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Abstract: The time delay may induce oscillatory behaviour in multi-agent systems, which may
destroy the consensus of the system. Therefore, the critical delay that is the maximum value of the
delay to guarantee the consensus of the system, is an important performance index of multi-agent
systems. This paper studies the influence of the processing delay on the consensus for a class of multi-
agent system involving task strategies. The first-order system with a single delay and the second-
order system with two different delays are investigated respectively. A critical delay independent of
strategies and a critical region of the 2-D plane that depends on strategies is obtained for the first-order
and the second-order system respectively. Specifically, a geometric method was used for the case of
two different delays. Several numerical simulations are presented to explain the results.
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1. Introduction

With the development of artificial intelligence, multi-agent systems have attracted extensive
attention of researchers in computer science, physics, biology, social science and control engineering.
The design of multi-agent systems is greatly influenced by the collective behaviour of animals in
nature, such as ant colony gathering, birds flocking and fish swarming. Generally, a multi-agent
system consists of multiple independent autonomous or semi-autonomous agents interconnected
through a communication network, with research focuses including consensus [1], flocking [2],
swarming [3], collision avoiding [4, 5], formation control [6, 7] and event-triggered control [8, 9] etc.
Consensus describes the process of agents coordination which has important applications in opinion
dynamics and engineering control, and has been thoroughly analysed yielding a number of conditions
guaranteeing that the agents reach consensus in the past decade, see [10–14].

The early literature on consensus has mainly focused on the analysis of autonomous systems whose
final state after reaching consensus depends only on the initial configuration of the system. However,
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the application of autonomous system is limited because it is inconvenient and inflexible to use the
target state to design the initial configuration of the system when the system is required to reach a
specified state. One type of intervention, adding external forces to the system to reach the desired
target state, is applicable to a variety of real-world contexts, such as financial markets, public opinion
and a team of UAVs, and has been prevalent in multi-agent systems. Further, such interventions usually
only affect a subset of individuals in the system, resulting in the leader-follower structure of multi-agent
systems [15–17].

In a multi-agent system with leader-follower structure, the leaders refer to the part of agents who
master information about the target state (i.e., those affected by the intervention), and the rest of the
agents in the system is called followers. Leaders should not only carry out the information
communication among the agents in the system, but also track the target state, while followers only
are required to join in the information communication. In most previous researches, the information
communication and the target tracking were separated, and the strength of target tracking was
assumed to be finite based on the actual situation that the external force is limited by energy,
equipment and technology.

Different from the above studies, this paper focuses more on the agent performance than on the
external force. Considering the limited ability of agents, we assume that each agent has a task strategy
to properly allocate its limited energy for the information communication and the target tracking. The
detail of the first-order multi-agent system involving task strategies αi ∈ [0,m](i = 1, 2, · · · ,N), is as
follows:

ẋi(t) = f (t) + αi(x0(t) − xi(t)) + (m − αi)
1
N

N∑
j=1

(x j(t) − xi(t)), i = 1, 2, · · · ,N, (1.1)

where xi(t) is the position of the ith agent, x0(t) is the target state satisfying ẋ0(t) = f (t), t ≥ 0,
f (t) ∈ C([0,∞),R), m ∈ R+ represents the maximal strength of the information communication. For
the ith agent, the strength of the information communication is m − αi and the strength of the target
tracking is αi. If αi > 0, the ith agent is a leader, otherwise a follower. α =

∑
i αi is called the

total strength of the target tracking of the system. The concept of the above strategy was proposed
by Piccoli et al. [18] in 2016. They considered strategies {αi}

N
i=1 as controls and focused on finding

optimal control strategies {αi}
N
i=1 to minimize the cost 1

N

∑N
i=1 ∥xi(T )− x0(T )∥, where T > 0 was the final

time. The Eq (1.1) with the non-linear information communication was investigated in [19], and the
sufficient conditions were proposed to guarantee that the system achieves consensus. In addition to the
first-order system (1.1), this paper also focuses on the second-order multi-agent system involving task
strategies, written as

ẍi(t) = g(t) + αi
[
γ(v0(t) − ẋi(t)) + (1 − γ)(x0(t) − xi(t))

]
+ (m − αi)

 γN
N∑

j=1

(ẋ j(t) − ẋi(t)) +
1 − γ

N

N∑
j=1

(x j(t) − xi(t))

 , (1.2)

where γ ∈ [0, 1] is the weight coefficient of velocities information, which measures the proportion of
the velocities information in the control. Then the weight coefficient of positions information is 1 − γ.
x0(t) is the target state satisfying ẋ0(t) = v0(t), v̇0(t) = g(t), t ≥ 0, g(t) ∈ C([0,∞),R). Then, we present
the mathematical definition of the consensus of the system for Eqs (1.1) and (1.2).
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Definition 1.1. Suppose {xi(t)}Ni=1 is a solution of the Eq (1.1), x0(t) is the target state satisfying ẋ0(t) =
f (t), t ≥ 0, f (t) ∈ C([0,∞),R). The Eq (1.1) is said to achieve consensus and reach the target state if
and only if

lim
t→∞
|xi(t) − x0(t)| = 0, i = 1, 2, · · · ,N.

Suppose {xi(t)}Ni=1 is a solution of the Eq (1.2), x0(t) is the target state satisfying ẋ0(t) = v0(t), v̇0(t) =
g(t), t ≥ 0, g(t) ∈ C([0,∞),R). The Eq (1.2) is said to achieve consensus and reach the target state if
and only if

lim
t→∞
|xi(t) − x0(t)| = 0 and lim

t→∞
|ẋi(t) − v0(t)| = 0, i = 1, 2, · · · ,N.

