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Abstract. The aim of this work is to introduce a two-dimensional macroscopic

traffic model for multiple populations of vehicles. Starting from the paper [21],

where a two-dimensional model for a single class of vehicles is proposed, we
extend the dynamics to a multi-class model leading to a coupled system of

conservation laws in two space dimensions. Besides the study of the Riemann
problems we also present a Lax-Friedrichs type discretization scheme recovering

the theoretical results by means of numerical tests. We calibrate the multi-class

model with real data and compare the fitted model to the real trajectories.
Finally, we test the ability of the model to simulate the overtaking of vehicles.

1. Introduction. In this paper, we are concerned with the study of a two-dimen-
sional multi-class traffic model. This work is placed in the constantly evolving
framework of mathematical models for traffic flow. The goal of traffic models is to
provide tools capable of helping traffic management, in order to optimize transport
and obtain economic and environmental benefits, such as the reduction of vehicles
queues and pollution.

Traffic models are divided into three main categories, which depend on the scale
of observation: microscopic, macroscopic and kinetic models. Microscopic models
follow the dynamics of each vehicle and are described by ordinary differential equa-
tions (ODEs), see e. g. [2, 16, 19, 33, 34, 38]. Macroscopic models, based on fluid
dynamics, consider aggregated quantities such as the density of vehicles and are
governed by partial differential equations (PDEs), see e. g. [3, 7, 12, 17, 32, 41, 46].
Kinetic models [24, 28, 33, 36, 39, 40] are between the previous two classes since
they can be derived by microscopic models while macroscopic models can be de-
rived by kinetic descriptions. We refer to [1, 15] and references therein for a more
complete review on traffic models.
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In recent years, the ever-increasing amount of real data, due to new technologies,
has widely influenced the research on mathematical models for traffic flow. The
common goal of researchers is to exploit the available real data to build ad hoc
traffic models, capable of simulating increasingly realistic scenarios. We refer to
[8, 9, 13, 37] for some inspiring examples of data-fitted traffic models. The common
feature of these models is the application of vehicles trajectory data collected in
datasets such as [25, 44]. Datasets of this type generally contain data on multi-lane
highways and are able to distinguish the type of vehicle.

The focus in this work is on macroscopic traffic models. In particular, we propose
a multi-class generalization in two space dimensions of the well-known first order
Lighthill-Whitham-Richards (LWR) model [32, 41]. First order models such as the
LWR are described by a single conservation law ρt+f(ρ)x = 0, where ρ is the density
of vehicles and f(ρ) is the flux function. The shortcomings of first order models
are well-known in literature, for instance the infeasible solutions with unbounded
acceleration [30] or the inability to reproduce complex traffic phenomena like stop-
and-go waves [29, 43]. However, the extension of first order models to multi-class
[4, 20, 45], multi-lane [23] or multi-dimensional [21] models has proven to be suitable
to improve the deficiencies of the LWR model and to be able to describe also complex
traffic phenomena.

As we have already mentioned, traffic datasets contain information related to
multi-lane highways with different types of vehicles. Most traffic models refer to
dynamics of single-lane traffic and therefore do not consider the movements related
to lane changes. Our aim is to exploit now all the available data, including the
line-changing behavior and the different vehicles classes. To this end, we propose
an extension of the work by Herty, Fazekas and Visconti for a single-class traffic
model [21] to a multi-class traffic model in two space dimensions. The most common
approaches which include lane-changing are the two-dimensional models and the
multi-lane models. The first approach is an emerging topic, and we refer to [6, 21, 22]
for some examples. The second approach has been used for instance in [26, 27],
where the authors propose a microscopic, a kinetic and a fluid dynamic model with
lane changing. Here, we stick to the two-dimensional approach and incorporate two
types of vehicles interacting through the flux functions. The proposed model is then
defined by the coupling of LWR-type models for two classes of vehicles in the x and
y direction. The interaction between the two classes of vehicles is modeled by means
of the flux functions which depend on the sum of vehicle densities as in [11, 20].
With suitable assumptions on the flux functions, we study the two-dimensional
Riemann problems and validate the model comparing the theoretical results with
the solutions given by a numerical approximation of Lax-Friedrichs type. Then, we
calibrate the flux and velocity functions with the German dataset [25] and compare
the results of our model with real trajectories data. We also test the ability of the
model of capturing vehicles overtaking.

The paper is organized as follows. In Section 2 we introduce the traffic model and
study the Riemann problems. In Section 3, we describe the numerical scheme and
validate the model via numerical tests. In Section 4, we calibrate the model with a
German dataset and compare the results with the real trajectories of vehicles. In
Section 5, we propose a modified version of the model calibrated with real data,
and finally we investigate on the ability of the model to simulate vehicles overtaking
compared to a multi-lane model.
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2. Two-dimensional multi-class model. In this section, we introduce the traffic
model used throughout the paper. Let us consider two classes of vehicles, whose
densities are denoted by ρ and µ, respectively. Our aim is to describe the dynamics
of the two classes by means of a two-dimensional multi-class model. To this end,
following [21], we introduce a LWR-type model in two dimensions for two classes of
vehicles, i.e., {

ρt + (qxρ (ρ, µ))x + (qyρ(ρ, µ))y = 0

µt + (qxµ(ρ, µ))x + (qyµ(ρ, µ))y = 0,
(1)

where qxρ,µ are the fluxes of ρ and µ along the x-direction, and qyρ,µ are the fluxes of
ρ and µ along the y-direction. Similarly to [20], we define the flux functions as

qxρ (ρ, µ) = ρcx
(

1−
(
ρ+ µ

rmax

))
qyρ(ρ, µ) = ρcy

(
1−

(
ρ+ µ

rmax

))
qxµ(ρ, µ) = µcx

(
1−

(
ρ+ µ

rmax

))
qyρ(ρ, µ) = µcy

(
1−

(
ρ+ µ

rmax

))
,

(2)

where cx and cy are parameters to be calibrated and rmax is the maximum density
of vehicles. The velocity functions in x and y directions coincide for ρ and µ, and
are defined by

ux = cx
(

1−
(
ρ+ µ

rmax

))
, uy = cy

(
1−

(
ρ+ µ

rmax

))
.

