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Abstract: In this paper, we study the well-established quasi-boundary value methods for regularizing
inverse state-dependent source problems, where the convergence analysis of three typical cases
is presented in the framework of filtering regularization method under suitable source conditions.
Interestingly, the quasi-boundary value methods can be interpreted as certain Lavrentiev-type
regularization, which was not known in literature. As another major contribution, efficient numerical
implementation based on matrix exponential in time is developed, which shows much improved
computational efficiency than MATLAB’s backslash solver based on the all-at-once space-time
discretization scheme. Numerical examples are reported to illustrate the promising computational
performance of our proposed algorithms based on matrix exponential techniques.
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1. Introduction

Inverse source problems arise often in real-world applications, such as localizing unknown
groundwater contaminant sources, geophysical prospecting, crack identification and pollutant
detection. Let T > 0 and Ω ⊂ Rd(d = 1, 2, 3) be an open and bounded domain with a piecewise
smooth boundary ∂Ω. We consider the inverse source problem (ISP) [6, 10, 37] of reconstructing the
unknown space-dependent source term f ∈ L2(Ω) from the final condition g = u(·,T ) ∈ H1

0(Ω),
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according to a heat equation with homogeneous Dirichlet boundary conditions


ut − ∆u = f , in Ω × (0,T ),
u(·, t) = 0, on ∂Ω × (0,T ),
u(·, 0) = ϕ, in Ω,

u(·,T ) = g, in Ω,

(1.1)

where we assume zero initial condition ϕ ≡ 0 for simplicity. The general case with nonzero initial
condition can be treated similarly; see [20] for related discussion. In practice, the exact final condition
g is unknown and it is available as a noisy measurement gδ ∈ L2(Ω) satisfying ∥g− gδ∥2 ≤ δ for a noise
level δ > 0. This leads to an ill-posed inverse problem that requires regularization [12, 24, 26, 30].

There were many research works on the above inverse source problem with the source term f
being of various a priori form. For f that depends on the state function u, the problem was
investigated in [6, 15, 16]. For f that is a function of both time and space variables but is additive or
separable, we refer to [32, 39, 40, 53]. For f that depends on space or time variable only, many
regularization methods have been developed, including Fourier method [11], quasi-reversibility
method [10], quasi-boundary value method [49], simplified Tikhonov regularization method [48], the
boundary element method [14], the method of fundamental solutions [1, 46, 47] and the finite element
method [41]. Some iterative algorithms can be found in [22, 23, 51, 52]. Regularization methods
allowing efficient implementations are desirable in practical use. Besides the above mentioned ISPs
for PDEs based on ordinary integer-order derivatives, there are also several recent works on solving
ISPs in the framework of time-fractional PDEs, to name just a few [3, 8, 17, 21, 35, 42–44, 50].

Being quite different from the standard Tikhonov regularization, the quasi-boundary value
method [49] and its modified version [45] have been established as effective ways for regularizing
such inverse source problems. They are shown to achieve an optimal order convergence rate under
suitable regularity assumptions on the to-be-recovered source term. The main objective of this study
is to develop optimal error estimates that cover in a unified way several source reconstruction methods
in use, such as the simplified Tikhonov method, the quasi-boundary value method and its modified
version. Furthermore, having as motivation the fact that the large-scale sparse linear systems resulting
from the all-at-once space-time discretization of the obtained quasi-boundary value problem are
expensive to solve, our second objective aims to present computationally more efficient matrix
exponential based algorithms that eliminate the time variable and hence reduce the discretized system
sizes and overall CPU times. In our recent work [20], we have designed efficient
diagonalization-based parallel-in-time algorithms to solve such structured linear systems, which
achieve a dramatic speedup in CPU times when compared with MATLAB built-in backslash solver.

The remaining of this paper is organized as follows. In the next Section 2, we give the explicit
solutions in series form for the direct and inverse problems. The unified convergence analysis of the
general QBVM regularization model is presented in Section 3. Two different implementations based
on finite difference discretization are described in Section 4, where the proposed matrix exponential
method was not studied in the literature of inverse problems. Several 1D and 2D numerical examples
are reported in Section 5 to compare the discussed algorithms. Finally, Section 6 concludes the paper
with some ideas for future work.
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2. Explicit solution in series form

In this section, we present the explicit solutions in series form corresponding to the direct and
inverse problems, which lays the foundation for the subsequent convergence analysis.

