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Abstract: This paper focuses on the dissipativity and contractivity of a second-order numerical
method for fractional Volterra functional differential equations (F-VFDEs). Firstly, an averaged L1
method for the initial value problem of F-VFDEs is presented based on the averaged L1 approximation
for Caputo fractional derivative together with an appropriate piecewise interpolation operator for the
functional term. Then the averaged L1 method is proved to be dissipative with an absorbing set
and contractive with an algebraic decay rate. Finally, the numerical experiments further confirm the
theoretical results.
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1. Introduction

Fractional Volterra functional differential equations (F-VFDEs), including fractional ordinary
differential equations (F-ODEs), fractional delay differential equations (F-DDEs), fractional
integro-differential equations (F-IDEs), fractional delay integro-differential equations (F-DIDEs) and
other types, which appear in practice, are widely used to simulate some scientific problems in many
fields of biology and finance [30, 34]. Recently, F-VFDEs have received considerable attention
because they can more accurately provide mathematical models of real-life problems with memory
and hereditary characteristics than integer-order Volterra functional differential equations (VFDEs)
due to the non-locality of the fractional derivative. Further, some studies (such as [1,4–7,11,28]) have
been devoted to the existence and uniqueness of the solution for F-VFDEs and its special cases, which
provides a theoretical foundation for its numerical computation and analysis.
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Let Rm be an m−dimensional Euclidian space with the inner product ⟨·, ·⟩ and the corresponding
norm ∥ · ∥, and CRm(I) be a Banach space consisting of all continuous mapping y : I → Rm. In this
paper, we study the long time behavior of averaged L1 method for the initial value problem of
F-VFDEs: Dα

t y(t) = f (t, y(t), y(·)), 0 ≤ t ≤ T,

y(t) = φ(t), −τ ≤ t ≤ 0,
(1.1)

where T > 0 and 0 ≤ τ ≤ +∞ are real constants, φ ∈ CRm[−τ, 0] is a given initial function and Dα
t

denotes the Caputo time fractional derivative of order α ∈ (0, 1), which is defined by

Dα
t y(t) := (I1−α

t y′)(t) :=
∫ t

0
ω1−α(t − ν)y′(ν)dν, t > 0,

where the Riemann-Liouville fractional integral operator Iαt is given by

Iαt y(t) :=
∫ t

0
ωα(t − ν)y(ν)dν, where ωα(t) :=

tα−1

Γ(α)
.

Throughout this paper, we assume that f (t, y(t), y(·)) is independent of the values of the function
y(ξ) with t < ξ ≤ T , i.e., f (t, y(t), y(·)) as a Volterra functional, and that problem (1.1) has a unique
true solution y(t) with the required regularity. On this basis, we shall consider two types of problems.
Firstly, we suppose that the continuous function f : [0,+∞) × Rm × CRm[−τ,+∞) → Rm satisfies the
dissipative structural condition:

2⟨u, f (t, u, ψ(·))⟩ ≤ γ + β∥u∥2 + λ max
t−µ2(t)≤ξ≤t−µ1(t)

∥ψ(ξ)∥2, (1.2)

where γ ≥ 0, β < 0 and λ ≥ 0 are real constants, and the functions µ1(t) and µ2(t) are assumed to
satisfy

0 ≤ µ1(t) ≤ µ2(t) ≤ t + τ, ∀t ≥ 0. (1.3)

For convenience, we shall always use the symbol D(γ, β, λ, µ1, µ2) to denote the problem class
consisting of all the problems (1.1) satisfying the condition (1.2).

Secondly, we assume that the continuous function f : [0,T ] × Rm × CRm[−τ,T ] → Rm satisfies the
one-sided Lipschitz condition

2⟨u1 − u2, f (t, u1, ψ(·)) − f (t, u2, ψ(·))⟩ ≤ p∥u1 − u2∥
2, (1.4)

and the Lipschitz condition

2∥ f (t, u, ψ1(·)) − f (t, u, ψ2(·))∥ ≤ q max
t−µ2(t)≤ξ≤t−µ1(t)

∥ψ1(ξ) − ψ2(ξ)∥, (1.5)

where p < 0 and q ≥ 0 are real constants, and the functions µ1(t) and µ2(t) also satisfy the
condition (1.3). Similarly, we shall always use the symbol D(p, q, µ1, µ2) to denote the problem class
consisting of all the problems (1.1) satisfying the conditions (1.4) and (1.5). Note that the constant T
may also be +∞, but in this case, the intervals [0,T ] and [−τ,T ] should be replaced by [0,+∞) and
[−τ,+∞), respectively.

When α = 1, the F-VFDEs (1.1) are reduced to the classical integer-order VFDEs. Many papers
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have been obtained the dissipativity, contractivity and asymptotic stability results of the true and
numerical solution to VFDEs, see [13–15, 29, 31–33], and (related works for the special cases of
VFDEs can be found in the references therein). Dissipative dynamical systems are widely used in
physics and engineering with the property of possessing a bounded absorbing set that all trajectories
enter in a finite time and, thereafter, remain inside [18, 20, 22]. So it’s natural to ask whether the true
and numerical solution to F-VFDEs (1.1) can also possess dissipativity, contractivity, and asymptotic
stability properties similar to those of the VFDEs. There is no doubt that the answer is positive, but
the literature about the long time behavior of solutions to F-VFDEs is limited.

