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Abstract: A singularly perturbed Volterra integro-differential problem is considered. The variable
two-step backward differentiation formula is used to approximate the first-order derivative term and the
trapezoidal formula is used to discretize the integral term. Then, the stability and convergence analysis
of the proposed numerical method are proved. It is shown that the proposed scheme is second-order
uniformly convergent with respect to perturbation parameter ¢ in the discrete maximum norm. Finally,
a numerical experiment verifies the theoretical results.
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1. Introduction

Volterra integro-differential equations (VIDEs) with a first-order derivative term arise from
population growth models, biology, medicine, physics, and so on [1-3]. When the first-order
derivative of such problems is multiplied by a perturbation parameter &, these problems are called
singularly perturbed Volterra integro-differential equations (SPVIDESs), which are given by

Lu = eu'(x) + a(x)u(x) + fx K(x, hu(t)dt = f(x), x € Q := (0, 1], (1
0 .

u0) =w,

where 0 < € < 1 is a perturbation parameter and functions a(x), f(x), K(x, t) are sufficiently smooth.
In additional, we assume that there exists a positive constant S such that a(x) > g > 0. Under these
conditions, Eq (1.1) has a unique solution [4]. Furthermore, the derivatives of u(x) have following
bounds (see [4, Lemma 1.1])

®(x)| < C(1 +*eP?), xeQ, k=0,1,2,3, (1.2)
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where C is a positive constant, which is independent of . Obviously, it can be seen from Eq (1.2)
that the exact solution u(x) of Eq (1.1) exists a exponential boundary layer at x = O as € — 0. Itis
well known that SPVIDEs are widely used to describe a nonlocal reaction-diffusion model in spatially
inhomogeneous media that takes into account feedback and nonlocal interactions [5].

Due to the presence of perturbation parameter &, some traditional finite difference and finite
element methods on a uniform mesh could not obtain reliable numerical results. Therefore, the
layer-adaptive grid (Bakhvalov and Shishkin meshes) and adaptive grid methods are widely used to
construct some parameter-uniform numerical methods for solving SPVIDEs, see [6-12] and
references therein. Among these existing methods, the accuracy of most of these methods is only
first-order. For this reason, many researchers studied some second-order accurate numerical methods
for Eq (1.1). For example, the authors in [13] used the Richardson extrapolation technique to improve
the e-uniform convergence of the adaptive grid method from first-order to second-order. Yapman [14]
designed a homogeneous (nonhybrid) type difference scheme on Shishkin-type mesh for Eq (1.1), and
confirmed that the numerical method was almost second-order convergent.

It is well known that the variable two-step backward differential formula (BDF2) technique has
widely used to approximate the time derivative with second-order accurate for linear parabolic
equations and differential-algebraic problems [15—-17]. In particular, in [17], the authors introduced
discrete orthogonal convolution kernels for the first time and utilized them to prove the stability and
convergent of the adaptive BDF2 time-stepping scheme in L norm. Recently, the authors [18] applied
the BDF2 technique on a Shishkin mesh to solve the problem in Eq (1.1) and proved that the proposed
method was almost second-order uniformly convergent. In addition, the result in [19] suggests that
the BDF2 all-at-once system utilizing the preconditioned Krylov subspace solvers can be a
competitive solution method for Riesz fractional diffusion equations.

Inspired by the BDF2 that we recently used in [18], where we designed a novel finite difference
scheme to prove e-uniform convergence for a Shishkin mesh. In this paper, we prove e-uniform
convergence of this finite difference scheme on a Bakhvalov-type (B-type) mesh. The advantage of
this paper is that the convergence rate of our numerical method do not contain In N-factors, where N
is the number of mesh steps.

The paper is organized as follows: The construction and characteristics of Bakhvalov-type mesh
is introduced in Section 2. This is followed by the stability analysis of the discretization scheme in
Section 3. Then the bound of truncation error and the parameter-uniform convergence of the numerical
method are proved in Section 4. In Section 5, the statement of the numerical experiment illustrates that
our theoretical findings are effective. Finally, some concluding discussions are presented in Section 6.

