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Abstract: In this paper we consider the problem of estimating emissions due to vehicular traffic
on complex networks, and minimizing their effect by regulating traffic at junctions. For the traffic
evolution, we consider a Generic Second Order Model, which encompasses the majority of two-
equations (i.e., second-order) models available in the literature, and extend it to road networks with
merge and diverge junctions. The dynamics on the whole network is determined by selecting a solution
to the Riemann Problems at junctions, i.e., the Cauchy problems with constant initial data on each
incident road. The latter are solved by assuming the maximization of the flow and assigning a traffic
distribution coeflicient for outgoing roads of diverges, and a priority rule for incoming roads of merges.
A general emission model is considered and its parameters are tuned to the NO emission rate. The
minimization of emissions is then formulated in terms of the traffic distribution and priority parameters,
taking into account travel times. A comparison is provided between roundabouts with optimized
parameters and traffic lights, which correspond to time-varying traffic priorities. Our approach can
be adapted to manage traffic in complex networks in order to reduce emissions while keeping travel
time at acceptable levels.
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1. Introduction

The aim of this paper is to build a model to estimate and minimize traffic emissions by regulating
traffic dynamics. Such regulation corresponds to the choice of suitable model parameters, which in
turn represent traffic signals and traffic light timing. Specifically, we extend the Generic Second Order
Model (GSOM), introduced in [3,29], to road networks, pair it to an emission model and then minimize
a functional comprising NOy emissions and travel time.

Estimating traffic emissions is an important and challenging problem. First, most emission models
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are based on the knowledge of vehicle speed and acceleration. Thus, at macroscopic level, a first-order
system based only on conservation of cars, such as the Lighthill-Whitham-Richards (LWR) model
[31,35], is not sufficient to feed an emission model. In particular, the LWR model admits solutions with
unbounded acceleration [30] which would lead to unrealistic emissions estimates. It is then necessary
to consider a so-called second-order model, i.e., a model with two equations: a first equation for the
conservation of mass and a second for the conservation or balance of a modified momentum, which
may model drivers’ property. The first second-order model goes back to Payne and Whitham [33,38].
After criticisms to the model, see [12], a new line of research originated starting with the Aw-Rascle-
Zhang (ARZ) model [5, 39], which successfully addressed criticisms to the Payne-Whitham approach.
More recently, various second-order models were proposed ranging from generalizations of the ARZ,
such as in [14, 17], to phase transition models as in [8, 10] and GSOM in [3,27,29]. Such models are
characterized by a family of fundamental diagrams (density-flow functions) and, due to their multi-
faceted nature, are particularly appropriate to fit real traffic data. We refer to [15,34] for more details
on data-fitted second order models.

Traffic models on networks have been widely studied in last two decades and authors have
considered many different traffic scenarios proposing a rich amount of alternative models at junctions.
The LWR model has been extended to road networks in several papers, see for
example [13, 18, 20, 25]. The ARZ model on networks was considered in [19, 23, 24] and
phase-transition models in [11, 21]. In this paper we consider a road network with merge (two
incoming and one outgoing roads) and diverge (one incoming and two outgoing roads) junctions. On
each road, we assume that the traffic flow evolution is described by the GSOM

{a,p +0:(pv) = 0 o

ow+vo,w =0,

where p is the density of vehicles, v = V(p, w) is the velocity function, and w is a property of drivers.
Notice that the first equation in (1.1) models the conservation of cars, while the second is the passive
advection of the variable w, which gives rise to different fundamental diagrams. To define the solution
on the whole network we follow the approach proposed in [18] based on the concept of Riemann
Problem at a junction, which is a Cauchy problem with constant initial data on each road. Solutions to
Riemann Problems are required to maximize the flux while conserving the density p and total property
y = pw through the junction. To determine a unique solution to Riemann Problems, we need to
introduce additional criteria, which depend on the type of junction. For diverge junctions, a traffic
distribution parameter is assigned to outgoing roads as done in [24] for the ARZ model. For merge
junctions, a priority rule between incoming roads is considered, as it was done for the LWR model
in [9]. More precisely, for a fixed priority parameter 5 € [0, 1], given the two incoming fluxes g1, §»,
we require:

=P g =44 (1.2)

Equation (1.2) establishes a proportional relationship between the two incoming fluxes. For instance,
if 8 = 0 only traffic from the first road is allowed and vice versa for § = 1. Therefore, traffic lights can
be easily represented by time-varying priority parameters. This rule, together with the maximization
of flux and conservation of p and y, determines unique values of the variable w on each road. In fact,
the value w3 on the outgoing road is given by a convex combination of the values W, and W, of the two
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incoming roads, i.e.,
w3 = (1 =B + Bws. (1.3)

As a result, the maximal flux that can be received by the outgoing road, i.e. the supply, depends on the
priority rule. The final solution is determined by maximizing the flow through the junction respecting
the priority rule, but relaxing the latter in case the supply exceeds the demand from the road with
higher priority. In rough words, the supply is given to incoming roads according to the priority rule
and redistributed in case of surplus. The complete procedure to build the solution for a merge junction
is explained in details in Definition 3.4. The extension of the proposed algorithms to a generic junction
with n incoming and m outgoing roads can be found in [6] together with some preliminary results on
the bounds on the total variation of junction waves.

The solution on networks to GSOM is then used to feed an emission model, focusing on the
emission of nitrogen oxides (NOy). Several studies deal with estimating emissions from dynamic
traffic models, see for instance [1,2, 7,22, 26,36, 37] and references therein. In particular, in [2] the
authors deal with minimizing emissions by acting on the parameters of the model, while in [22] the
authors analyze the possible benefits on emissions deriving from the limitation of traffic. The interest
on NOy gases in our work is due to their negative effects on health [40] and to their connection with
ozone [4]. Minimizing only emissions would result in extreme solutions blocking traffic, thus we
consider a cost function including a term measuring travel times. Therefore, we express the cost of
emissions and travel time over the whole network as:

1
7:(')/) = Z (C1 ffEZ(.X, t)dth + ffmd)(ﬁdf) ,

where E7, respectively V7, is the emission rate, respectively velocity, along the road r, while ¢; and
¢, are weights. The functional ¥ depends on the parameter vector y governing the traffic dynamic,
which is comprised of the traffic distribution and priority parameters. Our interest is in minimizing
¥ (y) and compare different type of intersections, such as traffic lights and roundabouts. Note that,
we consider a control y which varies in a compact set and therefore the minimum exists. Due the the
high nonlinearity of ¥ (y), explicit analytical solutions can not be found in general. Therefore, we
resort to numerical optimization to compute the optimal vectors y. First, we focus on a merge junction
and compare a priority-based junction with one regulated by a traffic light. The latter corresponds to
alternating the values 8 = 0 and 8 = 1 for the green and red phases. These cycles are parameterized by
the green-phase duration 7, and the red-phase duration #,. The numerical results show that it is possible
to find an optimal 8 and an optimal couple (,, #,), and that the two types of junctions perform similarly
when minimizing emissions and travel time.

Next, we analyze how the solution to the minimization problem depends on the initial traffic state
(0, w). Here we interpret w as drivers’ preferred speed: low values of w correspond to slow drivers,
and high values of w to fast drivers. For the priority-ruled junction, the minimum of the functional is
achieved by giving high priority to the incoming road with higher density and fast drivers. Similarly, for
the traffic light, the road with higher density must have a longer green-phase, except for high congestion
when the opposite happens. In the latter situation, the sensitivity with respect to w is greater.

