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Abstract. The paper is concerned with a shape optimization problem, where

the functional to be maximized describes the total sunlight collected by a
distribution of tree leaves, minus the cost for transporting water and nutrient

from the base of trunk to all the leaves. In a 2-dimensional setting, the solution

is proved to be unique and explicitly determined.

1. Introduction. In the recent papers [7, 9] two functionals were introduced, mea-
suring the amount of light collected by the leaves, and the amount of water and
nutrients collected by the roots of a tree. In connection with a ramified transporta-
tion cost [1, 14, 18], these lead to various optimization problems for tree shapes.

Quite often, optimal solutions to problems involving a ramified transportation
cost exhibit a fractal structure [2, 3, 4, 12, 15, 16, 17]. In the present note we analyze
in more detail the optimization problem for tree branches proposed in [7], in the
2-dimensional case. In this simple setting, the unique solution can be explicitly
determined. Instead of being fractal, its shape reminds of a solar panel.

The present analysis was partially motivated by the goal of understanding pho-
totropism, i.e., the tendency of plant stems to bend toward the source of light. Our
results indicate that this behavior cannot be explained purely in terms of maximiz-
ing the amount of light collected by the leaves (Fig. 1). Apparently, other factors
must have played a role in the evolution of this trait, such as the competition among
different plants. See [6] for some results in this direction.

The remainder of this paper is organized as follows. In Section 2 we review
the two functionals defining the shape optimization problem and state the main
results. Proofs are then worked out in Sections 3 to 5. Finally, in Section 6 we show
the sharpness of the assumptions used in Theorem 2.5 and discuss various possible
extensions.

2. Statement of the main results. We begin by reviewing the two functionals
considered in [7, 9].
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Figure 1. A stem γ1 perpendicular to the sun rays is optimally shaped
to collect the most light. For the stem γ2 bending toward the light source,
the upper leaves put the lower ones in shade.

2.1. A sunlight functional. Let µ be a positive, bounded Radon measure on
Rd+

.
= {(x1, x2, . . . , xd) ; xd ≥ 0}. Thinking of µ as the density of leaves on a tree,

we seek a functional S(µ) describing the total amount of sunlight absorbed by the
leaves. Fix a unit vector

n ∈ Sd−1 .
= {x ∈ Rd ; |x| = 1},

and assume that all light rays come parallel to n. Call E⊥n the (d− 1)-dimensional
subspace perpendicular to n and let πn : Rd 7→ E⊥n be the perpendicular projection.
Each point x ∈ Rd can thus be expressed uniquely as

x = y + sn (1)

with y ∈ E⊥n and s ∈ R.
On the perpendicular subspace E⊥n consider the projected measure µn, defined

by setting

µn(A) = µ
({
x ∈ Rd ; πn(x) ∈ A

})
. (2)

Call Φn the density of the absolutely continuous part of µn w.r.t. the (d − 1)-
dimensional Lebesgue measure on E⊥n .

Definition 2.1. The total amount of sunlight from the direction n captured by a
measure µ on Rd is defined as

Sn(µ)
.
=

∫
E⊥n

(
1− exp

{
−Φn(y)

})
dy . (3)

More generally, given an integrable function η ∈ L1(Sd−1), the total sunlight ab-
sorbed by µ from all directions is defined as

Sη(µ)
.
=

∫
Sd−1

(∫
E⊥n

(
1− exp

{
−Φn(y)

})
dy

)
η(n) dn . (4)

In the formula (4), η(n) accounts for the intensity of light coming from the
direction n.
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Remark 1. According to the above definition, the amount of sunlight Sn(µ) cap-
tured by the measure µ only depends on its projection µn on the subspace perpen-
dicular to n. In particular, if a second measure µ̃ is obtained from µ by shifting
some of the mass in a direction parallel to n, then Sn(µ̃) = Sn(µ).

2.2. Optimal irrigation patterns. Consider a positive Radon measure µ on Rd
with total mass M = µ(Rd), and let Θ = [0,M ]. We think of ξ ∈ Θ as a Lagrangian
variable, labeling a water particle.

Definition 2.2. A measurable map

χ : Θ× R+ 7→ Rd (5)

is called an admissible irrigation plan for the measure µ if

(i) For every ξ ∈ Θ, the map t 7→ χ(ξ, t) is Lipschitz continuous. More precisely,
for each ξ there exists a stopping time T (ξ) such that, calling

χ̇(ξ, t) =
∂

∂t
χ(ξ, t)

the partial derivative w.r.t. time, one has∣∣χ̇(ξ, t)
∣∣ =

{
1 for a.e. t ∈

[
0, T (ξ)

]
,

0 for t > T (ξ).
(6)

(ii) At time t = 0 all particles are at the origin: χ(ξ, 0) = 0 for all ξ ∈ Θ.
(iii) The push-forward of the Lebesgue measure on [0,M ] through the map ξ 7→

χ(ξ, T (ξ)) coincides with the measure µ. In other words, for every open set
A ⊂ Rd there holds

µ(A) = meas
(
{ξ ∈ Θ ; χ(ξ, T (ξ)) ∈ A

})
. (7)

One may think of χ(ξ, t) as the position of the water particle ξ at time t.
To define the corresponding transportation cost, we first compute how many

particles travel through a point x ∈ Rd. This is described by

|x|χ
.
= meas

({
ξ ∈ Θ ; χ(ξ, t) = x for some t ≥ 0

})
. (8)

We think of |x|χ as the total flux going through the point x. Following [13, 14], we
consider

Definition 2.3. For a given α ∈ [0, 1], the total cost of the irrigation plan χ is

Eα(χ)
.
=

∫
Θ

(∫ T (ξ)

0

∣∣χ(ξ, t)
∣∣α−1

χ
dt

)
dξ. (9)

The α-irrigation cost of a measure µ is defined as

Iα(µ)
.
= inf

χ
Eα(χ), (10)

where the infimum is taken over all admissible irrigation plans for the measure µ.

