Then, we have the self-persistence vector α = (α1, α2, . . . , αn) for all
agents. The higher the self-persistence is, the less the agent’s opinions are influenced by others.
The values 0 and 1 of αi indicate the complete inability and permanent preservation of an
opinion, respectively. Let I(vi) = {v j|ai j = 1}(i, j = 1, 2, . . . , n) be the original trust set of agent vi

in a social network with n agents. This study employs the weight matrix W to represent the
degree of mutual influence among all agents and their self-persistence at time t, specifically
formalized as:

Wi j =

1/(|I(vi)| + 1), v j ∈ I(vi)
0, otherwise.

(3.1)

Wii =

αi, deg−i > 0
1, deg−i = 0.

(3.2)

where deg−i represents the out-degree of agent vi, and | • | denotes the number of set •.

(iv) Final stable opinion. Agents’ opinions eventually evolve over time into three stable states:
consensus, polarization, and splitting. A social network reaches a consensus if the final opinions
of all agents are in stable agreement. The state of polarization (res. splitting) indicates that the
final opinion satisfies binary classification (res. multi-classification) characteristics and remains
stable.

(v) Opinion management. Opinion management is a pre-designed strategy with specific rules for
facilitating a consensus among agents in the opinion evolution process.

(vi) Opinion control. Opinion control aims to drive the whole network to the desired consensus by
constructing mechanisms to fine-tune agents’ opinions.

An essential approach, usually called celebrity endorsements, is currently being adopted in opinion
control. The original celebrity endorsement refers to an agreement between influential individuals
and products in online marketing [33]. Celebrity influences are widely utilized to promote products
because of their abilities to generate positive emotions that can guide product sales [24,42, 43]. In this
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Topic Agents Individual
opinions

Social network

Opinion evolution in
social network

Opinion evolution

Stable opinion Consensus? Expected? Last consensus
Yes

Opinions management

Opinions control
No

Yes

No

Figure 1. Processes of reaching a consensus in a social network

paper, the entities ‘leaders’ of agents in social network analysis are equated with celebrities. Thus, it is
possible to control other agents’ opinions in a social network if the leaders are considered the medium
to influence opinions.

Before proceeding to examine the opinion control, it is important to highlight the consensus. This
study also assumes the sufficient condition [13] of the consensus. A social network G(V, E) can reach a
consensus if V l , ∅. A consensus value c =

∑n
i=1 µixi(0) refers to all agents and their initial opinions in

a social network G(V, E) with total n nodes. Existing research [13] recognizes the critical role played
by leaders and recommends using the approximate expression of c =

∑
vi∈vl µixi(0) on leaders. In other

words, the final consensus value c is a linear combination of the initial opinions of all leaders.

4. Opinion control strategies based on community classification

Studies on opinion analysis have emphasized the importance of opinion evolution simulations.
However, there are relatively few historical studies on opinion control. The purpose of the control is
to allow the agent’s opinions to evolve according to the desired (pre-defined) consistency goal, i.e.,
consensus, polarization, and splitting. Several attempts have been made relating to the assumption
that the existence of a leader is a sufficient condition for a social network to reach a consensus. The
mechanisms that underpin opinion control without a leader are not fully understood. This study
proposes an opinion control strategy based on community classification to establish the expected
consensus on the network G(V, E) that does not satisfy the condition V l , ∅, which will generate fresh
insight into opinion control without a leader through the idea of potential leader discovery. The main
strategies are described as follows.

Let G(V, E) be an original network with V l = ∅ and G(V , E) be the expanded network from G(V, E)
by supplementing a small number of network relationships and preserving the net structure and initial
opinions of G(V, E) as completely as possible, where V = V , E ⊂ E, and V

l
, ∅. We need to seek

the case where the number of extended edges in E is minimized to maintain the behaviors of G(V, E).
Therefore, an optimal computational model of the extended network G(V , E) for the original network
G(V, E) is introduced as follows:

min |E| − |E|

s.t. E ⊂ E

V l , ∅

(4.1)

where | • | represents the cardinality of a set •.
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One of the core problems with consensus control is to obtain the expanded network G(V , E)
according to the optimization Equation (4.1). Community division is beneficial for detecting suitable
expansion edges. The primary process of applying the consensus control optimization model is
described as follows.

(i) We divide the original network G(V, E) with n agents into s communities, denoted by Com(G) =
{G1(V1, E1), G2(V2, E2), . . . ,Gs(Vs, Es)}, abbreviated as Com(G) = {G1,G2, . . . ,Gs}, according to
some regional consensus scenarios, where Com(G) represents the set of the communities, and
1 ≤ s ≤ n.

(ii) The concept of communities can be viewed as the collection of agents influenced by the same
local leaders (nearby) in a social network. A community is usually seen as a high-level agent
containing many original network agents. Our approach will add edges between these
communities to create a new network G(V , E) with global leaders, i.e., leaders who influence the
communities. As a result of our approach, we intend to create a new network G(V , E) of global
leaders, i.e., leaders who influence communities, by adding edges.