We then focus on a more complex situation of a roundabout with two incoming and two outgoing
roads. The roundabout has four additional stretch of roads to connect incoming to outgoing roads and
form a circle. As before we compare priority-based junctions with traffic lights, by choosing optimally
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the priorities and the traffic light timing. Further, we compare the results obtained by the optimal traffic
light timing with a periodic one showing that the former is convenient especially in reducing travel
times. The numerical tests show that, when few vehicles enter the network, traffic lights produce lower
emissions and travel times compared to the priority-based case. In congested situations, instead, the
use of priorities produces higher levels of emissions but with shorter travel times w.r.t. traffic lights
dynamics. It is worth to notice that traffic light timing can be easily adjusted in time, while changing
priority-based rule would be more challenging. Overall, traffic lights outperform traffic signals in
terms of emissions for roundabouts and perform better also taking into account travel times for low
densities. Moreover, the optimal traffic light timing are more robust for variation of the functional
weights. Interestingly, there is an increasing diffusion of roundabouts in Europe and US given the
expected better performance in terms of output. This study shows that traffic signals should be added
to roundabouts if one aims also at lowering emissions. This is a first example of how the model can be
used to support decision makers for sustainable traffic management.

The paper is organized as follows. In Section 2 we define the GSOM and the Riemann problem
at junctions. In Section 3 we describe the solution to the Riemann problem for diverge and merge
junctions. In Section 4 a functional is formulated to estimate emission rate and travel time, while in
Section 5 we provide details for the numerical approach. Sections 6 and 7 are devoted to the numerical
tests for optimal controls and estimation of NOy emissions. In Section 8 we draw our conclusions.
Finally, in Appendix A we report some additional numerical tests for the roundabout.

2. The Riemann Problem for GSOM at a junction

In order to extend the GSOM model to networks, one has to analyze the Riemann problem at a
junction, i.e., the Cauchy problem with constant initial data on each road incident to the junction.

Recall the GSOM model equations (1.1). The variable w parametrizes a family of fundamental
diagrams Q(p, w) = pV(p, w). The usual assumptions on Q and V are:

(H1) Q(0,w) = 0 and Q(p™*(w), w) = 0 for each w, where p™*(w) is the maximum density of vehicles
for O(-, w).

(H2) Q(p,w) is strictly concave with respect to p, i.e., 227% < 0.

(H3) Q(p,w) is non-decreasing with respect to w, i.e., Q,, > 0.

(H4) V(p,w) = 0 for each p and w.

(H5) V(p,w) is strictly decreasing with respect to p, i.e., V,, < 0 for each w.

(H6) V(p,w) is non-decreasing with respect to w, i.e., V,, > 0.

From (H2) and (H3), for every w the curve p — Q(-,w) has a unique point of maximum, denoted
by o(w), and we set Q"*(w) = Q(o(w),w). Moreover, when p = 0 there is not a unique maximum
velocity. For every w we set V" (w) = V(0, w).

The eigenvalues of Eq (1.1) are

/11(/)» W) = V(p’ W) +pr(p’ W) (21)
(o, w) = Vip, w). (2.2)
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The concavity of the flux implies 4; < A, and A; = A, if and only if p = 0, thus for p # O the system is
strictly hyperbolic. The eigenvectors associated with the eigenvalues are

1 1
71(P» W) = (p’ pW) and VZ(P, W) = (_;Vw(p9 W)’ Vp(p’ W) - E w(p’ W) .

The first eigenvalue is genuinely nonlinear, i.e., VA;-y; # 0, while the second one is linearly degenerate,
i.e., VA4, - ¥, = 0. Hence, the curves of the first family are 1-shocks or 1-rarefaction waves, while the
curves of the second family are 2-contact discontinuities. Finally the Riemann invariants are

z1(o,w) =w
ZZ(p’ W) = V(p’ W)

The first Riemann invariant z; is constant along 1-shock and 1-rarefaction waves, while the second
Riemann invariant z, is constant along the 2-contact discontinuities.
By defining the total property y = pw, Eq (1.1) can be rewritten in conservative form as

O0p + 0(pv) =0
0y +0,(yv) =0

where v = V(p, i)

We recall now the main definitions concerning traffic models on road networks and we refer to
[13, 18,20, 25] for further details. A road is modeled by an interval I = (a,b) C R, with possibly
a = —oo or b = +co. A junction J is a collection of roads ((1,...,1,), (Lys1,s ..., Lirm)) Where Iy, ..., I,
are the incoming roads and 1,,,1, . . ., I,4,, are the outgoing ones. We define a network as a couple (7, )
where 7 is a finite collection of roads /,, and J is a finite collection of junctions J.

On each road I, the traffic dynamic is described by a GSOM as

{atpr + ax(prvr) =0 (23)

Oy + 0x(yrvy) =0

with v, = V(p,, %), for x € I, and + > 0. The construction of a solution on the whole network
is obtained via wave-front tracking starting from solutions to Riemann problems to Eq (2.3) at each
junction. More precisely, given constant initial data on each road, we look for possible waves with
negative speed for incoming roads and positive ones on outgoing roads. This is necessary to have
conservation of mass through the junction, see [18]. In the literature this construction is usually called
Riemann Solver, which is a map that assigns a solution to each constant initial data on the roads of the
network, see [18, Definition 4.2.2] for further details. To isolate the admissible waves, we study the sign
of the eigenvalues in Eq (2.1) and Eq (2.2). By the concavity of the flux function, the first eigenvalue
Ai(o,w) = p +pV,(o,w) = Q,(p,w) satisfies 4; > 0 for p < o(w) and 4; < O for p > o(w). The
second eigenvalue is given by A,(o, w) = V(p, w), thus by (H4) the speed of the 2-contact discontinuity
is always non-negative.

In order to describe the flux maximization, let us consider the supply and demand functions, see [17]
for details and discussion. The supply function s(p, w) is defined as

o) = {Qma"(w) if p < o(w) 2.4)

O(p, w) ifp>o(w)’
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and the demand function d(p, w) as

Qp,w) if p < o(w)

) . (2.5
O™ (w) if p > o(w)

d(p,w) ={

2.1. Incoming roads

Let us consider an incoming road at a junction. Only waves with negative speed are admissible.
Since A, > 0, we can have only 1-shock or 1-rarefaction waves.

We fix a left state U~ = (o~, w™) and look for the set of all admissible right states U = (p, W) that can
be connected to U~ with waves with negative speed. Along the 1-waves the variable w is conserved,
therefore only the density p changes. This case is analogous to the definition of admissible solutions
on incoming roads for first order traffic models, see for instance [18]. We refer to [24] where the ARZ
model is treated in a similar way.

Proposition 1. Let V be a velocity function that verifies properties (H4)—(H6) and let U~ = (p~,w™)
be a left state on an incoming road.

Ifp~ = 0, then the only admissible right state is U = U~

Ifp~ # 0, then the set of possible right states U = (p, W) verifies W = w™ and:

1. Ifp- <ow ), thenp e NWU™) ={p }U( (W), o™ (w™)], where p-(w™) is the density such that
O~ (w7),w?) = Q(p~,w).
2. Ifp~ > o), thenp e N(U) = [o(w™), o™ (w7)].

Moreover, denoting by d the demand function defined in Eq (2.5), it holds

O, W) <d(p~,w"). (2.6)

Proof. Firstassume p~ # 0. If p~ < o(w™) (Figure 1 top-left) to have 4; < 0 there are two possibilities:
either U = U™, or moving above the density value p~(w™) > o"(w™) by a jump with zero speed. Indeed,
since Q(o~(w™),w”) = Q(o~,w"), the Rankine-Hugoniot condition s(U —U") = O (w),w’) —
Q(p~, w™) implies that the speed of the discontinuity s is zero. In this case we can move with a 1-shock
with negative speed towards any right state U with w = w™ and p~(w™) < p < p™*(w"). If p~ = 0 then
p- (W) = p™*(w"), therefore the solution is U = U~.