To simplify the notation we set g; = g(x;) for any function g and set K;; = K(x;, x;). The maximum
norm denoted by ||K]|| := ()1?3)232 |K(x,t)| and ||g|| := n;eebx |g(x)|. In addition, for any sequences {y;} if the

i i
index j > i, we assume the summation ), y; = 0and [ y; = 1.
k=j k=j

2. The Bakhvalov-type mesh

Let QV = {0 = xg < x; < ... < xy = 1} be a B-type mesh with the local mesh step size
hi = x; — x;i_1,i = 1,2,...,N. Then, for t;, = i/N, the B-type mesh points x; can be obtained by the
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following generating function [20,21]

i

B uep(t;), fori=0,1,...,J, 2.0
1-2(1=x,)(1—=i/N) fori=J+1,...,N, ’

where ¢(f) = —In[1 — 2(1 — &)t], J = N/2 and p is a positive mesh-parameter that satisfy ys > 2. For
the sake of simplicity, r; = h;/h;_1(i = 2,..., N) represents the i-th step-size ratios.
Next, the next two lemmas list some characteristics of the above B-type mesh.

Lemma 2.1. The step sizes of the B-type mesh defined by Eq (2.1) satisfy

hi <hiyy <CN',i=1,...,N—-1, (2.2)
hy < CeN~". (2.3)
hi<pe i=1,...,J-1, (2.4)
1<r<3,i=2,...,J-1, (2.5)

Proof. The proof of Eqs (2.2)—(2.4) can be found in [22, Lemma 1]. Here, we just need to prove
Eq (2.5). In fact, by using Egs (2.1) and (2.2), one has

L <r = o) —p(tii)  ¢(&) @'(1;)
Sr= = <
otio) —etia) @& ¢ ti2)
_1-2(1-e)(i-2)/N _ 1+ 4(1 — &)/N
- 1-2(1-9)i/N 1-2(1-¢)i/N
<1+ 4(1 — &)/N
1-2(1-&)(J-1)/N
4(1 —&)/N <3
e+2(1-g)/N

where &; € [t;i1, 4], i =2,--- ,J — 1, which completes the proof. O

Lemma 2.2. Let {xi}f\io be the B-type mesh generated by Eq (2.1). Then we have

f (1 +e—1e—%)dxs CN"'.i=1,--.N.

Xi-1
Proof. The proof can be found in [23,24]. O
3. Discretization scheme and stability analysis
Before constructing a second-order discretization scheme for Eq (1.1), we first give the definition of
two-step backward differential formula as follows: For a given function g, let P; ;g be the corresponding

Lagrange interpolating polynomial over points x;, X;_i, ..., Xi—,. Then the first-order derivative of this
polynomial at point x = x; can be obtained by

Dagi = (Piag) (x) = ) bl (g = gin) for i2 1, 3.
k=1
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where by := 1/hy, b)) := h_l(ﬁ';",), bl = h(ir) and b’ :=0for2 < j<i-1, i> 2. Therefore,
by using Eq (3.1) and the trapezoidal formula to appr0x1mate the first-order derivative and the integral

term, respectively, we obtain the following discretization scheme

N
LYY = eDou + ajut! +Z zkl“k1+Kl’<”k] fi (3.2)

u) = u,

where u) is the approximation solution of u(x) at point x = x;.

To facilitate the analysis of the stability and convergence of the discretization scheme in Eq (3.2),
we first define a discrete orthogonal convolution (DOC) kernels {95_ j}lj:l, which is given by (see [17,
Lemma 2.3])

o 33
l_'l blh/ k1—+[1 L+2r G-
Then by using the following discrete orthogonal identity
Ze;]bjk S for V 1 <k<i, (3.4)
where 6 is the Kronecker delta symbol, we obtain
Z 6. Dou; = Z (g, — Ug-1) Z O bl =u—uy, 1<i<N. (3.5)
Furthermore, the next lemma list a characteristics of DOC kernels:
Lemma 3.1. [17, Corollary 2.1] The DOC kernels Hf.'_j has following property
6;>0, 1<j<iand » 6 =h, i>1 (3.6)

J=1

Now, based on the above definition of DOC kernels in Eq (3.3) and the proof of Lemma 2 in [18],
we list the stability of the above discretization scheme in Eq (3.2).