2.1. Direct forward problem

The forward problem consists in the following initial boundary-value problem:
ut − ∆u = f , in Ω × (0,T ),
u(·, t) = 0, on ∂Ω × (0,T ),
u(·, 0) = 0, in Ω,

(2.1)

with f ∈ L2(Ω). We denote < ., . > and ∥ · ∥ as the standard inner product and respective norm in L2(Ω).
Let {λk}k∈N be the eigenvalues of negative Laplacian operator (−∆) with associated eigenfunctions
{wk}k∈N, wk ∈ H1

0(Ω), in the sense that

a(wk, v) = λk < wk, v >, ∀v ∈ H1
0(Ω), ∀k ∈ N; (2.2)

where a : H1
0(Ω) × H1

0(Ω) → R is given by a(u, η) =
∫
Ω
∇u · ∇ηdx. It is well-known that 0 < λ1 ≤

λ2 ≤ λ3 ≤ . . ., with λk → ∞ as k → ∞ and that the vector subspace generated by {wk}k∈N forms
an orthonormal basis for L2(Ω) [13, Theorem 1, pp. 335]. Classical Fourier method shows that the
solution of the forward problem (2.1) in series form is given by

u(x, t) =
∞∑

k=1

((1 − e−λkt)λ−1
k fk) wk(x), fk =< f ,wk >, (2.3)

which converges in L2(0,T ; H1
0(Ω)) ∩ C([0,T ]; L2(Ω)) and satisfies Eq (2.1) in the generalized sense

[31, pp. 128–131]. This explicit series solution Eq (2.3) will be used in convergence analysis.

2.2. Inverse Source Problem

Given g ∈ L2(Ω), we aim to recover the source term f ∈ L2(Ω) using as input data final time
measurements u(.,T ) satisfying

u(.,T ) = g on Ω. (2.4)

To this end, we introduce the linear operator B : L2(Ω)→ L2(Ω) defined by

B( f ) :=
∞∑

k=1

(1 − e−λkT )λ−1
k fk wk(x), fk =< f ,wk > . (2.5)

Clearly, from Eq (2.3) for the exact source function f we have B( f ) = u(.,T ). As u ∈ C([0,T ]; L2(Ω)),
B is well defined and it is a linear, compact, self-adjoint positive and one-to-one operator. Let
{σk,wk}

∞
k=1 be its singular system [26, Appendix A.6], where σk = (1 − e−λkT )λ−1

k > 0 is called singular
value. In particular, we have B(wk(x)) = σkwk(x) and B∗ = B.
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From here on we will focus on methods to recover f from the final time data given in Eq (2.4). We
start by noting from Eq (2.3) and the additional condition (2.4) that for g ∈ L2(Ω) we have

u(.,T ) =
∞∑

k=1

(
1 − e−λkT

λk
fk

)
wk(x) =

∞∑
k=1

gkwk(x) = g, (2.6)

where gk =< g,wk >. Thus, recovering the source f ∈ L2(Ω) from additional data g ∈ L2(Ω) amounts
to solve the abstract operator equation

B f = q := g, (2.7)

Obviously, if g ∈ R(B), Eq (2.7) is uniquely solvable as q ∈ R(B) and B is a positive operator.
Moreover, from Eq (2.6) we can easily obtain that the Fourier coefficient fk of the exact source
function f is given by

fk =
λk

1 − e−λkT gk

so that

f (x) =
∞∑

k=1

fkwk(x) =
∞∑

k=1

λk

1 − e−λkT gkwk(x)

i.e., a closed form to the source recovering problem can be expressed as

f (x) =
∞∑

k=1

σ−1
k gkwk(x) (2.8)

where gk =< g,wk > and σk = (1 − e−λkT )λ−1
k . It is worth noting that as B is a compact operator, its

inverse B−1 : R(B) → L2(Ω) is unbounded so that the linear equation (2.7) is ill-posed. This means
that small errors in the input data g can result in arbitrarily large perturbations in the computed solution
via the series solution Eq (2.8). Usually, the available final time measurement is contaminated with
noise. Then, even if the exact data g belongs to R(B), we cannot expect the same for the noisy data
gδ and, consequently, the series solution Eq (2.8) with noisy data gδ instead of g will be divergent or
inaccurate. In the following section, we will introduce effective regularization techniques to address
the ill-posedness in practical computation, and their implementation will be explained in Section 4.

3. Convergence analysis of QBVM by filtering regularization

In this section we will take advantage of the singular system of B to build stable approximate
solutions to the source recovery problem. As usual, let us assume that gδ ∈ L2(Ω) such that

∥g − gδ∥ ≤ δ, (3.1)

for some δ > 0. Hereafter ∥ · ∥ denotes the standard L2(Ω) norm. With assumed zero initial condition,
define the recovered source term corresponding to the given noisy final data gδ:

f δ =
∞∑

k=1

< gδ,wk >

σk
wk(x).
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This expansion not only illustrates the influence of the errors in g but also suggests trying to construct
stable approximations for the source function f by damping or filtering out the factors 1/σk. This can
be achieved by introducing approximate solutions given by

f δα (x) =
∞∑

k=1

𭟋α(σk)
< gδ,wk >

σk
wk(x), (3.2)

parameterized by a positive regularization parameter α, where 𭟋α : (0, ∥B∥]→ R is a bounded function
referred to as filter function or filter factor, such that

i) |𭟋α(σ)| ≤ 1 ∀ α > 0 and 0 < σ ≤ ∥B∥
ii) ∀ α > 0 there exists a positive constant c(α) such that 𭟋α(σ) ≤ c(α)σ,
iii) lim

α→0
𭟋α(σ) = 1, 0 < σ < ||B∥.