Let X(t) = (x1(t), x2(t), . . . , xn(t))T be an opinion vector with respect to n agents in a network G(V, E)
at a moment t. Generally, the opinion value of an agent vi ∈ V at moment t is denoted by xi(t). Then, the
opinion vector with m(m ≤ n) agents that come from a community Gi(Vi, Ei) of G(V, E) is a mapping
value, denoted by XGi(t), of vector X(t) to the nodes in set Vi. Similarly, the opinion value of an agent
v j ∈ Vi in a community Gi(Vi, Ei) at a moment t is represented as XGi

j (t).

4.1. Community Division and Community Classification

Social networks are a high abstraction of complex online systems. Apart from essential
characteristics, such as scale-free and small worlds, social networks also have another key feature:
community structure. An entire network is comprised of several communities. Community members
are relatively closely connected, but the connections between communities are relatively sparse. The
community division in this paper will be accomplished in two steps: subnet recognition and
ambiguous nodes division. This section will elaborate on the detailed process of the community
division and community classification applied in opinion consensus problems. Figure 2 illustrates the
relationship between community division and community classification in CRP.

Subnet Recognition

Ambiguous  
Nodes Division

Community Division

Community 
Classification

Figure 2. The relationship between ambiguous node division and community classification
in CRP
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4.1.1. Community division

There has been substantial research on opinion evolution, and one of the most significant
conclusions is that opinion leaders are crucial to opinion evolution [31]. Consequently, we will divide
a social network G(V, E) into multiple communities Com(G) = {G1,G2, . . . ,Gs} with 1 ≤ s ≤ n.
Alternatively, this procedure is also known as the subnet recognition and ambiguous nodes division.
Several rules must be followed to ensure the smooth running of this process.

(i) There should be a direct interaction between the leaders within the community Gi of a subnet if
there are several leaders in it, i.e., |V l

i | ≥ 2;

(ii) A leader can only belong to one subnet, meaning that the intersection of leaders in different
subnets is empty, i.e., V l

i ∩ V l
j = ∅ (i , j);

(iii) The relationships between different subnets should satisfy ∪s
i=1Vi = V , ∪s

i=1Ei = E, Vi ∩ V j = ∅

(i , j), and Ei ∩ E j = ∅ (i , j).

As demonstrated in Algorithm 1, this study follows a similar approach to the subnet recognition
proposed by Zhou et al [13].

Definition 2. Let G(V, E) be a social network with n agents, and Com(G) = {G1,G2, . . . ,Gs} is the set
of subnets of G(V, E) at a specific time t, where 1 ≤ s ≤ n. An agent v ∈ V is called an ambiguous node
of G(V, E) at a time t if there exist at least two subsets Gi and G j satisfying V l

i , ∅, V l
j , ∅, V l

i ∩V l
j = ∅,

V f
i , ∅, V f

j , ∅, v ∈ V f
i and v ∈ V f

j .

In Definition 2, certain followers are not properly assigned to a particular subnet based on the
subnet recognition rules before the division of communities. These followers are called ambiguous
nodes and should be investigated further. Therefore, the operations of ambiguous node division are
added to the subnet recognition to obtain the desired communities. This type of diagram can be seen in
Figure 3, where the red, yellow, and gray nodes represent the leaders, followers, and ambiguous nodes,
respectively. The function of our approach is to be able to reasonably categorize any ambiguous node
as one of the subnets based on the network structure and the agent opinions. Algorithm 2 provides a
detailed representation of this function.

Figure 3. Schematic diagram of an ambiguous node between two subnets.

Networks and Heterogeneous Media Volume 18, Issue 2, 813–841.
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Algorithm 1 Subnet recognition.
Input: The adjacency matrix A = (ai j)n×n of a social network G(V, E) with n agents;
Output: The subnets Com(G̃) = {G̃1(Ṽ1, Ẽ1), G̃2(Ṽ2, Ẽ2), . . . , G̃s(Ṽs, Ẽs)} with potential ambiguous

nodes and the leader sets V l = {V l
1,V

l
2, . . . ,V

l
s}.