Lemma 3.2. Under the condition that there exists a constant @ such that
,8+—2’ >a" >0, (3.7
the solution ufv of Eq (3.2) satisfies
5222%|M | < C(max || + |u |)
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Proof. Fori = 1,---, N, multiplying both sides of Eq (3.2) by the DOC kernels 9’ , and summing j
from 1 to i, we get

i i i J i
. . h ,
i N i N i k N N| _ i
sZQi_jDzuj +Zei_jajuj +Ze 125 ety + Kot} | = Ze,._jfj
j:l j:l jzl j:1

k=1

Then, combining with Eq (3.5), yields,

i-1
S h
(8+96a,+9’ ) ZG fj+8uf\11—20 a]u -6, 2kKkukN
| ) - (3.8)
i j h i—1 J h
_ZH ZE -1 ZG; jZE g |
j=1 k=1 j=1 k=1
Based on Eq (3.7), we have
‘ -  Kiih
C (e + hyul'| < ‘(s +6ha” ) ul ‘ < (s +6a; + 9;,’7) ull. (3.9)
where we have applied the fact that
‘ hi(1 + ;i .
e+ba’ =g+ %a* > &+ ha'/2 > min{l,a"/2} (g + hy) = C(e + hy).
Ti
Then, from Egs (3.8),(3.9), it is easy to obtain
i i-1 i—1
e+ hyul| < C| > oA+ eluly| +llall Y 0 ] + 1K1 > e [u|
! a = (3.10)

i J i-1 J
HIKI Y 0y D il + 1K1 Y 61y D | IJ-
j=1 k=1 j=1 k=1

Furthermore, we have

-1 3
e [+h29]|f, e+ — Z AT EDI ) (3.11)

j=1 j=1

where
A
I, = e . h
: (6+hi)jzz:‘ l—j; ¢
1 i—1 Jj
I = & .Y h
’ <s+hi>; ,; '

i-1

1 .
50 D el

7 =1
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Obviously, to derive the bound for |us |, we only need to estimate the bounds of /;, j = 1,2,3,

respectively. For Iy, it follows from Lemma 3.1 that

:hizhk |”2V‘1|Zgi‘f
th|”k | < th|”k -

b k=1

s+h

where we have interchanged the order of summation. Similar to Eq (3.12), we get

i—1 i—1

SZ |uk| and I3 <th|u£’|

=1 k=1

From Egs (3.11)—(3.13), we obtain

1 i i-1
|us| <¢ e+h; ZG;‘1|]CJ| +Z/l"
b=l k=0

where the sequences {1;} are defined by

hy, k=0,

A = I’lk+l’lk+1+i—_k, 1<k<i-2,
k £+

1+hk+hk+1+ lk, k=i-1.
e+ h;

Finally, by using the Gronwall inequality, see [25, Lemma 3.2], one has

C i . i-1
5 Y lilen| 2
i3

k=0

<

i
CmaX| i- i-1 Zet/

:_j:lh ZH - exXp Zlhkﬂ+21hk+l+1l

< Cmax | J|
1<j<i

<Cmax|f]

1<j<i

h + +1+ h
EXp | X; + X;—
By P ! e+ hy

1

i>1,

which completes the proof.

In order to derive convergence analysis below, we also give the bound of |us | fori=1,---

follows:

(3.12)

(3.13)

(3.14)

(3.15)

,J—1as
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Lemma 3.3. Fori=1,---,J — 1, we have
| < C (Jug| + 1)

Proof. Firstly, for i = 1, it follows from Eq (3.2) that

E thl,l E thl,O
(h—1+a]+ ) )I/tllvzfl-l'h—lugv— 3 6\]
Then, by using Eq (2.3), yields,
h K £ hK
|u |<(|f1|+‘ |u | =10 f)v|)/ : 1’1‘

SC[|f1|+N|u6V|]/|CN+a*| (3.16)

<C(AINT +|u)]).