(3.3)

Here ∥B∥ denotes the operator norm of B with respect to L2(Ω) norm, that is ∥B∥ = sup∥v∥=1 ∥B(v)∥. It is
known from regularization theory [26] that if 𭟋α satisfies i)–iii) in Eq (3.3) and α = α(δ) is chosen by
a priori or a posteriori choice rules such that α→ 0 as δ→ 0, then f δα → f as δ→ 0.

For a general operator equation A f = gδ with a compact operator A, the Tikhonov regularization
method computes an approximate solution f δα by minimizing the regularized functional

Jα( f ) = ∥A f − gδ∥2 + α∥gδ∥2,

where α > 0 is the regularization parameter. A straightforward calculation shows that the unique
minimizer of Jα is given by

f δα = (A∗A + αI)−1A∗gδ, (3.4)

where A∗ denotes the adjoint of A. Let {σk, ξk, ηk}
∞
k=1 be the singular system [26] of A satisfying Aξk =

σkηk and A∗ηk = σkξk, one has

f δα =
∞∑

k=1

σk

σ2
k + α

< gδ, ξk > ηk. (3.5)

Alternatively, in the case of positive and self-adjoint operator B with B∗ = B, a simpler approximation
solution fα can be obtained by minimizing the regularized quadratic functional

Fα( f ) =< B f , f > −2 < gδ, f > +α∥ f ∥2, α > 0,

which is equivalent to solving a simpler regularized equation

(B + αI) f = gδ. (3.6)

With a positive self-adjoint B, the singular system of B reduces to {σk,wk}
∞
k=1 with wk = ξk = ηk, we

have

f δα = (B + αI)−1gδ =
∞∑

k=1

1
σk + α

< gδ,wk > wk. (3.7)

This method of constructing regularized solution as Eq (3.7) is referred to as Lavrentiev regularization
[28, 34, 38] or, simplified regularization. Notice that the Tikhonov regularization applied to Eq (2.7)
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with a self-adjoint operator B results in a more complicated approximation f δα = (B2+αI)−1Bgδ, which
explains why it is also referred to as simplified regularization.

Both Eqs (3.5) and (3.7) are particular cases of filtering regularization methods of the form

fα =
∞∑

k=1

𭟋α(σk)
< gδ,wk >

σk
wk, (3.8)

with filter factors 𭟋α(σk). For Tikhonov and Lavrentiev regularization the filter factors 𭟋Tik
α (σ) and

𭟋
Lav
α (σ) are given by

𭟋
Tik
α (σ) =

σ2

σ2 + α
, 𭟋

Lav
α (σ) =

σ

σ + α
,

respectively. It is seen that for singular values σk much smaller than
√
α the filter factors 𭟋Tik

α (σk) are
small, and thus the corresponding components in Eq (3.5) are damped or filtered. In this case, the filter
factors are approximately proportional to σ2

k and so we can use α to control the filtering of potentially
increasing ratios < gδ,wk >/σk. That is the amount of regularization or filtering depends on a judicious
choice of the regularization parameter α.

We consider the generalized QBVM approximations f δα,β to the source function f , within the
framework of filtering methods, with f δα,β being defined as the solution of the regularized model

ut − ∆u = f in Ω × (0,T ),
u(., t) = 0 on ∂Ω × (0,T ),
u(., 0) = 0 on Ω,
u(·,T ) + α f (·) − β∆ f (·) = gδ on Ω,

(3.9)

which reduces to the QBVM [49] if β = 0 and the MQBVM [45] if α = 0. Following the discussion
in [20], the solution of Eq (3.9) in series form can be expressed as

f δα,β(x) =
∞∑

k=1

λk

1 − e−λkT + αλk + βλ
2
k

< gδ,wk > wk(x) (3.10)

and that f δα,β → f as α, β→ 0, with the exact source function f being written as

f (x) =
∞∑

k=1

< g,wk >

σk
wk(x) =

∞∑
k=1

λk

1 − e−λkT < g,wk > wk(x), (3.11)

thus indicating that α and β play the role of regularization parameters. We will study the convergence
properties of f δα,β within the framework of filtering regularization methods. In particular, we will
investigate the error estimates ∥ f − fα,β∥ for suitable choices of the regularization parameters and
focus on efficient numerical implementation in the practical case of using discrete data. For clarity,
we split our discussion into 3 different cases: a) β = 0; b) α = 0; and c) β , 0, α , 0.