Hence, cx and cy represent the maximum velocity in x and y direction. Note that
we assume that the two classes of vehicles have the same velocity cx and cy, and
they have the same maximum density rmax.

First of all, we present the properties of model (1). To simplify the notation, we
normalize ρ and µ in order to fix rmax = 1. We introduce the following vectors

U =

(
ρ
µ

)
, f(U) =

(
ρcx (1− (ρ+ µ))

µcx (1− (ρ+ µ))

)
, g(U) =

(
ρcy (1− (ρ+ µ))

µcy (1− (ρ+ µ))

)
and matrices

A(U) = Df(U), B(U) = Dg(U).

Therefore, we can rewrite system (1) as

Ut +AUx +BUy = 0. (3)

System (3) is hyperbolic if any linear combination of A and B is diagonalizable.
Thus, for (κ1, κ2) ∈ R2, we define C = κ1A+ κ2B. The eigenvalues of C are

λ1 = (κ1c
x + κ2c

y)(1− (ρ+ µ)), λ2 = (κ1c
x + κ2c

y)(1− 2(ρ+ µ))

which are real for any couple (κ1, κ2), and they coincide if and only if (ρ, µ) = (0, 0)
or κ1 = −cyκ1/cx. The associated eigenvectors are

γ1 =

(
−1
1

)
, γ2 =

(
ρ/µ

1

)
.

The first eigenvalue is linearly degenerate, i.e., ∇λ1 · γ1 = 0, while the second one
is genuinely nonlinear, i.e., ∇λ2 · γ2 6= 0. The Riemann invariants are

z1 = ρ+ µ, z2 = log (ρ/µ) .
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2.1. Two-dimensional Riemann problems. Next, we describe the two-dimen-
sional Riemann problem [10, 47] associated with (1). To simplify the computations,
we introduce the variable r = ρ+ µ, so that problem (1) can be rewritten as{

rt + (rcx (1− r))x + (rcy (1− r))y = 0

r(0, x, y) = r0(x, y).
(4)

The Riemann problem in two dimensions is given by (4) with constant initial data
in the four quadrants, i.e.

r0(x, y) =


v1 0 < x <∞, 0 < y <∞
v2 −∞ < x < 0, 0 < y <∞
v3 −∞ < x < 0, −∞ < y < 0

v4 0 < x <∞, −∞ < y < 0.

(5)

For convenience, we define f̂(r) = rcx (1− r) and ĝ(r) = rcy (1− r).

Remark 1. The treatment of the two-dimensional Riemann problem proposed in
[10] assumes convex flux functions f and g. In order to recover this hypothesis in
our case, it is sufficient to choose the parameters cx and cy negative. However,
the concave case can be recovered from the following analysis through proper sign
changes.

We look for self-similar solutions r(t, x, y) = v(x/t, y/t) and therefore introduce
ξ = x

t and η = y
t . We can rewrite the first equation of (4) as

(cx(1− 2v)− ξ)vξ + (cy(1− 2v)− η) vη = 0 (6)

which leads us to

(cx(1− 2v)− ξ)dη + (cy(1− 2v)− η) dξ = 0,

where cx(1− 2v) = f̂ ′(v) and cy(1− 2v) = ĝ′(v).
The set of singular points parametrized by v is the straight line

S = {(ξ, η) | ξ = cx(1− 2v), η = cy(1− 2v)} .

Defining

γ(v−, v+) =
f̂(v+)− f̂(v−)

v+ − v−
= cx(1− v+ − v−)

ν(v−, v+) =
ĝ(v+)− ĝ(v−)

v+ − v−
= cy(1− v+ − v−),

(7)

the Rankine-Hugoniot jump condition is

dη

dξ
= −ν(v−, v+)− η

γ(v−, v+)− ξ
= −c

y(1− v+ − v−)− η
cx(1− v+ − v−)− ξ

. (8)

Assuming that the normal vector (dη, dξ) is directed towards the positive side of
the shock curves, the Oleinik’s entropy condition is

(γ(v−, v0)− γ(v−, v+)) dη + (ν(v−, v0)− ν(v−, v+)) dξ

= cx(1− v+ − v0)dη + cy(1− v+ − v0)dξ

≥ 0

(9)

for v0 between v− and v+.
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The initial data in (5) for problem (4) in the variables (ξ, η) is given by

lim
ξ/η=const,

ξ2+η2→∞

v(ξ, η) =


v1 ξ > 0, η > 0

v2 ξ < 0, η > 0

v3 ξ < 0, η < 0

v4 ξ > 0, η < 0.

(10)

The solution of problem (6) with initial data (10) is composed of elementary waves.
There are five possible cases: (1) no shocks, (2) no rarefaction waves, (3) exactly one
shock, (4) exactly one rarefaction wave, (5) two rarefaction waves and two shocks.
In this work we skip the full details of the possible cases and refer to [47] for a
detailed discussion. Let us highlight the five cases now:

(1) No shocks: This case is verified when v3 < v2 < v4 < v1. Each cou-
ple (v2, v1), (v3, v4) (v1, v4) and (v2, v3) is connected by rarefaction waves and the
straight line S defines the points of connection between them. The solution is
represented in Figure 1(a).