The time delay is an important topic in the research of multi-agent systems and has been widely
studied. The causes of the time delay can be divided into two types: information transmission delay
and information processing delay. The transmission delay means that it takes time for agents to
receive information from others limited by the speed of communication, see [20–22]. The processing
delay, also known as the reaction delay, refers to the time required for devices to process information,
see [23–25]. The effect of time delay on consensus formation of multi-agent systems is an issue that
cannot be ignored. Olfsti-Saber and Murray [26] gave a sufficient condition of consensus for a
first-order system with time delay on balanced graphs and showed that there exists a trade-off between
the control gain and the critical delay. Yu et al. [27] obtained some necessary and sufficient conditions
for second-order consensus on directed graphs. Ma et al. studied a second-order consensus system
with unstable elements over undirected graphs and maximized the critical delay by optimizing
parameters [28]. A first-order consensus system with unstable elements over directed graphs was
investigated in [29] and maximal critical delay was achieved through solving a nonsmooth max-min
problem. For other relevant literature, see [30–32].

In this paper, we study the effect of the processing delay on the consensus of the first-order system
in Eq (1.1) and the second-order system in Eq (1.2), and analyse the relationship between the
processing delay and the strategies. According to the stability of linear systems in the theory of
functional differential equations, the system would achieve consensus by ensuring that roots of the
characteristic equation of the system have negative real parts. The specific content of the conclusion
of stability is written as:

Lemma 1.2. [33] For a linear functional equation u̇(t) = Au(t − r) + Bu(t − s), where u(t) ∈ RN ,
A, B ∈ RN×N and r, s ∈ R+. Its characteristic equation is h(λ) = Det

(
λI − Ae−λr − Be−λs

)
= 0. Define

a = sup {Reλ : h(λ) = 0}, if a < 0, the zero solution of the equation is globally asymptotically stable.

The rest of this paper is organized as follows. In Section 2, the Eq (1.1) with a single delay is
investigated. Using the continuous dependence of the equation on the processing delay, we obtain the
critical delay τ∗ that ensures that the Eq (1.1) achieves consensus, show that the critical delay τ∗ of
the Eq (1.1) is independent of the strategies αi. In Section 3, the Eq (1.2) with two different delays is
investigated. Inspired by [34–36] and using the properties of plane geometry, we identify the critical
region D in R2 that guarantees the system to achieve consensus, find that the shape of the critical region
D is affected by the strategies αi. In Section 4, several numerical simulations are presented to explain
our results. Finally, we give the conclusion and discussion in Section 5.
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2. The critical delay of the first-order multi-agent system

Adding the processing delay in the Eq (1.1) yields

ẋi(t) = f (t) + αi(x0(t − τ) − xi(t − τ)) + (m − αi)
1
N

N∑
j=1

(x j(t − τ) − xi(t − τ)). (2.1)

where τ ∈ R+ represents the time required for the system to process the information of positions.
Next we will transform the consensus problem of the Eq (2.1) into the stability problem of a linear
autonomous system with a single delay, which further becomes the problem of judging whether the
roots of the characteristic equation have negative real parts. Set yi(t) = xi(t) − x0(t), then the above
model reduces to

ẏi(t) = −αiyi(t − τ) + (m − αi)
1
N

N∑
j=1

(y j(t − τ) − yi(t − τ)).

Define
Y(t) =(y1(t), y2(t), · · ·, yN(t))T ∈ RN

and Γ =


m−α1

N
m−α1

N · · ·
m−α1

N
m−α2

N
m−α2

N · · ·
m−α2

N
...

...
. . .

...
m−αN

N
m−αN

N · · ·
m−αN

N

 ,
(2.2)

then rewrite the above equations in matrix form

Ẏ(t) = −mY(t − τ) + ΓY(t − τ).

Compute the eigenvalues of the matrix Γ

|µI − Γ|

=

∣∣∣∣∣∣∣∣∣∣∣∣
µ − m−α1

N −
m−α1

N · · · −
m−α1

N
−

m−α2
N µ − m−α2

N · · · −
m−α2

N
...

...
. . .

...

−
m−αN

N −
m−αN

N · · · µ − m−αN
N

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣
µ − (m − α1) −

m−α1
N · · · −

m−α1
N

µ − (m − α2) µ − m−α2
N · · · −

m−α2
N

...
...

. . .
...

µ − (m − αN) −
m−αN

N · · · µ − m−αN
N

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣
µ − (m − α1) −

µ

N · · · −
µ

N
µ − (m − α2) µ − µN · · · −

µ

N
...

...
. . .

...

µ − (m − αN) −
µ

N · · · µ − µN

∣∣∣∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣
µ − (m − α1) − µN · · · −

µ

N
α2 − α1 µ · · · 0
...

...
. . .

...

αN − α1 0 · · · µ

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣
µ − (m −

∑N
i=1
αi
N ) 0 · · · 0

α2 − α1 µ · · · 0
...

...
. . .

...

αN − α1 0 · · · µ

∣∣∣∣∣∣∣∣∣∣∣∣ = µ
N−1

[
µ −

(
m −
α

N

)]
= 0,
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where α =
∑N

i=1 αi. Note that rank(Γ) = 1, hence the matrix Γ is similarly diagonalized, i.e., there exists
a non-singular matrix P such that PΓP−1 = J, where J = diag

(
m − αN , 0, · · · , 0

)
. Let Z(t) = PY(t), then

the equation becomes
Ż(t) = −mZ(t − τ) + JZ(t − τ).