Case a) Since σk = (1 − e−λkT )/λk, when β = 0 we obtain the regularized approximation

f δα,0(x) =
∞∑

k=1

1
(1 − e−λkT )/λk + α

< gδ,wk > wk(x) =
∞∑

k=1

σk

σk + α

< gδ,wk >

σk
wk(x) = (B + αI)−1gδ,
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and the approximate solution is nothing but the solution obtained by the well-studied Lavrentiev
regularization method. This interesting equivalence between QBVM and Lavrentiev regularization
seems to be not known in literature. In particular, provided the regularization parameter is chosen
either a priori or a posteriori by proper choice rules, it is known that ∥ f − fα,0∥ → 0 as α → 0.
Moreover, the best convergence rate of fα,0 is O(δ1/2) [33] and this rate cannot improved for a compact
B with non-closed range.

Case b) With α = 0 in Eq (3.10), we can get the approximate solution

f δ0,β(x) =
∞∑

k=1

𭟋β(σk)
< gδ,wk >

σk
wk. (3.12)

with filter factors given by

𭟋β(σk) =
σ2

k

σ2
k + β(1 − e−λkT )

. (3.13)

Since
𭟋β(σk)
σk

=
σk

σ2
k + β(1 − e−λkT )

≤
1

2
√

1 − e−λ1T
√
β
, (3.14)

it is clear that conditions i)–iii) in Eq (3.3) hold with c(β) = C1/
√
β and C1 = 1/2

√
1 − e−λ1T .

Estimates on the error norm ∥eδβ∥ := ∥ f − f δ0,β∥ can be obtained based on both the filtering properties
of filter factors and a priori assumptions on the exact solution f . Recall that for a general operator
equations K f = gδ with a compact K having non-closed range R(K) and the Moore–Penrose inverse
K†, under the assumption that the exact solution satisfies the so-called source condition

f † = K†g ∈ R(K∗K)µ, µ > 0, (3.15)

it is known that [9, 12]
∥ f † − f δα∥ = O(δ

2µ
2µ+1 ), 0 < µ < µ0 − 1/2, (3.16)

where the index µ0 denotes the qualification of the regularization method [9, 12]. For our following
analysis let us introduce rβ(σk) := 1 − 𭟋β(σk), the regularized solution for exact data,

f0,β =

∞∑
k=1

𭟋β(σk)
< g,wk >

σk
wk,

and then decompose the error eδβ = f − f δ0,β as the sum of regularization and noise errors,

eδβ = ( f − f0,β) + ( f0,β − f δ0,β) = eβ,r + eβ,n,

where

eβ,r = f − f0,β =

∞∑
k=1

[1 − 𭟋β(σk)]
< g,wk >

σk
wk =

∞∑
k=1

rβ(σk)
< g,wk >

σk
wk, (3.17)

and

eβ,n = f0,β − f δ0,β =
∞∑

k=1

𭟋β(σk)
< g − gδ,wk >

σk
wk. (3.18)
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In our context, the above source condition reads f ∈ R(B2µ) and is equivalent to

< g,wk >

σk
= σ

2µ
k < z,wk > ∀k, (3.19)

with some z ∈ L2(Ω) such that B2µz = f . Then the regularization error norm satisfies

∥eβ,r∥2 =
∞∑

k=1

(rβ(σk))2σ
4µ
k | < z,wk > |

2. (3.20)

But since
rβ(σk) = 1 − 𭟋β(σk) ≤ 1 − 𭟋Tik

β (σk) =
β

σ2
k + β

,

and hence

rβ(σk)σ
2µ
k ≤

σ
2µ
k β

σ2
k + β

, (3.21)

to bound the regularization error norm we have to bound the function

hµ(σ) = σ2µβ/(σ2 + β), 0 ≤ σ ≤ σ1. (3.22)

It is easy to see that this function attains its maximum at σ =
√
µβ/(1 − µ) for 0 < µ < 1 and therefore

we have
hµ(σ) ≤ Cβµ

with C = µµ(1 − µ)1−µ. For µ ≥ 1, hµ(σ) is strictly increasing and attains its maximum at σ = σ1. Thus
for µ ≥ 1, hµ(σ) ≤ σ(2µ−2)

1 β. Consequently, for proper C2 the regularization error norm can be bounded
as

∥eβ,r∥ ≤ C2β
µ∥z∥, 0 < µ ≤ 1. (3.23)

Further, for the noise error norm, since

∥eβ,n∥2 =
∞∑

k=1

[
𭟋β(σk)
σk

]2

| < g − gδ,wk > |
2,

using Eq (3.14) we obtain

∥eβ,n∥ ≤
C1
√
β
∥g − gδ∥. (3.24)