Remark 2. Sometimes it is convenient to consider more general irrigation plans
where, in place of (6), for a.e. t ∈ [0, T (ξ)] the speed satisfies |χ̇(ξ, t)| ≤ 1. In this
case, the cost (9) is replaced by

Eα(χ)
.
=

∫
Θ

(∫ T (ξ)

0

∣∣χ(ξ, t)
∣∣α−1

χ
|χ̇(ξ, t)| dt

)
dξ. (11)
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Of course, one can always re-parameterize each trajectory t 7→ χ(ξ, t) by arc-length,
so that (6) holds. This does not affect the cost (11).

Remark 3. In the case α = 1, the expression (9) reduces to

Eα(χ)
.
=

∫
Θ

(∫
R+

|χ̇t(ξ, t)| dt

)
dξ =

∫
Θ

[total length of the path χ(ξ, ·)] dξ .

Of course, this length is minimal if every path χ(·, ξ) is a straight line, joining the
origin with χ(ξ, T (ξ)). Hence

Iα(µ)
.
= inf

χ
Eα(χ) =

∫
Θ

|χ(ξ, T (ξ))| dξ =

∫
|x| dµ .

On the other hand, when α < 1, moving along a path which is traveled by few

other particles comes at a high cost. Indeed, in this case the factor
∣∣χ(ξ, t)

∣∣α−1

χ

becomes large. To reduce the total cost, it is thus convenient that many particles
travel along the same path.

For the basic theory of ramified transport we refer to the monograph [1]. For
future use, we recall that optimal irrigation plans satisfy

Single Path Property. If χ(ξ, τ) = χ(ξ′, τ ′) for some ξ, ξ′ ∈ Θ and 0 < τ ≤ τ ′,
then

χ(ξ, t) = χ(ξ′, t) for all t ∈ [0, τ ]. (12)

Another property that will be repeatedly used in the sequel is the following.

Lemma 2.4. Let χ be an admissible irrigation plan for the measure µ. Let C ⊂ Rd
be a closed convex set containing the origin, and let pC : Rd 7→ C be the perpendic-
ular projection. Consider the projected measure µ̃ supported on C, obtained as the
push-forward of µ by the map pC. Then the composed map χ̃(ξ, t) = pC(χ(ξ, t))
is an admissible irrigation plan for the measure µ̃. Moreover, for every α ∈ [0, 1]
one has

Eα(χ̃) ≤ Eα(χ). (13)

If µ̃ 6= µ, then the above inequality is strict.

Proof. The first statement is obvious. As in Lemma 5.15 in [1], the inequality (13)
follows from the fact that, in the projected irrigation plan, the length of particle
trajectories decreases while the multiplicity increases. Indeed,

Eα(χ̃)
.
=

∫
Θ

(∫ T (ξ)

0

∣∣χ̃(ξ, t)
∣∣α−1

χ̃

∣∣∣∣ ddt χ̃(ξ, t)

∣∣∣∣ dt
)
dξ

=

∫
Θ

(∫ T (ξ)

0

∣∣(pC ◦ χ)(ξ, t)
∣∣α−1

pC◦χ

∣∣∣∣ ddt (pC ◦ χ)(ξ, t)

∣∣∣∣ dt
)
dξ

≤
∫

Θ

(∫ T (ξ)

0

∣∣χ(ξ, t)
∣∣α−1

χ
|χ̇(ξ, t)| dt

)
dξ = Eα(χ).
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2.3. The general optimization problem for branches. Combining the two
functionals (4) and (10), one can formulate an optimization problem for the shape
of branches:

(OPB) Given a light intensity function η ∈ L1(Sd−1) and two constants c > 0,
α ∈ [0, 1], find a positive measure µ supported on Rd+ that maximizes the
payoff

Sη(µ)− c Iα(µ). (14)

2.4. Optimal branches in dimension d = 2. We consider here the optimization
problem for branches in the planar case d = 2. We assume that the sunlight comes
from a single direction n = (cos θ0, sin θ0), so that the sunlight functional takes the
form (3). Moreover, as irrigation cost we take (10), for some fixed α ∈ ]0, 1]. For a
given constant c > 0, this leads to the problem

maximize: Sn(µ)− c Iα(µ), (15)

over all positive measures µ supported on the half space R2
+
.
= {x = (x1, x2) ; x2 ≥

0}. To fix ideas, we shall assume that 0 ≤ θ0 ≤ π/2. Our main goal is to prove that
for this problem the “solar panel” configuration shown in Fig. 2 is optimal, namely:

Theorem 2.5. In dimension d = 2, assume that 0 ≤ θ0 ≤ π/2 and 1/2 ≤ α ≤ 1.
Then the optimization problem (15) has a unique solution. The optimal measure is
supported along two rays, namely

Supp(µ) ⊂
{

(r cos θ, r sin θ) ; r ≥ 0, either θ = 0 or θ = θ0+
π

2

}
.
= Γ0 ∪ Γ1. (16)

When 0 < α < 1/2, the same conclusion holds if either θ0 = 0, or else the angle θ0

satisfies

sin θ0 ≥ 1− 22α−1. (17)

0

Γ

0

0

Γ
1

n

θ

Figure 2. When the light rays impinge from a fixed direction n, the
optimal distribution of leaves is supported on the two rays Γ0 and Γ1.