Time delays occur in many interconnected real systems due to transportation of energy, materials
and information. If the delay effects and memory characteristics of the real systems are taken into
consideration at the same time, it could lead to various F-DDEs. In [10], Katja Krol discussed the
asymptotic properties of d-dimensional linear F-DDEs and obtained the necessary and sufficient
conditions for asymptotic stability of equations of this type using the inverse Laplace transform
method, and proved polynomial decay of stable solutions. Kaslik and Sivasundaram [9] presented
several analytical and numerical methods for the asymptotic stability and bounded-input,
bounded-output stability analysis of linear F-DDEs. Additionally, the asymptotic stability of
nonlinear discrete fractional pantograph equations with nonlocal initial conditions has been
investigated in [2]. In 2015, Wang and Xiao [23] studied the dissipativity and contractivity of the
F-ODEs, the particular cases of the F-VFDEs (1.1) without the functional term. [24] obtained the
dissipativity and stability of the F-VFDEs (1.1) by using the fractional generalization of the
Halanay-type inequality under almost the same assumptions as the classic integer-order VFDEs.
Moreover, Wang et al. [25] established the contractivity and dissipativity of time fractional neutral
functional differential equations and proved that the solutions have a polynomial decay rate. From the
perspective of structure-preserving algorithms, it is worthwhile to investigate whether or not
numerical methods retain the qualitative behavior of the underlying system. Motivated by this, Wang
and Zou [27] not only discussed the asymptotic behavior with algebraic decay rate of the exact
solution of the F-VFDEs (1.1), but also proved that the two schemes based on the Grünwald-Letnikov
formula and L1 method are dissipative and contractive, and can preserve the exact algebraic decay
rate as the continuous equations. It should be pointed out that the polynomial/algebraic decay rate of
the solutions is a significant feature for fractional differential equations, and is also the essential
difference between fractional and integer differential equations, mainly because of the nonlocal nature
of fractional derivatives. Later, Wang et al. [26] improved the existing algebraic dissipativity and
contractivity rates of the solutions to the scalar F-ODEs, and further established the contractivity and
dissipativity with an algebraic decay rate of numerical solutions to fractional backward differential
formulas under some assumptions on the weight coefficients. Li and Zhang [12] applied the L1
method with the linear interpolation procedure to solve the nonlinear fractional pantograph equations,
and proved that the proposed numerical scheme can inherit the long time behavior of the underlying
problems without any step size restrictions.

When considering the applicability of numerical methods for F-VFDEs, it is highly desirable to
have numerical methods which, not only inherit properties of the underlying system, but also possess
higher accuracy. However, we regretfully find that the existing research [12, 26, 27] devoted to the
numerical dissipativity and contractivity analysis for the F-VFDEs and its special cases is still
restricted within the limits of numerical methods that are of less than second-order accuracy. The

Networks and Heterogeneous Media Volume 18, Issue 2, 753–774.



756

reasons for this may be as follows: On the one hand, the nonlocal character of the fractional
derivatives and the complex structure of the nonlinear right-hand side function in the problem (1.1)
make the numerical analysis so much more complicated that some new analytical techniques or
refined analyses may need to be developed. On the other hand, it can be seen from the
literature [26, 27] that the discrete version of the fractional generalization of the traditional Leibniz
rule, which plays a central role in establishing numerical dissipativity and contractivity, holds only
under the assumption that the weight coefficients have good signs and relationships as shown in
Section 2, while the weight coefficients determined by the higher-order numerical methods generally
do not satisfy these assumptions. Fortunately, the discrete convolution kernels obtained by using a
novel second-order formula to approximate the Caputo fractional derivative have nice sign properties
but not uniform monotonicity in [8]. Additionally, the uniform monotonicity for the coefficients of an
averaged L1 scheme has been proved by Shen et al. [19] under some assumptions, which provide a
possibility to break the aforementioned restriction. Inspired by this, we attempt to investigate the
dissipativity and contractivity of the averaged L1 method for F-VFDEs, which is the aim of this paper.

The rest of this paper is organized as follows: In Section 2, we introduce the averaged L1
approximation of the Caputo fractional derivative and further construct a numerical method for
F-VFDEs combining the averaged L1 scheme and appropriate piecewise interpolation. The
dissipativity and contractivity with an algebraic decay rate of the numerical method are obtained in
Section 3. In Section 4, some numerical experiments are carried out to verify our theoretical results.
Finally, some conclusions are drawn in Section 5.

2. Numerical method

Averaged L1 scheme, named as an averaged variant of the classic L1 scheme, is a fractional
generalization of the Crank-Nicolson scheme, and has been proven to have second-order accuracy
in [8,17,19,21,35]. In this paper, we use the notation in [19] to record this averaged scheme as the L1
scheme, which is also called L1+ formula in [8]. In this section, we will construct a numerical method
based on the L1 scheme to solve the initial value problem of F-VFDEs (1.1).

2.1. L1 approximation to the Caputo fractional derivative

Let N be a positive integer, and consider the uniform time mesh on interval [0,T ] with the time
stepsize h = T

N and the mesh points tn = nh, n = 0, 1, · · · ,N. For any function y(t) ∈ CRm[0,T ], denote
the piecewise linear interpolation function of y(t) on each subinterval [tk−1, tk] (1 ≤ k ≤ N) as (Π1y)(t),
i.e.,

(Π1y)(t) =
tk − t

h
y(tk−1) +

t − tk−1

h
y(tk),

thus
(Π1y)′(t) =

y(tk) − y(tk−1)
h

.

Taking the integral average for the Caputo fractional derivative Dα
t y(t) over each time interval [tn−1, tn]

and then approximating y′(t) by (Π1y)′(t), leads to

1
h

∫ tn

tn−1

Dα
t y(t)dt =

1
h

∫ tn

tn−1

(∫ t

0
ω1−α(t − ν)y′(ν)dν

)
dt

Networks and Heterogeneous Media Volume 18, Issue 2, 753–774.



757

≈
1
h

∫ tn

tn−1

 n∑
k=1

∫ min{t,tk}

tk−1

ω1−α(t − ν)(Π1y)′(ν)dν

 dt

=

n∑
k=1

1
h2

∫ tn

tn−1

∫ min{t,tk}

tk−1

ω1−α(t − ν)dνdt
[
y(tk) − y(tk−1)

]
=

n∑
k=1

a(n)
n−k

[
y(tk) − y(tk−1)

]
=

n∑
k=0

b(n)
n−ky(tk),

where

a(n)
n−k :=

1
h2

∫ tn

tn−1

∫ min{t,tk}

tk−1

ω1−α(t − ν)dνdt, 1 ≤ k ≤ n (2.1)

and

b(n)
n−k :=


−a(n)

n−1, k = 0,
a(n)

n−k − a(n)
n−k−1, 1 ≤ k ≤ n − 1,

a(n)
0 , k = n.