1: Initialize I = In = diag(1, 1, . . . , 1)
2: Initialize B = sign((A + I)n−1)
3: Initialize H = {h1, h2, . . . , h j, . . . , hn}, h is the sum of a column in B
4: Initialize s = 1
5: while H , ∅ do
6: V̈ = ∅
7: q = argmax j{H}
8: J = { j | q = argmax j{H}}
9: s = 1

10: if | J |≥ 1 then
11: j = Minimum(J)
12: end if
13: V̈ = {vp|bpq = 1, vp ∈ V}
14: if V̈ = ∅ then
15: Ṽs = Ṽ l

s = {vq}, Es = ∅

16: else
17: Ṽs = V̈ ∪ {vq}

18: Ẽs = {(vi, v j)|vi, v j ∈ Ṽs, (vi, v j) ∈ E}
19: end if
20: V̈ l = {vp|bqp = 1, vp ∈ V}
21: Ṽ l

s = V̈ l ∪ vq

22: H = H\{hm | vm ∈ Vs}

23: s = s + 1
24: end while
25: return Com(G̃) = {G̃1(Ṽ1, Ẽ1), G̃2(Ṽ2, Ẽ2), . . . , G̃s(Ṽs, Ẽs)} and the leader sets V l =

{V l
1,V

l
2, . . . ,V

l
s}.

4.1.2. Community classification

The operation of ambiguous node division ensures that nodes in a social network belong to no
more than one community. Besides, community classifications are intended identify and measure the
differences between multiple communities, which provide the structural basis of opinion control. The
notation E = [γ, η] is introduced to denote the expected opinion interval (final expected consensus
interval) for a particular community. Consequently, communities can be divided into three categories:

(i) supportive communities. A community is called a supportive community, denoted by Gsp, if the
final opinions of all of its agents fall within the expected opinion interval E.

(ii) Indecisive communities. A community is called an indecisive community, denoted by Gid, if the
final opinions of some of its agents fall within the expected opinion interval E.

Networks and Heterogeneous Media Volume 18, Issue 2, 813–841.
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Algorithm 2 Ambiguous node partition algorithm.
Require: A social network G(V, E) with n agents;

Initial opinion of agents X(0) = {x1(0), x2(0), . . . , xn(0)};
Follower set V f ;
Subnet partition Com(G̃) = {G̃1(Ṽ1, Ẽ1), G̃2(Ṽ2, Ẽ2), . . . , G̃s(Ṽs, Ẽs)} with ambiguous nodes (the
output of Algorithm 1).

Ensure: Subnet partition Com(G) = {G1(V1, E1),G2(V2, E2), . . . ,Gs(Vs, Es)} without ambiguous
nodes

1: Vab = ∅

2: for i = 1; i ≤ |V f |; i + + do
3: if v f

i ∈ Ṽm, v
f
i ∈ Ṽn,m , n then

4: Vab = Vab ∪ v f
i

5: end if
6: end for
7: P = {P1, P2, . . . , Ps} = {∅, ∅, . . . , ∅}

8: V̇ = {v̇ | (∀v ∈ Vab, v̇) ∈ E, v̇ ∈ V}
9: V̈ = {V̈1, V̈2, . . . , V̈s | V̈i = {v̈ | v̈ ∈ Ṽ j, v̈ ∈ V̇}}

10: for i = 1; i ≤| Vab |; i + + do
11: for j = 1; i ≤ s; j + + do
12: Ẍ(0) = {ẍ(0) | ẍ(0) is the initial opinion of v̈, v̈ ∈ V̈ j}

13: K =| V̈ j |

14: pi j =
∑K

k=1 |ẍk(0)−xi(0)|
K

15: Pi = Pi ∪ pi j

16: end for
17: j = argmax j{Pi}

18: V j = Ṽ j ∪ vab
i

19: end for
20: return Com(G) = {G1(V1, E1),G2(V2, E2), . . . ,Gs(Vs, Es)}

(iii) Opposition communities. A community is called an opposition community, denoted by Gop, if
the final opinions of all of its agents are not in the expected opinion interval E.

The set Com(G) of communities without ambiguous nodes can be used as a basis for adding edges
in opinion control.

4.2. Opinion control strategies

Returning briefly to the network partition issue, a social network can be well divided into multiple
communities without any ambiguous nodes. This study also divides the communities into three
categories based on the tendencies of the agent’s overall opinions. This section addresses ways of
opinion control. It is possible that a spontaneous consensus reached by the public on an online event,
e.g., a rumor, without any intervention will not be accepted. Opinion control is intended as a
mechanism for guiding multiple confused opinions that fall within an expected range E = [γ, η]. The
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control strategies of this paper can be divided into two sequentially related phases:

(i) Adjust the original social network G(V, E) by expanding a few edges to construct a supplementary
social network G(V, E) so that its agents can reach a consensus;

(ii) Adjust the leaders’ opinions in the updated network G(V, E) to ensure that the final consensus
value c falls in an expected opinion interval E = [γ, η].

4.2.1. Structure expansions of social networks

Initially, we divide an entire social network G into s subnets Com(G) = {G1(V1, E1),G2(V2, E2), . . . ,
Gn(Vs, Es)} by using Algorithm 1 and Algorithm 2. Then, three kinds of communities, i.e., supportive
Gsp, indecisive Gid, and opposition Gop, are defined to refer to an opinion coarse-grained classification
of all agents within an expected opinion interval. This section separates all communities into three
levels, Center, Base and Fringe, according to the logical regions for opinion control. Criteria for the
separation are as follows:

(i) One of the supportive communities is chosen as the level Central. Formally,
Central = Gce(Vce, Ece) ∈ Com(G) with Vce = {vce

1 , v
ce
2 , . . . , v

ce
cn} is a supportive community with

cn agents.