In the case α = 1 the result is straightforward. Indeed, for any measure µ we can
consider its projection µ̃ on Γ0 ∪ Γ1, obtained by shifting the mass in the direction
parallel to the vector n. In other words, for x ∈ R2 call φn(x) the unique point in
Γ0 ∪ Γ1 such that φn(x)− x is parallel to n. Then let µ̃ be the push-forward of the
measure µ w.r.t. φn. Since this projection satisfies |φn(x)| ≤ |x| for every x ∈ R2

+,
the transportation cost decreases. On the other hand, by Remark 1 the sunlight
captured remains the same. We conclude that

Sn(µ̃)− c I1(µ̃) ≥ Sn(µ)− c I1(µ),
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with strict inequality if µ is not supported on Γ0 ∪ Γ1.
In the case 0 < α < 1, the result is not so obvious. A proof of Theorem 2.5 will

be worked out in Sections 3 and 4.
Having proved that the optimal measure µ is supported on the two rays Γ0 ∪Γ1,

the density of µ w.r.t. one-dimensional measure can then be determined using the
necessary conditions derived in [6]. Indeed, the density u0 of µ along the ray Γ0

provides a solution to the scalar optimization problem

maximize: J0(u)
.
=

∫ +∞

0

sin θ0

(
1−e−u(s)/ sin θ0

)
ds−c

∫ +∞

0

(∫ +∞

s

u(r) dr

)α
ds .

(18)
among all non-negative functions u : R+ 7→ R+. Here s is the arc-length variable
along Γ0.

We write (18) in the form

maximize: J0(u)
.
=

∫ +∞

0

[
sin θ0

(
1− e−u(s)/ sin θ0

)
− czα

]
ds , (19)

subject to

ż = −u, z(+∞) = 0. (20)

The necessary conditions for optimality (see for example [8, 11]) now yield

u(s) = argmax
ω≥0

{
− e−ω/ sin θ0 sin θ0 − ωq(s)

}
= −(sin θ0) ln q(s), (21)

where the dual variable q satisfies

q̇ = cαzα−1, q(0) = 0. (22)

Notice that, by (21), u > 0 only if q < 1. Combining (20) with (22) one obtains an
ODE for the function q 7→ z(q), with q ∈ [0, 1]. Namely

dz(q)

dq
=

sin θ0

cα
z1−α ln q, z(1) = 0. (23)

This equation admits the explicit solution

z(q) =
( sin θ0

c

)1/α

[1 + q ln q − q]1/α . (24)

Inserting (24) in (22), we obtain an implicit equation for q(s):

s =
(sin θ0)

1−α
α

αc1/α

∫ q(s)

0

[1 + t ln t− t]
1−α
α dt. (25)

In turn, the density u(s) of the optimal measure µ along Γ0, as a function of the
arc-length s, is recovered from (21). Notice that this measure is supported only on
an initial interval [0, `0], determined by

`0 =
(sin θ0)

1−α
α

αc1/α

∫ 1

0

[1 + s ln s− s]
1−α
α ds.

In particular, the total mass M0 along the ray Γ0 is computed setting q = 0 in (24),
namely

M0 =

∫ `0

0

u(s) ds = z(0) =
( sin θ0

c

)1/α

. (26)

The density of the optimal measure along the ray Γ1 is computed in an entirely
similar way. In fact, it corresponds to the special case of setting θ0 = π/2 in the
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Figure 3. Density profile u(s) for s ∈ [0, `1] along the ray Γ1 for c = 1
and α = 2/3, 1/3.

previous computations. Along Γ1, the optimal measure µ is supported on an initial
interval [0, `1], where

`1 =
1

αc1/α

∫ 1

0

[1 + s ln s− s]
1−α
α ds,

while the total mass is given by

M1 = c−1/α. (27)

An illustration of how the corresponding density profile u(s) looks like for different
values of α is displayed in Fig. 3.

2.5. The case α = 0. In the analysis of the optimization problem (OPB), the case
α = 0 stands apart. Indeed, the general theorem on the existence of an optimal
shape proved in [7] does not cover this case.

When α = 0, a measure µ is irrigable only if it is concentrated on a set of
dimension ≤ 1. When this happens, in any dimension d ≥ 3 we have Sη(µ) = 0 and
the optimization problem is trivial. The only case of interest occurs in dimension
d = 2. In the following, 〈·, ·〉 denotes the inner product in R2.