(2.2)

Then, we can obtain the L1 approximation for the Caputo fractional derivative Dα
t y(t) [19]:

D̄α
hy(tn) =

1
h

∫ tn

tn−1

I1−α(Π1y)′(t)dt =
n∑

k=1

a(n)
n−k

[
y(tk) − y(tk−1)

]
=

n∑
k=0

b(n)
n−ky(tk). (2.3)

From the formula (2.1), an easy computation gives rise to the precise expression of the coefficients
a(n)

n−k:

a(n)
n−k :=

 1
Γ(3−α)hα

[
(n − k + 1)2−α − 2(n − k)2−α + (n − k − 1)2−α

]
, 1 ≤ k ≤ n − 1,

1
Γ(3−α)hα , k = n.

(2.4)

The following lemma gives some properties for the coefficients a(n)
n−k and b(n)

n−k.

Lemma 2.1. Assume that α > 2 − (ln 3/ ln 2) � 0.415. Then, the coefficients a(n)
n−k and b(n)

n−k are defined,
respectively, by formulas (2.1) and (2.2) to satisfy

(i) a(n)
0 > a(n)

1 > · · · > a(n)
n−1 > 0 for n ≥ 1;

(ii) b(n)
0 = a(n)

0 =
1

Γ(3−α)hα > 0, b(n)
k < 0, k = 1, 2, · · · , n;

(iii)
n∑

k=0
b(n)

k = 0.

Proof. Since the properties (ii) and (iii) can be acquired directly by the formula (2.2) and the
property (i), we need only prove the property (i). For n = 1, it follows from formula (2.1) that
a(1)

0 =
1

Γ(3−α)hα > 0. For n ≥ 2, 1 ≤ k ≤ n − 1, by the integral mean value theorem, there is ξk ∈ (tk−1, tk),
such that

a(n)
n−k =

1
h2

∫ tn

tn−1

∫ min{t,tk}

tk−1

ω1−α(t − ν)dνdt
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=
1
h

∫ tn

tn−1

ω1−α(t − ξk)dt

=
1

Γ(2 − α)h

[
(tn − ξk)1−α − (tn−1 − ξk)1−α

]
.

It is apparent, from the above equality, that a(n)
n−k is a positive function with respect to ξk. Consequently,

differentiating both sides of the above equation with respect to ξk, we have(
a(n)

n−k

)′
(ξk) =

1
Γ(1 − α)h

[
(tn−1 − ξk)−α − (tn − ξk)−α

]
> 0,

which implies that a(n)
n−k is a monotonically increasing positive function of ξk. It follows that a(n)

1 > a(n)
2 >

· · · > a(n)
n−1 > 0. Then, it remains to show that a(n)

0 > a(n)
1 for n ≥ 2. By simple computation, we can

derive from formula (2.4) that

a(n)
0 − a(n)

1 =
1

Γ(3 − α)hα
−

1
Γ(3 − α)hα

(
22−α − 2

)
=

1
Γ(3 − α)hα

(
3 − 22−α

)
.

Hence, the inequality a(n)
0 > a(n)

1 is valid if, and only if, α > 2 − (ln 3/ ln 2) � 0.415. Thus we conclude
that if α > 2− (ln 3/ ln 2) � 0.415, then the property (i) holds. This completes the proof of Lemma 2.1.

It should be pointed out that b(n)
k is meaningless for k > n by formula (2.2). Therefore, if there is

no particular statement below, we always assume that b(n)
k = 0 for k > n. From Lemma 2.1 and the

references [26, 27], we immediately obtain the following conclusion.

Lemma 2.2. Let
{
b(n)

k

}∞
k=0

be weights obtained by the L1 approximation (2.3) for the Caputo fractional
derivative. If α ∈ (0.415, 1), then the following inequality holds:

n∑
k=0

b(n)
n−k∥yk∥

2 ≤

〈
2yn,

n∑
k=0

b(n)
n−kyk

〉
, n ≥ 1. (2.5)

2.2. L1 method for F-VFDEs

To discretize the initial value problem of F-VFDEs (1.1), taking the integral average over each
subinterval [tn−1, tn], we have

1
h

∫ tn

tn−1

Dα
t y(t)dt =

1
h

∫ tn

tn−1

f (t, y(t), y(·))dt. (2.6)

Then, the L1 formula (2.3) approximates the Caputo derivative in Eq (2.6), the right rectangle rule
deals with the integral, and an appropriate piecewise interpolation operator Πh treats the functional
term. Thus we can propose the following L1 method for the initial value problem (1.1) in F-VFDEs:yh(t) = Πh (t;φ, y0, y1, · · · , yn) , −τ ≤ t ≤ tn,

n∑
k=0

b(n)
n−kyk = f

(
tn, yn, yh(·)

)
, n = 1, 2, · · · .

(2.7)
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Here, the interpolation function yh(t) is an approximation to the true solution y(t) of the problem (1.1),
y0 := φ(0), and yn ∈ R

m is an approximation to the value y(tn) of y(t) at the time point tn. For simplicity,
we always assume that the interpolation operator Πh satisfies the condition [29]:

max
t̄≤t≤tn

∥∥∥Πh(t;φ, y0, y1, · · · , yn)
∥∥∥ ≤


cπ max

η(t̄)≤k≤n
∥yk∥, η(t̄) ≥ 0,

cπ max
{
max
1≤k≤n
∥yk∥, max

−τ≤t≤0
∥φ(t)∥

}
, η(t̄) < 0,

(2.8)

where −τ ≤ t̄ ≤ tn, yk ∈ R
m, k = 0, 1, · · · , n. The constant cπ ≥ 1 is of moderate size and independent

of t̄, n, yk and φ, and the function η(t) is defined by

η(t) = min{m ∈ Z+ : tm ≥ t} − p̄,

where Z+ denotes a set which consists of all nonnegative integers, and p̄ > 0 be a positive integer
depending only on the procedure of the interpolation.