(ii) Base is a subset of Com(G) with bs communities, which includes all indecisive communities as
well as the remaining supportive communities, except for Central. Formally,
Base = {Gba

1 (Vba
1 , E

ba
1 ),Gba

2 (Vba
2 , E

ba
2 ), . . . ,Gba

bs(V
ba
bs , E

ba
bs )} ⊂ (Com(G) \Central).

(iii) All opposition communities constitute the level Fringe. Formally, Fringe = {G f r
1 (V f r

1 , E
f r
1 ),

G f r
2 (V f r

2 , E
f r
2 ), . . . ,G f r

f s(V
f r
f s , E

f r
f s)} ⊂ Com(G) is a subset of Com(G) with f s opposition

communities.

Figure 4. Relationship schematic of Central, Base and Fringe.

Figure 4 illustrates the among Central, Base and Fringe, where Central is a randomly selected
supportive community, Base consists of a mixture of indecisive and supportive communities, and
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Fringe consists of all the opposition communities. Property such as that conducted by Dong et
al. [31] have shown that we are merely required to attach an edge between two subnets (at least one
leader), and their agents can achieve consensus on their combined network. The algorithm 3 is
prepared to generate an updated social network G(V, E) according to the following procedures of edge
expansions. First, if there are no indecisive communities in the subnets Com(G), an edge will be
added from each leader in opposition communities to the followers in the supportive community of
Central. This scenario is shown in Figure 5. Second, if a social network does not delineate any
supportive community, we first add acyclic one-way edges between the leaders of indecisive
communities. Besides, the edge expansion approach randomly selects an indecisive community for
each opposition community and creates edges from the opposition community’s leaders to the
followers of the indecisive one. This case can be illustrated briefly by Figure 6. Third, if we consider
the scenario shown in Figure 7 in which there are no opposition communities, the acyclic one-way
edges between the leaders of indecisive communities are established. Additionally, we extend the
edges between the leaders of the last indecisive community and the supportive community leaders.
Fourth, the case presented in Figure 8 illustrates an edge expansion approach where none of the three
levels of the community division are empty. The edge expansions of each adjacent two levels are
performed by the same strategies as Central/Fringe (Figure 5), Base/Fringe (Figure 6), and
Central/base (Figure 7).

Algorithm 3 Edge expansions among three levels of communities for a social network.
Input: A social network G(V, E) and its communities Com(G);

Leader set V l and follower set V f ;
Central = Gce(Vce, Ece);
Base = {Gba

1 (Vba
1 , E

ba
1 ),Gba

2 (Vba
2 , E

ba
2 ), . . . ,Gba

2 (Vba
bs , E

ba
bs )};

Fringe = {G f r
1 (V f r

1 , E
f r
1 ),G f r

2 (V f r
2 , E

f r
2 ), . . . ,G f r

f s(V
f r
f s , E

f r
f s)};

Expected consensus interval E;
Initial opinion X(0) = {x1(0), x2(0), . . . , xn(0)} of all agents.

Output: An updated social network G(V, E) with edge expansions from G(V, E).
1: E = E
2: Vce·l = {vi | vi ∈ Vce, vi ∈ V l}

3: Vce· f = {vi | vi ∈ Vce, vi ∈ V f }

4: Vba·l = {vi | vi ∈ (Vba
1 ∪ · · · ∪ Vba

bs ), vi ∈ V l, xi(0) ∈ E}

5: Vba·l
k = {vi | vi ∈ Vba

k , vi ∈ V l, x
Gba

k
i (0) ∈ E}

6: Vba· f
k = {vi | vi ∈ Vba

k , vi ∈ V f }

7: V f r·l
k = {vi | vi ∈ V f r

k , vi ∈ V l}

8: if Base = ∅ and Central , ∅ and Fringe , ∅ then
9: for k = 1; k ≤ f s; k + + do

10: ∀vi ∈ V f r·l
k , ∀v j ∈ Vce· f , add edge e = (vi, v j)

11: E = E ∪ e
12: end for
13: end if
14: if Base , ∅ and Central = ∅ and Fringe , ∅ then
15: for k = 1; k ≤ bs − 1; k + + do
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16: ∀vi ∈ Vba·l
k , ∀v j ∈ Vba·l

k+1, add edge e = (vi, v j)
17: E = E ∪ e
18: end for
19: for k = 1; k ≤ f s; k + + do
20: ∃Vba· f

p , ∀vi ∈ V f r·l
k , ∀v j ∈ Vba· f

p , add edge e = (vi, v j)
21: E = E ∪ e
22: end for
23: end if
24: if Base , ∅ and Central , ∅ and Fringe = ∅ then
25: for k = 1; k ≤ bs − 1; k + + do
26: ∀vi ∈ Vba·l

k , ∀v j ∈ Vba·l
k+1, add edge e = (vi, v j)