If p~ > o(w"), every state U with w = w™ and o € low),p"™(w™)] is connected to U~ with waves
with negative speed (Figure 1 top-right). In particular, we have a 1-rarefaction wave if p < p~ and a
1-shock if p > p~.

O

2.2. Outgoing roads

Let us consider an outgoing road at a junction. We are interested in the waves with positive speed,
thus we can have a 1-shock or 1-rarefaction wave and a 2-contact discontinuity.

We fix a right state U* = (p*, w") and look for the set of all admissible left states U = (p, W) that
can be connected to U™ with waves with positive speed. We emphasize that along the 1-waves the w is
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A1 <0 A1 <0

a(w) a(w)

U-
0 =20 0 =20
w w
pmax
U+
0 420 0 A4 =20
w w

Figure 1. The function graphs refer to the CGARZ model [16] with the family of flux
functions defined in Eqs (5.1)—(5.3). Top: two possible configurations of incoming road
states. The red solid line identifies the set of all possible right states U reachable from the
left state U~. Bottom: two possible configurations of the state on an outgoing road. The red
solid line identifies the set of possible left states U reachable from the right state U™.

conserved and only the density p changes. We therefore assume that the value w™ is given and depends
on the states on the incoming roads (see Section 3). On the other hand, along the 2-wave the velocity
V(p,w) is conserved. Then, the definition of the admissible states U depends on the existence of an
intermediate point U™ = (o7, w") such that w" = w™ and V(p", w") = V(po*, w").

Proposition 2. Let V be a velocity function that verifies properties (H4)—(H6). For a given value w~
and a given right state U* = (o*,w") with associated velocity v© = V(p*™,w"), if vi < V™ (w™) then
there exists a unique point U' = (o', w") such that w* = w™ and V(p',w") = v*.

Proof. If v < V™(w™) then the equation V(p,w™) = v* admits a solution. By (H5), 4,V < 0 and, by
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the implicit function theorem, there exists p(w; v*) such that V(o(w; v*), w) = v*. Moreover, (H5)—(H6)
imply

dp N
T (w;v") =-0,V/0,V > 0.

We then have w' = w™ and p" = p(w™;v"). i

Proposition 3. Let V be a velocity function that verifies properties (H4)-(H6), U* = (o*,w™) a right
state on an outgoing road, and v* = V(p*,w") the associated velocity. For a given value w™, a left
state U = (p, W), which can be connected to U* with positive speed waves, satisfies W = w™ and the
following.

(i) If vi < V™ (w"), let UT = (p',w") be the intersection point between the level curves {z, = v*}
and {z, = w™}, then w' = w™ and

1. ifpt < oW, then p € P(U*) = [0,0(w)];
2. ifp" > o), then p € P(UY) = [0,p' (W) U {p}, where p'(w") is the density such that
Q@ whH,wh) = 0", w).

(ii) If vt > V™ (w™) then p € P(U*) = [0,0(w7)].

Moreover, denoting by s the supply function defined in Eq (2.4), it holds

Q(p. W) < s(p', wh). (2.7)

Proof. If v < V™*(w~), by Proposition 2 there exists a unique point U such that w' = w~ and
V(p,w") = v*. Thus, if p* < o-(w"), then every state U with w = w™ and p € [0, o-(w")] can be connected
to U by waves with positive speed (Figure 1 bottom-left). In particular we have a 1-rarefaction wave
if p' < p and a 1-shock if p > p. Then, U™ is connected to U* by a 2-contact discontinuity which has
positive speed.

If p' > o(w') (Figure 1 bottom-right), we have two possibilities: no wave, then U = U¥, or moving
below the density value p'(w') < o"(w’) by a jump with positive speed. In this case, a 1-rarefaction
connects to an intermediate state U with w = w and 0 < p < p'(w'), then a 2-contact discontinuity
connects to U™.

Otherwise, if v* > V™ (w~) then the equality V(p, w™) = v* can not hold. It holds p = 0 and the
admissible left state p has to be in [0, oo(w™)]. |

To summarize, we denote

(2.8)

o) = pw™ v if vt < V()
’ 0 if vt > Vmax(y)

where p(-;v") is the implicit function given by the equation V(p,w) = v*, which is well defined as
stated in Proposition 2.

Remark 1. For numerical purposes, we use the Collapsed Generalized Aw-Rascle-Zhang (CGARZ)
model, see [16] and Section 5. This model is characterized by a maximum velocity V™ common to
any w. Hence, the case of v > V™ (w) never holds for the CGARZ model.
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3. The GSOM on networks

In this section we apply Propositions 1 and 3 to define the Riemann Solver for merge and diverge
junctions. To identify a unique solution we assume the maximization of the flux and the conservation
of p and y = pw across the junction. Moreover, we assume that a distribution parameter on outgoing
roads and a priority rule on incoming ones are given.

3.1. Diverge junction

We consider the case of a junction with one incoming and two outgoing roads. Given a left state U
for the incoming road and two right states U and U; for the outgoing roads, our aim is to determine
the junction values U; = (p;, W;), i = 1,2, 3, giving rise to a boundary-value problem on each road. The
solutions to the latter pieced together provide a solution to the Riemann problem at the junction.

First, introduce a traffic distribution parameter a € (0, 1): vehicles are distributed in proportion @ and
1 — a on the roads 2 and 3, respectively. Note that the cases @« = 0 or @ = 1 reduce the problem to a
simple 1 to 1 junction, thus in this analysis we exclude the two extreme values.

Set g; = pivi, Vi = V(0i, W), 1 = 1, 2,3, then the conservation of p and y across the junction reads:

ag = §» (3.1) (I-o)g: = q3 (3.3)
aq\wy = g (3.2) (I —a)gwy = gzws. 3.4)

By Proposition 1 we have w; = w{, and by Eqs (3.1)—(3.4) we deduce Ww; = W, and w; = W3, hence
Wy = w3 = w;. Now the states U, correspond to six unknowns for which we have five equations. Using
the free parameter ¢ = ¢; and, by Eqs (2.6) and (2.7) we get the constraints

0<g<di,wy)

0 < aq < s(ol, wy) (3.5)

0<(1-a)g < s(p},w)),

where, by Proposition 3, wz = wg = w| and pz, pg are given by Eq (2.8) with w™ = w; and v* =7,
i = 2,3, respectively. To satisfy Eq (3.5) and maximize the outgoing flux, it holds

q = min{d(oy, wy), s(o3, wi)/a, (o3, w)/(1 — @))
and
h1=9 G=aq, §3=(1-a.
Then, the junction density values are p; € N(U)) such that Q(p;,w]) = g, and p; € P(U;r) such that
QP w;) =q;, j = 2,3. In [24,28], the authors obtain the same solution for the ARZ model.
3.2. Merge junction
We consider the case of a junction with two incoming and one outgoing roads. Given two states U

and U; for the incoming roads and a state U5 for the outgoing road, we look for the junction values
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U,, U, and (73. As done before, we set ¢; = p;V;, i = 1,2,3, and we assume that vehicles from roads 1
and 2 enter into the road 3 with the following priority rule

(1 =B)q> = Bq, (3.6)

where 8 € [0, 1]. Note that for 8 = 0 or 5 = 1, one of the two incoming roads is completely stopped at
the junction, and the problem reduces to the 1 to 1 case.
The conservation of p and y across the junction yields:

qi1+q=q (3.7)
Wa = g3Ws. (3.8)
By Proposition 1, we have that w; = wi and W, = w;. Equation (3.7) combined with Egs (3.6) and
(3.8), implies
ws = (1 =B)w] + Bw;. 3.9)
Hence, w;, W, and w3 are defined and ¢, g, and g3 have to satisfy Eqs (3.6) and (3.7). It remains a
free parameter and, in order to define a unique solution, we impose the maximization of the flux on the
outgoing road. By Eqs (2.6) and (2.7), we get the constraints
d(py,wy)
d(ps,wy) (3.10)
S(p;’ W3)»

where pg is given by Eq (2.8) with w™ = W3 and v* = V(p3, w}). From now on, we set

dy =d(p;,w))and d, = d(p,;,w;).