From the condition (2.8), we can easily derive the canonical condition [14]:

max
t̄≤t≤tn

∥∥∥Πh(t;φ, y0, y1, · · · , yn) − Πh(t; ϕ, z0, z1, · · · , zn)
∥∥∥

≤


cπ max

η(t̄)≤k≤n
∥yk − zk∥, − τ ≤ t̄ ≤ tn, η(t̄) ≥ 0,

cπ max
{

max
1≤k≤n
∥yk − zk∥,

max
−τ≤t≤0

∥φ(t) − ϕ(t)∥
}
, − τ ≤ t̄ ≤ tn, η(t̄) < 0.

(2.9)

Here and later, {zn} is a numerical solution sequence produced by applying the L1 method (2.7) to any
given perturbed problem Dα

t z(t) = f (t, z(t), z(·)), 0 ≤ t ≤ T,

z(t) = ϕ(t), −τ ≤ t ≤ 0,
(2.10)

where ϕ(t) ∈ CRm[−τ, 0] is a given initial function.

3. Dissipativity and contractivity of L1 method

This section will focus on the dissipative and contractive analysis of L1 method for the initial value
problem (1.1). Before proceeding further, let us introduce two important lemmas.

Lemma 3.1 ( [16, 26, 27] ). Consider the discrete Volterra equation

xn = cn +

n∑
k=0

dn−kxk, n ≥ 0, (3.1)

where the kernel {dk}
∞
k=0 ∈ l1, i.e.,

∞∑
k=0
|dk| < ∞. Then,

xn → 0 (is bounded) whenever cn → 0 (is bounded, respectively) as n→ ∞
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if, and only if,
∞∑

k=0

dkζ
k , 1, |ζ | ≤ 1. (3.2)

Furthermore, let
∞∑

k=0

skζ
k =

1 − ∞∑
k=0

dkζ
k

−1

, (3.3)

where {sk}
∞
k=0 are coefficients. If {dk}

∞
k=0 ∈ l1 and the condition (3.2) holds, then we can get {sk}

∞
k=0 ∈ l1

and the estimate ∥x∥l∞ ≤ ∥s∥l1∥c∥l∞ .

Lemma 3.2 ( [27] ). Consider the linear Volterra convolution equation

xn+1 = gn +

n∑
k=0

Gn−kxk, n ≥ 1, (3.4)

where {Gk}
∞
k=0 satisfies the spectral condition ρ =

∞∑
k=0
|Gk| < 1.

(i) If lim
n→∞

gn = g∞, then lim
n→∞

xn = (1 − ρ)−1g∞ [3].

(ii) Let C be a positive constant and α ∈ (0, 1). If gn →
C
nα as n → ∞, then xn →

C(1−ρ)−1

nα as
n→ ∞ [26].

Based on Lemma 2.2 and the above two lemmas, we now give the main results of this section.

Theorem 3.1. Suppose {yn} be an approximation sequence produced by using the method (2.7) to
solve the problem (1.1) ∈ D(γ, β, λ, µ1, µ2) with β+ λc2

π < 0,
{
b(n)

k

}∞
k=0

are weights determined by the L1
method, and yh = Πh is the piecewise σ−degree (σ ≥ 1) Lagrangian interpolation operator satisfying
the condition (2.8). Assume that α ∈ (0.415, 1), and η(t̂n) ≥ 1 with t̂n = tn − µ2(tn). Then, for any given
ε > 0, there exists a positive integer n0, such that

∥yn∥
2 ≤ −

γ

β + λc2
π

+ ε, ∀n > n0. (3.5)

It follows that the method (2.7) is dissipative with an absorbing set

B = B
(
0,

√
−

γ

β + λc2
π

+ ε

)
.

Proof. From the method (2.7) and the condition (1.2), we can get〈
2yn,

n∑
k=0

b(n)
n−kyk

〉
=

〈
2yn, f

(
tn, yn, yh(·)

)〉
≤ γ + β∥yn∥

2 + λ max
tn−µ2(tn)≤ξ≤tn−µ1(tn)

∥∥∥yh(ξ)
∥∥∥2

≤ γ + β∥yn∥
2 + λ max

t̂n≤ξ≤tn

∥∥∥yh(ξ)
∥∥∥2
. (3.6)
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In view of η(t̂n) ≥ 1, it follows further from the condition (2.8) and the inequality (3.6) that〈
2yn,

n∑
k=0

b(n)
n−kyk

〉
≤ γ + β∥yn∥

2 + λc2
π max

1≤k≤n
∥yk∥

2. (3.7)

Since α ∈ (0.415, 1), we can know from Lemma 2.2 that the inequality (2.5) holds. Hence, combining
the inequalities (2.5) and (3.7), we have

n∑
k=0

b(n)
n−k∥yk∥

2 ≤ γ + β∥yn∥
2 + λc2

π max
1≤k≤n
∥yk∥

2.

Because of the fact that β < 0, the above inequality can be further deduced as

∥yn∥
2 ≤

γ

b(n)
0 − β

+

n−1∑
k=0

∣∣∣b(n)
n−k

∣∣∣
b(n)

0 − β
∥yk∥

2 +
λc2

π

b(n)
0 − β

max
1≤k≤n
∥yk∥

2. (3.8)

For the sake of simplicity, let

P =
γ

b(n)
0 − β

≥ 0, Qn−k =

∣∣∣b(n)
n−k

∣∣∣
b(n)

0 − β
> 0, R =

λc2
π

b(n)
0 − β

≥ 0,

then the inequality (3.8) can be rewritten as the equivalent form

∥yn∥
2 ≤ P +

n−1∑
k=0

Qn−k∥yk∥
2 + R max

1≤k≤n
∥yk∥

2. (3.9)

Now we consider the following two cases successively:
For the case of max

1≤k≤n
∥yk∥

2 = ∥yn∥
2, the inequality (3.9) can be rewritten as

∥yn∥
2 ≤ P +

n−1∑
k=0

Qn−k∥yk∥
2 + R∥yn∥

2.