The characteristic equation of the above system is

h(λ) =
(
λ + me−λτ

)N−1
(
λ +
α

N
e−λτ

)
= 0. (2.3)

Hence, applying Lemma 1.2 we know that the Eq (2.1) achieves consensus if all roots of the Eq (2.3)
have negative real parts. Using the continuous dependence of the Eq (2.3) on the processing delay τ,
we obtain the following result.

Theorem 2.1. Assume α > 0. Let Λ = sup {Reλ : h(λ) = 0}, then there exists a critical delay

τ∗ =
π

2m

such that Λ < 0, ∀0 ≤ τ < τ∗.

Proof. Owing to m, αN , τ ∈ R, h(−iω) = h(iω), ∀ω ∈ R, which means that if λ = iω is a root of Eq (2.3),
then also λ = −iω is a root. Without loss of generality let h(iω) = 0, ω ∈ R+, then we obtain

iω + me−iωτ = 0 or iω +
α

N
e−iωτ = 0.

From iω + me−iωτ = 0 we have m cos(ωτ) = 0 and ω = m sin(ωτ). Adding the squares of the two
equations yields ω = m, then we have τk

m =
π

2m +
kπ
m , k ∈ Z. Similarly, from iω + αN e−iωτ = 0 we could

obtain τk
α =

πN
2α +

kπN
α

, k ∈ Z. Define

τ∗ = min
{
τk

m, τ
k
α, k = 0, 1, · · ·

}
=
π

2m
.

When τ = 0,

h(λ) = (λ + m)N−1
(
λ +
α

N

)
= 0.

By α > 0, Λ < 0 which indicates that all roots of the Eq (2.3) lie on the left half complex plane when
τ = 0. Since h(λ) is continuously dependent on τ, Λ is continuously dependent on τ. Therefore, as the
increase of τ from 0 to ∞, some roots of the Eq (2.3) touch the imaginary axis of the complex plane
for the first time when τ = τ∗. Then, we conclude that Λ < 0 if 0 ≤ τ < τ∗ and Λ = 0 if τ = τ∗. □

Remark 1. Theorem 2.1 shows that the critical delay of the Eq (2.1) has nothing to do with strategies
αi, but only with the maximal strength m.

Remark 2. IfΛ < 0 when τ = 0, then the existence of the critical delay τ∗ is equivalent to the existence
of some roots of the Eq (2.3) crossing the imaginary axis of the complex plane as the increase of τ from
0 to ∞. If the critical delay τ∗ exists, then it is the value of the delay when these roots first touch the
imaginary axis.
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3. The critical region of the second-order multi-agent system

Different from the Eq (1.1), the Eq (1.2) has to process not only the information of positions but
also the information of velocities, so there are two different processing delays in the system. Adding
the processing delay in the Eq (1.2) yields

ẍi(t) = g(t)+αi
[
γ(v0(t − τ1) − ẋi(t − τ1)) + (1 − γ)(x0(t − τ2) − xi(t − τ2))

]
+(m − αi)

 γN
N∑

j=1

(ẋ j(t − τ1) − ẋi(t − τ1))

+
1 − γ

N

N∑
j=1

(x j(t − τ2) − xi(t − τ2))

 ,
(3.1)

where τ1 and τ2 represent times required for the system to process the information of positions and
velocities, respectively. Similarly, we will transform the consensus problem of the Eq (3.1) into the
stability problem of a linear autonomous system with two different delay. Set yi(t) = xi(t) − x0(t), the
above model is simplified as

ÿi(t) = −αi
[
γẏi(t − τ1) + (1 − γ)yi(t − τ2)

]
+(m − αi)

 γN
N∑

j=1

(ẏ j(t − τ1) − ẏi(t − τ1))

+
1 − γ

N

N∑
j=1

(y j(t − τ2) − yi(t − τ2))

 ,
Define Y(t) and Γ same as Eq (2.2), then rewrite the equations in matrix form

Ÿ(t) = −mγẎ(t − τ1) + γΓẎ(t − τ1) − m(1 − γ)Y(t − τ2) + (1 − γ)ΓY(t − τ2).

Let Z(t) = PY(t), then the above equation becomes

Z̈(t) = −mγŻ(t − τ1) + γJŻ(t − τ1) − m(1 − γ)Z(t − τ2) + (1 − γ)JZ(t − τ2).

The characteristic equation of the above system is

h(λ) =
[
λ2 + γmλe−λτ1 + (1 − γ)me−λτ2

]N−1[
λ2 + γ

α

N
λe−λτ1 + (1 − γ)

α

N
e−λτ2

]
= 0.

(3.2)

Let Λ = sup {Reλ : h(λ) = 0}. When τ1 = τ2 = 0, we have

h(λ) =
[
λ2 + γmλ + (1 − γ)m

]N−1
[
λ2 + γ

α

N
λ + (1 − γ)

α

N

]
= 0.

If α > 0, it’s easy to verify that Λ < 0. Next, we firstly consider three simple cases: (1) τ1 > 0 and
τ2 = 0; (2) τ1 = 0 and τ2 > 0; (3) τ1 = τ2 > 0.
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Theorem 3.1. Assume α > 0, 0 < γ < 1. If one of the following three cases holds:

(1)
0 = τ2 < τ1 < τ

∗
1 =

π

2
(
γm
2 +

√
(1 − γ)m + γ

2m2

4

) ,
(2)

0 = τ1 < τ2 < τ
∗
2 = min

s∈{m, αN }

arctan

 γs√
−
γ2 s2

2 +

√
(1−γ)2 s2+

γ4 s4
4

√
−
γ2 s2

2 +

√
(1 − γ)2s2 +

γ4 s4

4

,

(3)

0 < τ1 = τ2 < τ
∗ =

arctan

 γ1−γ

√
γ2m2

2 +

√
(1 − γ)2m2 +

γ4m4

4

√
γ2m2

2 +

√
(1 − γ)2m2 +

γ4m4

4

.