(2) No rarefaction waves: This case is verified when v3 > v4 > v2 > v1.
The couples (v2, v1) and (v2, v3) are connected by two shocks which collide in
A = (γ(v1, v2), ν(v2, v3)) while the couples (v3, v4) and (v4, v1) are connected by
two shocks colliding in B = (γ(v3, v4), ν(v1, v4)). Then, we have two shocks which
connect v1 and v3. They start from the point O = (γ(v1, v3), ν(v1, v3)) and termi-
nate either in A or in B. The solution is represented in Figure 1(b).

S

η

ξ

v3

v2

v1

v4

(a) Case of no shocks.

η

ξ
A

O

B
v3

v2

v1

v4

(b) Case of no rarefaction waves.

Figure 1. Representation of no shocks (a) and no rarefaction
waves (b).

(3) Exactly one shock: This case is verified when

v4 > v1 ≥ v2 ≥ v3 or v2 < v3 ≤ v4 ≤ v1.

The first sub-case is represented in Figure 2(a). Using the Rankine-Hugoniot con-
dition (8) it can be shown that the shock curve is concave, monotonically increasing
in (v1, v4), bounded by the base curve S , tangentially intersects S and satisfies
the entropy condition (9). A similar analysis holds for the second sub-case which is
represented in Figure 2(b).
(4) Exactly one rarefaction wave: This case is verified when

v1 ≤ v2 ≤ v3 < v4 or v2 < v1 ≤ v4 ≤ v3.
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(a) v4 > v1 ≥ v2 ≥ v3.

η

ξ

R

R

R

S

S

v3

v2

v1

v4

(b) v2 < v3 ≤ v4 ≤ v1.

Figure 2. Representation of exactly one shock, where R denotes
rarefaction waves and S shocks.

The first possibility of initial data gives results similar to the previous case of exactly
one shock wave. For the second initial datum there exist several sub-cases but
we omit the details. In Figure 3 we show two examples for the two initial data
configurations.

η

ξ

R

S

S

S

S

v3

v2

v1

v4

(a) v1 ≤ v2 ≤ v3 < v4.

η

ξ

C.D.

R

S

S

Sv3

v2

v1

v4

(b) v2 < v1 ≤ v4 ≤ v3.

Figure 3. Representation of exactly one rarefaction wave, where
R denotes rarefaction waves, S shocks and C.D. contact discontinu-
ities.

(5) Two shocks and two rarefaction waves: This case is verified when

v4 > v1 ≥ v3 > v2 or v4 > v3 > v1 > v2.

The main difference between the two options of initial data is that in the first case
the shock curves are not neighbors while in the second case they are neighbors.
There are again several sub-cases, we only show an example of the two possible
initial data sets in Figure 4.

In the next section, we introduce a suitable discretization for the multi-class
model. For validation purposes of the proposed scheme, we aim to recover the
theoretical results from above.
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(a) v4 > v1 ≥ v3 > v2.
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(b) v4 > v3 > v1 > v2.

Figure 4. Representation of two shocks and two rarefaction
waves, where R denotes rarefaction waves and S shocks.

3. Numerical discretization. The numerical analysis of system (3) can be done
using the dimensional splitting approach [31] which means that the two-dimensional
problem is split into two one-dimensional problems. Thus, equation (3) is split into

Ut +AUx = 0, Ut +BUy = 0.

We uniformly divide the two-dimensional space [0, Lx] × [0, Ly] into a grid Ω =
[0, Nx] × [0, Ny] with x-step ∆x and y-step ∆y. We refer to the cell of the grid as
Ωij . Defining λ1,2 and γ1,2 the eigenvalues of A and B respectively, the time step
∆t is determined by

∆t

∆x
≤ 1

2

(
max
i,j=1,2

{|λi|, |γj |}
)−1

. (11)

Then, the time interval [0, T ] is divided into time steps of length ∆t.
Starting from a given initial datum U0

ij , the numerical scheme is defined by the
Strang splitting as

U∗ij = Unij −
∆t

2∆x
(Fni+1/2,j − F

n
i−1/2,j)

U∗∗ij = U∗ij −
∆t

∆y
(G∗i,j+1/2 −G

∗
i,j−1/2)

Un+1
ij = Unij −

∆t

2∆x
(F ∗∗i+1/2,j − F

∗∗
i−1/2,j).

We use the Local Lax-Friedrichs flux (also known as Rusanov flux) [5, Chapter 3]
for F and G, i.e.,

Fi+1/2,j =
1

2
(f(Ui+1,j) + f(Ui,j)− αi+1/2,j(Ui+1,j − Ui,j)),

where αi+1/2,j is the maximum modulus of the eigenvalues of the Jacobian matrix
in the interval (Ui,j , Ui+1,j).

3.1. Validation. We now test the discretization method for the two-dimensional
multi-class model (3) while comparing the numerical results to the theoretical so-
lutions of the Riemann problems introduced in Section 2.1.

Our test setting is given by Ω = [−5, 5] × [−5, 5] with ∆x = ∆y = 0.02. We
fix the parameters of (2) to cx = cy = −1. As already observed in Remark 1,
we fix negative parameters to recover convex flux functions. The time interval
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[0, T ] = [0, 1] is divided into time steps of length ∆t satisfying condition (11). The
initial datum for the two classes ρ and µ is taken as in (10)

ρ0(x, y) =


ρ1 (x, y) ∈ (0, 5)× (0, 5)

ρ2 (x, y) ∈ (−5, 0)× (0, 5)

ρ3 (x, y) ∈ (−5, 0)× (−5, 0)

ρ4 (x, y) ∈ (0, 5)× (−5, 0).

and µ0(x, y) = ρ0(x, y)/2. For simplicity of notation we take the values ρi ∈
{1, 2, 3, 4} and then normalize ρ and µ dividing by rmax = ρmax + µmax = 6.