A

q1

2

g

IA
IA

IA
>
IA

0
0
0

IA
IA

We assume that both d; and d, are greater than 0. Indeed, the trivial case of d; = d, = 0 means that no
vehicles cross the intersection, and the case of d; = 0 or d, = 0 reduces the junction to the 1 to 1 type.
In order maximize the flux on the outgoing road we set in Eq (3.10)

g3 = s(pl, Ws). (3.11)

To summarize, the couple (4, ¢») is given by the intersection point P between the following two lines

roqx = 1 —,Bch (3.12)

S1qy= s(p}v%) - 41, (3.13)

where the first one represents the priority rule Eq (3.6), while the second one represent the conservation
equation (3.7) coupled with Eq (3.11). In Eq (3.12), r coincides with the axis x = 0 when 8 = 1. Note
that, since p;' = pg(%; v3) and w3 depends on 3, the maximum flux that can be received by the outgoing
road is a function of the priority rule, i.e., s(p;, w3) = 53(8).

The intersection point between r and s is

P =((1-p)s3(B), Bs3(B)). (3.14)

IfPeQ=10,d]x%I[0,d,], we can set g; = (1 —)s3(8) and g, = Bs3(B). Otherwise, if P ¢ Q, then the
point does not satisfy the constraints (3.10), and we need to relax one of our constraints. We propose
two possible approaches:
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(RP) The relation Eq (3.6) is satisfied with g fixed a priori, while the outgoing flow in Eq (3.11) is
not maximized. This is the case for instance of a stop sign or a traffic policeman regulating the
junction.

(AP) The priority parameter 8 is modified, thus allowing to maximize the outgoing flux. This is the
case, for instance, of unsupervised junction.

To detail the procedure to compute the junction densities p;, i = 1,2, 3, first recall that W, = W, = w|
and w3 = (1 — B)w| + pw; as stated in Eq (3.9). We introduce the parameter

B d] +d2

Ba (3.15)

which identifies the priority line in Eq (3.12) that passes through the point (d;,d;). If P ¢ Q, we
distinguish two cases:

(i) B = B4 then the y-coordinate of P, Bs3(B) is greater than the upper bound d,. Then we fix g, = d,
and look for an admissible value §;;

(i1) B < By then the x-coordinate (1 — B)s3(8) > d;. Then we fix §; = d, and look for an admissible
value g,.

We first describe the RP algorithm. For a given priority parameter S € [0, 1], to satisfy the priority rule,
the solution must lie on the line (1 — 8)g, = B§;. For this reason, when P ¢ Q the couple (g1, §») will
be defined by the intersection point between the priority line and the boundary 9Q, see for instance the
point Q in Figures 2b and 2c.

Definition 3.1. Riemann Solver Algorithm RP. Let 8 € [0, 1] and let 3 and P be as in Eq (3.9) and Eq
(3.14) with 8 = j3, respectively. Assume that Eq (3.7) holds. Define (4, §») € Q as follows:

1. IfP e Q, then &y = (1 - B)ss(B) and &, = Bss(B).
2. If P ¢ Qand B > B, then §; = (1 — B)d,/B and §, = d,.
3. If P ¢ Qand B < By, then §; = d; and §, = 5d, /(1 — p).

The density value p; € N(U;) is determined by the equality Q(p;, w;) = g;, i = 1,2, while p3 € P(U7)
is determined by Q(p3, W3) = §3.

To describe the AP algorithm we need some preliminary results.
Lemma 3.2. The supply function s(pg (w; -), w) is non-decreasing in w.

Proof. By Eq (2.4) we can have
s(Eiw; ), w) = Q™ W) or  s(oi(ws ), w) = phws V(L (w; ), w).

In the first case, assumption (H3) applies; in the second one, by Proposition 2 we have V(pg(w; ), W) =
v; and pg(w; -) is non-decreasing in w.

To study the function s3(8) = s(pg(wg (B); -), w3(B)) with respect to 5, we distinguish two cases:
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(a) wi < wj; then both 3 and s3 are increasing in 3;
(b) wi > w; then both w3 and s3 are decreasing in £3.
Lemma 3.3. Let 8 € [0, 1] and B, given in Eq (3.15).
1. If B > By and Bs3(B) > d,, then there exists at least a B € [0, B) such that Bs3(B) = d».
2. If B < By and (1 — B)s3(B) > d,, then there exists at least a 8 € (B, 1] such that (1 — B)s3(8) = d,.

Proof. We first prove point 1. Consider the two cases (a) and (b), i.e. w] < w, and w| > wj,
respectively.

If w; < w, then the function f(B) = Bs3(B) is increasing in [0, 1] and such that f(0) = 0 and f(B) > d,
by hypothesis; therefore, there exists a unique 5* < 8 such that f(8*) = d,.

If w; > w; then s3(B) is decreasing in § and the behavior of the function f(8) = Bs3(5) is not known
a priori. However the function f is continuous and such that f(0) = 0 and f(8) > d, by hypothesis;
therefore there exists at least a 8 < 8 such that f(8) = d,.

The proof of point 2 is entirely similar, so we skip the details. O

The AP algorithm is described in the following definition. As mentioned above, the algorithm adapts
the priority parameter to maximize the outgoing flux while keeping the parameter as close as possible
to its initial value.

Definition 3.4. Riemann Solver Algorithm AP. Let 5 € [0, 1] and P be as in Eq (3.14) with 8 = §3.
Assume that Eq (3.7) holds. Define (g1, ¢») € Q as follows:

1. If P € Qthen ¢, = (1 - B)s3(B), g2 = Bs3(B) and w3 = (1 — Bywy + Bw; with 5 = .
2.If P ¢ Qand B > B, then for B* = max{B € [0,B8) : Bs3(B) = d>}, we set B = max{B*, B},
g1 = min{(1 — B)s3(B),d1}, o = d> and W3 = (1 — Bywy + pwy.
3.If P ¢ Qand B < By, then for B = min{B € (B,1] : (1 — B)s3(B) = d,}, we set 8 = min{B*, B},
G = di, @ = min{fs3(B),d>} and w3 = (1 — B)w| + pw;.
The density value p; € N(U;) is determined by the equality Q(p;, W;) = g;, i = 1,2, while p3 € P(U7)
is determined by Q(p3, W3) = §3.

Proposition 4. The couple (g1, q») in Definition 3.4 satisfies the constraints in Eq (3.10).

Proof. The given couple (g;,§,) verifies the first two constraints in Eq (3.10) by construction.
Therefore, it remains to prove that gz = ¢, + ¢ < S3(ﬁ) = S3(p§(w3; ), W3).