Now Eqs (3.23) and (3.24) together imply

∥eδβ∥ ≤ C2β
µ∥z∥ +

C1
√
β
δ,

and the a priori selection parameter rule β =
(
δ

∥z∥

) 2
2µ+1

delivers the estimate

∥ f − f δ0,β∥ = O
(
∥z∥

1
2µ+1 δ

2µ
2µ+1

)
, 0 < µ ≤ 1. (3.25)
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The error estimate we just derived is essentially the same estimate obtained by applying Tikhonov
regularization to an operator equation that involves a compact operator. The reason behind this is that
our estimate depends on Eq (3.14) and Eqs (3.21)–(3.24) which in turn depend heavily on the properties
of the Tikhonov filter. Based on this observation, an error estimate with the regularization parameter β
chosen by Morozov discrepancy principle can also be deduced. This essentially leads to an a posteriori
regularization parameter choice rule of choosing β such that

∥B f δ0,β − gδ∥ = ρδ (3.26)

for some given ρ > 1. Based on Eq (3.14) and Eqs (3.21)–(3.24) an estimate of the form Eq (3.25) can
be derived which holds for 0 < µ ≤ 1/2, see [12, Thm. 4.17] or [9, Appendix C] for an illustrative
analysis in finite dimension. Error estimates obtained by other means can also be found in [45].

Case c) If α , 0 and β , 0, the approximation can be described in terms of filter factors as

f δα,β =
∞∑

k=1

𭟋α,β(σk)
< gδ,wk >

σk
wk, (3.27)

with

𭟋α,β(σk) =
σ2

k

σ2
k + ασk + β(1 − e−λkT )

,

which describes a two-parameter regularization problem. This is a difficult problem that will not be
fully addressed in this work. Instead, we prefer to only discuss the case where α = α(β), e.g., α = 2

√
β.

For this, as before, we decompose

eα,β = f − f δα,β = eα,β,r + eα,β,n

and then estimate regularization and noise errors separately. For both choices of α we see that

𭟋α,β(σk)
σk

≤
C3
√
β
,

and therefore
∥eα,β,n∥ ≤

C3
√
β
∥g − gδ∥. (3.28)

From here on we will focus on the choice α = 2
√
β. Following in the same lines as in Case b let us

introduce r2
√
β,β(σk) = 1 − 𭟋2

√
β,β(σk) and then note that since in this case

𭟋2
√
β,β(σk) ≥

σ2
k

σ2
k + 2

√
βσk + β

,

and since

r2
√
β,β(σk)σ

2µ
k ≤

(
2
√
βσk + β

)
σ

2µ
k

σ2
k + 2

√
βσk + β

, (3.29)

we need to analyze the function

gµ(σ) =

(
2
√
βσ + β

)
σ2µ

σ2 + 2
√
βσ + β

, 0 < σ ≤ ∥B∥, µ > 0, β > 0.
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In fact, elementary calculations show that the derivative of this function is

g′µ(σ) =
2
√
βσ2µ−1

[
βµ + 3

√
βµσ + (2µ − 1)σ2

]
(
√
β + σ)3

, (3.30)

and that its critical points are

s1,2 =
−3
√
βµ ±

√
β
√
µ
√
µ + 4

2(2µ − 1)
=

(−
√

9µ ±
√
µ + 4)

√
β
√
µ

2(2µ − 1)
.

This shows that the only positive critical point occurs when 0 < µ < 1/2 and that it is

s∗ =
√
β
√
µ

√
µ + 4 +

√
9µ

2(1 − 2µ)
.

Since the quadratic function between brackets in Eq (3.30) opens downward and the derivative changes
sign from positive on [0, s∗] to negative for s > s∗, we conclude that gµ attains its maximum at s = s∗.
Further, similar to the analysis of hµ, gµ increases for µ ≥ 1/2 and gµ attains its largest values at s = σ1.
Hence, for proper C4 we have gµ(σ) ≤ C4β

µ, 0 < µ ≤ 1/2, 0 ≤ σ ≤ σ1. Using this in Eq (3.29) it is
readily seen that the regularization error norm can be bounded as

∥e2
√
β,β,r∥ ≤ C4β

µ∥z∥. (3.31)

Then, Eqs (3.28) and (3.31) imply that

∥ f − f δ2√β,β∥ ≤ C4∥z∥βµ +C3β
−1/2δ,

and an a priori choice rule of β as the one in Case b leads to

∥ f − f δ2√β,β∥ = O
(
∥z∥

1
2µ+1 δ

2µ
2µ+1

)
, 0 < µ ≤ 1/2. (3.32)

To summarize, we have obtained the following convergence results.

Theorem 3.1. Let f δα,β be the general QBVM approximation as given by Eq (3.9) and f be the exact
source function. We have the following estimates:

(a) With β = 0, if f ∈ R(B2µ) and choosing α =
(
δ

∥z∥

) 1
2µ+1

, there holds [33, Corollary 3.3]

∥ f δα,0 − f ∥ = O(δ
2µ

2µ+1 ), 0 < µ ≤ 1/2.

(b) With α = 0, f ∈ R(B2µ) and choosing β =
(
δ

∥z∥

) 2
2µ+1

, there holds

∥ f δ0,β − f ∥ = O(δ
2µ

2µ+1 ), 0 < µ ≤ 1.

