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Abstract: The simulation model proposed in [M. Hilliges and W. Weidlich. A phenomenological
model for dynamic traffic flow in networks. Transportation Research Part B: Methodological, 29
(6): 407431, 1995] can be understood as a simple method for approximating solutions of scalar
conservation laws whose flux is of density times velocity type, where the density and velocity factors
are evaluated on neighboring cells. The resulting scheme is monotone and converges to the unique
entropy solution of the underlying problem. The same idea is applied to devise a numerical scheme
for a class of one-dimensional scalar conservation laws with nonlocal flux and initial and boundary
conditions. Uniqueness of entropy solutions to the nonlocal model follows from the Lipschitz
continuous dependence of a solution on initial and boundary data. By various uniform estimates,
namely a maximum principle and bounded variation estimates, along with a discrete entropy inequality,
the sequence of approximate solutions is shown to converge to an entropy weak solution of the nonlocal
problem. The improved accuracy of the proposed scheme in comparison to schemes based on the
Lax-Friedrichs flux is illustrated by numerical examples. A second-order scheme based on MUSCL
methods is presented.
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1. Introduction

1.1. Scope

Nonlocal conservation laws model various phenomena, such as the dynamics of crowds [8-10],
vehicular traffic [7, 18], supply chains [3], granular materials [1], and sedimentation phenomena [5].
These nonlocal equations are given by expressions of the type

dp +div,F(x,t,p,W)=0, t>0, xeR’ d>1,

where p = p(x,f) € RY, N > 1 is the vector of the conserved quantities and the variable
W = W(x,t, p) depends on an integral evaluation of p. The aim of this work is to propose an approach
for a rigorous treatment of boundary conditions in the case of a spatially one-dimensional nonlocal
problems, through development of new numerical schemes that are more accurate and less diffusive.
The strategies that we employ are inspired by the results obtained in [5, 6, 17]. Particularly, we
propose to study a simplification of the problem studied in [5], we adopt the treatment of the boundary
conditions proposed in [17] and we present a numerical scheme based on local one studied in [6, 19].
Our proposed scheme takes advantage of the form in which the flow is written, namely density p times
a local decreasing factor g(p) times a nonlocal convolution term V(x, ) = (w * v(p)), where v is a given
velocity function and w is a convolution kernel such that the governing conservation law becomes

dp + 9.(pg(P)V(x,1)) = 0. (1.1)

In the case of a standard (local) conservation law, captured by setting V = const., the above-mentioned
approach results in a monotone scheme [6], so it is possible to invoke standard arguments to prove
its convergence to an entropy solution. This idea is extended herein to the nonlocal equation (1.1),
although we emphasize that the resulting scheme is not monotone.

1.2. Related work.

There are many works about existence and uniqueness results for nonlocal equations, see
e.g., [2, 14, 15, 17] for the scalar case in one space dimension. In these papers a first-order
Lax-Friedrichs (LxF)-type numerical scheme is used to approximate the problem and to prove the
existence of solutions and the nonlocal term is considered as a convolution between a kernel function
and the unknown (mean downstream density approach). LxF-type schemes are the most common
approach used to solve nonlocal conservation laws because they are easy to implement and due to
their monotonicity, they make it possible to numerically analyze nonlocal flux problems. Their
well-known main disadvantage is, however, their large amount of numerical diffusion that smears out
sharp features of the exact solution. To reduce this phenomenon, Friedrich et al. [16] proposed a
Godunov-type numerical scheme where the nonlocal term is considered as a convolution between a
kernel function and the velocity of unknown (mean downstream velocity approach). We adopt this
idea about the convolution to propose and develop our model and computations. A well-known early
analysis of initial-boundary value problems (IBVP) for conservation laws is due to Bardos et al. [4],
where existence, uniqueness and continuous dependence of the solution on initial data in the case of
zero boundary data are proved. These results were extended to more general but smooth boundary
data by Colombo and Rossi [11]. Rossi [21] studied an IBVP for a general scalar balance law in one
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space dimension. Under rather general assumptions on the flux and source functions, the author
proves the well-posedness of the problem and stability of its solutions with respect to variations in the
flux and the source terms. For both results, the initial and boundary data are required to be bounded
functions with bounded total variation. In [14] a global well-posedness result for a class of weak
entropy solutions of bounded variations of scalar conservation laws with nonlocal flux on bounded
domains is established under suitable regularity assumptions on the flux function. The nonlocal
operator is the standard convolution product. The existence of solutions is obtained by proving the
convergence of an adapted LxF algorithm. Lipschitz continuous dependence from initial and
boundary data is derived applying Kruzkov’s doubling of variables technique. In [17] Goatin and
Rossi study the same problem as De Filippis and Goatin [14], but with a different approach, namely
following the treatment of the boundary conditions proposed by Colombo and Rossi in [12] where a
particular multi-dimensional system of conservation laws in bounded domains with zero boundary
conditions was considered. More specifically, the nonlocal operator in the flux function is not a mere
convolution product, but it is assumed to be ‘aware’ of boundaries and by introducing an adapted LxF
algorithm, various estimates on the approximate solutions that allow to prove the existence of
solutions to the original IBVP are introduced. Uniqueness was derived from the Lipschitz continuous
dependence on initial and boundary data, which is proved exploiting results available for the local
problem.

1.3. Outline of the paper.

This work is organized as follows: In Section 2 we present the class of nonlocal conservation laws
considered and the assumptions needed the problem studied as well as the main result of this paper,
whose proof is postponed to end of Section 3. Lipschitz continuous dependence of solutions to the
problem on initial and boundary data is proved in Section 3. Afterwards, in Section 4 we introduce
the numerical scheme and derive some of its important properties such as the maximum principle and
BV and L' Lipschitz continuity in time estimates. These imply convergence of the scheme proposed,
which in turn covers existence part of the well-posedness of the governing model. Throughout the
paper we address the new scheme as a “HW scheme” according to the proponents of the original
idea (Hilliges and Weidlich [19]), and in Section 5 we provide a second-order version of a HW-type
numerical scheme. Finally, in Section 6 we present some numerical examples, analyzing the L!-error of
the approximate solutions of studied problem computed with different schemes. Appendix A collects
some estimates necessary throughout the paper.

2. Initial-boundary value problem

We consider a particular initial-boundary value problem which is a version of a nonlocal model of
sedimentation proposed in [5]. Our model has the following structure:

0 + 0(f(P)V(x,0) =0, (x,1) €la, b[xXR",
p(x,0) = po(x), x €la,bl, 2.1)
pa,t) = pu(t), p(b,t) =pp(t), teR”,

where

Sfp) := pg(p), (2.2)
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1 b
VD) i= @) = s [ et - 0 @3

with W(x) := fa ’ w(y — x) dy for a suitable convolution kernel w.

Remark 2.1. The particular combination of local and nonlocal evaluations of p present in Eqs (2.2)
and (2.3) can be motivated by following the discussion of [5, Sect. 1.2] for a model of sedimentation.
Namely, if we assume that the nonlocal model describes the volume fraction of solids p € [0, 1] within
a solid-fluid two-phase flow system, then the solid and fluid conservation equations in differential form
are 0,p + 0,(ovs) = 0 and 0,(1 — p) + 0.((1 — p)v¢) = 0, where vy and vt are the solid and fluid phase
velocities and x is the vertical spatial coordinate. One then defines the volume average velocity of the
mixture q := pvs + (1 — p)vg and the solid-fluid relative velocity v, = vy — ve. Now for the particular
case of batch settling in a closed column, we have g = 0 for all x and t, and then pvs = p(1 — p)v,, so
that the unique PDE to be solved is

atp + ax(p(l _p)vr) =0, (24)

where v, is specified by some constitutive function. This scenario corresponds to Eqs (2.1)—(2.3) if we
choose g(p) = 1 — p and assume that v, is given through the nonlocal convolution

Ve = vi(x, 1) = (w * v(p))(x, 1), (2.5)

where p — Vv(p) is a given, in general nonlinear function. In other words, the local and nonlocal
evaluations of p in Eq (2.1) arise from the combination of properly defined volume fractions in mixture
theory with the constitutive assumption in Eq (2.5). The standard local evaluation v.(x,t) = v(p(x, 1))
corresponds to the well-known kinematic sedimentation model, while utilizing v(w * p)(x, t) instead of
(w = v(p))(x, t) is the model alternative explored in [5].