In addition, setn; = ; llfrzr” +a;+-5= h’ by using the Eq (2.5), we have nj; > C (g/h; + a*). Furthermore,

similarly to Eq (3.11), one has

e r hK; L
i kAN k—1 lk
] = [+ 4 et = o 12—2 ! Z | / nd
1 k=1
£ e
<cfims 2l Sl s Ynbd+ S |uk~|]/|m|,
i i k=1 k=1
i i-1
< C(UAL+ [l |+ s + D [+ |u;j|]
k=1 k=1
i-1
= C|Ifl + Zak|u§§|],
k=0
where the sequences {A;} are defined by
his1, k=0,
/lk: I’lk+hk+1’ 1Sk§l—3,
1+hk+hk+1, k:i—2,i—1.
Using the Gronwall inequality, we get
i-1
|ull-V|SC|f,-|exp(Z/lk)§C|ﬁ|, i>2. (3.17)
k=0
The result of this lemma can be implied by Eqs (3.16),(3.17). O
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4. Convergence analysis

Lete :=u;—u,i=1,2,3,...,N, denote the error at point x = x; in the numerical solution. Then
we have

LYY =Ry; + Ry, 4.1)
where
Ry = eDzu,- - &u;, 4.2)
Ry = Z Zk |Kijortd | + Ky | Z f K (x;, Du(s)ds. (4.3)
=1 =1
Lemma 4.1. Under the B-type mesh defined in Eq (2.1), we obtain the following estimations
[Ri|<CN, i=1, (4.4)
[Ri| <CN?, i>2, (4.5)
and
|Ro| <N i> 1. (4.6)

Proof. We first consider the truncation error |R1,,»| when i = 1, by using Taylor’s expansion formula, Eq
(1.2), Lemma 2.1 and Lemma 2.2, we have

X1 X1
Ri| < = f tlu" (1)) dt < C f (1+&'e?C)dr < CN7. 4.7)
h Jo 0
For2 <i<J-1andi > J+ 2, the step-size ratios 1 < r; < 3, then for the reason of Eq (4.7), we
can obtain

|R 1+rl
1,0l —

f (t—xi1) u ”’(t)dt—Zh(1 ) f (t — x;i0)* u” (D)dt

<C f (t=xio) el (1) dt + f (t- xl_z)slu”'(t)ldt]
L/ Xi-1 Xi-2

<C|| G-xip(1+&2e?)dr+ f (t - x;0) (1 +87277) d;] 4.8)
: xi—;i ) . Xi-2 5

<C ( f (1 +.s-1e-ﬁf/<28>)dz) +( f (1 +g-1e-ﬂ’/<2€>)dz) ]
B Xi-1 Xi—2

< CN?,

where we have used fact that

f d(s)(s —c)ds <
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for any positive monotonically decreasing function ¢ on [c, d], see [26].

Furthermore, for i = J, J + 1, the truncation error R, ; can also be estimated in the following form:

_ 1+2}", 2 m _ _ 2
Ri| =& |2(1 ,)hf (t — xi)* W (Ddt 2h(1 ,)f (t — xi0)” W (Hdt

f " Q0 = xi) + b a0

B 2(1 +7)
X Xi-1
<C f (t—xi_1) (1 + s_ze_ﬁt/g) dt + f (t — Xi5) (1 + g-ze-ﬁ’/S) dt (4.9)
Xi—1 Xi-2

+ f ) hi (1 + g-ze-ﬂ’/f) dt]

Xi-1

<CN7?2+Ch;, f e2ePlegr,
Xi-1

Now, we need to estimate the second term on the right-hand side of Eq (4.9) to obtain a estimate of
|R1,i| fori =J, J+ 1. Firstly, fori = J + 1, one has

XJ+1
hy f e e Pedt < hyhy e 2e PV = CN?e#72 < CN72, (4.10)
Xy
Secondly, fori = J, if e < N7!, by using Eq (2.4) it is easy to get that

X
h,_lf s2ePleqy < Z Brfe - Z (e+21 - g)N—l)”ﬁ <CN2. 4.11)
Xj-1

On the other hand, if € > N~!, we can get that

XJ
hj- f 2ePedt < hy_yhye e P < CN 22 (8 +2(1 - g)N‘l)#ﬁ
Xi-1 4.12)

< CN7 %2 < CN72.