Theorem 2.6. Let α = 0, d = 2. Let η ∈ L1(S1) and define

K
.
= max
|w|=1

∫
n∈S1

∣∣∣〈w,n〉∣∣∣ η(n) dn. (28)

(i) If K > c, then the optimization problem (OPB) has no solution, because the
supremum of all possible payoffs is +∞.

(ii) If K ≤ c, then the maximum payoff is zero, which is trivially achieved by the
zero measure.

A proof will be given in Section 5.
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3. Properties of optimal branch configurations. In this section we consider
the optimization problem (15) in dimension d = 2. As a step toward the proof of
Theorem 2.5, some properties of optimal branch configurations will be derived.

By the result in [7] we know that an optimal measure µ exists and has bounded
support, contained in R2

+
.
= {(x1, x2) ; x2 ≥ 0}. Call M = µ(R2

+) the total mass
of µ and let χ : [0,M ]× R+ 7→ R2

+ be an optimal irrigation plan for µ.

χ (x)
_

0

χ (x)
+x

Figure 4. According to the definition (31), the set χ−(x) is a curve
joining the origin to the point x. The set χ+(x) is a subtree, containing
all paths that start from x.

Next, consider the set of all branches, namely

B .
= {x ∈ R2

+ ; |x|χ > 0}. (29)

By the single path property, we can introduce a partial ordering among points in
B. Namely, for any x, y ∈ B we say that x � y if for any ξ ∈ [0,M ] we have the
implication

χ(t, ξ) = y =⇒ χ(t′, ξ) = x for some t′ ∈ [0, t]. (30)

This means that all particles that reach the point y pass through x before getting
to y.

For a given x ∈ B the subsets of points y ∈ B that precede or follow x are defined
as

χ−(x)
.
= {y ∈ B ; y � x}, χ+(x)

.
= {y ∈ B ; x � y}, (31)

respectively (see Fig. 4).
We begin by deriving some properties of the sets χ+(x). Introducing the unit

vectors e1 = (1, 0), e2 = (0, 1), we denote by Re1 the set of points on the x1-axis.
As before, n = (cos θ0, sin θ0) denotes the unit vector in the direction of the sunlight.
Throughout the following, the closure of a set A is denoted by A, while 〈·, ·〉 denotes
an inner product.

Lemma 3.1. Let the measure µ provide an optimal solution to the problem (15),
and let χ be an optimal irrigation plan for µ. Then, for every x ∈ B, one has

χ+(x) ⊂ Γx
.
=
{
y ∈ R2

+ ; 〈n, y〉 ∈ [ax, bx]
}
, (32)

where ax
.
= 〈n, x〉, while bx is defined as follows.

• If χ+(x) ∩ Re1 = ∅, then bx = ax = 〈n, x〉.
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Figure 5. If the set χ+(x) is not contained in the slab Γx (the shaded

region), by taking the perpendicular projections π] and π[ we obtain
another irrigation plan with strictly lower cost, which irrigates a new
measure µ̃ gathering exactly the same amount of sunlight. Notice that

here P is the point in the closed set χ+(x) ∩ Re1 which has the largest
inner product with n.

• If χ+(x) ∩ Re1 6= ∅, then

bx = max {ax, b′x}, b′x
.
= sup

{
〈n, z〉 ; z ∈ χ+(x) ∩ Re1

}
.

Proof. The right-hand side of (32) is illustrated in Fig. 5. To prove the lemma,
consider the set of all particles that pass through x, namely

Θx
.
=
{
ξ ∈ [0,M ] ; χ(τ, ξ) = x for some τ ≥ 0

}
.

1. We first show that, by the optimality of the solution,

〈n , χ(ξ, t)〉 ≥ ax for all ξ ∈ Θx , t ≥ τ. (33)

Indeed, consider the perpendicular projection on the half plane

π] : R2 7→ S]
.
= {y ∈ R2 ; 〈n, y〉 ≥ ax}.

Define the projected irrigation plan

χ](t, ξ)
.
=

{
π] ◦ χ(t, ξ) if ξ ∈ Θx , t ≥ τ,

χ(t, ξ) otherwise.

Then the new measure µ] irrigated by χ] is still supported on R2
+ and has exactly

the same projection on E⊥n as µ. Hence it gathers the same amount of sunlight.
However, if the two irrigation plans do not coincide a.e., then the cost of χ] is
strictly smaller than the cost of χ, contradicting the optimality assumption.

2. Next, we show that

〈n , χ(ξ, t)〉 ≤ bx for all ξ ∈ Θx t ≥ τ. (34)

Indeed, call

b′′
.
= sup

{
〈n, z〉 ; z ∈ χ+(x)

}
.
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If b′′ ≤ bx, we are done. In the opposite case, by a continuity and compactness argu-
ment we can find δ > 0 such that the following holds. Introducing the perpendicular
projection on the half plane

π[ : R2 7→ S[
.
= {y ∈ R2 ; 〈n, y〉 ≤ b′′ − δ},

one has {
π[(y) ; y ∈ χ+(x)

}
⊆ R2

+ . (35)

Similarly as before, define the projected irrigation plan

χ[(t, ξ)
.
=

{
π[ ◦ χ(t, ξ) if ξ ∈ Θx , t ≥ τ,

χ(t, ξ) otherwise.