Assumptions 2.1. The initial-boundary value problem (2.1) is studied under the following
assumptions:

(i) The initial function satisfies po € BV(I;R"*), where I :=]a, b[C R™.

(ii) The function g satisfies g € C*([0, 11;RY), g'(p) < 0 for p € [0, 1], and g(1) = 0.
(iii) The function v satisfies v € C*([0, 1];R*), v'(p) < 0 for p € [0, 1], and 0 = v(1) < v(p) < v(0) = 1.
(iv) The convolution kernel w satisfies w € (C*> N W>!' N W>*)(R;R) such that wa(y) dy = 1, and

there exists K, > 0 such that for all x € I, W(x) = fab w(@y —x)dy > K,,.

In what follows, we denote || - |[z~(0,17) := Il - llo. The weak entropy solution of problem (2.1) is
defined, as in [14, 17], in the following sense:

Definition 2.1. A function p € (L' N L® N BV)(Ja, b[xR*;R) is an entropy weak solution if for all
v € CIR*R*) and k € R,

00 b
[ [ (o= tiar+ sento = 070 ~ ) Vi = snto = 0G0V sg) e
b o
# [ oot = Hotr 0y + [ sento, = 0 tp(ar ) = FW) V(@ pta.

- f sgn(p, — K)(f (&) — f(p(b—, 0)))V(b, (b, 1) dt > 0.

0
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Definition 2.2. A function p € L*(Ja, b[XR"; [0, 1]) is an entropy weak solution to problem (2.1) if, for
all p € C{(R*,RY) and k € R,

00 b
[ [ (=00t sero - 000 - FwIVrDa00
b
—sgn*(p — k) f(k)e(x, )0, V(x, t)) dxdr + f (0o(x) — k) p(x, 0) dx

+ L(fow(pa(t) — k) p(a, ) dt + fow(Pb(t) — k) e(b, 1) dt) >0,

where
L := [Vl (llglleo + 118" lleo)- (2.6)
Here we have used the notation s* := max{s, 0}, s~ := max{-s, 0}, and
1 ifs>0, 0 ifs>0,

sgn™(s) := { sgn (s) := {

0 ifs<0, -1 ifs<O.

Definition 2.1 will be useful in the existence proof, while Definition 2.2 will be used in the uniqueness
proof. We need to remark that in the frame of functions in L®, Definition 2.2 implies Definition 2.1,
for more details see [20]. In the rest of the paper, we denote 7 (r, s) := [min{r, s}, max{r, s}] for any
r,s € R.

Our main result concerning the new model is given by the following theorem, which states the
well-posedness of the problem.

Theorem 2.1 (Well-posedness). Let pg € BV(I;R"Y), p.,o» € BV(RY;[0, 1]) and Assumptions 2.1
be in effect. Then, for all T > 0, the Cauchy problem (2.1) admits a unique entropy weak solution
p € (L' N LN BV)(I x [0, T];R") in the sense of the Definitions 2.1 and 2.2. Moreover, the following
estimates hold: for any t € [0,T],

0<px,)<1 forallxel, 2.7
oG D[y < R, (2.8)
TV(p(-, 1): 1) < & (TV(po: I) + TV(pa3 10, T[) + [po(a+) = pa(0+)|
T
+TV(p 10, TD + |po(b=) — py(0+)]) + %(em -, 2.9)

and for T >0,
oG ) =pCot =D, < (Ci(0) + LTV (pa; 1t = .1D) + TV (g3 It = 7.11))
where L is defined by Eq (2.6) and

Rl(l‘) :
T

clloollzray + L(||Pa||L1([o,z]) + ”ph”Ll([O,t]))a
L(lIglleo + 118" ll0)s
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L:= 2K |Vl | gy, (2.10)
T2 = (WRi(®) + 2L)lIgllw,
W = 2K, IVlleollew” |l 1y + 4K;2||w’||il(,)IIVI|oo, (2.11)

Ci(®) = VIl (Il oo + 118lleo)C(®) + 181l LR1 ().

The proof consists of two parts: existence and uniqueness of entropy solutions. While uniqueness
follows from the Lipschitz continuous dependence of weak entropy solutions on initial and boundary
data, existence is based on a construction of a converging sequence of approximate solutions defined
by a numerical scheme.

3. Uniqueness of entropy solutions

One part of the proof of Theorem 2.1 is to show uniqueness of weak entropy solutions for the model
(2.1). Therefore, we prove the Lipschitz continuous dependence of weak entropy solutions with respect
to initial and boundary data. Here, we follow [17]. We define V(x,7) by Eq (2.3) and analogously
U(x,t) by replacing p in Eq (2.3) by another function o~. Furthermore, we let r(x, ¢, u) := ug(u)V(x,t)
and h(x, t,u) := ug(u)U(x, t). Observe that by the definition of V and U,

VX0 < Pllo,  Ulx, 1) < Vil

furthermore, we have the following estimates derived in Appendix A:

0.V (x, )| < 2K, Mlleolle' 1y =2 P, 3.1
162,V] < K IMlslle” ool
+ PIK;ZHU)”LI(I) + PIK;I + K;lllvlloo”w”HLl(l) =: P, (3.2)
b
V(x, 1) = Ux,0)| < Ps f lov.0) = o (. 0| dy,  Ps = K Nl 1V Il (3.3)
b
|0.V(x.0) - 0,U(x, | < M f oG, 1) = o (y, )| dy, (3.4)

g2 -1
M= KN @l lleollwllzs@) + Ko 1V llool ||| 252R).-
In order to obtain the desired estimate, we first consider the local initial-boundary value problem

0,0+ 0, r(x,t,0) =0, (x,1)€Ix]0,T],

d(x,0) =09(x), xel;, d¢at)=0,), ¢b,t)=0,(), te€]0,TI. (3-5)

By Assumptions 2.1, r € C*(I x [0,T] x R;R) and d,r € L*(I x [0,T] x R;R) and by estimation
Eq (3.1), 8% r(x,t,u) < oo. Thus, we may apply Theorem 2.4 of [21] to deduce that problem (3.5)

admits a unique solution in (L™ N BV)(IX]0, T[; R) which satisfies, for all # € [0, T[, 0 < ¢(x, 1) < 1 for
all x € I and

TV(g(1)) < eD(TV(00) + TV(01;10, 1) + [oo(a+) — 774(0+))

(3.6)
+TV(03;10, 1) + |oo(b—) — 07(0+)| + K1),
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where

Co(®) = Pi(llglls +118lle0)s K :=2((P1 + P2)lIglleo + P1lIg lleo)-
Assume that p is a solution to the IBVP

0,0+ 0,r(x,t,p) =0, (x,1)eIx]0,T],
p(x,0) = po(x), x€l; pla,1)=p.), pb,1)=pr), 1€]0,T[

and that o is a solution to the analogous IBVP

0,0+ d,h(x,t,00) =0, (x,1)€lIx]0,T],
o(x,0)=0p(x), x€l, o(a,t)=0c,0), obt) =oc,(), t€]0,TI.