Set u0 := ∥y0∥
2, d0 := R, un := ∥yn∥

2, cn = P and dn := Qn for n ≥ 1, then the above inequality is
equivalent to

un ≤ cn +

n∑
k=0

dn−kuk, n ≥ 1. (3.10)

To get a bound of ∥yn∥, we define a sequence {xn} by

xn = cn +

n∑
k=0

dn−kxk, n ≥ 0. (3.11)

Due to the fact that β + λc2
π < 0, we can derive from simple calculation that

ρ1 =

∞∑
k=0

|dk| =

∞∑
k=1

Qk + R
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=

∞∑
k=1

∣∣∣b(n)
k

∣∣∣
b(n)

0 − β
+

λc2
π

b(n)
0 − β

=

n∑
k=1

∣∣∣b(n)
k

∣∣∣
b(n)

0 − β
+

λc2
π

b(n)
0 − β

=
b(n)

0 + λc2
π

b(n)
0 − β

=
1 + λc2

πh
αΓ(3 − α)

1 − βhαΓ(3 − α)
< 1.

This implies that {dk}
∞
k=0 ∈ l1 and the condition (3.2) in Lemma 3.1 holds for ζ = 1. Let

∞∑
k=0

sk =(
1 −

∞∑
k=0

dk

)−1

, then it follows from ρ1 ∈ (0, 1) that
∞∑

k=0
sk = (1 − ρ1)−1 =

∞∑
j=0

(ρ1) j. Thus, it is easy to

acquire that sk ≥ 0 for k ≥ 0 and ∥s∥l1 =
∞∑

k=0
sk = (1 − ρ1)−1. Therefore, using Lemma 3.1 can yield the

estimate
∥x∥l∞ ≤ ∥s∥l1∥c∥l∞ =

P
1 − ρ1

= −
γ

β + λc2
π

. (3.12)

So, if we can prove the inequalities 0 ≤ un ≤ xn holds for all n ≥ 0, then the bound of ∥yn∥ follows
immediately. Next, we give the proof of the above statement by mathematical induction.

Since u0 = ∥y0∥
2 is given, we can choose x0, such that 0 ≤ u0 ≤ x0. Let c0 = (1 − d0)x0, then

u0 ≤ (1 − d0)x0 + d0x0,

which indicates the inequality (3.10) is valid for n = 0. When n = 1, subtracting equality (3.11) from
inequality (3.10) yields

u1 − x1 ≤ d0(u1 − x1) + d1(u0 − x0).

Hence, it can be shown that
(1 − d0)(u1 − x1) ≤ d1(u0 − x0) ≤ 0.

By the definition of d0 and β+λc2
π < 0, we get 0 < d0 < 1. Then, the inequality u1 ≤ x1 can be deduced

immediately. Similarly, for n ≥ 2, taking the difference between inequality (3.10) and equality (3.11)
leads to

un − xn ≤

n∑
k=0

dn−k(uk − xk),

i.e.,

(1 − d0)(un − xn) ≤
n−1∑
k=0

dn−k(uk − xk) ≤ 0.

Thus, we obtain un ≤ xn. In conclusion, we have proved that 0 ≤ un ≤ xn holds for all n ≥ 0. By this
proven result and the inequality (3.12), we have the estimate

un ≤ xn ≤ −
γ

β + λc2
π

, n→ ∞.

As a result, we acquire
∥yn∥

2 ≤ −
γ

β + λc2
π

, n→ ∞. (3.13)
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For the case of max
1≤k≤n
∥yk∥

2 = max
1≤k≤n−1

∥yk∥
2, we can easily observe from the inequality (3.9) that

∥yn∥
2 ≤ P +

n−1∑
k=0

Qn−k∥yk∥
2 + R max

1≤k≤n−1
∥yk∥

2

≤ P +
n−1∑
k=0

Qn−k∥yk∥
2 + R max

0≤k≤n−1
∥yk∥

2, n ≥ 2. (3.14)

For simplicity, define

Ik =

1, max
0≤k≤n−1

∥yk∥
2 = ∥yk∥

2,

0, max
0≤k≤n−1

∥yk∥
2 , ∥yk∥

2.

Then, the inequality (3.14) can be rewritten as

∥yn∥
2 ≤ P +

n−1∑
k=0

(Qn−k + RIk)∥yk∥
2, n ≥ 2. (3.15)

Set v0 = ∥y0∥
2, gn = P, vn = ∥yn∥

2 and Gn = Qn+1 + RIk for n ≥ 1. Then, the inequality (3.15) is
equivalent to

vn+1 ≤ gn +

n∑
k=0

Gn−kvk, n ≥ 1.

Define a sequence by

xn+1 = gn +

n∑
k=0

Gn−kxk, n ≥ 1.

Note that β + λc2
π < 0. By simple computation, we can attain

ρ2 =

∞∑
k=0

|Gk| =

∞∑
k=0

|Qk+1 + RIk| =

∞∑
k=1

|Qk| + R

=

∞∑
k=1

∣∣∣b(n)
k

∣∣∣
b(n)

0 − β
+

λc2
π

b(n)
0 − β

=

n∑
k=1

∣∣∣b(n)
k

∣∣∣
b(n)

0 − β
+

λc2
π

b(n)
0 − β

=
b(n)

0 + λc2
π

b(n)
0 − β

=
1 + λc2

πh
αΓ(3 − α)

1 − βhαΓ(3 − α)
< 1

and

g∞ = lim
n→∞

gn = P =
γ

b(n)
0 − β

=
γhαΓ(3 − α)

1 − βhαΓ(3 − α)
.

Therefore, it follows from the result (i) in Lemma 3.2 that

lim
n→∞

xn = (1 − ρ2)−1g∞ = −
γ

β + λc2
π

.
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Proceeding as in the proof of the case of max
1≤k≤n
∥yk∥

2 = ∥yn∥
2, we can show that 0 ≤ vn ≤ xn holds for all

n ≥ 0. Consequently, we can get the estimate

vn ≤ xn ≤ −
γ

β + λc2
π

, n→ ∞,

which implies that
∥yn∥

2 ≤ −
γ

β + λc2
π

, n→ ∞. (3.16)

According to the definition of limit, a combination of inequalities (3.13) and (3.16) shows that the

open ball B = B
(
0,

√
−

γ

β+λc2
π
+ ε

)
is an absorbing set for any ε > 0, and the method (2.7) is dissipative.