Then the new measure µ[ irrigated by χ[ is supported on R2
+ ∩ S[ and has exactly

the same projection on E⊥n as µ. Hence it gathers the same amount of sunlight.
However, if the two irrigation plans do not coincide a.e., then the cost of χ[ is
strictly smaller than the cost of χ, contradicting the optimality assumption. This
completes the proof of the Lemma.

(x)
+χ+

(y) χ

ω
0
= π/2 − θ

0

z
2

z
1

S

x

y

Figure 6. After a rotation of coordinates, the sunlight comes from the
vertical direction. Here the blue lines correspond to the set B∗ in (36).

Based on the previous lemma, we now consider the set

B∗ .
= {x ∈ B ; χ+(x) ∩ Re1 6= ∅}. (36)

It will be convenient to rotate coordinates by an angle of π/2− θ0, and choose new
coordinates (z1, z2) oriented as in Fig. 6. In these new coordinates, the direction of
sunlight becomes vertical, while the positive x1-axis corresponds to the line

S
.
=
{

(z1, z2) ; z1 ≥ 0 , z2 = −λz1

}
, where λ = tan θ0 . (37)

Calling
(
z1(ξ, t), z2(ξ, t)

)
the corresponding coordinates of the point χ(ξ, t), from

Lemma 3.1 we immediately obtain

Lemma 3.2. Let χ be an optimal irrigation plan for a solution to (15). Then

(i) For every ξ ∈ [0,M ], the map t 7→ z1(ξ, t) is non-decreasing.
(ii) If z̄ = (z̄1, z̄2) /∈ B∗, then χ+(z̄) is contained in a horizontal line. Namely,

χ+(z̄) ⊂ {(z̄1, s) ; s ∈ R}. (38)
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To make further progress, we define

zmax
1

.
= sup

{
z1 ; (z1, z2) ∈ B∗

}
.

Moreover, on the interval [0, zmax1 [ we consider the function

ϕ(z1)
.
= sup

{
s ; (z1, s) ∈ B∗

}
. (39)

z
1

z
2 0

*γ

z
1

Q

S

π/2 − θ
0

ϕ

1

_ n
B

n

n

_
(z  )

P

ϕ ba

P

A

Figure 7. The construction used in the proof of Lemma 3.3.

Lemma 3.3. For every z1 ∈ [0, zmax1 [ , the supremum ϕ(z1) is attained as a maxi-
mum.

Proof. 1. Assume that, on the contrary, for some z̄1 the supremum is not a max-
imum. In this case, as shown in Fig. 7, there exist a sequence of points Pn → P
with Pn = (z̄1, sn), P = (z̄1, z̄2), sn ↑ z̄2. Here Pn ∈ B∗ for every n ≥ 1 but P /∈ B∗.
Without loss of generality, we can assume that all points Pn lie on distinct branches
(i.e., there is no couple m 6= n such that Pm � Pn or Pn � Pm). Otherwise, we
could group all these points into finitely many horizontal branches. But since every
horizontal branch intersects the horizontal line through P in a closed interval, this
would already imply that the supremum in (39) is attained.

2. Choose two values a, b such that

−λz̄1 < b < a < ϕ(z̄1).

By construction, for every n ≥ 1 the set χ+(Pn) intersects S. Therefore we can find
points

Pn � An � Bn

all in B∗, with

An = (tn, a), Bn = (t′n, b), z̄1 ≤ tn ≤ t′n ≤ zmax1 .

3. Since the total mass M is finite, we have∑
n≥1

|An|χ ≤ M
.
= µ(R2

+).
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We can thus find N large enough so that the amount of particles εN
.
= |AN |χ

going through AN is so small that

c(b− a)α εα−1
N > 1. (40)

Consider the modified transport plan χ̃, obtained from χ by removing all particles
that go through the point BN . More precisely, χ̃ is the restriction of χ to the domain

Θ̃
.
= Θ \ {ξ ; χ(ξ, τ) = BN for some τ ≥ 0}.

Let µ̃ be the measure irrigated by χ̃.
Calling σ0 > 0 the total amount of particles going through BN , since µ̃ ≤ µ, the

total amount of sunlight gathered by the measure µ̃ satisfies

Sn(µ)− Sn(µ̃) ≤ (µ− µ̃)(R2) = σ0. (41)

We now estimate the reduction in the transportation cost, achieved by replacing
µ with µ̃. Let γ : [sA, sB ] 7→ R2 be an arclength parameterization of the branch
from AN to BN . Along this arc, when all the particles reaching BN are removed,
the multiplicity (8) decreases from |γ(s)|χ to |γ(s)|χ − σ0. The transportation cost
through γ is reduced in the amount∫ sB

sA

|γ(s)|αχds−
∫ sB

sA

(
|γ(s)|χ − σ0

)α
ds

≥ (sB − sA)α sup
s
|γ(s)|α−1

χ · σ0 ≥ (b− a)αεα−1
N σ0 .

This yields

Iα(µ̃) ≤ Eα(χ̃) ≤ Iα(µ)− (b− a)αεα−1
N σ0 . (42)

If (40) holds, combining (41)-(42) one obtains

Sn(µ)− c Iα(µ) < Sn(µ̃)− c Iα(µ̃).

Hence the measure µ is not optimal. This contradiction proves the lemma.