Therefore, for t > 0 we compute
loC ) = a1y < [loC 1) = 8C D1 gy + l0C 0 = D) 3.7)

where the first term on the right-hand side of Eq (3.7) evaluates the distance between solutions to
IBVPs with the same flux function, but different initial and boundary data. Then, we can apply
Proposition 3.7 of [21] to get

oG, ) = ¢, 0|1y < lleo = ol + Lllloa = Talluiqom + llos = olliigonm) =: A

Now, the second term on the right-hand side of Eq (3.7) evaluates the distance between solutions to
IBVPs with different flux functions, but same initial and boundary data. Therefore, we apply
Theorem 2.6 of [21] to obtain

1 b
||¢(~,t)—a(.,t)||u(,)s fo f ||ax(r—h)(x,s,-)||m)dxds
. f ’
0

! !
+2f0||(r—h)(a,s, -)||m)ds+2fo||(r—h)(b,s, -)||Lw)ds,

3u(r = WC, 5| o gy MIn(TV@C . TV, 5D} s (3.8)

where

U = [— max{llz()lr=y, 1o (Sl b max{llw(s)llz=m), o= }] = [-1,1].
Next, we estimate all terms appearing in Eq (3.8). First of all, by Theorem 2.1,

TV(o( 1) < 7 O(TV(00: 1) + TV(0: (0,0) + |oro(a+) — 7a(0+))

m(er’ﬁ(z) -1 (39

+ TV(04: (0, 1) + |oo(b-) = 074(0+)]) + 70

with
T1(®) = L(Igllo + 11g'lle0),  T2(®) := (WSE1(®) + 2L)IIgllcos
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S1(®) = ool + Llloalliqom + losllogo.m)-
Thus, by Egs (3.6) and (3.9), we get

min{TV(o (-, 5)), TV(¢(:, 5))}
< O (TV(00; D) + TV(043 (0,0) + |oo(@+) = 7 (04)] + TV(03 0, 1)

+ |oo(b-) - a,,(0+)|) + min{ K1Y (TL(0)/T (D))" = 1)} = T4(@).

To handle the first term on the right-hand side of Eq (3.8), we use the estimate

b
0u(r — W)(x, 1, 1)| = |ug()d(V - U)| < ClulM f oG, 1) — o (y, )| dy,

which implies

b
0.0 = W)x, 8, )| gy < EM f o, 1) — oy, 1)| dy.

Next, in view of 0,(r — h)(x,t,u) = d,(ug(u))(V — U) we get

b
0 = 1.5 g < @] P [ [ot05) = 009y

b
< (lglle + g1l f lo(r.5) — oy, )| d.

The third integral on the right-hand side of Eq (3.8) is estimated by considering that

b
= Wa.t.0] = gV = ) < Clutpy [ o0 = 0] v
hence
b
| = )@, 5, )| oy 1) < CP f o0, 1) = o, 0| dy;
the fourth integral is treated similarly. Finally, combining Eq (3.10) to Eq (3.13) we get
t b
¢, 5 = o0, < BO) f f loG. 1) = (. )] dy s,
0 Ja
where we define

B() = CM + P3((llgllo + 118 le)Ta(2) + 4C).

Inserting A(¢) and Eq (3.14) into Eq (3.7) yields

loC, 5 = o, Dllay < AW + BG) fo oG ) = o, )14
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so by an application of Gronwall’s lemma we arrive at the estimate

”P(-, 1) —o(, t)”Ll(,) <A@ + fo A(s)B(s) exp(f B(7) dT) ds
< A1) + B(1) f A(5)e"P 9 ds < A((1 + B(p)re"™).
0

Consequently, we have proved the following lemma.

Lemma 3.1 (Lipschitz continuous dependence on initial and boundary data). If Assumptions Eq (2.1)
are in effect and p and o are two entropy solutions to Eq (2.1) with initial data p,, oy € BV(I;R") and
Pa> Pp, Ta, 0 € BV(10, T[; [0, 1]), then the estimate

B(T)T)

(3.16)

o, T) = (. 1|1, < (Iloo = ooll + Lllloa = Tallrqory + o = olliqor) )(1 + B(T)Te

holds for any T > 0, where B(T) is defined in Eq (3.15).
4. Existence of solutions

The proof of existence of solutions consists of several steps that are developed in this section.
We construct a sequence of approximate solutions to Eq (2.1) and derive the compactness estimates
necessary to prove its convergence by Helly’s theorem. We then show that the limit function is a weak
entropy solution to the IBVP (2.1).

4.1. Numerical scheme

Fix T > 0, we take a space step Ax = (b — a)/M with M € N and a time step Az that is subject
to a CFL condition specified later, and we set 4 = At/Ax. We denote the center of the cells by
xj:=a+(j—1/2)Axfor j=1,...,M, and xj.1)» = a+ jAx, j = 0,..., M are the cells interfaces.
Moreover, we set Ny = |[TAtf] and, forn = 0, ..., Ny let * = nAt be the time mesh. The initial datum
and the boundary data are approximated as

Xj+1/2
0

= — x)dx, j=1,...,M;
Pi = Ay - Po(x) J

n+1 I"+]

1 [ 1
= — 4 (1) dt, = — 1 dr =0,...,Np—1,
Pa AIL Pa(t) O Atﬁ pu(1) n T

furthermore, we set pfj := p, and p},,, := pp. Forn =0,..., Ny — 1, we set Wk = w((k = 1/2)Ax) for
k € Z and define
M Ay M
. - k—j n e k—j .
Wi = Ax;w s Viap = Wi kzz;w v(ipx) forj=0,...,M.

We define a piecewise constant approximate solution p(x, t) to Eq (2.1) as

,OA(-X, t) = p;l forz e [lﬂ, tn+1[’ X € [xj—l/27 -xj+1/2[a (41)
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wheren =0,...,Nr—1, j=1,..., M, through the numerical scheme

Py = 0] = AF S o0, Pe) = Flap@asp) = M, 42

where a nonlocal version of the monotone numerical flux proposed in [19] and also used in [6] is
employed, namely

Fiipu,w) = ugwViy, ). 4.3)

Next, we study the properties of the numerical scheme (4.2) and (4.3). Particularly, we are going to
prove that the sequence of approximate solutions p(x,?) satisfies the assumptions of Helly’s
compactness theorem.

4.2. Uniform bounds of numerical solutions

Lemma 4.1 (Maximum principle). If Assumptions 2.1 and the CFL condition
AVl (llglleo + 11g'lw) < 1 (4.4)
hold, then if po(x) € [0, 1] for x € I, the approximate solution satisfies
OSp;? <1 forallj=1,...,Mandn=1,...,Ny.