27: E = E ∪ e
28: end for
29: ∀vi ∈ Vba·l

bs , ∀v j ∈ Vce·l, add edge e = (vi, v j)
30: E = E ∪ e
31: end if
32: if Base , ∅ and Central , ∅ and Fringe , ∅ then
33: for k = 1; k ≤ bs − 1; k + + do
34: ∀vi ∈ Vba·l

k , ∀v j ∈ Vba·l
k+1, add edge e = (vi, v j)

35: E = E ∪ e
36: end for
37: ∀vi ∈ Vba·l

bs , ∀v j ∈ Vce·l, add edge e = (vi, v j)
38: E = E ∪ e
39: for k = 1; k ≤ f s; k + + do
40: ∃Vba· f

p , ∀vi ∈ V f r·l
k , ∀v j ∈ Vba· f

p , add edge e = (vi, v j)
41: E = E ∪ e
42: end for
43: end if
44: return G(V, E)

Figure 5. Central and Fringe in the network.

Networks and Heterogeneous Media Volume 18, Issue 2, 813–841.



827

Figure 6. Base and Fringe in the network.

Figure 7. Central, Base in the network.

Figure 8. Central, Base, Fringe in the network.

4.2.2. Adjustment of opinions and Self-persistence

Section 3 has explained that the final consensus is a linear combination of the leader’s initial
opinions. We recognize the critical role played by leaders. The research [13, 31, 44] on initial opinion
adjustment has tended to focus on all leaders. This paper asserts that the fewer the leaders involved in
the initial opinion adjustment, the more similar the initial opinion expressed to that of the original
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network. Even a mall adjustment to the leader’s initial opinions can also result in excellent opinion
control. This section establishes three rules for minimized adjusting of the leaders’ initial opinions in
the expanding network G(V, E) in order to reach an expected consensus value c ∈ E = [γ, η]. Three
rules are provided as follows:

Rule 1. Improve the self-persistence of the supportive community’s leaders.
Rule 2. Rule adjustments for indecisive communities can be divided into three cases: 1) the final

opinion c does not have to be adjusted if it falls within the expected opinion range [γ, η]; 2) if the final
consensus c is less than the minimum expected consensus γ, we must enhance and reduce the
self-persistence of the leaders in the supportive communities and opposition communities,
respectively. Also, the initial opinion of the leaders with the opinion value c<γ in the indecisive
communities should be adjusted to reach the value η; and 3) if the final consensus c exceeds the
maximum expected consensus η, we need to improve and reduce the self-persistence of leaders in the
supportive communities and opposition communities, respectively. Then, the initial opinion of leaders
in the indecisive communities should be adjusted to reach the border value η.

Rule 3. Reduce the self-persistence of the leaders within the opposition communities.
According to Rules 1–3, we can reach the final consensus value of c within the expected consensus

interval E. The proposed opinion control strategy is that there should be at least a supportive or
indecisive community for a focused social network. Early research on consensus in social networks
illustrates the necessity of at least an opinion leader, which recognizes the critical role played by
the leader’s initial opinions. The final consensus is a linear combination of the opinions. It is now
well established from our strategy that adjusting the self-persistence of the opposition communities is
enough to achieve opinion control. If the entire network has only opposition communities, then the
linear combination of the leader’s initial opinions must be opposing. Hence, it is essential to have at
least a supportive or indecisive community to reach a consensus.

5. Numerical analysis

The numerical analysis will be utilized to test the feasibility and effectiveness of the proposed
method for opinion control. We operate the case social network from [31] as the benchmark for
performance comparisons. Figure 9 presents the network G(V, E) that contains a total of 26 agents.
The initial opinion vector X(0) for all of the agents is depicted below.

X(0) = (x1(0), x2(0), . . . , x26(0))T

=(0.96, 0.64, 0.87, 0.10, 0.74, 0.76, 0.66, 0.79, 0.39, 0.32, 0.13, 0.29, 0.40,
0.32, 0.73, 0.58, 0.21, 0.64, 0.31, 0.50, 0.36, 0.79, 0.53, 0.24, 0.46, 0.60)T

The self-persistence vector α for all the agents is shown below.

α = Wii = (α1, α2, . . . , α26)
=(0.81, 0.91, 0.91, 0.28, 0.63, 0.10, 0.13, 0.55, 0.96, 0.96, 0.97, 0.42, 0.14,
0.96, 0.16, 0.80, 0.49, 0.92, 0.79, 0.96, 0.66, 0.68, 0.93, 0.04, 0.85, 0.76)

The consensus reached by the DeGroot model is always at or below 0.5 for random initial opinion
values. Two small intervals E = [γ, η] = [0.6, 0.7] and E = [γ, η] = [0.3, 0.4] are taken separately
before and after the opinion midpoint 0.5 to observe the performance of the control strategy. Having
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defined the network parameters for the simulation, we will now move on to discuss the process of
achieving consensus using the proposed method.