Then Λ < 0.

Proof. Because the proofs of (1) and (2) are very similar to the proof of (3), we will just prove the case
τ1 = τ2 = τ > 0 here. Without loss of generality let h(iω) = 0, ω ∈ R+, then we have

(iω)2 + iγmωe−iωτ + (1 − γ)me−iωτ = 0 (3.3)

or
(iω)2 + iγ

α

N
ωe−iωτ + (1 − γ)

α

N
e−iωτ = 0. (3.4)

According to the Eq (3.3) we obtainω2 =γmω sin(ωτ) + (1 − γ)m cos(ωτ),
0 =γmω cos(ωτ) − (1 − γ)m sin(ωτ).

(3.5)

Adding the squares of the above two equations yields

ω4 = γ2m2ω2 + (1 − γ)2m2,

then we have

ω =

√
γ2m2

2
+

√
(1 − γ)2m2 +

γ4m4

4
.

On the other hand, the second equation of Eq (3.5) gives

τ =
arctan

(
γω

1−γ

)
ω

=

arctan

 γ1−γ

√
γ2m2

2 +

√
(1 − γ)2m2 +

γ4m4

4

√
γ2m2

2 +

√
(1 − γ)2m2 +

γ4m4

4

≜ τm.
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In the same way, according to the Eq (3.4) we could obtain

τ =

arctan

 γ1−γ

√
γ2α2

2N2 +

√
(1−γ)2α2

N2 +
γ4α4

4N4

√
γ2α2

2N2 +

√
(1−γ)2α2

N2 +
γ4α4

4N4

≜ τα.

The critical delay τ∗ = min {τm, τα}, so we need to determine the monotonicity of the function

J(s) =

arctan

 γ1−γ

√
γ2 s2

2 +

√
(1 − γ)2s2 +

γ4 s4

4

√
γ2 s2

2 +

√
(1 − γ)2s2 +

γ4 s4

4

.

Because

√
γ2 s2

2 +

√
(1 − γ)2s2 +

γ4 s4

4 is monotonically increasing with respect to s and arctan ξ
ξ

is
monotonically decreasing with respect to ξ, J(s) is monotonically decreasing with respect to s.
Hence, we conclude τ∗ = τm. □

Remark 3. For the case (2), we cannot determine the monotonicity of the function

J(s) =

arctan

 γs√
−
γ2 s2

2 +

√
(1−γ)2 s2+

γ4 s4
4

√
−
γ2 s2

2 +

√
(1 − γ)2s2 +

γ4 s4

4

with respect to s. Actually, the numerical curve of J(s) shows that J(s) is monotonically increasing
with respect to s. In addition, we assume 0 < γ < 1 in Theorem 3.1. By simple calculation we could
obtain that if γ = 1, the critical delay of τ1 is π

2m ; If γ = 0, the critical delay of τ2 is π
√

m .

In the following we consider the case τ1 , τ2. In this case, the method applied in Theorems 2.1 and
3.1 is no longer feasible because we cannot obtain an explicit expression of τ∗ by solving for ω. Now
we use a geometric method to analyse the Eq (3.2). From Eq (3.2) we have

λ2 + γmλe−λτ1 + (1 − γ)me−λτ2 = 0

or
λ2 + γ

α

N
λe−λτ1 + (1 − γ)

α

N
e−λτ2 = 0.

Since λ = 0 is not a root of the above equations, the deformations of the equations are

1 +
γm
λ

e−λτ1 +
(1 − γ)m
λ2 e−λτ2 = 0 (3.6)

and
1 +
γα

Nλ
e−λτ1 +

(1 − γ)α
Nλ2 e−λτ2 = 0. (3.7)
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Figure 1. 1, a1(λ)e−λτ1 and a2(λ)e−λτ2 form a triangle in the complex plane.

For the Eq (3.6), let a1(λ) = γm
λ

and a2(λ) = (1−γ)m
λ2 . Think of 1, a1(λ)e−λτ1 and a2(λ)e−λτ2 as three vectors

in the complex plane C, then λ is a root of the Eq (3.6) if and only if the three vectors are connected
head to tail to form a triangle in the complex plane (See Figure 1).

Therefore, we could use the triangle property to get the relationship between λ, τ1 and τ2, and try
to obtain the critical delay.

Theorem 3.2. Assume α > 0, 0 < γ < 1. Then there exists a connected region D ⊆ R+ × R+ such that
Λ < 0, ∀(τ1, τ2) ∈ D. In addition, the connected region D and its boundary ∂D satisfy