We start from the case 2 of Definition 3.4. In light of Lemma 3.3 case 1, the value 5* is well defined.
Moreover, since the slope of r increases with 3, the point ((1 — 5%)s3(8%), d>) is such that: if g* > B,
then (1 — 8%)s3(8") < d; and if 8 > B, then (1 — 8%)s3(8") > d;. Therefore, we focus on these two
possibilities:

o If " > f;then 5 = " and §1 = (1 - B)s3(B). Hence, §1 + 42 = (1 = P)ss(B) + dr = (1 = B)s3(B) +
Bs3(6) = s3(B) and the thesis follows. This is the case, for instance, of point R in Figure 2b.
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o IfB* < By thenB = By and ¢, = d;. The couple (§1, §») = (d1,d>) is admissible if d; + d> < 53(8y).
Since d, = (1 — B4)d>/B4 we have d; + d, = d»/B,. From the definition of 8%, for each 8 € (8%, B]
it holds Bs3(8) > d,, and we get the thesis:

dy _ PBass(Ba)
di+d,=—< = S3(ﬁd).
B Ba
This is the case of point S in Figure 2b.
The proof of case 3 follows similarly, see Figure 2c for an example of possible configuration. O
6a) [/ ') W) [ fB)
d /. ) d2 'l' 'll
2 /1 \S(ﬂ) ;I S '/
I/' d \‘ "' /
1) \\ h /
."/ \s \‘(I I' —
V4 \ Y 4
// \\ I. ) R ()
',/ P S(B) ‘\‘\ r(fz P ';" / \s\
,// \ _/"’ I' l' \\~
I/ s\R"_a i ,:
4 d2 P S—— p- Y N
Q_ w6 7PN\
/ — P e \, a V4 - \\ A
, b [ N ; TN
dy dy dy
(aPeQ. (b) P¢ Qand B > By () P ¢ Qandf < B,

Figure 2. The three possible cases defining the RP and AP algorithms, with P in Eq (3.14),
B4 in Eq (3.15), B € [0,1] and 3 in Definition 3.4. The red and blue lines represent r and s
defined in Eq (3.12) and Eq (3.13), respectively, for different values of . For both algorithms,
plot (a) represents case 1, plot (b) shows case 2 with w; > w3 and plot (¢) shows case 3 with
wi <ws.

Remark 2. Let us consider the particular case of w; = w;, = wj, i.e., the variable w is constant on the
roads network. The diverge junction can be treated exactly as the LWR model at junctions, as done
in [18]. For the merge junction we observe that the assumption of w constant implies that the straight
line s defined in Eq (3.13) coincides for all 3, therefore the solution is limited to the points P or Q in
Figure 2, excluding the points R and S. Thus, we recover again the LWR model on networks, as treated
in [18].

4. Minimize emissions and travel time

The emission of pollutants is strictly connected to speed and acceleration of vehicles. In this section
we set up an optimization problem to minimize the NO, emission rates due to vehicular traffic.

Consider Eq (2.3) on a network withroads 7, r = 1,..., N,, during a time interval [0, T']. Following
[7], we use the microscopic emission model proposed in [32] which estimates the emission rate E; of
vehicle i at time ¢ using the instantaneous speed v;(¢) and acceleration a;(t). We then define

Ei(t) = max{Eo, fi + fovi(t) + fvi(t)’ + faai(t) + f5a:(0) + foviDai(D)). 4.1)

Networks and Heterogeneous Media Volume 18, Issue 2, 694-722.



707

where E is a lower-bound of emission and f; to fs are emission constants associated with NOy, see
Table 1.

Table 1. NO, parameters in emission model (4.1).
Vehicle mode N [%] Q) [%] Ve [%] Ja [%] fs [gm_s;] Jo [%n_bzz]

If a;(t) > —0.5m/s*> 6.19e-04 8e-05 —4.03e-06 —4.13e-04 3.80e-04 1.77e-04
If a;(t) < —0.5m/s* 2.17e-04 0 0 0 0 0

Let I' ¢ R¥ be the set of k control parameters y = (y, ..., ¥x) governing the traffic dynamic. These
are given by the traffic distribution and priority parameters @ and S of Section 3. Let N, be the number
of roads and E(x, ) be the emission rate in x at time 7 related to y and road r. Note that E)(x, ) is
estimated through Eq (4.1) by summing all the vehicle contributions in x at time ¢. We introduce the
following operator to estimate the total emission rate on a road network as a function of y € T,

N, T pL
Fe(y) =) f f E?(x, H)dxdt. (4.2)
r=1 Y0 0

To guarantee acceptable travel times, we include a velocity term thus getting the objective function

Ny T oL T L 1
T(y)=;(c1fo j(; EY(x, t)dxdt+czf0 jo\ —(VZ(X, t)dxdt), 4.3)

where ¢; and ¢, are two proper weights and V) = max{V}(x,1), &}, € > 0, with V; velocity function of
the traffic model, related to control parameter y and to road r. The parameter € allows to exclude the
null speeds in the calculation. Our goal is to solve the minimization problem

min 7 (y). 4.4)
yell

The minimum exists since I is a compact set in R, but we do not expect uniqueness. Due to the
complexity and the strictly nonlinear dependence of the functional ¥ on the control vy, we treat the
problem numerically using global search.

5. Numerical setup

From the GSOM family, we choose the CGARZ model [16] for simulations. The CGARZ model
assumes that there is a unique maximum density p™* independent of w at which the vehicles stop, i.e.
V(p"™™,w) = 0 for all w. Furthermore, it assumes a given free-flow threshold density py such that the
flux of vehicles is not influenced by w when p < p; (free-flow regime). Thus, the flux is described by a
single-valued fundamental diagram in free-flow regimes and by a multi-valued function in congestion.
For p € [0, p™*], we have

0ip)  f0<p<p;

. (5.1
Op,w)  ifpyr<p<p™.

Q(p, w) ={
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Following [7], we assume a lower and upper bound for w, i.e., 0 < w; < w < wg, a Greenshields flux
function in the free-flow phase, i.e.,

max

01(p) = ——p (0" - p). (5.2)

max
and a flux in congested phase given by

max WL

\% . —
— (o™~ p) (1 - 0w))py + OwW)p),  O(w) = ———=, (5.3)
P WR — WL

Qc(p’ w) =

where wi, = Q¢(pr), wg = Q(p"™*/2) and p™** /2 is the critical density of Q(-). The velocity function
is then given by

Vo, w) = Q(';’ 2

With these choices, the property w describes drivers attitude with respect to speed. Low values of w
describe slow drivers, and high values of w fast drivers.

We consider now the traffic model in Eq (2.3) with flux function given in Eq (5.1), and we divide
each road into N, cells [x;_;/2, xj.1/2) of length Ax centered in x;, and the time interval into N, + 1 steps
" = nAt.

The model is then solved numerically with the 2CTM scheme [7] with suitable boundary conditions
at the extremes of the network. We use the theory given in Sections 3.1 and 3.2 to build the numerical
solution at junctions.