By the previous result, the graph of ϕ is contained in one single maximal tra-
jectory of the transport plan χ. As in Figure 8, we denote this curve by γ, which
provides the left boundary of the set B∗.

Along the curve γ, we now consider the set of points Cj = (z1,j , z2,j) where some
horizontal branch bifurcates on the left. A property of such points is given below.

Lemma 3.4. In the above setting, for every j, one has

ϕ(s) < z2,j for all s < z1,j . (43)

Proof. If (43) fails, there exists another point C∗j = (z∗1,j , z2,j) along the curve γ,
with z∗1,j < z1,j . We can now replace the measure µ by another measure µ̃ obtained
as follows. All the mass lying on the horizontal half-line {(z1,j , s) ; s ≥ z2,j} is
shifted downward on the half-line {(z∗1,j , s) ; s ≥ z2,j}. Since the functional Sn is
invariant under vertical shifts, we have Sn(µ̃) = Sn(µ). However, the transportation
cost is strictly smaller: Iα(µ̃) < Iα(µ). This contradicts the optimality of µ.

Next, as shown in Fig. 8, we consider a point P ∗ = (p∗1, p
∗
2) ∈ γ where the

component z2 achieves its maximum, namely

p∗2 = max{z2 ; (z1, z2) ∈ γ} ≥ 0. (44)
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Figure 8. The thick portions of the curve γ are the only points where
a left bifurcation can occur. If a horizontal branch σ bifurcates from Cj ,
all the mass on this branch can be shifted downward to another branch
σ∗ bifurcating from C∗

j . Furthermore, if some portion of the path γ
between P ∗ and Q lies above the segment γ∗ joining these two points,
we can take a projection of γ on γ∗. In both cases, the transportation
cost is strictly reduced.

Notice that such a maximum exists because γ is a continuous curve, starting at the
origin. If this maximum is attained at more than one point, we choose the one with
smallest z1-coordinate, so that

p∗1 = min{z1 ; (z1, p
∗
2) ∈ γ}. (45)

Moreover, call
q∗2

.
= inf{z2 ; (z1, z2) ∈ Supp(µ)},

and let Q∗ = (q∗1 , q
∗
2) ∈ S be the point on the ray S whose second coordinate is q∗2 .

Recalling the notation of Lemma 3.1, we note that q∗1 = bx for x = (0, 0). We claim
that, by the optimality of the solution, all paths of the irrigation plan χ must lie
within the convex set

Σ∗
.
= {(z1, z2) ; z1 ∈ [0, q∗1 ], z2 ≥ q∗2}.

Otherwise, call π∗ : R2 7→ Σ∗ the perpendicular projection on the convex set Σ∗,
and let µ∗ be the push-forward of µ by the map π∗. By Lemma 2.4 the composed
map

χ∗(ξ, t)
.
= π∗

(
χ(ξ, t)

)
is an irrigation plan for µ∗ and satisfies Eα(χ∗) < Eα(χ). Hence

Sn(µ∗) = Sn(µ), Iα(µ∗) ≤ Eα(χ∗) < Eα(χ) = Iα(µ),

contradicting the optimality assumption.
By a projection argument we now show that, in an optimal solution, all the

particle paths remain below the segment γ∗ with endpoints P ∗ and Q∗.

Lemma 3.5. In the above setting, let

γ∗ =
{

(z1, z2) ; z1 = a+ bz2 , z2 ∈ [q∗2 , p
∗
2]
}

be the segment with endpoints P ∗, Q∗. If
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(ξ, t) 7→ χ(ξ, t) = (z1(ξ, t), z2(ξ, t)
)

(46)

is an optimal irrigation plan for the problem (15), then for a.e. ξ ∈ Θ we have the
implication

z2(ξ, t) ∈ [q∗2 , p
∗
2] =⇒ z1(ξ, t) ≤ a+ b z2(ξ, t). (47)

Proof. 1. It suffices to show that the maximal curve γ lies below γ∗. If this is not
the case, consider the set of particles which go through the point P ∗ and then move
to the right of P ∗, namely

Ω∗ =
{
ξ ∈ [0,M ] ; χ(ξ, t∗) = P ∗ for some t∗ ≥ 0, z2(ξ, t) < p∗2 for t > t∗

}
. (48)

Notice that, by the single path property (see Section 7.1 in [1]), all these particles
follow the same path from the origin to P ∗. Hence the length t∗ of this path is the
same for all ξ ∈ Ω∗.

2. Consider the convex region below γ∗, defined by

Σ
.
=
{

(z1, z2) ; 0 ≤ z1 ≤ a+ bz2 , z2 ∈ [q∗2 , p
∗
2]
}
.

Let π : R2 7→ Σ be the perpendicular projection. Then the irrigation plan

χ†(ξ, t)
.
=

 π
(
χ(ξ, t)

)
if ξ ∈ Ω∗, t > t∗,

χ(ξ, t) otherwise,
(49)

has total cost strictly smaller than χ. Indeed, for all x and a.e. ξ, t we have∣∣π(x)
∣∣
χ†
≥ |x|χ ,

∣∣χ̇†(ξ, t)∣∣ ≤ ∣∣χ̇(ξ, t)
∣∣. (50)

Notice that, in (50), equality can hold for a.e. ξ, t only in the case where χ = χ†.