D1 ≜ D
⋂
{(τ1, τ2)|τ1 ∈ R+, τ2 = 0} =

[
0, τ∗1

)
× {0},

D2 ≜ D
⋂
{(τ1, τ2)|τ1 = 0, τ2 ∈ R+} = {0} ×

[
0, τ∗2

)
,

D1 ∪ D2 ∪ {(τ∗, τ∗)} ⊆ ∂D and ∂D \ (D1 ∪ D2) ⊆ Φ ∪ Ψ,

where

Φ =

 (τ1, τ2)
∈R+ × R+

∣∣∣∣∣∣τ1 =

3π
2 + (2u − 1)π ± θ1

ω
, τ2 =

π + (2v − 1)π ∓ θ2
ω

,

u = u±0 , u
±
0 + 1, · · · , v = v∓0 , v

∓
0 + 1, · · · , ω ∈ Ω

 ,
Ψ =

 (τ1, τ2)
∈R+ × R+

∣∣∣∣∣∣τ1 =

3π
2 + (2p − 1)π ± ϑ1

ω
, τ2 =

π + (2q − 1)π ∓ ϑ2

ω
,

p = p±0 , p
±
0 + 1, · · · , q = q∓0 , q

∓
0 + 1, · · · , ω ∈ Υ

 ,
τ∗1, τ∗2 and τ∗ are defined in Theorem 3.1, θ1, θ2, u±0 , v∓0 , Ω, ϑ1, ϑ2, p±0 , q∓0 and Υ are defined in the proof.

Proof. The proof is divided into three steps.
The first step: use the triangle inequality to obtain the range of ω such that h(iω) = 0. Without loss

of generality let λ = iω, ω ∈ R+, then from Eq (3.6) we have

1 + a1(iω)e−iωτ1 + a2(iω)e−iωτ2 = 0,
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where a1(iω) = −γm
ω

i and a2(iω) = − (1−γ)m
ω2 . According to the triangle inequality that the length of any

one side does not exceed the sum of the other two sides, we obtain

|a1(iω)| + |a2(iω)| ≥ 1, −1 ≤ |a1(iω)| − |a2(iω)| ≤ 1,

i.e.
ω2 − γmω − (1 − γ)m ≤ 0, ω2 − γmω + (1 − γ)m ≥ 0, ω2 + γmω − (1 − γ)m ≥ 0.

Denoting the range of ω by Ω and solving the inequalities yields

Ω =



−γm2 +
√
γ2m2

4
+ (1 − γ)m,

γm
2
+

√
γ2m2

4
+ (1 − γ)m

 , 4(1 − γ)
γ2 ≥ m,−γm2 +

√
γ2m2

4
+ (1 − γ)m,

γm
2
−

√
γ2m2

4
− (1 − γ)m

∪γm2 +
√
γ2m2

4
− (1 − γ)m,

γm
2
+

√
γ2m2

4
+ (1 − γ)m

 , 4(1 − γ)
γ2 < m.

Ω contains all the values of ω that make the roots of the Eq (3.6) lie on the imaginary axis of the
complex plane at iω.

The second step: use Ω to calculate all the values of (τ1, τ2) ∈ R+×R+ that make h(iω) = 0. Define
∡a1(iω) ∈ [0, 2π) is the angle between a1(iω) with the positive direction of the real axis, θ1 ∈ [0, π] is the
inner angle of the triangle formed by a1(iω)e−iωτ1 and 1. Similar definitions apply to ∡a2(iω) ∈ [0, 2π)
and θ2 ∈ [0, π]. Because a1(iω) = −γm

ω
i and a2(iω) = − (1−γ)m

ω2 , ∡a1(iω) = 3π
2 and ∡a2(iω) = π. By the

law of cosine we have

θ1 = arccos
(
1 + |a1(iω)|2 − |a2(iω)|2

2|a1(iω)|

)
= arccos

(
ω

2γm
+
γm
2ω
−

(1 − γ)2m
2γω3

)
,

θ2 = arccos
(
1 + |a2(iω)|2 − |a1(iω)|2

2|a2(iω)|

)
= arccos

(
ω2

2(1 − γ)m
+

(1 − γ)m
2ω2 −

γ2m
2(1 − γ)

)
.

Using properties of plane geometry we know that the angle between a1(iω)e−iωτ1 with the positive
direction of the real axis plus or minus θ1 is equal to π, where plus or minus depends on whether the
triangle is above or below the real axis. Similar results apply to a2(iω)e−iωτ2 and θ2. Then, we could
establish the relations between τ1 with ω and τ2 with ω respectively:

−ωτ1 + 2uπ + ∡a1(iω) ± θ1 = π, u ∈ Z,

−ωτ2 + 2vπ + ∡a2(iω) ∓ θ2 = π, v ∈ Z,

where −ωτ1 + 2uπ ∈ [0, 2π) is the angle between e−iωτ1 with the positive direction of the real axis,
−ωτ2 + 2vπ ∈ [0, 2π) is the angle between e−iωτ2 with the positive direction of the real axis. Define u±0
and v∓0 are the smallest positive integers to guarantee τ1 > 0 and τ2 > 0 respectively, then we obtain

τ1 =
∡a1(iω) + (2u − 1)π ± θ1

ω
=

3π
2 + (2u − 1)π ± θ1

ω
, u = u±0 , u

±
0 + 1, · · · ,
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τ2 =
∡a2(iω) + (2v − 1)π ∓ θ2

ω
=
π + (2v − 1)π ∓ θ2

ω
, v = v∓0 , v

∓
0 + 1, · · · .

Define

Φ =

 (τ1, τ2)
∈R+ × R+

∣∣∣∣∣∣τ1 =

3π
2 + (2u − 1)π ± θ1

ω
, τ2 =

π + (2v − 1)π ∓ θ2
ω

,

u = u±0 , u
±
0 + 1, · · · , v = v∓0 , v

∓
0 + 1, · · · , ω ∈ Ω

 ,
then Φ ⊆ R+ × R+ contains all the values of (τ1, τ2) ⊆ R+ × R+ that make the roots of the Eq (3.6) lie
on the imaginary axis.