Proof. We assume that 0 < pi<1 for j=1,..., M. From Eq (4.2) we have

p;’“ —P] /l(Png(Pﬁl)Vfﬂ/z P] 1g(P Wi 1/2)
<pJ +/lpj lg(p % j-172 —P] + A8(0} )V]n 12 = G(p )-

In view of G'(p) =1+ Ag’ (p)V”
of p. Thus

12> under the CFL condition (4.4), G is a non-decreasing function

max G(p )=G() =1,

p1el0,1]
which implies that p;?“ < 1. Returning to Eq (4.2), we obtain that
PJH > = 5805 Vi p = (1 =WV e j=1....M.
Consequently, if Eq (4.4) is in effect, then p//*' > 0. o

Lemma 4.2 (L' bound). Let Assumptions 2.1 and the CFL condition (4.4) hold. If py € L¥(I;[0, 1])
and py, pp € L¥(R*; [0, 1]), then, for all t > 0, p, satisfies

loaC 01y < Woollray + Lloallsqoy + Mosllzion) =2 C1 (), 4.5)

where L is defined in Eq (2.6).
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Proof. Lemma 4.1 (forn = ., N) and the assumption g(1) = 0 imply

loaC. l"”)”L](,) = Ax(p + -+ + pyy) + A8 V12 = P8P Vi1 2)
= lloaC, )My + At(ozg(@DVT)n + P (8(1) = 80 Vi1 /2)
= lloaC, P)llzray + Atpag(ED Vi) + Atplyg (L) = PR Vi 20

where {7 € 1(p), 1). Now, using item (ii) of Assumptions 2.1 and the nonnegativity of pj and p, we
have

a1y < lloaC )|, + AV lglles + g DO} + 7)-

An iterative argument yields the desired estimate (4.5). O
Lemma 4.3 (BV estimate in space). Let Assumptions 2.1 hold, py € BV(I;R™"), p,,p» € BV(R*, [0, 1])

and let py be given by Eq (4.2). If the CFL condition (4.4) holds, then for alln = 1,..., Nt the discrete
space BV estimate

-p)| < (4.6)

=0
is satisfied, where we define the time-dependent bound

M n

Ci(") = ™" (Z 0% =051+ D lon =o'+ > Loy —p;"‘1|) KGN 1) @)

Jj=0 m=1 m=1

and K, and K, are defined as
K = L>IE'leo + lIgllee), 5 1= (WC1(1) + 2Ll (4.8)

Proof. Subtracting two versions of Eq (4.2) from each other, we obtain

n+1 n+1 n n
Pt =P = A; = A8,

J

where
ﬂr! 3:/0;!+1 /l(P]+18(PJ+2)V7+3/2 P 8(P]+1)Vj+1/2 P,g(P]+1)V7+3/2 +P, 18(19 N4 +1/2)
B _p]g(pj+l)vj+3/2 P80V +01180NDV 12 — 01180 Vi 2

A straightforward computation reveals that A’ can be written in the form

ﬂ; = (1 - ﬁ(8(ﬂ?+1)v;l+3/2 _Pjg (§]+1/2) +1/2)) J+1 _P?)
— 05118 (&3 Vi3 (02 = Ph) + 80DV (0] = P-1)s

where &" i € I (P150],2)- By the CFL condition (4.4), the first term in the right-hand side of Eq (4.9)
is positive, thus summing over j € {1,..., M — 1} yields

4.9)

M- M-

NE

J=1 J=1
— 038 Ehr12) Vi1 2l0n — Pl + 018 (&5, V3 hl05 = ol

PJ )% /2|P1 - /lg(p"M)V@H/zlp';l - P’111/1_1|

(4.10)
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On the other hand,

B? = —P?(Vﬂl/z - V?+3/2)8,(§?+1/2)(P?+1 _P’])
+ g(p?)(VfH/z - V/r‘l—l/z)(p; _p?_l) +p;¥g(p;)(v;l+3/2 PA% j+1/2 +V 1/2)
Taking absolute values and summing over j € {1,..., M

— 1} we have
Bn < /l Zp §]+1/2)|V]+3/2 p] ] 1/2 o p?—l|
j=1
+4 Zp]g(p Wi = 2Viap + Vi 1/2|
=-A Z (P’}g’(§7+1/2) - g(p'}+1))|V;7+3/2 -Vt _p’}
=1
M-1
+4 Zp;l Vian = 2Viap+V 1/2| + Ag(EDIV3), — Vipllel — ol
=1
- /lg(P’;w)W/r\lﬂl/z - V/r\l/1—1/2||Pr1t/1 — Pyl
By using the following estimations (which are proved in Appendix A)
Vi = Vian| S LAx, Vi =2V0 , + Vi 0| < APW, 4.11)
we obtain
M-1 M-1
AN B < -ALAX Y (18 €~ 8@l el ~ 0]
J=1 Jj=1
M-1
HANCW D pg(p) + A8@DIVE = Vil = )
=1

- /lg(Przi/I)WJ’ful/z - Vz@-uz”PnM = Pyl

M-1
< —-LAt Z (p?g'(§?+1/2) - g(pr?

=1

! lollziy + LAtgoe! — .

(4.12)

We now deal with the boundary terms, first for the left boundary term. By the definition of the scheme
4.2),

n+1 n+1

pl pa

= pi = o+ ol — ol = A(018(05) - PI2DIVA), + (018(0}) — PLg(EDIVA) + Pig @D (Vs = Vi)

= p} = pl+ Pl — P = Apg ) Vi(oh — P + (0 — PDEDVA + PlgOD(Viy = Vi)
=P, n+1 +(1 - /18(/0 1% /2)(101 o) — /lp'fg'(fg/z)(pg _P}f) - /1/02800’11)( ?/2 - V?/z)-
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Taking absolute values, invoking Eq (4.4) and using Eq (4.11) we obtain

e Pn+1| < /1/078,(5;/2)‘/%1/2 Pg

o <ot — p| + (1 = Ag(ePV3

1= Pyl — -p]

An analogous discussion of the other boundary term yields

Op

n+l n+1|

n— o+ (U + 20,8 € )V
+ A8 Vi1 20 — PnM—1| + Atply_18(0h) L.

Finally, collecting the estimates Eqs (4.10), (4.12), (4.13) and (4.14) we arrive at

(4.14)

M M M-1
Dbt = <l = o+ ) o =il = LAt ) (8 € o) - 806 ~#]
j=0 Jj=0 Jj=1

+ ArWllgllllolli oy + ArLegDlo] = o4l + o, — o3 + ALL(Og(0}) + Py-18(05))

M
<Joh o+ (1 + ALLAIS Nl + 1gll)) D 1or = £

=0
+ AWligllsllolliy + lo) — o' + 2A1 L8l

= s - i+ 1 +Aﬂ<1>2|p;f+1 = P+ Lol = i+ A,
Jj=0

with £, W, K| and K, defined as in Eqgs (2.10), (2.11), and (4.8). The previous estimate implies
Eqgs (4.6) and (4.7) by standard arguments.
O

Lemma 4.4 (BV estimate in space and time). Let po € BV(I;R") and p,, p, € BVR*;[0,1]). If
Assumptions 2.1 and the CFL condition (4.4) hold, then for alln = 0,. .., Ny, the estimate

M
ZAt|p]+l

n—1 1
m=0 j=0 m=0

n—

M+1
D Axpt = p| < Cule”) (4.15)
j=0

holds, where
Cu(t") = "C(1") + C(t") + Ax(TV(p,; [0, T]) + TV (pp; [0, TT)).

Proof. By Lemma 4.3 we have

—_

n—

M
DA, = < nAIC(nA). (4.16)

0 j=0

3
I

By the definition of numerical scheme (4.2), form € {0,...,n—1}and j € {1,..., M} we get

07 = 07| = |78 €Ly DV p s = P + A7V 1y = VI ) + A8V (07 = )|
< Al ol Wil = 07| + Allglleo LAXOT + Angnwuvnwlp,- —p7].
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Multiplying the last inequality by Ax and summing for j from 1 to M we get

M M
> Aot = o] < Al (g o + Niglhe) D o = 0] + Atliglleo Ll 11
j=1

=0

Lemmas 4.2 and 4.3 now imply that

M
m+1 m
D Aoy - o
=1

where we define

< AVlls(llg'lleo + llglleo)Cx(mAD) + Atllglleo LC1(mAL) = AtC(mAD),

Ci(1) = IVlzeqo, 1 (llg"lleo + 118ll)Cx(T) + lIgllea LC1 (7).