1 2

3

4

5 6

7 8 9

20 21 22

24 25 2623

18

16 17

19

14 15

11

10

1312

Figure 9. Case social network G(V, E).

5.1. Progress of reaching consensus

This section analyses the progress of reaching consensus in the network G(V, E) shown in Figure
9 by using the initial opinions X(0) and the self-persistence vector α. Figure 10 shows the agents’
opinion evolution in their natural state. It is apparent from these evolutionary trends that the social
network cannot reach a consensus without any adjustment.

Figure 10. Evolution of opinions in the natural state
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5.1.1. Community division

Section 4.1 describes the processes of community division and community classification.
Algorithm 1 of subnet recognition, together with the Algorithm 2 of ambiguous node partition, have
been described in detail in the previous sections. The output results, i.e., Com(G), obtained from the
two algorithms are summarized in Table 1. The execution details of the algorithms can be observed
through network visualization, where leaders are depicted in red while followers are highlighted in
yellow. First, Algorithm 1 ensures that the network is divided into three communities, where there are
four ambiguous nodes v8, v9, v18, and v19. They belong to multiple communities at the same time. The
details of the division can be shown in Figure 11. Second, Algorithm 2 categorizes ambiguous nodes
into their more biased communities. Figure 12 illustrates the result. There were two indecisive
communities and one opposition community among the three.

1 2

3

4

5 6

7 8 9

20 21 22

24 25 2623

18

16 17

19

14 15

11

10

1312

Figure 11. Result of subnet recognition.
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indecisive community

indecisive community

oppose community

Figure 12. Result of ambiguous node partition.
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1 2
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indecisive community

indecisive community
oppose community

Base

Fringe

Figure 13. Result of adding edges.

Table 1. Community division and community classification.

Communities V V l types

G1(V1, E1) {v1, v2, . . . , v8} {v3, v5, v6} indecisive
G2(V2, E2) {v10, v11, . . . , v17, v19} {v11, v13, v14, v16, v17} opposition
G3(V3, E3) {v9, v18, v20, . . . , v26} {v20, v21, v24, v25} indecisive

5.1.2. Edge expansions

Edge expansions based on the distinctions of Central, Base and Fringe are a continuing concern in
Section 4.2. Algorithm 3 describes the steps required for edge expansions. Edge expansions allow for
the creation of a new network G(V, E) connected to multiple communities from the original network
G(V, E). The simulation of opinion evolution in the new network can achieve the final consensus
relative to the initial one, as seen in Figure 14a. The edge expansion strategy satisfies stochasticity in
the presence of algorithmic constraints, and the final consensus depends on the edge expansion scheme
selected. Table 2 shows the results of testing some edge expansion schemes in this paper, where T
represents the time of opinion evolution to reach consensus, and c depicts the consensus value.

Table 2. Edge expansion schemes for the expected interval E = [0.6, 0.7].

Scheme Added edges Ta f ter add ca f ter add Ta f ter control ca f ter control

Scheme 1 {v5, v20}{v13, v8} 499 0.571 221 0.601
Scheme 2 {v20, v3}{v17, v26} 806 0.837 461 0.694
Scheme 3 {v6, v21}{v13, v1} 607 0.573 340 0.600
Scheme 4 {v5, v23}{v20, v5} 621 0.562 189 0.661
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5.2. Reach an expected consensus

The opinion control strategy introduced in Section 4.2 enhances self-persistence in supportive
communities, reduces self-persistence in opposition communities, and changes the initial opinions of
leaders in indecisive communities. As Table 2 shows, Scheme 4 of edge expansions with
E = E ∪ {v6, v25} ∪ {v16, v18} and the result of implementing the three opinion control rules in the
expansion network is a good illustration of reaching an expected consensus.

As can be seen from Figure 14a, after the expansions of Algorithm 3, the times of evolution required
for the network to reach a consensus is Ta f ter add = 621 and the final consensus value of the network
is ca f ter add = 0.562. Compared to the natural evolutionary state of the original network, the expansion
one is already capable of achieving a consensus, but it does not satisfy the expectation. The proposed
control strategy not only achieves the expected consensus but also further accelerates the achievement
of the expected consensus significantly, as shown in Figure14b. Following the opinion control, the time
required for the network to reach a consensus is reduced to Ta f ter add = 189 and the final consensus
value rises to ca f ter control = 0.66 that falls in the expected opinion interval E = [0.6, 0.7]. This is
evidence of the positive influence these rules have on accelerating public opinion into consensus. The
experiment shows the benefits of these rules in addressing public opinion control.