Since we aim to recover the results of the analysis done in Section 2.1, where the
plots are defined for the plane (ξ, η) with ξ = x/t and η = y/t, we note that for
t = 1 the variables ξ and η coincide with x and y. Therefore, we plot the contours
of the numerical solution Unij at time tn = 1 in order to identify the plane (x, y)
with the plane (ξ, η) and for a better comparison.

As we have explained in Section 2.1, there are only five possible configurations
of the solution, which are determined by the initial values ρi, i = 1, . . . , 4.

(1) No shocks: We fix ρ1 = 4, ρ2 = 2, ρ3 = 1 and ρ4 = 3. As shown in Figure 5(a),
we have only rarefaction waves connected by the straight line S = {(x, y) | y = x}.
The results in Figure 5(a) coincide with the theoretical solution shown in Figure
1(a).

(2) No rarefaction waves: We fix ρ1 = 1, ρ2 = 2, ρ3 = 4 and ρ4 = 3. In Figure
5(b), the points of connection between the shocks are A = (γ(ρ1+µ1, ρ2+µ2), ν(ρ2+
µ2, ρ3 + µ3)) = (0.25, 0.5), B = (γ(ρ3 + µ3, ρ4 + µ4), ν(ρ4 + µ4, ρ1 + µ1)) = (0.75, 0)
and O = (γ(ρ1 +µ1, ρ3 +µ3), ν(ρ1 +µ1, ρ3 +µ3)) = (0.25, 0.25) with γ and ν defined
in (7). The results in Figure 5(b) coincide with the theoretical solution shown in
Figure 1(b).

(3) Exactly one shock: We fix ρ1 = 3, ρ2 = 2, ρ3 = 1 and ρ4 = 4. As shown in
Figure 5(c), we consider the first sub-case described in Section 2.1, and the shock
wave is below the straight line S = {(x, y) | y = x}. The results in Figure 5(c)
coincide with the theoretical solution shown in Figure 2(a).

(4) Exactly one rarefaction wave: We fix ρ1 = 1, ρ2 = 2, ρ3 = 3 and ρ4 = 4.
The results in Figure 5(d) coincide with the theoretical solution shown in Figure
2(a), and similarly to the previous case we have that the only rarefaction wave is
below the straight line S = {(x, y) | y = x}.
(5) Two shocks and two rarefaction waves: We fix ρ1 = 3, ρ2 = 1, ρ3 = 2 and
ρ4 = 4. As shown in Figure 5(e), the shock waves are not neighbors, but they are
separated by the rarefaction waves and the straight line S = {(x, y) | y = x}. The
results in Figure 5(e) coincide with the theoretical solution shown in Figure 4(a).

4. Data-driven multi-class model in 2D. In this section, we calibrate the two-
dimensional multi-class model with a dataset of real trajectories data. We employ
the public German dataset [25] which contains vehicle trajectories data recorded
on the German motorway A3, nearby Frankfurt am Main. The analyzed area is a
three lanes highway of about 900 meters in length and 12 meters in width, depicted
in Figure 6. A system of five video cameras recorded the vehicles passing through
the study area, collecting trajectory data for 20 minutes with a sampling period of
about 0.2 seconds. We refer to [25] for a detailed description of the dataset and
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(b) No rarefaction waves.
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(c) Exactly one shock.
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(d) Exactly one rarefaction
wave.

-5 0 5
-5

0

5

(e) Two shocks and two
rarefaction waves.

Figure 5. Numerical solutions of Riemann problems depending
on the initial datum.

of the data collection method. We observe that the dataset distinguishes several
types of vehicles, and particularly in this work we focus on the dynamics of cars
and trucks.

the project “Unfallrisikoabschätzung” 
the vehicle’s

to determine the vehicle’s posit

 

 

 

to register the vehicle’s position in the 
section’s 

   

Figure 6. German motorway A3 structure, cf. [25].

4.1. Fundamental diagrams. In order to calibrate the two-dimensional model
with the German dataset, we need first to derive macroscopic quantities from the
microscopic information provided by the dataset. Following [21], we describe how
we derive the density of cars and trucks, ρ and µ, the speed in the two directions,
ux and uy, and the flux in the two directions, qxρ,µ and qyρ,µ. Note that, as we have
already observed in Section 2, the velocity functions coincide for ρ and µ since cx

and cy do not distinguish the class of vehicles.
We consider the data from the second camera from the right of Figure 6, thus

we work with 20 minutes of real data. We introduce the time interval (t0, tM ), with
t0 = 0 and tM = 20 min, and uniformly divide it with a time step dt. Note that
dt is used to derive the macroscopic quantities from the microscopic ones, and is
independent of the time step ∆t of the numerical scheme. We call Nρ,µ(tk) the total
number of cars and trucks at time tk and Lx the length of the road along the main
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direction of travel. Then, we define

ρ̃(tk) =
Nρ(tk)

Lx
, µ̃(tk) =

Nµ(tk)

Lx
. (12)

The German dataset only provides the position of vehicles with respect to the
two directions, thus we need to derive the speed of vehicles from their positions. We
assume that each vehicle travels at constant speed which corresponds to the slope of
a linear approximation in the least square sense of the vehicle positions. We denote
by vx,yi the resulting microscopic speed of car i and by wx,yi the analogous speed
of truck i. Since we assume that the two classes have the same speed function, we
define the average speed as a function of the two classes

ũx(tk) =
1

Nρ(tk)

Nρ(tk)∑
i=1

vxi +
1

Nµ(tk)

Nµ(tk)∑
i=1

wxi

ũy(tk) =
1

Nρ(tk)

Nρ(tk)∑
i=1

vyi +
1

Nµ(tk)

Nµ(tk)∑
i=1

wyi .