Therefore, we complete the proof of Theorem 3.1.

Theorem 3.2. Assume that the piecewise σ−degree (σ ≥ 1) Lagrangian interpolation operator Πh

satisfies the canonical condition (2.9), and η(t̂n) ≥ 1 with t̂n = tn−µ2(tn). Then, the numerical solutions
{yn} and {zn}, attained by using the method (2.7) to solve respectively the problems (1.1) and (2.10),
which belong to the classD(p, q, µ1, µ2) with p + qcπ < 0, satisfy the contractivity estimate

∥yn − zn∥
2 ≤

Cα

nα
, n→ ∞ (3.17)

provided that α ∈ (0.415, 1), where Cα is a positive constant independent of n.

Proof. Let ek = yk − zk. By the method (2.7) and conditions (1.4) and (1.5) can yield〈
2en,

n∑
k=0

b(n)
n−kek

〉
= 2

〈
en, f

(
tn, yn, yh(·)

)
− f

(
tn, zn, zh(·)

)〉
= 2

〈
yn − zn, f

(
tn, yn, yh(·)

)
− f

(
tn, zn, yh(·)

)〉
+2

〈
en, f

(
tn, zn, yh(·)

)
− f

(
tn, zn, zh(·)

)〉
≤ p∥en∥

2 + ∥en∥ · 2
∥∥∥∥ f

(
tn, zn, yh(·)

)
− f

(
tn, zn, zh(·)

)∥∥∥∥
≤ p∥en∥

2 + q∥en∥ max
tn−µ2(tn)≤ξ≤tn−µ1(tn)

∥∥∥yh(ξ) − zh(ξ)
∥∥∥

≤ p∥en∥
2 + q∥en∥ max

t̂n≤ξ≤tn

∥∥∥yh(ξ) − zh(ξ)
∥∥∥ . (3.18)

Since α ∈ (0.415, 1), it follows from Lemma 2.2 that the inequality (2.5) holds. Therefore, using
inequalities (2.5) and (3.18) together with the canonical condition (2.9), we can get

n∑
k=0

b(n)
n−k∥ek∥

2 ≤ p∥en∥
2 + qcπ max

η(t̂n)≤k≤n
∥ek∥

2

≤ p∥en∥
2 + qcπ max

1≤k≤n
∥ek∥

2.

Thanks to the fact that b(n)
0 > 0 and p < 0, the above inequality can be rewritten as

∥en∥
2 ≤

n−1∑
k=0

∣∣∣b(n)
n−k

∣∣∣
b(n)

0 − p
∥ek∥

2 +
qcπ

b(n)
0 − p

max
1≤k≤n
∥ek∥

2.
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Set Fn−k =
∣∣∣b(n)

n−k

∣∣∣ / (b(n)
0 − p

)
and H = qcπ

/ (
b(n)

0 − p
)
, such that the above inequality is equivalent to

∥en∥
2 ≤

n−1∑
k=0

Fn−k∥ek∥
2 + H max

1≤k≤n
∥ek∥

2. (3.19)

Next, we consider the following two cases successively.
For the case of max

1≤k≤n
∥ek∥

2 = ∥en∥
2, the inequality (3.19) can be further deduced as

∥en∥
2 ≤

n−1∑
k=0

Fn−k∥ek∥
2 + H∥en∥

2.

In view of p + qcπ < 0, it is easy to check that H ∈ (0, 1). Thus, we can further obtain

∥en∥
2 ≤

Fn

1 − H
∥e0∥

2 +

n−1∑
k=1

Fn−k

1 − H
∥ek∥

2, n ≥ 2.

Define a sequence {xn} satisfying

∥xn∥
2 =

Fn

1 − H
∥x0∥

2 +

n−1∑
k=1

Fn−k

1 − H
∥xk∥

2, n ≥ 2.

By some routine calculations, we have

ρ3 =
1

1 − H

∞∑
k=1

Fk =
b(n)

0 − p

b(n)
0 − p − qcπ

∞∑
k=1

∣∣∣b(n)
k

∣∣∣
b(n)

0 − p

=
1

b(n)
0 − p − qcπ

n∑
k=1

∣∣∣b(n)
k

∣∣∣ = b(n)
0

b(n)
0 − p − qcπ

=
1

1 − (p + qcπ)hαΓ(3 − α)
< 1.

According to the Taylor formula, it holds that

Fn =

∣∣∣b(n)
n

∣∣∣
b(n)

0 − p
=

n2−α + (n − 2)2−α − 2(n − 1)2−α

1 − phαΓ(3 − α)
= O(n−α), n→ ∞. (3.20)

Hence, the result (ii) in Lemma 3.2 leads to

∥xn∥
2 →

C(1 − ρ3)−1

nα
, n→ ∞.

From the mathematical induction method and a similar proof process in Theorem 3.1, it can be proven
that 0 ≤ ∥en∥

2 ≤ ∥xn∥
2 is valid for all n ≥ 0. As a result, we can get the estimate

∥yn − zn∥
2 →

C(1 − ρ3)−1

nα
, n→ ∞. (3.21)
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For the case of max
1≤k≤n
∥ek∥

2 = max
1≤k≤n−1

∥ek∥
2, the inequality (3.19) has the equivalent form

∥en∥
2 ≤ Fn∥e0∥

2 +

n−1∑
k=1

(Fn−k + HIk)∥ek∥
2.

Then, some simple computations yield

ρ4 =

∞∑
k=1

Fk + H =
∞∑

k=1

∣∣∣b(n)
k

∣∣∣
b(n)

0 − p
+

qcπ
b(n)

0 − p

=

n∑
k=1

∣∣∣b(n)
k

∣∣∣
b(n)

0 − p
+

qcπ
b(n)

0 − p
=

b(n)
0 + qcπ
b(n)

0 − p

=
1 + qcπhαΓ(3 − α)
1 − phαΓ(3 − α)

< 1.