(c) With α = 2
√
β > 0, if f ∈ R(B2µ) and choosing β =

(
δ

∥z∥

) 2
2µ+1

, there holds

∥ f δα,β − f ∥ = O(δ
2µ

2µ+1 ), 0 < µ ≤ 1/2.

Clearly, Case b gives a faster convergence rate than Cases a and c whenever µ > 1/2.
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4. Two different finite difference implementations

We will use a second-order center finite difference scheme in space and a first-order backward Euler
scheme in time for full discretization of the continuous QBVM model. More specifically, let h > 0 be
the uniform spatial step size and τ = T/n be the uniform time step size. Let ∆h ∈ R

m×m denotes the
discrete Laplacian matrix and Ih ∈ R

m×m be an identity matrix. Here we will describe the numerical
scheme with a general initial condition ϕ for the purpose of better practical use.

4.1. An all-at-once scheme for QBVM

Let ϕh and gδ,h denotes function values of ϕ and gδ over all spatial grids in lexicographical order,
respectively. Let fh and u j denotes the finite difference approximation of f and u(·, jτ) over all spatial
grids with the initial condition given by u0 = u(·, 0) = ϕh. The full discretization of Eq (3.9) reads{

(u j − u j−1)/τ − ∆hu j − fh = 0, j = 1, 2, · · · , n,
un + α fh − β∆h fh = gδ,h,

(4.1)

which can be reformulated into a large-scale nonsymmetric sparse linear system

S u = b, (4.2)

where

S =



αIh − β∆h 0 0 · · · 0 Ih

−Ih Ih/τ − ∆h 0 · · · 0 0
−Ih −Ih/τ Ih/τ − ∆h 0 · · · 0
...

...
. . .

. . .
. . . 0

−Ih 0 · · · −Ih/τ Ih/τ − ∆h 0
−Ih 0 · · · 0 −Ih/τ Ih/τ − ∆h


, u =



fh

u1

u2

...

un−1

un


, b =



gδ,h
ϕh/τ

0
...

0
0


.

For large m and n, the above all-at-once sparse linear system in Eq (4.2) is very costly to solve by
direct solvers, including MATLAB’s build-in highly optimized backslash (’\’) sparse direct solver. In
our recent work [20], a novel diagonalization-based parallel-in-time algorithm was proposed to speed
up the direct inversion of S , where the special choice of α and β are crucial to the stability of
diagonalization. Notice that in the original inverse source problem we are only interested in
recovering f from the final measurement u(·,T ) and the actual values of u j, j = 1, 2, . . . , n are
unnecessary to compute and store. This drawback of the all-at-once scheme for QBVM can be
addressed by the following matrix exponential-based implementation with a much better
computational efficiency, where the intermediate values u j, j = 1, 2, . . . , n are not computed and
stored anymore. It is also possible to incorporate other finite difference schemes in time.

4.2. Matrix exponential-based implementation for QBVM

Different from the above all-at-once full discretization in Eq (4.1), the semi-discretization in space
of Eq (3.9) together with the initial condition can be written as linear ODE system with constant
coefficient matrix {

v′(t) = −Ahv(t) + fh,

v(0) = ϕh,
(4.3)
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where Ah = −∆h denotes the negative discretized Laplacian after enforcing Dirichlet boundary
conditions, and since fh is independent of time t. With general initial condition ϕ, the explicit solution
of Eq (4.3) is

v(t) = e−Ahtϕh + A−1
h (Im − e−Aht) fh. (4.4)

With the noisy final measurement v(T ) = gδ,h, it follows from Eq (4.4) that (compare to Eq (2.7))

Bh fh = qh, with Bh = A−1
h (Im − e−AhT ), qh = gδ,h − e−AhTϕh (4.5)

which can be solved for fh. In a similar manner, the above matrix exponential form of QBVM
regularization model (3.9) leads to

v(T ) + α fh + βAh fh = e−AhTϕh + A−1
h (Im − e−AhT ) fh + α fh + βAh fh = gδ,h (4.6)

which gives a Lavrentiev-type regularized system (avoided computing the dense matrix A−1 )

Lα,β fh := ((Im − e−AhT ) + αAh + βA2
h) fh = Ah(gδ,h − e−AhTϕh) =: rh. (4.7)

Here the suitable choice of regularization parameters (α, β) depends on the noise level δ. Notice that
the matrix exponential e−AhT is in general very expensive (with O(m3) complexity) to compute exactly,
but the matrix exponential-vector product e−AhT fh with a sparse matrix Ah can be approximately
computed very efficiently [2]. This suggests us to solve the regularized linear system (4.7) by iterative
Krylov subspace methods (such as PCG) that only makes use of matrix-vector products. The above
matrix exponential formulation is computationally attractive (especially for 2D/3D problems), since it
eliminates the time variable as in the all-at-once scheme giving large-scale sparse linear systems for
QBVM. The same idea of matrix exponential operator can also be generalized to nonlinear cases with
exponential integrators [18, 19, 27, 29].