(13)

Finally, we combine equations (12) and (13) to define the flux functions as

q̃xρ (tk) = ρ̃(tk)ũx(tk), q̃yρ(tk) = ρ̃(tk)ũy(tk)

q̃xµ(tk) = µ̃(tk)ũx(tk), q̃yµ(tk) = µ̃(tk)ũy(tk).
(14)

Once we have the density, speed and flux data as functions of time, we aggregate

them with respect to a certain time period T̃ = κdt. In particular, we fix dt = 1 s
and κ = 60. In Figure 7, we show the speed-density and flux-density diagrams for
the two classes of vehicles in the x and y directions.

The graphs show that the main direction of the flow is along the x-axis, according
to the structure of the analyzed road, while the movements along the y-axis repre-
sent the lane changes. Note that both the flux and the velocity along the y-direction
show negative values, due to the lane change that can occur in both directions. The
maximum density value reached in Figure 7 is 60 veh/km for cars and 12 veh/km
for trucks, and both values are much smaller than the maximum density of the road
given by rmax = 400 veh/km. More specifically, as we observe from Figure 7, there
are more cars than trucks along the road, thus we calibrate the maximum density
fixing the length of vehicles as if there are only cars on the road. Hence, we assume
that the length of vehicles plus the safety distance is 7.5 m, thus rmax is defined as

rmax =
# lanes

length of vehicles + safety distance
=

3

7.5 m
= 400

veh

km
. (15)

However, it should be noted that the dataset only contains data in free-flow regimes
without capturing congested traffic phase.

Now we need to compute the parameters cx and cy. The parameters cx and cy

are chosen in order to minimize the L2-norm between the flux functions defined in
(2) and the fluxes derived from data in (14), i.e., we consider

min
cx

(∥∥q̃xρ − qxρ (ρ, µ)
∥∥2
2

+
∥∥q̃xµ − qxµ(ρ, µ)

∥∥2
2

)
min
cy

(∥∥q̃yρ − qyρ(ρ, µ)
∥∥2
2

+
∥∥q̃yµ − qyµ(ρ, µ)

∥∥2
2

)
.

The computation is performed using the MATLAB fminbnd tool, which is a specific
solver for minimization problems. We obtain cx = 97.04 and cy = −0.41. Note that
cy is negative, since the lane changes occur mainly towards the rightmost lane. The
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(c) Ground-truth flux q̃xµ.
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(f) Ground-truth flux q̃yµ.

Figure 7. Speed-density and flux-density diagrams for the two
classes related to the x-direction in the first row, and to the y-
direction on the second row.

resulting speed and flux functions are shown in Figure 8. Since the flux functions
depend on both ρ and µ, we have a family of flux and velocity functions. In
particular, in Figure 8(b) we show the family of flux functions qxρ as µ changes.
This means that at fixed value of µ we can move only along one of the flux curves.
For instance, if µ = 0, i.e. there are no trucks, then the fundamental diagram qxρ
corresponds to the maximum flux curve in Figure 8(b), if µ = rmax then no car can
enter into the road, and thus qxρ ≡ 0. A similar discussion holds for the other plots
of Figure 8.

We observe that the advantage of the multi-class model is that we can cover quite
well the clouds of real data by means of the family of flux and velocity functions.
However, we note that, since the German dataset contains data which refer only to
the not congested phase of traffic, we do not have enough data to better calibrate
congested traffic situations. In particular, the choice of cx and cy equal for both of
the classes seems to overestimate the flux for the class µ, in both the directions.

4.2. Reconstruction of density from data. In this section we describe how to
treat the microscopic data to define the initial density for the numerical scheme
and the reference solution for the comparison of the results. The German dataset
gives information about the position of vehicles every 0.2 seconds, thus we work
with pointwise data. In order to define a density function ρ(t, x, y) on a domain D,
we use a kernel density estimation, the Parzan-Rosenblatt window method [35, 42].
The idea of this method is to consider the data points as a density distribution and
then recover the global density by summing these distributions.
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(c) Ground-truth flux q̃xµ
and family of flux functions
qxµ as ρ changes.
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(f) Ground-truth flux q̃yµ
and family of flux functions
qyµ as ρ changes.

Figure 8. Speed-density and flux-density diagrams for the two
classes defined from real data (green and blue circles) and family
of speed and velocity functions related to the x-direction in the
first row, and to the y-direction in the second row.

Let N(t) be the number of cars at time t and (xi(t), yi(t)) their positions, we
define

ρ̃(x, y) =

N(t)∑
i=1

δ(x− xi(t))δ(y − yi(t)).