The 2CTM numerical scheme is described by the two equations

At
n+1 n R/ N}
Py =P = A (Ff]ﬂ/z Fp _172)

n+1
Vi =Ve~ _( rj+1/2 rj 1/2)

0.1 V,n . n n .
where F 12 and F . jx1/2 Ar€ the numerical fluxes, p ' and y’ are the j-cell average

Xjr1/2 Xj+1/2

Pj = 7= plx,t)dx, ;=

Xj-1/2 Xj=-1/2

y(x, )dx,

for any time ", respectively. For the CGARZ model, the numerical fluxes are defined as

FOL Ly = min{d(o) Wi ), (o) wi ) (5.4)

where d(-,-) and s(-, -) are the demand and supply functions defined in Eqgs (2.5) and (2.4) respectively.
Since y = pw the numerical fluxes F 11,2 are such that

y.n 0,1 Vi1 _ 0,1
Eoiip =wWem s and  F 0 = wE L

Moreover, the stability of the scheme is guaranteed by the CFL condition

At < Ax/(QV™H), (5.5)
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where for the CGARZ model V™ = V(0, w) for all w. See [7] and references therein for more details.
The emission model (4.1) is based on vehicles speed and acceleration. The latter is obtained by
computing the total derivative of V(p, w), i.e.,

Dv(x, 1)
Dt

a(x,t) =

=v(x, 1) +v(x, Hv(x, 1),

where
v(x, 1) = V(p(x, ), w(x,0), v,=Vyo+Vyw, v,=V,p,+V,w,.

By simple computations, for the GSOM we have

a(x, 1) = V, (0, + ) = ~V,pvs. (5.6)

Once p} ;, w; ; and V}!; are known, from Eq (5.6) we get the discrete acceleration

1 1

Vi =V
v , ,% n' j+l j-1 )
o)W 2Ax
Then, we compute the emission rate by adapting equation (4.1) to the numerical framework. Hence,
for each time " and cell x;, j = 1,..., N, of road r we define
E" —p”Ax} max{Ey, fi +f2vr] +f3(vr]) +f4ar] +f5(arj) +f6v” rj} (5.7)

where E, = 0 and the coefficients f; to fs are collected in Table 1.
The functional # (y) in Eq (4.3) is then discretized as

F(y) ~

(5.8)

N, N Ny [Ey(xj,t) <

max Y(v. )|’
rrlnljl E (Vr(xl’t)
where E™ is the maximum emission rate, € is the rounded minimum velocity, and, in order to have
comparable quantities for the emission and travel time functional, the weights c; and ¢, are given by

1 £

cl= ——— and Ccy = .
E™xN _N,N, N.N,N,

(5.9)

From now on we assume € = 1km/h. As shown in Appendix A, this choice of weights does not
substantially affect the numerical results described in the following sections. Thus # in Eqs (5.8) and
(5.9) is an appropriate functional to analyze the cost in emission and travel time.

6. Case study of a merge junction

Let us consider the merge junction depicted in Figure 3, where we assume road 1 to be a ramp
merging to roads 2 and 3. We assume the junction to be governed first by a priority rule and then by a
traffic light. The latter is modeled by alternating 8 = 0 and 8 = 1 in time.

The model parameters in Eq (5.1) and those for the numerical tests are fixed in Table 2. The initial
data is assumed to be constant on all the three roads and is chosen according to Table 3.
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=2 3 E 3

FB) I (1, 15)

"[\)

(a) priority rule (b) traffic light

Figure 3. Example of merge junction where road 1 joins roads 2 and 3.

Table 2. Parameters used for the numerical tests.

max

o e Pe ymax L Ax T At
19veh/km 133 veh/km 67.5veh/km 70km/h 3km 100m 10 min 4s

Table 3. Initial data for the test on a merge junction, with wy, = (wg + wy)/2. We assume
fast drivers coming from road 1 and moderate drivers on road 2 and 3.

Road r 1 2 3
o° (veh/km) 12 60 60
w? WR 1% Wy

First we focus on the emission functional

N, N, N,
Fe(y) =~ EY(x;j,1").
)~ NtN P 121];] V(x5 ")

We look for the parameter 8 € [0, 1] which minimizes Fx(8), and analyze the RP algorithm given in
Definition 3.1. In Figure 4 on the left, we show F(8) for 5 varying in [0, 1]. The optimal priority rule
is given by g7 = 0, i.e., no vehicle enters the junction from road 2. This result is unrealistic and thus
motivates the use of the extended functional (4.3) including travel times. In Figure 4 on the right, we
then show the test result for functional # with & = 1 km/h. The optimal parameter is 8°7" = 0.64 and
F(B°P") = 8.10 which is an admissible and realist solution.

Optimal traffic light We model a traffic light placed at the end of roads 1 and 2 (see Figure 3b) by
alternating 8 = 0 and 8 = 1 in time. Specifically, for 8 = 0O the traffic light is green for road 1 and red
for road 2, on the contrary for f = 1 it is red for road 1 and green for road 2. The controls are given
by the green phase duration f, (when § = 0) and red phase duration ¢, (when g = 1). The problem
(4.4) is studied for I' = G x R c R?, where G and R are the intervals where t, and ¢, vary, and the cost
functional F(y) = F(t,,1,). Fixing G = R = [0,90s], in Figure 5 we plot F (#,, t,) with initial traffic
data given in Table 3. The optimal times are #;”' = 5s and ;" = 10s and ¥ (tOP ") = 8.18. We
observe that the region bounded by dark-blue lines identifies the points with functlonal values close to
the minimum one. Therefore, many couples (%, t,) allow to have low emissions and travel time.
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(a) F(B) with RP algorithm.
Figure 4. Case study of a merge junction. ¥z(8) (left) and ¥ (8) (right) as 8 changes in [0, 1]

using the RP algorithm. The initial data is given in Table 3.

90

80

Figure 5. F(1,,1,) as t, and ¢, vary in [0, 90 s] with initial data in Table 3. In red the optimal

point (7", #"") = (55,105s).

A0
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. % ST
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1
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0.5 Priority road 2

(b) F(B) with RP algorithm.

In summary, in Table 4 we compare the minimum values of Fz(y), Fr(y) and F (y) obtained with
y =% and y = (13" ', #2P"). The optimal values are very close. The numerical tests show that ¥ has a
convex shape, both with respect to 87" and (£;7, £.7").

6.1. Sensitivity to initial data

Here we investigate numerically the sensitivity of the minimization problem (4.4) with respect to
the initial traffic states for constant initial data on all three roads. We consider two different traffic
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Table 4. Comparison of Fz(y), Fr(y) and F(y) for y = g and y = (z,”', ;™).

Optimal Control Value FE Fr F
B 0.64 4.45 3.66 8.05
1, 5s,10s 4.39 3.78 8.18

scenarios:

(1) p23 < py, Le. free ﬂow traffic conditions on roads 2 and 3. Specifically, we fix p(z) = pg =
15 veh/km and w2 = w3 (wr + wg)/2 along the roads;

(i1) pm > py, 1.e. congested traffic conditions on roads 2 and 3. Specifically, we fix pg = pg =
60 veh/km and w2 = w3 (wr + wg)/2 along the roads.

The optimal control is computed as function of the initial datum on road 1: (po,w(l)) € [0, p"™*]

[wr, wgl.

X

Priority rule We focus on RP algorithm. Recall that values of 5 < 0.5 give the priority to road 1,
while values of 5 > 0.5 give the priority to road 2. In Figure 6 we highlight the level curve related to
B = 0.5 using a bold line. In Figure 6a we show the result for the free-flow case (i). The optimal priority
B°P" decreases as p(l) increases. Specifically, if p‘l) < pg = pg = 15 veh/km then road 2 should have the
priority and 8°” is independent of the speed attitude of drivers wY. On the other hand, if p9 > 15 veh/km
then road 1 should have the priority. In this case, 8°7 depends on wY. In fact, it decreases more rapidly
for high values of w(l). Hence, vehicles with fast drivers should cross the junction in a higher percentage
(1 — B) than vehicles with slow drivers. In Figure 6b we show the result for the congested case (ii).
As before p°7" decreases as p{ increases. We observe that road 2 should always have the priority when
slow drivers (w(l) = wy) arrive from road 1. On the other hand, road 1 should have the priority for high
values of p§ and w! (region to the right of the curve 7' = 0.5).