Alternatively, if the eigenpairs of Ah = −∆h are simple to construct or compute analytically, then
one can avoid the direct computation of the matrix exponential e−AhT . More specifically, using an
eigendecomposition of Ah = −∆h, i.e., Ah = PΛPT , with eigenvalues λ̂k, 0 < λ̂1 < λ̂2 < · · · < λ̂m, and
associated orthonormal eigenvectors pk from the k-th column of P, the solution fh of Eq (4.5) reads

fh =

m∑
k=1

λ̂k p⊺k gδ,h
1 − e−λ̂kT

pk −
λ̂k e−λ̂kT p⊺kϕh

1 − e−λ̂kT
pk, (4.8)

which matches with the truncated exact series solution given in Eq (2.8). Analogously, in the case of
Eq (4.7), using eigenpairs of Ah, the regularized solution reads

fh =

m∑
k=1

λ̂k p⊺k gδ,h
1 − e−λ̂kT + αλ̂k + βλ̂

2
k

pk −
λ̂k e−λ̂kT p⊺kϕh

1 − e−λ̂kT
pk, (4.9)

which matches with the truncated exact series solution given in Eq (3.10). Nevertheless, these explicit
solutions in Eq (4.9) are of more theoretical use, since the eigenpairs of Ah are in general difficult to
obtain, except for special cases with uniform grids and simple boundary conditions.

Compared with the all-at-once sparse linear system (4.2) for the above QBVM, the size of the
system matrix Lα,β is much smaller and hence computationally cheaper to solve. But it involves the
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matrix exponential e−AT that requires extra costs for its computation. For 1D examples, we explicitly
construct the matrix exponential e−AT by the MATLAB function expm, which is very efficient for
matrix A of a small size. Nevertheless, for 2D example it is much more efficient to use PCG as the
iterative system solver, where the matrix exponential times a vector is approximated by the MATLAB
function expmv [2] The MATLAB codes for implementing the above methods are available online at
the GitHub link: https://github.com/junliu2050/MatExpQBVM.

5. Numerical examples

In this section, we present some numerical examples to illustrate the computational efficiency of our
proposed methods. All simulations are implemented in serial with MATLAB on a Dell Precision 5820
Workstation with Intel(R) Core(TM) i9-10900X CPU@3.70GHz CPU and 64GB RAM, where CPU
times (in seconds) are estimated by the timing functions tic/toc. For solving the sparse linear systems
from all-at-once scheme for QBVM, we use MATLAB’s backslash sparse direct solver, which runs
very fast for several thousands (but not millions) of unknowns. To avoid inverse crimes, given an exact
source f we solve the forward (direct) problem by the Crank-Nicolson (different from backward Euler)
time-stepping scheme in time to compute gh, and then generate the noisy final condition measurement
by adding random noise according to

gδ,h = gh × (1 + ϵ × rand(−1, 1)),

where ϵ > 0 controls the noise level and rand(−1, 1) denotes random noise uniformly distributed within
[−1, 1]. We then compute the estimated noise bound δ := ∥gδ,h − gh∥2,h in discrete L2 norm.

Since ∥z∥ and µ in Theorem 3.1 are usually unknown, we select more practical regularization
parameters as follows. For the first Case (a) with β = 0, inspired by the QBVM [49], the choice of the
regularization parameter α =

√
δ seems to work well. For the second Case b with α = 0, inspired by

the MQBVM [45], the choice of the regularization parameter β = δ seems to work well. For the third
Case c with α > 0 and β > 0, based on the above discussion we can choose α =

√
δ and

β = α2/4 = δ/4 to get a similar convergence rate as observed in Case a. Hence, the Case c is of less
practical use since it gives slower convergence rate than the Case b with similar computational costs.
Therefore, for brevity we choose to not compare the Case c in our examples. As studied in [43], it is
more practical to use an a posteriori regularization parameter choice rule Eq (3.26) that does not
require the knowledge of ∥z∥ and µ. However, it can be more expensive since it needs to iteratively
solve the nonlinear equation (3.26) for determining the regularization parameter, which also
necessitates further separate convergence analysis. In particular, the QBVM based on all-at-once
scheme seems to be too costly to solve multiple times.

For solving Lα,β fh = rh in matrix exponential-based implementation, we also use MATLAB’s
backslash sparse direct solver for 1D examples since e−AT can be explicitly computed very fast. For
2D examples, however, we will use preconditioned conjugate gradient (PCG) iterative solver (with a
stopping tolerance tol = 10−3) since it only requires to compute or approximate the matrix exponential
times a vector e−AT v without constructing e−AT , which can be performed very efficiently by using just
matrix-vector product with the sparse matrix A; see [2] for more technical details. To the best of our
knowledge, the application of existing fast matrix exponential based algorithms to our considered
inverse source problems was not discussed in the literature; see [25] for a fast structured
preconditioner when apply GMRES method to solve the system like Eq (4.2).
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Example 1. Choose Ω = (0, π),T = 1, ϕ(x) = 0, and a smooth source function

f (x) = x(π − x) sin(4x).