In order to recover the smooth function ρ, we introduce a two-dimensional Gaussian
kernel

K(x, y) =
1

2πhxhy
exp

(
− x2

2h2x
− y2

2h2y

)
,

and then define

ρ(t, x, y) =

∫
D
K(x− ξ, y − η)ρ̃(ξ, η)dξdη =

N(t)∑
i=1

K(x− xi(t), y − yi(t)). (16)

We follow a similar procedure to estimate the density of trucks. The parameters
hx and hy are bandwidths chosen in order to obtain an almost constant density
profile for equidistant vehicles [14]. These parameters depend on the dimensions of
the road, i.e., on a road of dimensions Lx ×Ly we fix hx = Lx/20 and hy = Ly/20,
with Lx being the length of the road along the x-axis and Ly the length along the
y-axis.
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For each video camera of the German dataset we work with records data for about
80 m in length and 12 m in width. The average speed of vehicles is such that they
exit from the recording area after a few seconds. In order to test longer simulations
and compare them with real data, we assume that the trajectory of each vehicle can
be approximated by a linear movement. Indeed, let us consider a vehicle i which
crosses the road between a time interval [t0, t1]. We compute the coefficients ax,yi
and bx,yi such that we can approximate the x and y position as x(t) = axi + bxi t and
y(t) = ayi + byi t minimizing the L2-norm of the difference with the real positions.
In this way, we are able to compute the “real” position of vehicles even when they
exit the supervised area. The computed positions also allow for a comparison to
the numerical results.

4.3. Numerical test. Now, we compare the numerical simulations of model (1)
with the real data computed from equation (16). The simulation refers to the data
recorded by the second video camera of the German dataset.

Let us consider the domain [0, Lx] × [0, Ly] uniformly divided into a numerical
grid Ω = [0, Nx]× [0, Ny] with x-steps of length ∆x and y-steps of length ∆y during
a time interval [0, T ] divided into time steps of length ∆t satisfying (11). The
numerical solutions are computed by means of the numerical scheme introduced in
Section 3, and they are denoted by

ρnij = ρ(xi, yj , t
n), µnij = µ(xi, yj , t

n)

for cars and trucks respectively, with xi = i∆x, yj = j∆y and tn = n∆t. The
ground-truth data are estimated by (16) as explained in Section 4.2, and they are
denoted by

ρtrue,nij = ρtrue(xi, yj , t
n), µtrue,n

ij = µtrue(xi, yj , t
n)

for cars and trucks, respectively. The parameters used in the following test are
Lx = 450 m, Ly = 14 m, ∆x = ∆y = 0.5 m, T = 5 s, hx = 22.5 and hy = 0.7.
The initial configuration of densities is recovered by the ground-truth data (16)
starting from the time t̂ = 14 s of the German dataset. Therefore, at the beginning,
the numerical solution coincides with the ground-truth solution. At time t̂ there
are three cars and one truck along the three-lanes highway, so we analyze their
dynamics. In Figure 9, we compare the contours of the ground-truth density data
with the contours of the reconstructed density by the numerical simulation at the
final time T .

The dotted lines divide the road into three lanes. After 5 s of simulation the real
and the numerical configurations of density are quite similar for both populations
of vehicles.

In order to better compare the numerical results with the ground-truth data, we
introduce the following errors

Eρ(t
n) =

∥∥ρtrue(·, ·, tn)− ρ(·, ·, tn)
∥∥
L1 , (17)

Eµ(tn) =
∥∥µtrue(·, ·, tn)− µ(·, ·, tn)

∥∥
L1 . (18)

The errors at time T of the previous simulation are Eρ(T ) = 0.06 and Eµ(T ) = 0.02
computed with (17) and (18), respectively. In Figure 10 we plot the numerical
errors between the numerical density and real data during 10 seconds of simulation
computed every 0.5 seconds. We observe that the error related to the truck is lower
than the error related to cars and that both errors increase in time. However, they
remain of order 10−2.
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(a) Cars density at time
t = 0.
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(b) Simulated cars density
at time t = T .
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(c) Real cars density at
time t = T .
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(d) Trucks density at time
t = 0.
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(e) Simulated trucks den-
sity at time t = T .
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(f) Real trucks density at
time t = T .

Figure 9. Contours of the density of cars (top) and trucks (bot-
tom): initial condition at time t = 0 (left), simulated results at
time t = 5 s (middle) and reconstructed real data at time t = 5 s
(right).
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Figure 10. Error between real and numerical density of cars and
trucks during 10 seconds of simulation, computed every 0.5 seconds.

5. Further data analyses. In the previous section we have seen that the two di-
mensional multi-class LWR (1) with the flux functions defined in (2) and calibrated
with real data is able to simulate the dynamics of vehicles. However, our main
assumption on the flux functions is that the coefficients rmax, cx and cy are equal
for both the classes of vehicles. This is a strong assumption, since it implies that
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cars and trucks have the same length and velocity. Therefore, we modify now the
definition of the flux functions to differentiate more clearly the dynamics of the two
classes.

5.1. Test with real data. We consider again the German dataset [25]. Our aim is
to consider different maximum density of cars and trucks, due to the different length
of vehicles, and different parameters cxρ , cxµ, cyρ and cyµ in order to take into account
velocity functions which depend on the class of vehicles. The maximum density of
cars rmax = rmax

ρ = 400 veh/km coincides with equation (15), and we assume that
the length of trucks is twice that of cars, hence we have rmax

µ = 200 veh/km. We
slightly modify the flux functions of (1) as

qxρ (ρ, µ) = ρcxρ

(
1−

(
ρ+ 2µ

rmax

))
, qyρ(ρ, µ) = ρcyρ

(
1−

(
ρ+ 2µ

rmax

))
qxµ(ρ, µ) = µcxµ

(
1−

(
ρ+ 2µ

rmax

))
, qyµ(ρ, µ) = µcyµ

(
1−

(
ρ+ 2µ

rmax

))
.

(19)

Note that in (19) the different maximum densities between cars and trucks is ex-
pressed by the term (ρ+ 2µ)/rmax.