Repeating the above steps for the Eq (3.7) yields that the roots of the Eq (3.7) lie on the imaginary
axis if and only if (τ1, τ2) ∈ Ψ, where

Ψ =

 (τ1, τ2)
∈R+ × R+

∣∣∣∣∣∣τ1 =

3π
2 + (2p − 1)π ± ϑ1

ω
, τ2 =

π + (2q − 1)π ∓ ϑ2

ω
,

p = p±0 , p
±
0 + 1, · · · , q = q∓0 , q

∓
0 + 1, · · · , ω ∈ Υ

 ,
ϑ1 = arccos

(
ωN
2γα
+
γα

2ωN
−

(1 − γ)2α

2γω3N

)
,

ϑ2 = arccos
(
ω2N

2(1 − γ)α
+

(1 − γ)α
2ω2N

−
γ2α

2(1 − γ)N

)
,

Υ =



− γα2N
+

√
γ2α2

4N2 +
(1 − γ)α

N
,
γα

2N
+

√
γ2α2

4N2 +
(1 − γ)α

N

 , 4(1 − γ)
γ2 ≥

α

N
,− γα2N

+

√
γ2α2

4N2 +
(1 − γ)α

N
,
γα

2N
−

√
γ2α2

4N2 −
(1 − γ)α

N


∪

 γα2N
+

√
γ2α2

4N2 −
(1 − γ)α

N
,
γα

2N
+

√
γ2α2

4N2 +
(1 − γ)α

N

 , 4(1 − γ)
γ2 <

α

N
.

Hence, we proved that some roots of the Eq (3.2) lie on the imaginary axis if and only if (τ1, τ2) ∈ Φ∪Ψ.
The third step: combine Theorem 3.1 and Φ ∪ Ψ to determine the connected region D. By the

results in [35, 37], Φ ∪ Ψ characterizes a series of continuous curves on R+ × R+ and divides R+ × R+
into a series of connected regions. Let D represent the connected region containing the origin (0, 0),
then Theorem 3.1 indicates that the connected region D and its boundary ∂D satisfy

D1 ≜ D
⋂
{(τ1, τ2)|τ1 ∈ R+, τ2 = 0} =

[
0, τ∗1

)
× {0},

D2 ≜ D
⋂
{(τ1, τ2)|τ1 = 0, τ2 ∈ R+} = {0} ×

[
0, τ∗2

)
,

D1 ∪ D2 ∪ {(τ∗, τ∗)} ⊆ ∂D and ∂D \ (D1 ∪ D2) ⊆ Φ ∪ Ψ.

Because Λ < 0 when (τ1, τ2) = (0, 0) ∈ D, Λ = 0 when (τ1, τ2) ∈ Φ ∪ Ψ and Λ is continuously
dependent on (τ1, τ2), we conclude that Λ < 0, ∀(τ1, τ2) ∈ D. □

The the connected region D in Theorem 3.2 satisfies D1∪D2∪{(τ∗, τ∗)} ⊆ ∂D and ∂D \ (D1∪D2) ⊆
Φ ∪ Ψ. Define the closure of D as D, then we have Λ < 0, ∀(τ1, τ2) ∈ D and Λ = 0, ∀(τ1, τ2) ∈ D \ D.
Hence, we call the connected region D the critical region. However, Φ ∪ Ψ contains so many curves
that we cannot imagine the approximate range of D. By further analysing Φ∪Ψ, we will show that the
critical region D is contained in a bounded region.
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Theorem 3.3. Assume D is the critical region in Theorem 3.2. There exists a bounded region D∗ ⊆
R+ × R+ satisfying ∂D∗ ⊆ D1 ∪ D2 ∪C1 ∪C2 and D∗ \ D∗ ⊆ C1 ∪C2 such that D ⊆ D∗, where

C1 =

{
(τ1, τ2) ∈ R+ × R+

∣∣∣∣∣∣τ1 =

π
2 − θ1

ω
, τ2 =

θ2
ω
, ω ∈ Ω

}
⊆ Φ,

C2 =

{
(τ1, τ2) ∈ R+ × R+

∣∣∣∣∣∣τ1 =

π
2 − ϑ1

ω
, τ2 =

ϑ2

ω
, ω ∈ Υ

}
⊆ Ψ.

D1, D2, θ1, θ2, Ω, ϑ1, ϑ2, and Υ are defined in Theorem 3.2.

Proof. Set

b1 ≜ a1(iω)e−iωτ1 = −i
γm
ω

e−iωτ1 and b2 ≜ a2(iω)e−iωτ2 = −
(1 − γ)m
ω2 e−iωτ2 .

If (τ1, τ2) = (0, 0), then ∡b1 =
3π
2 , ∡b2 = π and the positions of 1, b1 and b2 on the complex plane are

shown in Figure 2 Case 1. In this case, the Eq (3.6) do not have imaginary roots so that 1, b1 and b2 do
not form a triangle in the complex plane. From Theorem 3.2 we know that 1, b1 and b2 could form a
triangle for any (τ1, τ2) ∈ Φ ∪ Ψ. Select curves C1 and C2 from Φ ∪ Ψ, where