Similarly, combining the formula (3.20) and the result (ii) in Lemma 3.2 yields the estimate

∥yn − zn∥
2 →

C(1 − ρ4)−1

nα
, n→ ∞. (3.22)

Based on the estimates (3.21) and (3.22), it can easily be concluded that the method (2.7) is contractive
and there exists a positive constant Cα independent of n, such that the contractive estimate (3.17) holds.
The proof of Theorem 3.2 is now completed.

4. Numerical experiments

In this section, we will present some numerical experiments to verify our theoretical results in
previous sections.

Example 4.1. Consider the nonlinear F-DIDE:Dα
t y1(t) = −3y1(t) + sin(y1(t − 1)) sin(y2(t)) + 0.2

∫ t

t−1
(5 sin t + sin(θ)y1(θ) + y2(θ))dθ, t ≥ 0,

Dα
t y2(t) = −2.8y2(t) − cos(y2(t − 1)) cos(y1(t)) + 0.1

∫ t

t−1
(10 cos t + cos(θ)y2(θ) + y1(θ))dθ, t ≥ 0,

(4.1)
where y1(t), y2(t) are real-valued scalar functions.

Let u = (u1, u2)T , ψ(t) = (ψ1(t), ψ2(t))T , and

f (t, u, ψ(·)) =

 −3u1 + sin(ψ1(t − 1)) sin(u2) + 0.2
∫ t

t−1
(5 sin t + sin(θ)ψ1(θ) + ψ2(θ))dθ

−2.8u2 − cos(ψ2(t − 1)) cos(u1) + 0.1
∫ t

t−1
(10 cos t + cos(θ)ψ2(θ) + ψ1(θ))dθ

 .
Then

⟨u, f (t, u, ψ(·))⟩

= −3u2
1 + u1

(
sin(ψ1(t − 1)) sin(u2) + 0.2

∫ t

t−1
(5 sin t + sin(θ)ψ1(θ) + ψ2(θ)) dθ

)
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− 2.8u2
2 + u2

(
− cos(ψ2(t − 1)) cos(u1) + 0.1

∫ t

t−1
(10 cos t + cos(θ)ψ2(θ) + ψ1(θ)) dθ

)
≤ −3u2

1 + 0.5u2
1 + 0.5u2

1 + 0.5 + 0.1u2
1 + 0.1

(∫ t

t−1
|sin(θ)ψ1(θ) + ψ2(θ)| dθ

)2

− 2.8u2
2 + 0.5u2

2 + 0.5u2
2 + 0.5 + 0.05u2

2 + 0.05
(∫ t

t−1
|cos(θ)ψ2(θ) + ψ1(θ)| dθ

)2

≤ 1 − 1.9u2
1 − 1.75u2

2 + 0.15 max
t−1≤θ≤t

(|ψ1(θ)| + |ψ2(θ)|)2

≤ 1 − 1.75∥u∥2 + 0.3 max
t−1≤θ≤t

∥ψ(θ)∥2.

Thus, we get
2⟨u, f (t, u, ψ(·))⟩ ≤ 2 − 3.5∥u∥2 + 0.6 max

t−1≤θ≤t
∥ψ(θ)∥2,

which means that the problem (4.1) belongs to the class D(γ, β, λ, µ1, µ2) with γ = 2, β = −3.5, λ =
0.6, µ1(t) = 0 and µ2(t) = 1. Therefore, the F-DIDE (4.1) is dissipative according to Theorem 2.1
in [24].

Let v = (v1, v2)T , χ = (χ1(t), χ2(t))T . Then,

⟨u − v, f (t, u, ψ(·)) − f (t, v, ψ(·))⟩ = −3(u1 − v1)2 + (u1 − v1) sin(ψ1(t − 1))(sin(u2) − sin(v2))
−2.8(u2 − v2)2 − (u2 − v2) cos(ψ2(t − 1))(cos(u1) − cos(v1))

≤ −3(u1 − v1)2 − 2.8(u2 − v2)2 + 2|(u1 − v1)(u2 − v2)|
≤ −2(u1 − v1)2 − 1.8(u2 − v2)2

≤ −1.8∥u − v∥2,

which gives
2⟨u − v, f (t, u, ψ(·)) − f (t, v, ψ(·))⟩ ≤ −3.6∥u − v∥2. (4.2)

Further,

∥ f (t, u, ψ(·)) − f (t, u, χ(·))∥2

=

(
(sin(ψ1(t − 1)) − sin(χ1(t − 1))) sin(u2) + 0.2

∫ t

t−1
(sin(θ)(ψ1(θ) − χ1(θ)) + (ψ2(θ) − χ2(θ)))dθ

)2

+

(
(− cos(ψ2(t − 1)) + cos(χ2(t − 1))) cos(u1) + 0.1

∫ t

t−1
(cos(θ)(ψ2(θ) − χ2(θ)) + (ψ1(θ) − χ1(θ)))dθ

)2

≤ |ψ1(t − 1) − χ1(t − 1)|2 + 0.04
(∫ t

t−1
| sin(θ)(ψ1(θ) − χ1(θ)) + (ψ2(θ) − χ2(θ))|dθ

)2

+ 0.2|ψ1(t − 1) − χ1(t − 1)|2 + 0.2
(∫ t

t−1
| sin(θ)(ψ1(θ) − χ1(θ)) + (ψ2(θ) − χ2(θ))|dθ

)2

+ |ψ2(t − 1) − χ2(t − 1)|2 + 0.01
(∫ t

t−1
| cos(θ)(ψ2(θ) − χ2(θ)) + (ψ1(θ) − χ1(θ))|dθ

)2

+ 0.1|ψ2(t − 1) − χ2(t − 1)|2 + 0.1
(∫ t

t−1
| cos(θ)(ψ2(θ) − χ2(θ)) + (ψ1(θ) − χ1(θ))|dθ

)2
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≤ 1.2|ψ1(t − 1) − χ1(t − 1)|2 + 1.1|ψ2(t − 1) − χ2(t − 1)|2