With the introduction of different coefficients cxρ , cxµ, cyρ and cyµ we are able to
better distinguish the behavior of the two classes of vehicles, by means of different
maximum velocities for the two classes in both the directions.

Next, we repeat a procedure analogous to the one proposed in Section 4.1 to
estimate the velocity functions and the fundamental diagrams. In particular, we
define different velocity functions for ρ and µ as

ũxρ(tk) =
1

Nρ(tk)

Nρ(tk)∑
i=1

vxi , ũyρ(tk) =
1

Nρ(tk)

Nρ(tk)∑
i=1

vyi

ũxµ(tk) =
1

Nµ(tk)

Nµ(tk)∑
i=1

wxi , ũyµ(tk) =
1

Nµ(tk)

Nµ(tk)∑
i=1

wyi ,

from which we recover the flux functions as

q̃xρ (tk) = ρ̃(tk)ũxρ(tk), q̃yρ(tk) = ρ̃(tk)ũyρ(tk)

q̃xµ(tk) = µ̃(tk)ũxµ(tk), q̃yµ(tk) = µ̃(tk)ũyµ(tk).
(20)

We estimate the parameters cxρ , cxµ, cyρ and cyµ in order to minimize the L2-norm
between the flux functions defined in (19) and the fluxes derived from data in (20)
and compute

min
cxρ

(∥∥q̃xρ − qxρ (ρ, µ)
∥∥2
2

)
min
cyρ

(∥∥q̃yρ − qyρ(ρ, µ)
∥∥2
2

)
min
cxµ

(∥∥q̃xµ − qxµ(ρ, µ)
∥∥2
2

)
min
cyρ

(∥∥q̃yµ − qyµ(ρ, µ)
∥∥2
2

)
,

using again the fminbnd MATLAB tool. We obtain cxρ = 99.61, cyρ = −0.40,
cxµ = 74.86 and cyµ = −0.49. Hence, the cars have a faster velocity than the trucks
along the main direction of travel, while the velocity of lane-changing is quite similar
between the two classes.

In Figure 11, we show the family of speed and flux functions obtained with the
above described procedure. Note that the speed and flux functions related to trucks,
shown in Figures 11(b), 11(d), 11(f) and 11(h), are defined for µ ∈ [0, rmax

µ ], with
rmax
µ being the half of rmax. Again, we are able to cover the clouds of real data, but
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in this case the plots of qxµ and qyµ (Figures 11(f) and 11(h)) reach lower flux values
with respect to Figures 8(c) and 8(f), according to the lower density and velocity
of trucks recorded by the dataset. Hence, the overestimation of flux values for the
class of trucks is highly reduced with the introduction of cxµ and cyµ compared to the
results obtained in Section 4.1.
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(b) Ground-truth speed ũxµ
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uxµ as ρ changes.
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(c) Ground-truth speed ũyρ
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(d) Ground-truth speed ũyµ
and family of speed functions
uyµ as ρ changes.
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(e) Ground-truth flux q̃xρ
and family of flux functions
qxρ as µ changes.
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(f) Ground-truth flux q̃xµ
and family of flux functions
qxµ as ρ changes.
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(g) Ground-truth flux q̃yρ
and family of flux functions
qyρ as µ changes.
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(h) Ground-truth flux q̃yµ
and family of flux functions
qyµ as ρ changes.

Figure 11. Speed-density and flow-density diagrams for the two
classes defined from real data (green and blue circles) and family
of speed and flux functions defined by (19).

We repeat the same numerical test proposed in Section 4.3 with the new flux
functions (19), estimating again the resulting errors with (17) and (18). The density
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plots we obtain are similar to the plots shown in Figure 9, thus we omit the picture.
However, as shown in Figure 12, we obtain a better estimate of the errors compared
to the test done in Section 4.3.
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Figure 12. Error between real density and numerical density of
cars and trucks during 10 seconds of simulation, computed every
0.5 seconds.

5.2. Vehicles overtaking. A further investigation of our model is the testing of
the ability of capturing vehicles overtaking. We consider the following flux functions

qxρ (ρ, µ) = ρcxρ

(
1−

(
ρ+ µ

rmax

))
, qyρ(ρ, µ) = ρcyρ

(
1−

(
ρ+ µ

rmax

))
qxµ(ρ, µ) = µcxµ

(
1−

(
ρ+ µ

rmax

))
, qyµ(ρ, µ) = µcyµ

(
1−

(
ρ+ µ

rmax

))
,

where we have different parameters cxρ , cxµ, cyρ and cyµ but the same maximum density
rmax. The idea is to simulate traffic dynamics with different maximum velocities
for the two classes and verify if the faster vehicles are able to overtake the slower
ones. Indeed, the presence of the component transverse to the main direction of
motion naturally lends itself to the modeling of vehicles overtaking.

We consider a numerical grid Ω = [0, Nx]× [0, Ny] with x-steps ∆x and y-steps
∆y during a time interval [0, T ] divided into time steps ∆t satisfying (11). In
particular we work on a road with two lanes, with two cars and one truck. We fix
the following parameters: Lx = 100 m, Ly = 6 m, ∆x = ∆y = 0.2 m and T = 4 s.
Moreover, we assume that cxρ = 80 and cyρ = −0.4, while cxµ = cyµ = 0, thus the
truck does not move.

As we can see in Figure 13, we consider a road with two lanes with two cars and
a truck. At the beginning of the simulation there is a car in the top lane and a truck
in front of the other car in the bottom lane. Since the truck does not move and the
cars are free to move along the y-axis, in Figure 13(b) we see that both cars move
towards the north-east direction. In particular, the car in the top lane is leaving
the road and the other one starts to overtake the truck, which acts as an obstacle
along the main travel direction. Finally, Figure 13(c) shows that the car has been
able to overtake the truck since it is exiting the road while the truck is still inside
the domain.
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Car 2

Truck

Car 1

(a) Cars and truck density
at time t = 0.