In particular,

M+1 M
Z Ax|p;f’+1 —pﬂ = Axlp™! - p"| + Ax|p2"+1 —pZ’| + Z Ax|p§"+1 - p’,”|
= = 4.17)
< Axlp! = p| + Ax|ppt! —pZ’| + AtC,(mAt),
which, summed over m = 0,...,n — 1, yields
n—-1 M+1 n—1
Z Z Ax|p;-”+l - p;"| < AxZ ([t — o + |,0,':’Jrl —p,’fl) + nAtC,(nAt). (4.18)
m=0 j=0 m=0
Summing Eqs (4.16) and (4.18) we get the desired estimate Eq (4.15). O

4.3. Convergence analysis

Lemmas 4.1 and 4.4 allow us to apply Helly’s compactness theorem that ensures the existence of
a subsequence of p,, still denoted by p,, that converges in L! to a function p € L*(I x [0, T]), for
all T > 0. Now we need to prove that this limit function is indeed an entropy weak solution to Eq
(2.1) in the sense of Definition 2.2. First we will show that the approximate solutions obtained by the
scheme (4.2) satisfies a discrete entropy inequality. To this end, for j = 1,...,. M, n =0,...,Ny — 1,
and k € R, we define

Hi(u,w,z) :=w— /1(F;-’+1/2(w, 7) — F;’_l/z(u, w)),
G, w) = Fi o kow v k) = Fl (k)
L2 o, w) o= F ok k) = Fly (e Ak, w A k),
where w A z := min{w, z}, w V z := max{w, z}, and F7+1/2(”’ w) is defined as in Eq (4.3). Observe that
due to the definition of the scheme,

n+1

_ ng n n o n
Pj _Hj j—l’pj’pj+l)’

and we also recall the equivalence (s —k)* =sVk—kand (s—k)" =k—-sAk.

Networks and Heterogeneous Media Volume 18, Issue 2, 664—-693.



678

Lemma 4.5 (Discrete entropy inequalities). If Assumptions 2.1 and the CFL condition (4.4) are in

effect, then the approximate solution p, in Eq (4.1) satisfies the discrete entropy inequalities

n n n,k n o n nk n n
(p - ) (pj_k)++/1(Gj+1/2(pjapj+1)_G‘ 1/2(pj—1’pj))
+4 sgn+(p;f+l — K f(Viyy ), = Viip) <0 and
(p;!H _k)_ - (pn k) +/1(LJ+1/2(p p]+1) Lnk]/z(p] 1,/3]))
+ Asgn” (o = k) fR)(VE, = Vi) <0,
forj=1,...,.M,n=0,...,Nr —1land k € R.
Proof. By the CFL condition (4.4), the map (u, w, ) — H;‘(u, w, z) satisfies
0. H(u,w,2) = AgW)V?_ ), 2 0,

OuH (u,w,2) = 1= Ag@)V7, ) —ug' WV 5) 2 0,
OHj(u,w,2) = —Awg'(2)V},,, 2 0.

Notice that
The monotonicity properties Eq (4.21) imply that

H()_, V ko V kv k) — H(k, k, k)
Hn ;l 1’pj’pj+1)vH;l(k’kak)_H;l(k k k)
= (HY(0"_ 1. 0% 0l ) = HiGke k) = (00 =k + AfR(VE 0 = VI D))

moreover, we also have

Hi(p} V k. p} V k. pi. V k) — Hj(k, k, k)
= (07 V k) = AF (0] V K plyy VR = Fiy p (0, VK, PV K)))
- (k—a(F '+1/2(k k) - F;l_l/z(k, k)))

(4.19)

(4.20)

(4.21)

= (0 vk) k= A(F7 0 (0] V kply V) = Fi h (0 V kp v k) = Flp(k k) + B (K k)

= (Pj - ’l(Gm/z(pj’p?H) Gnkl/z(p/ l’pf))
hence
(pr; - k)+ - /l(G’;fl/z(p?’p;;l) - G’;’—kl/Z(p;%—l’p-’;))
> (pTrl —k+ AfR)(VSyy ) - V;I—I/Z))Jr

= sgn" (o] =k + AfK)(Vis1o = Vi@ = k+ Af (Vo = Viy2))
> (0 = k) + Asgn* (01 = k) fFR)(VE, = Vi)

which proves Eq (4.19), while Eq (4.20) is proven in an entirely analogous way.

O
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Remark 4.1. Lemma 4.5 and its proof mimic standard arguments known for monotone schemes of local
conservation laws [13], although the scheme is not monotone in the proper sense since the argument

Eq (4.21) suppresses the presence of Iy o and Pl within Vi, and 'V Vi

Lemma 4.6. Let pg € BV(la, b[;R"Y), pu, p» € BV(R";R"), and Assumptions 2.1 and the CFL condition
(4.4) be in effect. Then the piecewise constant approximate solutions p in Eq (4.1) resulting from the

HW scheme (4.2) converge, as Ax — 0, towards an entropy weak solution of initial boundary value
problem (2.1).

Proof. Adding and subtracting /lG:ffl (07 p}) we may rewrite Eq (4.19) as

0= (o) = k)" = (0] = K)" + UG, (0 £}) = Gl (00 P))
+ UG 0], P)) = Gy 0510 P)) + Asgn™ (0 = K)F (Vi = Vi o).

Let ¢ € CH([0,T] x I;R*) for some T > 0. Multiplying the inequality above by Axe(x;, ") and
summing over j = 1,..., M and n € N yields

0 >T,+ 7T, +'73 + Ty,

where we define the terms

o M
Tii= 8 3 3 (0 =0 = 55 = et ),
n=0 j=1
o M
Ty:= A1) ) (Gr @ ph) = G (ol el 1,
n=0 j=1
© M
Iy := IZ Z(Gnkl/Z(pJ l’pj G?f]/z(P?’P?))QD(Xj, "),
n=0 j=1
co M
Ty:= Atz Z sgn*(p;!“ — k) (Vi1 = Vii pe(x), 1).
n=0 j=

Summing by parts, we obtain

o M o M
Tr=Ax ) (0 =) e, ) = Ax " > (ol = 1) ol 1)

n=1 j=1 n=0 j:l
M n -1
¢(17,t )"‘W(x"fl )
——AxZ(p? k) p(x;,0) — AxAtZZ(p k)
n=1 j=1

and by the dominated convergence theorem,

Ax—0*

I, — f(po(x) k)" p(x;,0)dx ~ f f(ﬂ(x 1) — k) dp(x, 1) dxdr.
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Again by the dominated convergence theorem,

%4
Ty = AtAx Z Z sgn”(0*! — k)f(k)Lx"l%(x,-, )

n=0 j=1
At f f sen* (p(x, 1) — k) f(kK)(@. V)@ (x, 1) dx dr.

Concerning T, and T3, we get

o M
In+T;5= tZ Z (G,+1/2(p p/+1) G7f1/2(p?»p?))¢(xj’ ")

n=0 j=1
oo M-1
non n,k n n n
AIZ Z (G]+1/2(pj’pj+1) = G501, i) (X1, 1) = Tog + T30 = T,

n=0 j=0
where we define
) M—l
. n,k n.k
Too = At ) 3 (G 00 ) = Gty (0 PP, 1)
n=0 1

=0 j=
n.k non nk n n n
- (Gj+1/2(pj’pj+1) - Gj+3/2(pj+l’pj+l))‘p(xj+1’t )),

Tso 1= At Y (Gt 2O £3) = Gty s Ot O @i, )
— (G} ) = G (ot P)e(x1, 7).