From Eqs (4.8)—(4.12), we get |R;;| < CN2for2 <i < N.

Different from BDF2, the discretization of the integral part in Eq (3.2) does not require two starting
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points, we can estimate R,; for 1 <i < N.

[Roif =

Xk _ X
[x" u f (t = xe1) [K ey Du()]” dt
Xk—1 hy X1

+ ka (t = 8) [K(x;, Hu(t)]” dt| ds

< CZ‘[ [f (t - Xg— 1)(1 + |M(I)| + |M (t)' + |u//(t)|) dt

f (t— ) (1 + u@®| + |u' @] + u”(@®)]) dt] ds

<CZ[ f (t — x5 1) l+e e+ & eﬁt/s)dtds
Xk

< _ -2 _—pt/e

_CI{I;]?.éLI(Z‘ xi) (1 +27% )dt;kalds

<CN7?,

which completes the proof.

Finally, we can get the main result of this paper as follows:

(4.13)

Theorem 4.1. Let u(x) be the solution of Eq (1.1) and uﬁv be the solution of Eq (3.2) on the mesh QV.

Then ,under the condition 3 + h% > a* > 0, the error satisfy

leN| < CN72, i> 1.

(4.14)

Proof. From Eq (3.16), we have |e’1V | < CN™! |R1’1 + R2,1| < CN72. In particular, Lemma 3.3 imply that

leY| < C|Ry; + Ro| < C|Ri| + C|Ryy| < CN P for2 <i<J -1

Next, for i > J, it follows from Eq (3.3) and Eq (3.15) that

|e§v| <

C v
e+ h; Z i) |R1’j " Rz’j|

i
< 5 e 2 e 3+t

CN_ l’li : 1%

<CN?+
- 8+hib(1)h1 ) 1+2}"k

i l J-1
< -2 -1 T < -2 N2
<CN2+CN ]—[—2 <CNZ+CN' (3

=2 “Tk
<CN2+CN'(V2)™N <CN?,

where Lemma 3.1 are used. This completes the proof.

(4.15)

(4.16)

O
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5. Numerical results and discussion

In this section, to confirm our theoretical results, we present numerical results for two test examples.
As the exact solution of this test problem is available, the computed errors and rates of convergence
are defined by

EN = gna3<v|ufv — u(x;)
<i<

N
o =tos ) 6.0
respectively, where u is the solution of the discretization scheme in Eq (3.2). Here, in all numerical
experiments below, we choose £ = 107%, k=1,...,7and N = 2™, m = 5,...,9. Meanwhile, to obtain
the Bakhvalov mesh QV, we choose i = 2 for Example 1 and u = % for Example 2. All experiments
were performed on a Windows 10(64 bit)PC-Intel(R) Core(TM) 17-7500U CPU 2.70GHz 8 GB of
RAM using MATLAB R2017a.
Example 1. The first example is taken from [14]:

eu'(x) + u(x) + fx xu(t)ydt = f(x), 0<x<1,
0

u(0) = 2,
where .
_ & —x/e
f(x) = —(1 pages + 7 +x+xs(1 —e )+xln(1 + X).

The exact solution is u(x) = 1/(1 + x) + e™¥/2.
Table 1.

The numerical results of Example 1 are listed in

Table 1. The maximum errors and convergence orders for Example 1.