C1 =

{
(τ1, τ2) ∈ R+ × R+

∣∣∣∣∣∣τ1 =

π
2 − θ1

ω
, τ2 =

θ2
ω
, ω ∈ Ω

}
⊆ Φ,

C2 =

{
(τ1, τ2) ∈ R+ × R+

∣∣∣∣∣∣τ1 =

π
2 − ϑ1

ω
, τ2 =

ϑ2

ω
, ω ∈ Υ

}
⊆ Ψ.
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Figure 2. The positions of 1, a1(iω)e−iωτ1 and a2(iω)e−iωτ2 on the complex plane. When
(τ1, τ2) moves clockwise from (0, 0) along the curve ∂D∗, i.e., (0, 0) → (0, τ∗2) → (τ∗, τ∗) →
(τ∗1, 0) → (0, 0), the positions of 1, a1(iω)e−iωτ1 and a2(iω)e−iωτ2 change by Case 1→ Case 2
→ Case 3→ Case 4→ Case 1.
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For the curve C1, let τ1 = 0 yields θ1 = π2 , then applying the properties of right triangle we obtain
1 + |a1(iω)|2 = |a2(iω)|2 and tan(θ2) = |a1(iω)|, (See Figure 2 Case 2) i.e.,

1 +
γ2m2

ω2 =
(1 − γ)2m2

ω4 and tan(θ2) =
γm
ω
.

Solve the above equations yields

ω =

√
−
γ2m2

2
+

√
(1 − γ)2m2 +

γ4m4

4
∈ Ω, τ2 =

arctan
(
γm
ω

)
ω

≥ τ∗2.

Let τ2 = 0 yields θ2 = 0, which means that the triangle degenerates into a line segment (See Figure 2
Case 4), so we have 1 = |a1(iω)| + |a2(iω)| and θ1 = 0, and then

ω =
γm
2
+

√
γ2m2

4
+ (1 − γ)m ∈ Ω, τ1 =

π

2ω
= τ∗1.

Let τ1 = τ2 yields θ1 + θ2 = π2 , then we have 1 = |a1(iω)|2 + |a2(iω)|2 and tan(θ2) = |a1(iω)|
|a2(iω)| (See Figure 2

Case 3). By solving the above equation we obtain

ω =

√
γ2m2

2
+

√
(1 − γ)2m2 +

γ4m4

4
∈ Ω, τ1 = τ2 =

arctan
(
γω

1−γ

)
ω

= τ∗.

Define a bounded region E1 formed by the curve C1 with the positive half of the horizontal and vertical
axes, then the above statement indicates that D ⊆ E1. Similarly, For the curve C2, define a bounded
region E2 formed by the curve C2 with the positive half of the horizontal and vertical axes, then we
could verify that D ⊆ E2.

Let D∗ = (E1 ∩ E2) \ (C1 ∪ C2), then D ⊆ D∗ and D is a bounded region. In addition, D∗ satisfies
∂D∗ ⊆ D1 ∪ D2 ∪C1 ∪C2 and D∗ \ D∗ ⊆ C1 ∪C2. □

Remark 4. Theorem 3.3 indicates that (τ∗1, 0), (τ∗, τ∗) ∈ C1 and (0, τ∗2) ∈ C1∪C2. If curves in Φ\C1 do
not intersect the curve C1 and curves in Ψ \ C2 do not intersect the curve C2 (except at its endpoints),
then D = D∗. In addition, unlike the Eq (2.1), Theorem 3.3 shows that the critical region D of the
Eq (3.1) is related to both the total strength α and the maximal strength m.

4. Numerical Simulation

In this section, a series of simulation examples are presented to illustrate Theorems 2.1, 3.1 and 3.3.

4.1. The first-order multi-agent system

Set the target x0(t) = sin(t) + 5 and f (t) = cos(t). Let N = 10 and m = 2, the initial positions xi(0)
and strategies αi of the Eq (2.1) are listed in Table 1.

Table 1. The initial positions xi(0) and strategies αi of the system (2.1).

x1(0) = 8.1472 x2(0) = 9.0579 x3(0) = 1.2699 x4(0) = 9.1338 x5(0) = 6.3236
α1 = 1 α2 = 1 α3 = 0 α4 = 0 α5 = 0
x6(0) = 0.9754 x7(0) = 2.7850 x8(0) = 5.4688 x9(0) = 9.5751 x10(0) = 9.6489
α6 = 0 α7 = 0 α8 = 0 α9 = 0 α10 = 0
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According to Theorem 2.1, the critical delay τ∗ = π
2m =

π
4 . Take τ = 0, τ = π5 and τ = π4 respectively

to obtain simulations of the Eq (2.1) as shown in Figure 3.
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Figure 3. The figures from left to right are simulations of the system (2.1) in τ = 0, τ = π
5

and τ = π
4 respectively. In the figures, curves represent trajectories of agents xi(t)(1 ≤ i ≤

N) in the system (2.1), and the inverted triangle describes the trajectory of the target x0(t).
Oscillatory behaviour occurs in the system (2.1) due to the existence of delay τ and intensifies
with the increase of τ. When τ < τ∗ = π4 , the system (2.1) achieves consensus and matches
the dynamic behaviour of the target x0(t) = sin(t) + 5. When τ = τ∗, periodic oscillation
behaviour occurs in the system (2.1), and the system neither matches the dynamic behaviour
of the target x0(t) nor achieves consensus.

4.2. The second-order multi-agent system

Set the target x0(t) = 3 sin(t)+4 cos(t)+ t
2 , v0(t) = 3 cos(t)−4 sin(t)+ 1

2 and g(t) = −3 sin(t)−4 cos(t).
Let N = 10, m = 2 and γ = 0.5, the initial positions xi(0), velocities vi(t) and strategies αi of the
Eq (3.1) are listed in Table 2.