Traffic light Here we analyze how the ratio between the optimal green and red duration 7" /2"

varies with respect to (o, 0) for the two traffic scenarios (i) and (ii). In Figure 7 we show the result
for the free-flow case (i). The left plot represents the level curves of 7 computed with the optimal
couple (t;”",#;""): the minimum value is increasing in p¢ independently of w’; the dependence on w?
only occurs When many slow vehicles arrive from road 1 (bottom right of the figure). The right plot
shows the level curves of the ratio 73" / t;”", where the bold line identifies the curve with £g”' /" = 1.
We observe that for small values of Pv the red phase should be longer than the green one. On the
other hand, when p(l) increases, the ratio becomes greater than one, and thus vehicles coming from road
1 should have a longer green phase. Again, the solution is not very sensitive to the variations of the
speed attitude of drivers wY. In Figure 8 we show the result for the congested case (ii). The behavior
of F(2”, 127" on the left plot is analogous to case (i), while the trend of the ratio #;”"/#;” changes.
Indeed, the green phase should be longer than the red one only for high values of ,01 and low values of
w? Finally we observe that in both cases, the minimum of the functional is not very sensitive to small

perturbations of optimal (¢5”", #;"").
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(a) Free-flow case: p; = pj = 15veh/km, wj = (b) Congested case: pj = p; = 60 veh/km, w§ =
wg = (wr + wg)/2 (dashed lines). wg = (wp + wg)/2 (dashed lines).

Figure 6. Sensitivity to initial data: optimal priority rule as p(l) and w(l) change. In (a) the free-
flow case (1); In (b) the congested case (ii). When 5 < 0.5 road 1 has the priority, otherwise
road 2 has the priority.

Fast
drivers
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(b) Level curves of 27" /12" ratio.

(a) Level curves of ¥ computed with (¢ "
Figure 7. Sensitivity to initial data: optimal traffic light timing as p(l) and W(1) change. Roads 2
and 3 start in the free-flow phase: p) = p3 = 15 veh/km and w) = w3 = (w, + wg)/2 (dashed

lines).

We can summarize the results as follows. For the priority-ruled junction, we obtain the minimum of the
functional ¥ by giving the priority to the incoming road with higher density and favoring fast drivers.
For the traffic light too, the road with higher density should have a longer green phase. However,
when the three roads are congested, vehicles with slow drivers should have a longer green phase. As
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Figure 8. Sensitivity to initial data: optimal traffic light timing as p? and wY change. Roads 2
and 3 start in the congested phase: p) = p} = 60 veh/km and w) = w§ = (w, + wg)/2 (dashed
lines).

expected, the sensitivity with respect to w is greater when traffic is congested, that is when it is more
influenced by w.

7. Emissions at roundabouts

In this section we study emissions and travel times for a roundabout, modeled combining merge
and diverge junctions as depicted in Figure 9. There are four junctions: J; and J; of type 2 — 1
(merge); J, and J, of type 1 — 2 (diverge). We focus on the AP algorithm to compute the minimum of
problem (4.4), obtaining the priority parameters y = (8,,,5,) € [0, 11>. We also compute the optimal
timing y = ((t,, 1,)1,, (4, 1,)1,) € [G X R]? for the roundabout with traffic lights placed at the two merge
junctions J; and J3, with G = R = [255,905s]. We exclude traffic light phases smaller than 25 s, and
compare the roundabout with priorities with that with traffic lights. Furthermore, we consider the case
of periodic traffic lights with (z,,7,),, = (t,,1.);, = (455,45 s) to compare the optimal traffic lights with
naive ones.

Figure 9. Example of roundabout.
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The two diverging junctions J, and J; have a fixed distribution parameter @ = 0.6. The model
parameters ps, o™, p. and V™™, the length of the roads L and the space step Ax are fixed as in
Table 2. The length of the simulations is 7 = 1h and the time step Ar = 2.57s. The initial density
is assumed to be null for each road. We analyze three traffic scenarios determined by the density of
vehicles which enter into the network from roads 1 and 5. On the latter, we used Dirichlet boundary
conditions:

{p if# <20 min  _
Pro = ] p = 15,40 or 80 veh/km (7.1)
’ 0 otherwise

and wg, = (wr + wr)/2 for r = 1,5. We use Neumann boundary conditions for roads 3 and 7, thus
allowing all vehicles to exit the roundabout. The initially empty network is filled up for the first 20 min
of simulation, then no more vehicles access the network until the final time 7 = 1h. In this way, the
emissions are measures both for loading and unloading of the roundabout.

Table 5. Comparison of Fr(y), Fr(y) and F (y) for y chosen as the optimal controls on the
junctions J; and J3 of the network for different Dirichlet boundary conditions.

p

(veh/km) Control Value Fe Fr F

Optimal B,,B8;, 050,050 046 1.52 198

15 ) (tent)s 625,26
Optimal & """

P ot 275,47

(g, 1), 455,45

(tg, 1)1, 455,45

Optimal B,.B8;, 034,069 1.04 181 285
40 . (tety)y, 695,295

Optimal & """

P et 275,445
(tg, 1)y, 455,45
(tg, 1)1, 455,45

Optimal g;,,B, 034,068 1.15 1.88 3.02

80 ) (t,, 1) 695,295
Optimal ¢ """

P et 275,445

(tg, 1)y, 455,45

(tg, 1)1, 455,45 s

036 1.49 1.86

Periodic 0.39 1.76 2.15

092 191 2.84

Periodic 098 262 3.60

1.03 199 3.02

Periodic 1.08 2.77 3.85

In Table 5 we show the optimal controls and the corresponding functionals values. We observe that
FE, Fr and F grow as the number of vehicles entering the network increases, both for priorities and
traffic lights dynamics. In particular, in the case of p = 15veh/km in Eq (7.1), the traffic lights
dynamics produce 20% lower emissions and 2% lower travel times with respect to priorities. In
congested situations, instead, the emissions are reduced by about 11% in presence of traffic lights,
while the travel times are 6% longer compared to priority-ruled dynamics. Moreover, for all the
boundary data p the dynamics with periodic traffic lights produce higher emissions and longer travel
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times compared to the dynamics with optimized traffic lights; in congested situations the increase of
¥ is about 30%. On the other hand, periodic traffic lights produce lower emissions than optimized
priorities dynamics, but significantly higher travel times. The higher levels of emissions associated
with priorities can be observed also in Figure 10, where we plot the emissions on each road of the
network at different times. The emissions associated with traffic lights dynamics show an oscillating
behavior which is not observed in the priorities case, see plots in Figures 10a—e. At the final time of
the simulation, plots Figures 10c and 10f, the emissions are close to O as nearly all vehicles have left

the network.
5 5
| 4 I T 4 |

T T
H\\I// TN I// N\
| : | |

-2 -2 -2

(a) Optimal priority: NOy at = (b) Optimal priority: NOx at r = (¢) Optimal priority: NOy at ¢
5 min. 30 min. 1h.

. . .
s/ N e/ N /N

*\\l//' ; *\l//i AN\
| l

0
-1 l | -4
-2 -2 -2
(d) Optimal traffic light: NOy at (e) Optimal traffic light: NOy at (f) Optimal traffic light: NOy at
t =5 min. t = 30 min. t=1h

Figure 10. NO, emission rates (g/h) on a network with priority rules (top) and traffic lights
(bottom) in J; and J;.