Several experiments have been conducted for different adding edge schemes and expected
consensus. The times and opinion values results are shown in Table 3. The data available in Table 3
can be inspected in Figure 15.

(a) Opinion evolution after edge expansions. (b) Opinion evolution after opinion control.

Figure 14. Opinion control results for expected interval E = [0.6, 0.7].

Table 3. Edge expansion schemes for the expected interval E = [0.3, 0.4].

Scheme Added edges Ta f ter add ca f ter add Ta f ter control ca f ter control

Scheme 1 {v6, v26}{v11, v22} 552 0.473 127 0.393
Scheme 2 {v6, v23}{v16, v22} 583 0.472 138 0.391
Scheme 3 {v5, v26}{v14, v9} 406 0.467 194 0.392
Scheme 4 {v6, v22}{v16, v9} 531 0.472 185 0.392
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(a) Opinion evolution after adding edges. (b) Opinion evolution after opinion control.

Figure 15. Opinion control results for the expected interval E = [0.3, 0.4].

5.3. Experiments conducted using different community levels

This study separates all communities into three levels, Center, Base and Fringe, according to the
logical regions for opinion control. Central is one of the supportive communities. All indecisive
communities, except for Central, are included in the Base level. Fringe level refers to all opposition
communities. The previous sections describe how to expand the edges based on the interaction of three
levels. This section examines the impact of adjusting the selection levels on opinion control.

Combination patterns for the three levels include Center, Base, Fringe, Center and Base, Center
and Fringe, Base and Fringe, and Center, Base and Fringe. First, edge extension operations cannot
be implemented when only one level is contained. Second, it is essential for opinion control to have
at least a supportive community in level Center and a control objective community in level Fringe.
Hence, our experiments will examine only two feasible combinations.

5.3.1. Central and Fringe

This case contains only two levels of Central and Fringe. Specifically, there are no indecisive
communities and more than one support community following community division. Basic experiment
parameters are as follows. The initial opinion vector X(0) for all of the agents is depicted below.

X(0) = (x1(0), x2(0), . . . , x26(0))T

=(0.66, 0.64, 0.67, 0.60, 0.64, 0.66, 0.66, 0.89, 0.89, 0.32, 0.13, 0.29, 0.40, 0.32, 0.73,
0.58, 0.21, 0.64, 0.31, 0.62, 0.36, 0.79, 0.53, 0.24, 0.46, 0.60)T

The higher value of opinions in [0, 1] indicates that the agents are more supportive of the topic, and
vice versa. The self-persistence vector α is set as follows.

α = Wii = (α1, α2, . . . , α26)
=(0.75, 0.81, 0.81, 0.58, 0.73, 0.80, 0.73, 0.95, 0.96, 0.16, 0.47, 0.42,

0.14, 0.96, 0.16, 0.80, 0.39, 0.92, 0.79, 0.96, 0.66, 0.68, 0.93, 0.04, 0.85, 0.76)

This investigation was initially performed with the expected opinion interval E = [0.6, 0.7] and the
edge expansion scheme {v6, v12}{v21, v15}. Then, the experiment was carried out with the second set of
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parameters, i.e., the expected opinion interval E = [0.3, 0.4] and the expansion scheme
{v6, v12}{v21, v15}.

Figure 16. Evolution of opinions in the natural state(Only Central and Fringe in network).

(a) Opinion evolution after adding edges (E =
[0.6, 0.7])

(b) Opinion evolution after opinion control(E =
[0.6, 0.7])

(c) Opinion evolution after adding edges(E =

[0.3, 0.4])
(d) Opinion evolution after opinion control(E =
[0.3, 0.4])

Figure 17. Only Central and Fringe in network.
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Figure 16 shows the evolution of opinions in the natural state of the original network. It can be
seen from the five convergence lines of opinion values in Figure 16 that natural evolution cannot reach
any consensus. Then, the edge expansion algorithm is used to obtain an updated network. The
opinion evolution analysis results with respect to expected opinion internals E = [0.6, 0.7] and
E = [0.3, 0.4] are shown in Figure 17a and Figure 17c in comparison with the natural situation,
respectively. Consensus can be determined by the existence of a unique convergence line. The final
results after the opinion control steps are shown in Figure 17b and Figure 17d, respectively. The time
delay from evolution to consensus can be used to measure opinion control. The speed of reaching a
consensus has been significantly accelerated.

5.3.2. Base, Central and Fringe

This assessment takes into account the same expected opinion internals, i.e., E = [0.3, 0.4], when
all three levels Base, Central, and Fringe are present. The parameters X(0) and α of opinion evolution
are set out below.