3. We now observe that the perpendicular projection on Σ can decrease the
z2-component. As a consequence, the measures µ and µ† irrigated by χ and χ†

may have a different projections on the z2 axis. If this happens, we may have
Sn(µ) 6= Sn(µ†).

To address this issue, we observe that all particles ξ ∈ Ω∗ satisfy χ†(ξ, t∗) =
χ(ξ, t∗) = P ∗. In terms of the z1, z2 coordinates, this implies

z†2(ξ, t∗) = z2(ξ, t∗) = p∗2, z†2(ξ, T (ξ)) ≤ z2(ξ, T (ξ)) < p∗2 . (51)

By continuity, for each ξ ∈ Ω∗ we can find a stopping time τ(ξ) ∈ [t∗, T (ξ)] such
that

z†2(ξ, τ(ξ)) = z2(ξ, T (ξ)).

Call χ̃ the truncated irrigation plan, such that

χ̃(ξ, t)
.
=


χ†(ξ, t) if ξ ∈ Ω∗, t ≤ τ(ξ),

χ(ξ, τ(ξ)) if ξ ∈ Ω∗, t ≥ τ(ξ),

χ(ξ, t) if ξ /∈ Ω∗.

(52)

By construction, the measures µ and µ̃ irrigated by χ and χ̃ have exactly the same
projections on the z2-axis. Hence Sn(µ̃) = Sn(µ). On the other hand, the
corresponding costs satisfy

Eα(χ̃) ≤ Eα(χ†) < Eα(χ).

This contradicts optimality, thus proving the lemma.
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4. Proof of Theorem 2.5. In this section we give a proof of Theorem 2.5. We
recall that the functional (15) to be maximized is the difference between a payoff,
i.e. the sunlight Sn(µ) absorbed by the measure µ, and the ramified transportation
cost cIα(µ). Together with the measure µ, at various steps of the proof we shall
construct a second measure µ̃, obtained by shifting part of the mass in a direction
parallel to n. As in Remark 1, this will not change the sunlight gathered: Sn(µ̃) =
Sn(µ). On the other hand, the irrigation cost of µ̃ is strictly smaller: Iα(µ̃) < Iα(µ).
We shall conclude that µ is not optimal.

As shown in Fig. 8, let P ∗ = (p∗1, p
∗
2) be the point defined at (44). We consider

two cases:

(i) P ∗ = 0 ∈ R2,
(ii) P ∗ 6= 0.

Assume that case (i) occurs. Then, by Lemma 3.4, the only branch that can
bifurcate to the left of γ must lie on the z2-axis. Moreover, by Lemma 3.5, the path
γ cannot lie above the segment with endpoints P ∗, Q∗. Therefore, the restriction
of the measure µ to the half space {z2 ≤ 0} is supported on the line S. Combining
these two facts we achieve the conclusion of the theorem.

The remainder of the proof will be devoted to showing that the case (ii) cannot
occur, because it would contradict the optimality of the solution.

To illustrate the heart of the matter, we first consider the elementary configu-
ration shown in Fig. 9, left, where all trajectories are straight lines. Water is first
transported from the origin to the point P ∗. Then, an amount σ > 0 is moved
horizontally to the point Q, while an amount κ > 0 is moved to P1. This yields a
transport plan χ, which irrigates the measure µ consisting of a mass σ at Q and a
mass κ at P1.

Next, as shown in Fig. 9, right, we consider a point P along the segment 0P ∗. A
new transport plan χ̃ is defined, where water is first transported from the origin to

P . Then, an amount σ is moved horizontally to a point Q̃ located along the same
vertical line as Q. The remaining amount κ is moved in a straight line from P to
P1. Notice that the new transport plan χ̃ now irrigates a measure µ̃ consisting of a

mass σ at Q̃ and a mass κ at P1.
To fix ideas, we denote the lengths of the segments PP ∗ and P ∗P1 as

`a = |P − P ∗|, `b = |P1 − P ∗|. (53)

The angles between these segments and a horizontal line will be denoted by θa, θb,
respectively. The next lemma provides a comparison between the costs of the two
irrigation plans χ and χ̃.

Lemma 4.1. Let σ ≥ 0, κ > 0 be given, together with angles θa ∈ [0, π/2] and
θb ∈ [0, π/2[ . Let χ, χ̃ be the irrigation plans defined above, as shown in Fig. 9. If
0 < α < 1/2 and θb satisfies the additional bound

cos θb > 1− 22α−1, (54)

or if α ≥ 1/2, then there exists ε > 0 such that `a/`b ≤ ε implies

Eα(χ̃) < Eα(χ). (55)

Proof. 1. To compute the difference between the quantities in (55), notice that the
old transportation cost along PP ∗ and P ∗P1,

(κ+ σ)α`a + κα`b
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Figure 9. Left: an irrigation plan for a measure µ with two masses at
Q and at P1. Right: an irrigation plan for a modified measure µ̃ with

two masses at Q̃ and at P1. The lengths of the segments PP ∗ and P ∗P1

will be denoted by `a, `b, respectively.

is replaced by the new cost

κα
√
`2a + `2b − 2`a`b cos(θa + θb) + σα`a cos θa . (56)

Notice that the last term in (56) accounts for the fact that an amount σ of particles

need to cover a longer horizontal distance, traveling along the segment PQ̃ instead
of P ∗Q.