Figure 1 compares the reconstructed source function by 4 different regularization methods: QBVM
and MQBVM based on all-at-once scheme, MatExp-a (Case a) and MatExp-b (Case b) based on
matrix exponential implementation. Clearly, MatExp-a and MatExp-b shows very similar
approximation accuracy (measured as ‘error’ in L2 norm corresponding to the smallest δ) as QBVM
and MQBVM, respectively, but costs much less CPU times (shown in titles) due to the elimination of
time variable by using matrix exponential. For example, with h = π/1024, MQBVM costs about 20
seconds while MatExp-b takes only 0.05 second, giving about 40 times speedup. Notice that both
MQBVM and MatExp-b provide about two times more accurate reconstruction in this case with a
smooth source term, which matches with our convergence rates estimate in Theorem 3.1.
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Figure 1. Comparison of regularization methods with h = π/1024 (1D Example 1).

Example 2. Choose Ω = (0, π),T = 1, ϕ(x) = 0, and a non-smooth source function

f (x) =

2x, 0 ≤ x ≤ π/2,
2(π − x), π/2 ≤ x ≤ π,

Figure 2 compares the reconstructed source function by 4 different regularization methods: QBVM,
MQBVM, MatExp-a (Case a), and MatExp-b (Case b). Again, both MatExp-a and MatExp-b are
significantly faster than QBVM and MQBVM, while both MQBVM and MatExp-b deliver smoother
recovery with a better accuracy due to the introduced Laplacian regularization term β∆ f that penalizes
undesirable oscillation as observed in QBVM and MatExp-a.
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Figure 2. Comparison of regularization methods with with h = π/1024 (1D Example 2).

Example 3. Choose Ω = (0, π),T = 1, ϕ(x) = 0, and a discontinuous source function

f (x) =

1, π/3 ≤ x ≤ 2π/3,
0, else,

Figure 3 compares the reconstructed source function by 4 different regularization methods: QBVM,
MQBVM, MatExp-a (Case a), and MatExp-b (Case b). Similarly, both MatExp-a and MatExp-b are
significantly faster than QBVM and MQBVM, while both MQBVM and MatExp-b deliver smooth
source terms that largely fit the discontinuous pattern of f . Nevertheless, in this case both MQBVM
and MatExp-b achieve a comparable accuracy, which is expected from our convergence analysis since a
discontinuous f has a much lower regularity. To accurately capture the discontinuous jumps, it requires
different regularization techniques which will be studied in our future work.

Example 4. Choose Ω = (0, π)2,T = 1, ϕ(x, y) = 0, and a smooth source function

f (x, y) = x(π − x) sin(2x)y(π − y) cos(y).

Figure 4 compares the reconstructed source function by 4 different regularization methods: QBVM,
MQBVM, MatExp-a (Case a), and MatExp-b (Case b). Similarly, MatExp-a and MatExp-b shows a
comparable approximation accuracy as QBVM and MQBVM, respectively, but costs much less CPU
times (e.g., reduced by over 30 times from about 120 seconds by MQBVM to 4 seconds by MatExp-b).
The speedup of CPU times will become more significant for a fine mesh.
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Figure 3. Comparison of regularization methods with h = π/1024 (1D Example 3).

Figure 4. Comparison of regularization methods with with h = π/64 (2D Example 4).
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6. Conclusion

The classical quasi-boundary value method (QBVM) and its variants are widely used for
regularizing inverse space-dependent source problems, which upon full space-time finite difference
discretization lead to large-scale ill-conditioned nonsymmetric sparse linear systems that are costly to
solve. In this paper we first investigate the convergence rates of the general QBVM regularization
model and then propose to integrate matrix exponential algorithms to eliminate the time variable so
that the corresponding discretized linear systems are of smaller sizes and hence cheaper to solve. Both
1D and 2D examples show our proposed matrix exponential based algorithms can achieve a
comparable accuracy with significantly faster CPU times. Compared with our recent work [20]
utilizing parallel-in-time algorithms, our proposed matrix exponential based methods also have the
advantage of using less memory storage.

The QBVM regularization approaches can not accurately capture the corners or jumps in less regular
source term, which requires advanced regularization techniques, such as the widely used nonlinear
total variation-based regularization [7, 36]. The above used choice of α =

√
δ or β = δ depends on

the noise level δ, which may not be available in practice. Hence, it is interesting to generalize the
improved maximum product criterion (IMPC) techniques [4, 5] to estimate the effective regularization
parameters α and β without the exact knowledge of noise level.
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