X(0) = (x1(0), x2(0), . . . , x26(0))T

=(0.13, 0.61, 0.82, 0.15, 0.30, 0.30, 0.68, 0.19, 0.65, 0.93, 0.43, 0.37, 0.79, 0.32, 0.17,
0.47, 0.26, 0.28, 0.74, 0.57, 0.80, 0.25, 0.10, 0.47, 0.20, 0.54)T

α = Wii = (α1, α2, . . . , α26)
=(0.66, 0.27, 0.08, 0.41, 0.25, 0.99, 0.04, 0.07, 0.64, 0.51, 0.43, 0.97, 0.77,

0.09, 0.49, 0.50, 0.15, 0.6, 0.3, 0.94, 0.74, 0.62, 0.63, 0.14, 0.90, 0.57)

The edge expansion scheme can be presented as {v21, v6}{v11, v26}. Figure 18 depicts the evolution
of opinions within the natural state, the edge expansion state, and the opinion control state.

Those results demonstrate that our proposed opinion control strategy is capable of controlling
consensus within the expected consensus interval and reducing the time of opinion evolution to
achieve consensus. Our opinion control strategy can achieve consensus only at the edge expansion
stage. Furthermore, it can reduce the amount of opinion evolution by three rules during the opinion
adjustment stage.

(a) Opinion evolution in natural
state.

(b) Opinion evolution after edge
expansions.

(c) Opinion evolution after control.

Figure 18. Base, Central and Fringe in network (E = [0.3, 0.4]).
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6. Analysis and comparison

This section analyses the key techniques proposed in this paper and compares them to others in
order to demonstrate the feasibility of this approach. Community classification is the foundation for
introducing the edge expansion algorithm and opinion control strategies. In addition, a community
division algorithm including ambiguous node partition is also presented. This algorithm can be applied
to different types of networks.

(i) This paper introduces the concept of ambiguous nodes compared with the community division
algorithms of other models. Our approach considers agents belonging to multiple communities
as ambiguous nodes, and we divide them based on the network structure and opinion values in
the communities in which they reside.

(ii) The edge expansion algorithm with community classification is more purposeful than other edge
expansion algorithms, and the consensus of the update network following edge expansion will
approach the expected consensus. Edge expansion algorithms generally add edges randomly
between subnets. The consensus of the new network after edge expansion is random and
insufficiently stable. Table 4 displays the consensus achieved by the network generated by the
edge expansion algorithm with and without community classification.

(iii) Compared with other strategies reported in [31], opinion control strategies that include
community classification steps can reduce changes to the leader’s initial opinion, thereby
reducing the time necessary for opinion evolution to reach consensus. Table 4 compares opinion
evolution times in the same social network using different strategies.

A detailed comparison of the model proposed in this paper and other studies can be found in
Table 5.

As seen in Table 4, opinion evolution is estimated to be approximately 500 after edge expansion.
Still, our proposed method reaches fewer multipolar opinions, which are all around the expected
opinion. After opinion control, our strategy and the approach in [31] can reach a consensus, but our
method requires fewer evolution steps.

Table 4. Different consensus control optimization model effects.

Ta f ter add ca f ter add Ta f ter control ca f ter control

[31] 500 0.84, 0.26, 0.48 480 0.66
Our proposal 499 0.47, 0.84 221 0.60
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Table 5. A detailed comparison of the model proposed in this paper and other studies.

Our proposal Other studies

Subnet recognition The concept of ambiguous
node is introduced, and the
similarity of the opinions
of the agent itself and the
neighboring agents and the
network structure of the agent
are considered at the same
time.

Consider the network structure
in which the agent is located
[13, 31].

Adding edges(Network update) Communities are divided
into three types to add edges.
Supporting the community
as the center, indecisive
community as the base, and
opposing community as the
Fringe.

Update the network structure
by centering on the community
whose final opinion is within
the expected range [13, 31].
Choose leaders with similar
perspectives or leaders who are
more connected in the network
structure to add edges [45].

Opinion control strategies Increase self-confidence
in supporting community
leaders, change the opinions of
opposing leaders in indecisive
communities, and reduce the
self-confidence of opposing
community leaders.

Change the opinions of leaders
in all communities whose
opinion values are not in the
expected range [13, 31].

7. Conclusion

The present study was designed to synthesize individual opinions with community differences to
solve CRP issues. The results of this investigation show that the subnet recognizes algorithm with
ambiguous node division can simultaneously consider the network structure and the ambiguous agent
opinions, making the subnet recognition more reasonable. The most apparent finding from this study
is that separating communities into three levels, Center, Base and Fringe, facilitates the rapid
implementation of edge expansions based on opinion control objectives. Opinion control models can
significantly reduce the time from the beginning of opinion evolution to reach a consensus. The
optimization model can effectively control the consensus based on preserving the original network
structure and leadership opinions as much as possible.

In terms of future research, we will expand the opinion dynamics and fuzzy agents in the community
classification to explore their application in more diverse scenarios, as well as CRP problems in social
networks without leaders. At the same time, we will try to use membrane computing [46] to study the
aggregation of opinions in the network asynchronously or synchronously.

Networks and Heterogeneous Media Volume 18, Issue 2, 813–841.
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