+ 0.35 max
t−1≤θ≤t

(|ψ1(t − 1) − χ1(t − 1)| + |ψ2(t − 1) − χ2(t − 1)|)2

≤ 1.9 max
t−1≤θ≤t

∥ψ(θ) − χ(θ)∥2,

which leads to

2∥ f (t, u, ψ(·)) − f (t, u, χ(·)∥ ≤ 2
√

1.9 max
t−1≤θ≤t

∥ψ(θ) − χ(θ)∥. (4.3)

Consequently, it follows from the inequalities (4.2) and (4.3) that the system (4.1) belongs to the class
D(p, q, µ1, µ2) with p = −3.6, q = 2

√
1.9, µ1(t) = 0 and µ2(t) = 1. Therefore, the F-DIDE (4.1) is

contractive and asymptotically stable according to Theorem 2.2 in [24].
Now, we apply the L1 method (2.7) with piecewise linear interpolation operator (i.e., σ = 1 and

cπ = 1 [14]) to solve the system (4.1). It is easy to check that

β + λc2
π = −3.5 + 0.6 = −2.9 < 0

and
p + qcπ = −3.6 + 2

√
1.9 < 0.

We choose the step size h = 0.01, and successively take α = 0.5, 0.7, 0.9, 1 to plot the numerical
solutions of the system (4.1) with the following two different initial functions:

(I) y1(t) = sin(t), y2(t) = cos(t), t ∈ [−1, 0];

(II) y1(t) = 5 cos(t), y2(t) = 2 sin(t), t ∈ [−1, 0],

respectively. The numerical results are given in Figures 1–2. It can be seen from the first to third
subfigures in Figures 1–2 that the numerical solutions can preserve the dissipativity of the
problem (4.1), which confirms the result of Theorem 3.1. Comparing the four subfigures in
Figures 1–2, we find that the solutions of the integer-order DIDE (α = 1) decay exponentially into a
given ball. However, the solutions of the F-DIDE no longer decay exponentially but with a
polynomial rate into a bounded absorbing set because of the nonlocal nature of the fractional
derivative.

Let
y(t) = (y1(t), y2(t))T , z(t) = (z1(t), z2(t))T

and
e(t) = y(t) − z(t)

be the difference between two solutions y(t) and z(t) with the different initial functions φ(t) and ϕ(t).
In the numerical simulations, we take the initial functions (I) as φ(t), and initial functions (II) as ϕ(t).
To observe the contractivity behavior of numerical solutions more intuitively, Figure 3 draws the error
curves of the numerical solutions of F-DIDE (4.1) with the different initial functions (I) and (II) for
α = 0.5, 0.7, 0.9, 1. We can observe from Figure 3 that the numerical solutions are contractive,
and, the larger the order α is, the faster the contractive rate becomes. Furthermore, we also find that
the contractivity of the numerical solutions for the integer-order DIDE has an exponential decay rate,
while the contractivity for the F-DIDE is polynomial.

Networks and Heterogeneous Media Volume 18, Issue 2, 753–774.



769

From Theorem 6 in [27], we have asymptotic contractive rate

∥y(t) − z(t)∥2 ≤ max
−1≤ξ≤0

∥φ(ξ) − ϕ(ξ)∥2
Cα

tα
, t → ∞. (4.4)

To further measure the quantitative behavior of the contractivity rate corresponding to two different
initial functions φ(t) and ϕ(t), we define an index function Iα as in [26, 27]:

Iα(t) =
ln

(
max
−1≤ξ≤0

∥φ(ξ) − ϕ(ξ)∥2Cα

)
− ln

(
∥y(t) − z(t)∥2

)
ln(t)

, t > 1.

Clearly, the index function

Iα(t)→ − ln
(
∥y(t) − z(t)∥2

) /
ln(t)

as t → ∞, and it is independent of the initial value max
−1≤ξ≤0

∥φ(ξ) − ϕ(ξ)∥2Cα. Thus, we can take

max
−1≤ξ≤0

∥φ(ξ) − ϕ(ξ)∥2Cα = ∥y(1) − z(1)∥2

in our numerical experiments. Table 1 shows the values of the index function Iα(t) at

t = 10, 20, 30, 40, 50, 100

for

α = 0.1, 0.3, 0.5, 0.7, 0.9

with h = 0.01. We find that the contractivity rate is about ∥e(t)∥2 = O(t−2α), which is about twice as
much as our theoretical prediction for numerical contractivity rate given in Theorem 3.2. For scalar
F-ODE or essentially decoupled linear systems, Wang et al. [26] obtained the optimal contractivity rate
∥e(t)∥2 = O(t−2α) by directly estimating the decay rate of ∥y(t)− z(t)∥ to avoid the square-root operation
of the Mittag-Leffler function. Based on this and the results shown in Table 1, we believe that the
optimal contractivity rate for F-VFDEs can be achieved theoretically and numerically with some new
analytical techniques developed in the future.

Table 1. The values of index function Iα(t) for the initial functions (I) and (II).

t = 10 t = 20 t = 30 t = 40 t = 50 t = 100

α = 0.1 0.2196 0.1292 0.1987 0.1582 0.1651 0.1728
α = 0.3 0.6064 0.5198 0.5829 0.5539 0.5518 0.5606
α = 0.5 1.0670 0.9692 1.0307 1.0016 0.9939 1.0003
α = 0.7 1.6444 1.5038 1.5615 1.5196 1.5055 1.4987
α = 0.9 2.5435 2.2744 2.3028 2.2271 2.1956 2.1470
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Figure 1. The numerical solutions of system (4.1) with initial functions (I) for t ∈ [0, 50].
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Figure 2. The numerical solutions of system (4.1) with initial functions (II) for t ∈ [0, 50].
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Figure 3. Errors of the numerical solutions of system (4.1) with different initial functions (I)
and (II) for t ∈ [0, 50] with different α.

5. Conclusions

In this paper, we mainly investigate the long time behavior of the L1 method for the initial value
problem of F-VFDEs. With the help of the fact that the weight coefficients of L1 scheme for Caputo
fractional derivative have good signs and uniform monotonicity for α ∈ (0.415, 1), we prove that the
L1 method is dissipative and contractive, and can preserve the algebraic contractive rate. Finally, the
numerical experiments are conducted to illustrate our theoretical results.
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