Finally, in Figure 11, we show the change in time of the total emission rates in the whole network.
The trend in emission rates is the same for the three cases: emissions rise as vehicles enter the network
and then decrease to 0. The peak value grows as p increases. Again, periodic traffic lights correspond
to higher emissions than optimized ones. In Table 6 we report the total number of vehicles that enter
the network for the three tests and the corresponding total amount of emissions produced with the two
optimized traffic dynamics. We observe that emissions are more than double when p = 40 veh/km
compared to p = 15 veh/km and almost triple when p = 80 veh/km with respect to o = 15 veh/km,
while the difference between the case of p = 40 veh/km and the one of p = 80 veh/km is smaller.
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To check the robustness of our results, we computed the minima of the functional F for different
values of the weights ¢; and ¢, in Appendix A. The specific values of the functional obviously varies
as we change the weights, but not the qualitative and quantitative comparison of priorities with traffic
lights. Moreover, the optimal traffic light timing appears to be more robust than the optimal priorities.

2500 --Optimal priorities [ 2500 -e-Optimal priorities 1 2500 - -e-Optimal priorities
—Optimal traffic lights Q —Optimal traffic lights —+Optimal traffic lights
~-Periodic traffic lights o3 ~-Periodic traffic lights ~-Periodic traffic lights

2000 1 2000 2000 -

= = =
C) C) C)
2 1500 2 1500F 2 1500F
ks o o
|7 [ i3
5 5 5
1000 1000 1000 £
o o o
P4 b4 b4
500 500| 500| §f
¢ . » ¢ D 0‘ Befatnoe
0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60
Time (min) Time (min) Time (min)
(a) p = 15veh/km (b) p = 40 veh/km (c) p = 80 veh/km

Figure 11. Total NO, emission rates (g/h) along the whole roundabout.

Table 6. Total number of vehicles entering the network and total amount of emissions
produced for the three cases analyzed.

p Total Total emissions Total emissions
(veh/km) vehicles priorities (g/h) traffic lights (g/h)
15 620 576328 458563

40 961 1316544 1169322

80 1012 1450627 1299261

8. Conclusions

In this work, we have extended the Generic Second Order Model to a road network with merge and
diverge junctions and proposed a tool to estimate and minimize traffic emissions by regulating traffic
dynamics. Such regulation corresponds to the choice of suitable model parameter y that governs the
distribution of traffic in a diverge and priorities in a merge.

Different scenarios have been considered, such as: a traffic policeman who strictly enforces the
priority rule (RP algorithm), an uncontrolled intersection where drivers tend to maximize the flow
(AP algorithm), and the presence of a traffic light. A functional measuring emissions and travel times
was tested numerically on a single merge junction, showing that the minimum is achieved by giving
the priority and a longer green traffic light to the incoming road with higher density and fast drivers.
On the other hand, the test performed on a roundabout has pointed out that traffic lights appear to be
convenient with respect to priorities for emissions, especially at low densities. This indicates that the
increasingly common roundabouts may benefit from the installation of traffic lights at entrances. We
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conclude by stating that our approach is very flexible and can easily be used as a decision support for
traffic management.
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In this appendix we investigate the sensitivity of the functional ¥ with respect to the weights c¢; and
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Networks and Heterogeneous Media Volume 18, Issue 2, 694-722.


http://dx.doi.org/https://doi.org/10.1016/j.envpol.2021.116971
http://dx.doi.org/https://doi.org/10.1016/j.jtte.2017.08.001
http://dx.doi.org/https://doi.org/10.1137/17M1136900
http://dx.doi.org/https://doi.org/10.1098/rspa.1955.0089
http://dx.doi.org/https://doi.org/10.1016/j.scitotenv.2006.08.017
http://dx.doi.org/https://doi.org/10.1016/j.trc.2014.12.013
http://dx.doi.org/https://doi.org/10.1287/opre.4.1.42
http://dx.doi.org/https://doi.org/10.1016/S1352-2310(02)00857-9
http://dx.doi.org/https://doi.org/10.1016/S1352-2310(02)00857-9
http://dx.doi.org/https://doi.org/10.1016/S0191-2615(00)00050-3
http://dx.doi.org/https://doi.org/10.1016/j.scitotenv.2013.01.074

721

importance once to emissions and once to the travel time. Therefore, we define ¥, = kc\Fg + c2Fr
and ¥, = c|Fg + ke, F7r with « = 10, 100.

In Tables A1 and A2 we report the optimal controls computed for ¥, and ¥.,, using the Dirichlet
boundary conditions in Eq (7.1) for different p as in Section 7. First, we observe that the values of the
functional ¥, are lower than those of the functional #.,. Therefore, giving more importance to
emissions rather than to travel time allows to reduce the total cost. Analogously to the case of
functional ¥ studied in Section 7, in all cases traffic lights dynamics are convenient in terms of
emissions production, while the travel time is shorter when traffic is ruled by priorities. Finally, note
that the optimal priorities are influenced by the choice of the functional, while the optimal traffic light
timing is always the same for all the tests.

Table Al. Comparison of Fr(y), Fr(y), . (y) and F,(y) for y chosen as the optimal
controls on junctions J; and J; for different boundary p (veh/km) and « = 10.

(a) 7‘21 =10 + Fr (b) 7762 =Fr + 10F7
_ Optimal _ Optimal
p C(I))ntrol Value Fe T Fa p C(I:ntrol Value Fe Fr Fo
BB, 050,050 0.46 1.52 6.08 Bi,Bs, 050,050 0.46 1.52 15.68
15 (t,.t),, 625,265 15 (t,,t);, 625,265
(gt 275,475 0.36 1.49 5.12 (pt)y 275,475 0.36 1.49 15.29
Bs,Bs; 028,077 0.10 1.83 12.13 BB, 0.33,0.67 1.04 1.81 19.17
40 (t,.1),  69s5,29s 40 (t,,t);, 695,295
(gt 27s.4ds 0.92 191 11.16 (ot 275445 0.92 1.91 20.06
BB, 045,074 1.14 1.88 13.30 BB, 034,0.14 1.15 1.88 19.94
80 (t,.1,);, 695,295 80 (.. 1,)5, 695,298
(gt 27s.4ds 1.03 1.99 12.26 (gt 275445 1.03 1.99 20.94

Table A2. Comparison of Fg(y), Fr(y), F.(y) and F.,(y) for y chosen as the optimal
controls on junctions J; and J; for different boundary p (veh/km) and « = 100.

(@) Fe, = 1007 + 7 (b) F, = Fr + 10057

_ Optimal _ Optimal
p cgntrol Valve Fy Fr F, P C(P))ntrol Value Fy Fr Fo,

BisBs;  0.50,0.50 0.45 1.52 47.08 B1.Bs, 050,050 0.46 1.52 152.67
15 (t.1)5, 625,265 15 (g 1,)), 625,265

oty 275,475 0.36 1.49 37.74 oty 275475 0.36 1.49 149.68

By B, 026,098 1.01 2.06 103.53 BiBi; 033,067 1.04 1.81 182.35
40 (tg,[r)]l 69 5,295 40 ([g,tr)Jl 69 S, 29s

(gt 27s44s 002191 94.34 (gt 27s.4ds 002 19119232

Br,Br  0.27,0.98 1.12 2.17 114.10 By.Bs, 033,056 1.15 1.88 188.93
80 (l‘g,l,)Jl 69 S, 29s 80 (tgytr)J] 695s,29s

oty 27544 1.03 1.99 104.69 e 275 44 1.03 1.99 200.13
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