Number of mesh-intervals, N

2° 20 27 28 2°

10! EYN 6.8315e-03 1.9417e-03 5.3305e-04 1.4033e-04 3.6211e-05
P 1.8148 1.8650 1.9254 1.9543

10-2 EN  7.8978e-03 2.2569e-03 6.2633e-04 1.6537e-04 4.2822¢-05
P 1.8071 1.8494 1.9212 1.9493

10-3 EN  8.0206e-03 2.2931e-03 6.3704e-04 1.6825e-04 4.3582¢-05
P 1.8064 1.8479 1.9208 1.9488

10-4 EN 8.0331e-03 2.2968e-03 6.3813e-04 1.6854e-04 4.3659¢-05
e 1.8063 1.8477 1.9207 1.9488

10-5 EN  8.0343e-03 2.2972e-03 6.3824e-04 1.6857e-04 4.3667¢-05
e 1.8063 1.8477 1.9207 1.9488

10-6 EN  8.0345e-03 2.2972e-03 6.3825e-04 1.6858e-04 4.3667¢-05
e 1.8063 1.8477 1.9207 1.9488

10-7 EN  8.0345e-03 2.2972e-03 6.3825e-04 1.6858e-04 4.3667¢e-05
e 1.8063 1.8477 1.9207 1.9488

Networks and Heterogeneous Media
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Example 2. We consider the following singularly perturbed Volterra integro-differential equation:

swuyﬂ3+éﬂmm+¥fsm0+xm0Mﬂ:40@x+§%ﬂ”+5f,O<x<l,
0

u(0) = 1.

Since the exact solution of this test problem is not available, we use the double-mesh principle [14] to

calculate the maximum point-wise errors as follows:

EY := max |u} — u}"|,
0<i<N

where u?" is the solution of the Eq (3.2) on the following mesh:

= = xi+xi-\V
QN = QNU{xi_l/zz i i l}

2
For different values of € and N, the numerical results of Example 2 are displayed in Table 2.

Table 2. The maximum errors and convergence orders for Example 2.

Number of mesh-intervals, N

2° 26 27 28 2°

10! EN  8.0584e-03 2.4171e-03 6.8617e-04 1.8417¢-04 4.8068¢-05
P 1.7372 1.8167 1.8975 1.9379

10-2 EN  9.1666e-03 2.7679e-03 7.9616e-04 2.1448e-04 5.6218e-05
p 1.7276 1.7977 1.8922 1.9317

10-3 EN 9.2972e-03 2.8091e-0  8.0908e-04 2.1804e-04 5.7175e-05
p 1.7267 1.7958 1.8917 1.9311

10-4 EY 9.3105e-03 2.8133e-03 8.1040e-04 2.1840e-04 5.7272e-05
P 1.7266 1.7956 1.8916 1.9311

10-5 EN 9.3118e-03 2.8138e-03 8.1053e-04 2.1844e-04 5.7282¢-05
p 1.7266 1.7956 1.8916 1.9311

10-6 EY 9.3119e-03 2.8138e-03 8.1054e-04 2.1844e-04 5.7283e-05
P 1.7266 1.7956 1.8916 1.9311

10-7 EN  9.3120e-03 2.8138e-03 8.1054e-04 2.1844e-04 5.7283¢-05
P 1.7266 1.7956 1.8916 1.9311

Tables 1-2 illustrate that the errors are robust with respect to &, and the convergence order is close
to 2. Meanwhile, Figures 1-2 display the log-log plot of these errors computed by our presented
numerical method. In summary, our numerical results confirm our theoretical results.
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X —<t—e=10"

N K e=10
£=10"
ON?)| 3

10 '
10' 102 10°

Figure 1. Loglog plot for order of convergence for Example 1.

T —<t—e=10"
\\\% —F—e=10"
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10° ~ \:;s ol 4
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\\\\\ \ \
104 . X
~ A
S ~&

Figure 2. Loglog plot for order of convergence for Example 2.

6. Conclusion

We have discussed the e-uniform convergence of the variable two-step backward differentiation
formula of a reduced linear singularly perturbed Volterra integro-differential equation on a Bakhvalov-
type mesh. We first proved the stability of our discretization scheme. Then, the proof of e-uniform
convergence can be given by the stability of the numerical method.
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