Table 2. The initial positions xi(0), velocities vi(t) and strategies αi of the system (3.1).

x1(0) = 7.5127 x2(0) = 2.5510 x3(0) = 5.0596 x4(0) = 6.9908 x5(0) = 8.9090
v1(0) = 2.7603 v2(0) = 6.7970 v3(0) = 6.5510 v4(0) = 1.6261 v5(0) = 1.1900
α1 = 1 α2 = 1 α3 = 0 α4 = 0 α5 = 0
x6(0) = 9.5929 x7(0) = 5.4722 x8(0) = 1.3862 x9(0) = 1.4929 x10(0) = 2.5751
v6(0) = 4.9836 v7(0) = 9.5976 v8(0) = 3.4039 v9(0) = 5.8527 v10(0) = 2.2381
α6 = 0 α7 = 0 α8 = 0 α9 = 0 α10 = 0

According to Theorem 3.1 we have τ∗1 =
π

1+
√

5
, τ∗2 = min {1.1506, 1.0166} = 1.0166, τ∗ = 0.7111.

Take τ1 = τ2 = 0, τ1 = τ2 = 0.5 and τ1 = τ2 = 0.7111 respectively to obtain simulations of the
Eq (3.1) as shown in Figure 4.

Fix m = 2 and α/N = 0.2, take γ = 0.2, γ = 0.7321 (i.e., 4(1−γ)
γ2 = m) and γ = 0.8 respectively to

obtain simulations of the Φ ∪ Ψ by Theorem 3.2, see Figure 5.
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Figure 4. The figures from left to right are simulations of xi(t)(0 ≤ i ≤ N) (bottom) and
vi(t)(0 ≤ i ≤ N) (top) for the system (3.1) in τ1 = τ2 = 0, τ1 = τ2 = 0.5 and τ1 = τ2 = 0.7111
respectively. When τ1 = τ2 < τ

∗ = 0.7111, the velocities vi(t)(1 ≤ i ≤ N) of the system (3.1)
achieve consensus and match the target velocity v0(t) = 3 cos(t) − 4 sin(t) + 1

2 . And at the
same time, the positions xi(t)(1 ≤ i ≤ N) of the system (3.1) achieve consensus and match
the target position x0(t) = 3 sin(t) + 4 cos(t) + t

2 . When τ1 = τ2 = τ
∗ = 0.7111, agents in

the system (3.1) move around the target, but the system (3.1) neither matches the dynamic
behaviour of the target and nor achieves consensus.

Figure 5. Fix m = 2 and α/N = 0.2. The figures from left to right are simulations of Φ ∪ Ψ
for the system (3.1) in γ = 0.2, γ = 0.7321 and γ = 0.8 respectively. D is the critical region
of the system (3.1), Denote the bounded region, containing the origin, formed by the curves
C1, C2 and the positive half of the horizontal and vertical axes by D∗. For the one on the
left, curves in Φ \ C1 do not intersect the curve C1 and curves in Ψ \ C2 do not intersect the
curve C2 (except at its endpoints), then D = D∗. For the middle one, even though curves in
Φ \ C1 intersect the curve C1, D = D∗. For the one on the right, D ⫋ D∗. In addition, when
4(1−γ)
γ2 ≤ m, the curve C1 is smooth because of the connectedness of the interval Ω. When

4(1−γ)
γ2 > m, the interval Ω consists of two disconnected closed intervals, so the curve C1 is

made up of two smooth curves, such as the figure on the right.
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Fix m = 2 and γ = 0.7321, take α/N = 0.2, α/N = 1 and α/N = 1.8 respectively to obtain
simulations of the Φ ∪ Ψ by Theorem 3.2, see Figure 6.

Figure 6. Fix m = 2 and γ = 0.7321. The figures from left to right are simulations of Φ ∪ Ψ
for the system (3.1) in α/N = 0.2, α/N = 1 and α/N = 1.8 respectively. The critical region
D of the system (3.1) changes as α changes. In particular, as α/N approaches m, curves Φ
gradually converges to curves Ψ.

5. Conclusion and Future Direction

In this paper, we analysed the influence of the processing delay on the consensus for the first-order
system in Eq (1.1) and the second-order system in Eq (1.2). For the first-order system in Eq (2.1),
by the continuous dependence of the equation on τ, we obtained the critical delay τ∗ that ensures the
Eq (2.1) to achieve consensus and showed that the critical delay τ∗ is independent of the strategies
αi. For the second-order system in Eq (3.1), from the properties of plane geometry, we identified the
critical region D in R2 that guarantees the Eq (3.1) to achieve consensus and found that the shape of
the critical region D is affected by the strategies αi.

The concept of strategies αi was firstly proposed by Piccoli et al. [18] to study the problem of
optimal strategy. Using Pontryagin’s minimum principle in optimal control theory, they found optimal
strategies {αi}

N
i=1 to minimize the cost 1

N

∑N
i=1 ∥xi(T ) − x0(T )∥, where T > 0 was the final time. More

importantly, they showed that optimal strategies are sparse. From the present work, we want to find
optimal strategies αi for the Eq (2.1) and analyse the influence of delays on the selection of optimal
strategies αi.
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11. X. Jin, S. Lü, C. Deng, M. Chadli, Distributed adaptive security consensus control for a class of
multi-agent systems under network decay and intermittent attacks, Inf. Sci., 547 (2021), 88–102.
https://doi.org/10.1016/j.ins.2020.08.013

12. S. Yu, X. Long, Finite-time consensus for second-order multi-agent systems
with disturbances by integral sliding mode, Automatica, 54 (2015), 158–165.
https://doi.org/10.1016/j.automatica.2015.02.001

13. H. Du, G. Wen, D. Wu, Y. Cheng, J. Lü, Distributed fixed-time consensus for
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