Now we define

+o0 M

— nk n (p(xﬁl,t ) — QO(X]', )
B _AXAIZ Z G]+1/2(’OJ’ J Ax

n=0 j=1

(4.22)
- LAt Z (0 = B (a, 1") + (0 = K p(b, 1),
n=0

Since

G;lfl/z(Pj’P]) = Fi 0 vV ko) Vv k)= Fly (kb
= (f(0] Vk) = fU)V3,, ), = sgn” (0] = k)(f(p}) = FU)VE, ) 00

it follows that

Ax—0*

+00 b
s [ [ sen' o = 0G0 - F0Vapnn dxar

—L(fo (pa(t) = b)"g(a, t)dt+£ (on(t) = k)" (b, t)dt).
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Let us rewrite S in Eq (4.22) as follows:

+oo M too
=—Ar Y Y G D@, 1) = 9(x 1) = LAL Y (0 = k) pla, 1) + (0 = k)" p(b, 1)
n=0 j=1 n=0

+oo ; M M-1
= —At Z(Z G O P, 1) = > G (ol P (1 t">)

n=0 \ j=1 Jj=0

— LAL Y (0 = K0 @@, 1) + (0 — k) @(b, 1) = S 20 + S 0,

n=0

where we define
oo M-1

- n,k
SZO = _AZZ Z GJ+1/2 j’p ]+3/2(p]+1’p]+1)} (xj+1’t )

n=0 j=1

+00
S0 = —AtZ(GM+1/2(pM,pM)¢(xM+1, ") = Grk (0. pDe(x1, 1)

- LAt Z((pz = b, ") + (pf = K (b, 1),
n=0

Adding and subtracting G ! /Z(p;?, p;?), we may rewrite Sy as

oo M-1

SZO - —AIZ Z(G}H/Z ?’pJH) GJ+1/2 ;’p;{))‘p(xjﬂ’tn)
n=0 j=1

-1

n,k nk n n n
B Atz (G +1/2(pJ’pJ+1) +3/2(Pj+1’Pj+1))SD(Xj+1,l‘ ).
n=0 1

S

~.
I

We evaluate now the distance between 75 and S 5:
co M-1

|T20—SQQ| < Atzz

n=0 j=1

") — (x;, 1),

n,k n o n n,k n o n
GJ+1/2(pj’pj+1) GJ+1/2 joPj

since

|F]+1/2(P Vk g VE) = Fiyp0) vk ) Vk)|
= |G} v k)80 V K) = (0} V VT, |

|(,0 Vg 17}y ) V k) = (0 V K)V +1/2|
< IMlusllg |0 v (051 v ) = (o) v )|

nk n o n nk n
Gl p@)Pi) = Gy (05, 07)

< IVllollg ooy, — 7] < el
in light of the uniform BV estimate Eq (4.6) we deduce that
o M-1
Ty - Szo| < LAxA1|0.¢lloo =P
n=0 j=1 (4.23)

< LAXT 10l oJnax TV(pa(-, 1) = O(Ax).
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Furthermore, we obtain

S30— T30 = _AtZ(GMH/Q(pX/I’de)QD(xMH’ ") - Gn/kg(pl’pl)go(xl, tn))
n=0

- LAtZ((pZ — k) pa, ") + (0 — k)" p(b, "))

B Atz (GM+1/ > L) ~ GM+1/2(Pr/f4,P'/i4))<P(XM, ")
(G1/2(pa’P1 Gg/];(PT’P?))QD(xl, f")),
which we can write as S39 — T30 = R; + R, + R; with

Ry = At ) (G (ot pe(x1, 1) = Lipl — k) gla, 1),

n=0

R, =—AtZ(L(pb K @b, 1) + Gty (Pl P (s, 1),

R3 = —At Z Gr/t;]lz_]/z(prlt/[’prltl)(‘p(xM+la tn) - ()D(XMa tn))

Observe that

0k, p(u,2) = 0 (”g(Z)V7+1/2) 8@Vip 20,
O-F'yp(u,2) = 0 (ug(2)V +1/2) =ug' (V5,1 <0,
meaning that the numerical flux is increasing with respect to the first variable and the decreasing with
respect to the second one. Consequently,
G2, 2) = Flly p(uV k2 vV k) = Fly (ks k)
2 Fiypk,zV k)= Foy o (k k) = (kg(z V k) — kg(k)V7,
= kg (1 )@V B) = V2 > —IMlllg ez = ) > ~L(z = k),
G"l\w,2) = Flly p(uV k2 v k) = Fly (k. k)
S Fp NV kok) = Foyypkok) = (u v k)R, —kg()Viyy )
= (Vv k) —k)gk)\V7, 1 n < IVllsligllo( — k)" < L(u - k)",

hence
R, = At Z G’f’/l;(pz,p'f)(go(xl, ") = ¢(a, ")) + At Z(G’f/];(pz,p’f) — Lo} — k) )p(a, 1)

< LTAAIO ¢l sup (o —k)* +LArZ(<p — k)" = (0 = ) p(a, ")

0<n<T/At =0
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< TAXI0. @l =llpall =0, = O(Ax),

Ry = =At Y (L(py = K" + Gyf,y o0y D)D) = At Y Gt (0l o) (0 ins, 1) = (b, 1)
n=0 n=0

< =LAt Y ((0h = 00" = (0 = )b, ") + LTAx|d,@lli=  sup (o} — k)"

=0 0<n<T /At
< LT AX||0xll = lopll = qo.) = O(Ax),

[ed) +00
Ry < At Gy O D) (@i, 1) = @O, )| < AtAX|Olis Y |Gl 2Pl £)]
n=0 n=0

Taking into account that

Gnﬁ}ﬁl/z(ﬂ?{/pﬂr&) = FnM+1/2(P’1i/1 Vk,py V k) - FnM+1/2(k’ k)
= (P V K)8Wh V )Viy o — k(KD y o
= ((ohy V K)(g(phy V k) = g(k) + (0 V k= K)g() Vi1
= (O VR (7}41 )0 V k= k) + (0 V k= K)g(k) Vi)
= (P VK& (}4110) + 8(R)) POy V k= K)Viyi1 20

we get

+0o0
R3 = AtAX||0,¢l| Z |((P’11u Vg (1012) + 8K) oy V k - k)Vzr\l4+1/2|

n=0
+00 ©

< ANl Y [(8' 0T 12) + 8RN Ply V k= k)i | < LAIAXIOpllisIllos Y [0 V k= k
n=0 n=0

= LAtAX]|0gll1]IV]]o Z(p’b — k)" < LTAXI0:¢llr= IVl sup 0"l
g 0<n<T/At

< LT Ax)|0.¢llr- IVl = O(Ax),
thanks to the maximum principle estimate. Hence, S 39 — 739 < O(Ax), so that we finally get
O0>T 1+ T, +T3+T4 =T +T4+T3 =S =T+ T4+ S — O(Ax).
This concludes the proof. O

Proof of Theorem 2.1. The existence of solutions to problem (2.1) follows from the results of
Section 4. The uniqueness is ensured by the Lipschitz continuous dependence of solutions to Eq (2.1)
on initial and boundary data, see Section 3. The estimates on the solution to Eq (2.1) are obtained
from the corresponding discrete estimates passing to the limit. In particular, the L' bound follows
from Eq (4.2), the maximum principle from Eq (4.1), the total variation bound from Eq (4.3) and the
Lipschitz continuity in time from Eq (4.17), since Ax = At/A and taking 4 = 1/L. O
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5. A second-order scheme

The scheme given by Eqs (4.2), (4.3) is only first-order accurate. We propose here a second-order
accuracy scheme, constructed using MUSCL-type variable extrapolation and Runge-Kutta temporal
differencing. To implement it, we approximate p(x, ") by a piecewise linear functions in each cell, i.e.
pj(x,1") = p; + }(x — x;), where the slopes o™ are calculated via the generalized minmod limiter, i.e.

n 1 : n v 1 n n n '
o= Ax mmmOd(ﬂ(Pj _pj—l)’ E(Pjn _pj—l)’ ﬂ(ij _Pj))s
where ¢ € [1,2] and

minmod(a, b, ¢) :=

sgn(a) min{lal, |bl, |c|} if sgn(c) = sgn(b) = sgn(a),
otherwise.