(b) Cars and truck density
at time t = T/4.

(c) Cars and truck density
at time t = T .

Figure 13. Contours of the density of cars and truck at time
t = 0 (left), t = T/4 (middle) and t = T (right). The truck does
not move, Car 1 leaves the road during the simulation and Car 2
overtakes the truck and is exiting the road at time T .

5.2.1. Comparison with a multi-lane model. Finally, we intend to compare the pro-
posed 2D multi-class approach to a first order multi-class multi-lane model. Indeed,
the inclusion of lane change dynamics well fits with the simulation of vehicle over-
taking and allows us to compare the results obtained with the 2D multi-class model.
Specifically, we extend the multi-lane LWR model proposed in [23] to a multi-class
model. Hence, let us consider a road with two lanes and two classes of vehicles ρ
and µ. The dynamics on the two lanes is described by

Lane 1:

{
ρ1t + (q1ρ(ρ1, µ1))x = −Sρ(ρ1, µ1, ρ2, µ2)

µ1
t + (q1µ(ρ1, µ1))x = −Sµ(ρ1, µ1, ρ2, µ2)

Lane 2:

{
ρ2t + (q2ρ(ρ2, µ2))x = Sρ(ρ

1, µ1, ρ2, µ2)

µ2
t + (q2µ(ρ2, µ2))x = Sµ(ρ1, µ1, ρ2, µ2),

(21)

where ρ1, µ1 and q1ρ,µ are the densities and the flux function of the two classes

along lane 1, and ρ2, µ2 and q2ρ,µ along lane 2. The functions Sρ,µ regulate the lane
changing and are defined as

Sρ = C(max{u2ρ(ρ2, µ2)− u1ρ(ρ1, µ1), 0}ρ1 + min{u2ρ(ρ2, µ2)− u1ρ(ρ1, µ1), 0}ρ2)

Sµ = C(max{u2µ(ρ2, µ2)− u1µ(ρ1, µ1), 0}µ1 + min{u2µ(ρ2, µ2)− u1µ(ρ1, µ1), 0}µ2),

(22)

where u1,2ρ,µ are the velocity functions related to ρ and µ respectively along the two
lanes and C is a constant.

The flux functions are chosen similar to the ones used for the two-dimensional
multi-class model. Therefore, we define them as

q1,2ρ = ρ1,2cρ

(
1−

(
ρ1,2 + µ1,2

rmax

))
, q1,2µ = µ1,2cµ

(
1−

(
ρ1,2 + µ1,2

rmax

))
,

where rmax is the maximum density of the two classes. In order to compare such a
model with the results obtained with our multi-class two-dimensional model from
Section 5.2, we replicate an analogous test. Indeed, we consider a road [0, L] with
two lanes along which there are two cars and a truck during a time interval [0, T ].
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The parameters of the test are L = 100 m, ∆x = 0.2 m, T = 4 s, C = 1 in (22),
cρ = 80 and cµ = 0. We use a Godunov scheme [18] to approximate problem (21).

In Figure 14, we show the density of cars and trucks on the two lanes at different
times. The plots in the first row show Lane 1, with a car and no trucks, the plots
in the second row show Lane 2, with a car and a truck which does not move at all
during the simulation since its velocity is 0. The source terms in (21) allow lane
changing even if the traffic is not congested and vehicles are free to move along their
lane. Hence, in Figure 14(e) we see that the density of cars increases at the end
of Lane 2, due to the source term, while in Figures 14(b) and 14(c) the density of
cars related to Lane 1 increases since the truck does not move and the cars change
lane. At the end of the simulation the density of cars is higher on Lane 1 while it
is close to 0 on Lane 2.
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(a) Cars and truck density
at time t = 0 on Lane 1.
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(b) Cars and truck density
at time t = T/4 on Lane 1.
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(c) Cars and truck density
at time t = T on Lane 1.
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(d) Cars and truck density
at time t = 0 on Lane 2.
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(e) Cars and truck density
at time t = T/4 on Lane 2.
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(f) Cars and truck density
at time t = T on Lane 2.

Figure 14. Plot of the density of cars and truck on Lane 1 (first
row) and Lane 2 (second row) at time t = 0 (left), t = T/4 (middle)
and t = T (right).

From the two tests proposed in Sections 5.2 and 5.2.1 we observe that the 2D
multi-class model seems to be more suitable for capturing the overtaking of vehicles.
Indeed, the two-dimensional description seem to fit better to such a dynamics, as
shown in Figures 13 and 14.

6. Conclusions. In this work we have introduced a two-dimensional multi-class
traffic model. We have analyzed the two-dimensional Riemann problems related
to our model and provided numerical validations with a numerical scheme based
on dimensional splitting. Then, we have analyzed the model with a dataset of
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real trajectories data, focusing on the dynamics of cars and trucks. The dataset
has been used to calibrate the flux and velocity functions and to compare the
numerical results with ground-truth data. The numerical tests have shown the
good approximation of the trajectories with our model, obtaining a numerical error
of 10−2. We have improved the results modifying the flux functions in order to
consider different maximum velocity values for the two classes of vehicles. Finally,
we have tested the ability of the model to simulate vehicles overtaking, also in
comparison with a first order multi-class multi-lane model.

Future investigations will aim at improving the proposed approach with second
order models and deriving the corresponding microscopic model as a system of
ordinary differential equations.
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