This extrapolation enables one to define left and right values at the cell interfaces respectively by

A A
—x,t") =,0”+o"?—)C

L ._ >
Pjjp = Pj(xj"' ) it

. Ax 0 aAx
Piop =P (xj - j’t") =PI

and

. 1 b
V7+1/2 = A—f v(p(y, D)w(y — Xjy172) dy
Wiii2 Ja
1 M

Xiet1/2
- [ 00 - v

Wj+1/2 k=1 Xk—1/2

Ax & (! A A
= X f v(ﬁk(%y+xk,t"))a)(7xy+(k—j+1/2)Ax) dy
2Wiip i I
Ax & & ( Ax Ax
= — PP (—ye + Xg, t"))w(—ye +(k—j+ 1/2)Ax)
Wi 15 ; 2 2
Ax & &

Ax Ax
= — PV Py + —yeU")w(—ye +k—-j+ 1/2)Ax)
2Wip 5 ; ( T 2

where Wj+1 = fa b w(y = Xj+1/2)dy is computed in exact form, and y, are the Gauss-Lobatto-Quadrature
points. The MUSCL version of the numerical flux reads

L R ¢
F;'l+1/2 = Pj+1/2g(Pj+1/2)V;l+1/2‘

To achieve formal second-order accuracy also in time, we use second-order Runge-Kutta (RK) time
stepping. More precisely, if we write our scheme with first-order Euler time differences and second-
order spatial differences formally as

pi =0 = ALi(p") = P = AF 0 = Fiy ), (5.1)
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then the RK version takes the two-step form

71 n 71 1 n ﬂ/
p; = PG = AL pfT = S5+ p)) = SLiP)). (5:2)

6. Numerical examples

In this section we solve Eq (2.1) by using the numerical scheme (4.2) on the x-interval I = [0, 1]
with suitable boundary conditions and ¢ € [0, T'], with T specified later. In the numerical examples we
consider the equation (2.1) with g(p) = 1 —p and v(p) = (1 —p)*, where we recall that f(p) = pg(p) and
Vix,t) = (w * v(p))(x, 1), where the kernel function w(x) is specified later in each case. For numerical
experiments the interval / is subdivided into M subintervals of length Ax = 1/M, and the time step is
computed taking account the CFL condition (4.4), and for each numerical experiment, we specify the
inital and boundary conditions.

6.1. Example 1

In this example we compare numerical approximations obtained by scheme (4.2) with those
generated by an adapted LxF-type scheme proposed by Goatin and Rossi in [17], starting from the
initial and boundary conditions

po(x) =02 forxel, p,(t)=0.1, p,(t)=0.5 forz>0.

Here we employ the symmetric kernel function

3 2
WG) = () = 5(1 - %}n-mm 6.1)

with n = 0.05. In Figure 1 we display the numerical approximations for M = 800 at simulated
times 7 = 2 and 7 = 8 and compare them with the reference solution which is computed with the LxF
scheme with M.; = 12800. We observe better accuracy for the proposed scheme. This property also
becomes apparent in Table 1 where we show the corresponding approximate L' errors for
discretizations M = 100 x 2!, [ = 0,1,...,4 and respective experimental orders of convergence
(E.O.C.). We observe that the approximate L' errors decrease as the grid is refined and E.O.C.
assumes values close to one, in agreement with the formal first order of acccuracy of the scheme.
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Table 1. Example 1: approximate L!-error e)(«) and E.O.C. for the LxF and HW numerical
fluxes with Ax = 1/M and symmetric kernel (6.1) with = 0.05 at simulated times 7 = 2
and T = 8.

LxF HW LxF HW

M eM(pA) E.O.C. eM(pA) E.O.C.

100 1.71e-01 — 1.02e-01 — 6.34e-01 — 5.28e-01 —
200  1.11e-01 0.63 542e-02  0.92 5.96e-01 0.89 5.80e-01 -0.14
400  4.64e-02 1.25 2.74e-02  0.98 4.89-01 0.28 3.69e-01 0.65
800  2.02e-02 1.20 1.39e-02  0.98 2.86e-01 0.78 1.19e-01 1.63
1600 9.58e-03 1.07 6.84e-03 1.03 1.11e-01  1.37 4.18e-02 1.51

(a) (b)
T=2 ) T—sg
0.4 —— Reference Solution p +Ee;e;erllce Solution
T ——LxF Sch E xF Scheme ;
e HW Scheme 0.8 t=tvsomne |/}
P ‘A
0.3r 0.6 % i
1
0.4 3
0.2
0.2
01 L 1 1 O ) ) )

0 02 04 06 0821 Yo 02 04 06 08z1

Figure 1. Example 1: numerical approximations obtained with HW and LxF numerical flux
with M = 800 and symmetric kernel w;(y) with n = 0.05 at simulated times (a) T = 2, (b)
T =8.

6.2. Example 2

We now compare the dynamics in the solution of model (2.1) by using various kernel functions. We
consider the symmetric kernel w; Eq (6.1) as in Example 1 along with a non-symmetric kernel

20 (5 1 10
wy(y) == — (_y + —) eXp (__y - )X[— 7 ,q]()’) (6.2)
n\n n

and the anisotropic discontinuous kernels
1 3 )
w3(y) := E)([o,n](y), wy(y) 1= ﬁ(ﬂ = X100 (6.3)
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where in all cases we choose 7 = 0.2. In Figure 2 we display the different kernel functions. The initial
and boundary conditions are given by

po(x)=0.1 forxel;, p,(t)=0.1, p,()=1 fort>0.

20

-0.2 -0.1 0 0.1 0.2

Figure 2. Example 2: kernel functions w(x) = w;(x), i = 1,...,4, given by Egs (6.1), (6.2)
and (6.3) withn = 0.2.

0.4+ 0.4

0.8} ( 1 08 |
0.6} } 106 JM/
| ] ]

|

0.2 _J ——7100]] 02 ——T=100
——T=10 ——T=10

W = w3 W = Wy
1 ‘ __,,./ 1F
p p _—
0.8¢ 0.8
0.6[ 0.6F
0.4F 1 04k
{
/ /
0.2+ 1 024 a
——T=100 / ——T=100

0 02 04 06 03z1 Y 02 04 06 08z1

Figure 3. Example 2: dynamics of the model (2.1) for various kernel functions (w;, w;, w3
or wy). Numerical solutions with M = 800 at simulated times 7 = 10 and 7" = 100.

In Figure 3 we display numerical approximations with Ax = 1/400 at times 7 = 10 and 7 = 100.
We can evidence that the dynamics of the solution is different for each kernel functions; by using
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w; we observe that numerical solution goes faster to a stationary state solution than for other kernel
functions, in which this stationary state is not observed for enough large simulation time. Regarding
the kernel w, we can see the formation of some oscillations. Now, for the kernel w; we can see the
formation of some layers on the numerical solution and that the period of these layers are proportional
to n. Finally, for w4 we can observe a numerical solution more smooth than in the previous solutions.

0.8F
0.6
0.4+

0.2r

0.8F
0.6
0.4r
0.2+

— S—

1t 1F
0.8F W "/D 0.8 L/l
0.6F v 1 06 1

0.4+ e« 0.4 e

—— W2 —— W2
0.2F w3 0.2

0 . | | —— local 0 . . | —— local

0 02 04 06 08 x 1 0 02 04 06 08 2 1

T
€
o

Figure 4. Example 3: numerical solutions of (2.1) for M = 400 at indicated simulated times
with (left) 7 = 0.1 and (right) = 0.025.

6.3. Example 3

The aim of the present example is to investigate the behavior of numerical solutions considering the
kernel functions w;, w,, and w; as well as for two different values of the parameter n, namely = 0.1
and n7 = 0.025. The initial and boundary conditions are

po(x) =05 forxel; pJ =0, py)=1 fort>0,
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which leaves zero flow conditions at boundary, 1.e., fi,» = fm+12 = 0. Numerical approximations are
computed at simulated times 7 = 2, T = 7 and T = 15 with discretization M = 400. In Figure 4,
first we observe that numerical solutions for the nonlocal problem (2.1) get closer to the solution of
the local problem as 7 takes a smaller value, but w; and w, make it slower due to the presence of the
oscillations that the numerical solutions present when we use these functions.

Table 2. Example 4: approximate L! errors e,(p) and E.O.C for the first and second order
version of the HW scheme with Ax = 1/M, at T = 0.1.

T =0.1
HW first-order version HW second-order version
M eM(pA) E.O.C. eM(pA) E.O.C.
100 8.71e-03 3.20e-04 -

200 4.60e-03 9.19e-01 8.63e-05 1.89
400 2.38e-03 9.54e-01 2.24e-05 1.95
800 1.21e-03 9.77e-01 5.53e-06 2.02

T=0.1
T

T T T
— Reference Solution
091 ——Second order HW
——HwW

I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 5. Example 4: comparison of the numerical solutions at 7 = 0.1 corresponding to
initial condition (6.4), computed with 1/Ax = 100 and kernel function w;.

6.4. Example 4: Error test for second order scheme

We consider the problem (2.1), with a smooth initial datum
po(x) = 0.9exp(=70(x — 0.4)*) for x € [0, 1], (6.4)

with boundary conditions p, = p, = 0, and with the symmetric kernel function w; with n = 0.2. In
Figure 5 we display the numerical approximations obtained with the second order scheme (5.1), (5.2),
computed with M = 100 at T = 0.1. The reference solution is computed with M = 6400. As expected,
the numerical solutions obtained with second order version of the HW scheme capture the reference
solution better than the first order one. In Table 2 we compute the L'—error and E.O.C. We recover
the correct order of accuracy for the second order HW scheme. Instead, we obtain just first order
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accuracy for HW scheme (4.2). We also can observe for scheme (4.2) that the L'—error for each level
of refinement is bigger than the error of the second order version scheme.

7. Conclusions

In this paper we extend to its nonlocal version a numerical scheme presented in [6, 19] where we
take advantages of the form in which the flow is written, pv(0)V(x, t), where v(p) is a positive and non-
increasing function, and V(x, ¢) is a positive function containing the nonlocal terms. We have proved
maximum principle, L!-bound, and BV estimations, also, a discrete entropy inequality in order to prove
the well-posedness of an 1-D and nonlocal IBVP. In future work, we aim to investigate how to extend
this numerical scheme in applications such as crowd dynamics models where the function V(x,?) is a
vector field containing the preference directions and nonlocal corrections terms.
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Appendix A: Technical estimates

In this appendix we show the computations for some estimates used in the proofs of above sections.
First, we prove estimates Eq (4.11) in the proof of Lemma 4.3. We denote y; := (k— 1/2)Ax, fork € Z
and then we compute

Ax i1 Ax .
Vi = Viapl = ZW (o) ~ Zw ()

Wiz =1 Wi oy
M
Ax . . 1
= Z](a)k_’_l - a)k_f)v(pZ) + Ax( )Z W
Witz Wj+3/2 Wi
Ax L
k=j=1 _  k=j k— kej _ i1
< @ = i) + (Zw el ) Dt )
Wiz & j+3/2Wj+1/2 —
Ax Vlloo ; Ax|v]l » i o
v Z| et i) By X(Zwkj)z(wk,_wk,l)|
Wizl 4 WiipWiip — s
M , M
Ax k=i , ,
< —IIVIIW(Z f w’(y)dy‘ + Z | = ! |) < LAx
Ko k=1 '~ Vk-j-1 k=1

with £ = 2K;1||v||oo||w'|| Li®)- Now following closely [17], we compute

n n n
Viap = 2Viap+ Vj—1/2|

M k—j—1 k—j k—j k—j+1
_ Ava(pZ)(w L w L w . w )
— Wiz Wi Wiap Wiap
Ax3 ((i k—j+1/2 i o Z . Z —j+1/2
e (e W' () dy) W'~ ( V(pw ,) f W) dy)‘
Wj+3/2W +1/2\\1 E—j-1)2 Ej12

2AxH| || - .
’ ‘WJ+3/2W,+1/2W, 12 ((Z Vo ]) Z W' (& jr1ya) = (Z:; v(pp)w (§k—j+1/2)) ; w! f)

AX?|l]eo ( u f”k””z ) g I-j
< |l————— w”(y)dy|Ax w™/
‘Wj+3/2Wj+1/2 Z - et

k=1 fk,l/z =1

sz Ve I—j+1/2
L | Ari ( ff W) dy'
E-j-12

WizpWiiip )

M
2A362”&) ||L1(1)||V||oo ( xz )
WizpWicipWisin

2A 2 ! 1 0 3
ELS e[|V ( Zw (& J+1/2))AXZ“)

WipWiipWisip =
M . M .
1 fkﬁrl/Z 1 E1-jr1)2
W 0| +| f o) dy‘
W]+3/2 ; Ek-j-1)2 VVJ'+3/2 ; E1-j-1)2
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2l Ny Axi W )|+ 2 o Axi W (€ ) )
—_— I—j+1/2 —_— k—j+1/2
WispWisip 4 i WisspWip & o
sz Ve M k—j+1/2 —j+1/2
< ( 2 [ o]+ oo
w Ek—j-1/2 Ei-j-172

2 2 2
+ 2K A)C ”(L) ”Ll(l)”vlloo + 2K A-x ”CL) ||L1(I)||v||°° S Ax (Wa

where we set W := 2K V]| llw” l|p1 ) + 4K |’ IILI(])IIVII(,o and & jr12 €1yi—j-1, Yi—;[. This concludes
the proof of estimates Eq (4.11) in the proof of Lemma 4.3. Next, we establish estimates Eq (3.1)
to Eq (3.4) in Section 3.1. To this end we calculate

0.V (x,1)]

w’ b 1 b
) _<W(§c§;2f Yl ey =0 dy = s | V(P(y’t))w'(y—x)dY‘S2K;1IIVI|m||w’|Iu<1),
93.V]

XX

|~ WPW () + 2W ()W () [ W' (x)
- W) f V0, D)l =0 dy+ ey
L W

b
" Wr f P00 = 0y + s [ (e = 00

3 -2 -1
w ||v||o<,||w ||L1(1)||w||L1(1) + 2Kw [V]]oollw” ||Ll(1)||0)||Ll(1) + 2Kw ”V”m”w,”Ll(I) + Kw ||V||oo||w”||Ll(1),
V(x, t) - U(x,1)|

b
f Wy, D) (= x) dy

Jis [ 00000~ oot - ] = [ohs [ s - oot - )

llewl o)1V’ [0
< % f oG, 1) — oy, Ol dy,
0.V(x,1) = 0,U(x, )|

’ b
:'_(I‘/}VV(S;;ZL (v(p(y, 1) — (o, 1)))w(y — x)dy—mf (V(p(y, 1)) = v(o(y, D)) (y — x)dy‘
LRy N -
_' W2 fa VI(E)(p — o)y, Hhw(y — x) dy W &) — o)y, Hw'(y x)dy‘

b
<M f lo(y, ) = o(y, Dl dy,

with M as in Eq (3.4).
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