The difference in the cost is thus expressed by the function

f(`a, `b) = Eα(χ)− Eα(χ̃)

= (κ+ σ)α`a − σα`a cos θa + κα
[
`b −

√
`2a + `2b − 2`a`b cos(θa + θb)

]
.

2. Introducing the variables

ε =
`a
`b
, ` = `b, ε` = `a,

we obtain

f(ε`, `) = `
[
ε(κ+ σ)α − εσα cos θa + κα

(
1−

√
1 + ε2 − 2ε cos(θa + θb)

)]
= ε`

[
(κ+ σ)α − σα cos θa + κα cos(θa + θb) +O(1) · ε

]
.

(57)
Setting

λ =
σ

κ+ σ
∈ [0, 1[ ,

we are thus led to study the function

F (λ, θa, θb)
.
= 1− λα cos θa + (1− λ)α cos(θa + θb) (58)

and to find conditions which imply the positivity of F .
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3. The function F in (58) can be written in terms of an inner product:

F (λ, θa, θb) = 1− cos θa [λα − (1− λ)α cos θb]− sin θa(1− λ)α sin θb

= 1−
〈

(cos θa, sin θa) ,
(
λα − (1− λ)α cos θb , (1− λ)α sin θb

)〉
.

(59)
To prove that F > 0 it thus suffices to show that the second vector on the right
hand side of (59) has length smaller than one, namely

λ2α + (1− λ)2α − 2λα(1− λ)α cos θb < 1.

This inequality holds provided that

cos θb >
λ2α + (1− λ)2α − 1

2λα(1− λ)α
. (60)

Two cases must be considered. If α ≥ 1/2, then

λ2α + (1− λ)2α ≤ 1 for all λ ∈ [0, 1].

Hence (60) trivially holds for all θb < π/2.
On the other hand, if α < 1/2, consider the function

g(λ)
.
=

λ2α + (1− λ)2α − 1

2λα(1− λ)α
= 1 +

(
λα − (1− λ)α

)2 − 1

2λα(1− λ)α
.

We observe that, for 0 ≤ α ≤ 1
2 , one has

0 ≤ g(λ) ≤ g
(1

2

)
= 1− 22α−1, (61)

while
lim
λ→0+

g(λ) = lim
λ→1−

g(λ) = 0.

From (61) it now follows that the condition (54) guarantees that (60) holds, hence
F ≥ 0, as required.

Summarizing the previous analysis, for any λ ∈ ]0, 1[ and θa ∈ [0, π/2], we have
proved:

(i) When α ≥ 1/2, one has F (λ, θa, θb) > 0 for all θb ∈ [0, π/2[ .
(ii) When 0 < α < 1/2 one has F (λ, θa, θb) > 0 provided that θb satisfies the

additional bound (54).

4. Combining (57) with (58), we obtain

f(θa, θb) = `a(κ+ σ)α
[
F (λ, θa, θb) +O(1) · `a

`b

]
. (62)

By the previous step, in both cases (i) and (ii) the right hand side of (62) is strictly
positive provided that the ratio `a/`b is sufficiently small. This yields (55).

We now consider a more general irrigation plan χ, shown in Fig. 10. Water is
transported from the origin along a straight path γ, up to the point P ∗. Then the
flux is split into a finite number of straight paths. One goes horizontally to the left,
with flux σ ≥ 0, reaching a point Q. The other paths go to the right, with fluxes
κ1, . . . , κn > 0, at angles

0 ≤ θn < · · · < θ2 < θ1, (63)

until they reach points P1, . . . , Pn. This provides an irrigation plan for the mea-
sure concentrating a mass σ at the point Q and masses κ1, . . . , κn at the points
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Figure 10. A more general configuration, considered in Lemma 4.2.

P1, . . . , Pn. As shown in Fig. 10, we assume that all points Pi lie on the same
straight line γ̃, which intersects γ at a point P .

We compare this configuration with a modified irrigation plan χ̃ defined as fol-
lows. First, the plan χ̃ moves all the mass from the origin along the straight line
γ up to the point P . Then an amount of mass σ is moved horizontally to the left,

until it reaches a point Q̃ on the same vertical line as Q. The remaining mass
κ = κ1 + · · ·+ κn is moved along the segment γ̃, until it reaches the various points
P1, . . . , Pn. Notice that χ̃ is an irrigation plan for a measure µ̃ which concentrates

a mass σ at the point Q̃ and masses κ1, . . . , κn at the points P1, . . . , Pn. As shown
in Fig. 10, we call θa ∈ [0, π/2] the angle between γ and a horizontal line, and let
β ∈ [0, π/2[ be the angle between γ̃ and a horizontal line.

Lemma 4.2. Let the masses σ ≥ 0 and κ1, . . . , κn > 0 be given, together with
angles θa ∈ [0, π/2] and θi ∈ [0, π/2[ as in (63). Let χ, χ̃ be the irrigation plans
defined above, as shown in Fig. 10. If 0 < α < 1/2 and θ1 satisfies the additional
bound

cos θ1 > 1− 22α−1, (64)

or if α ≥ 1/2, then there exists ε > 0 such that 0 < β − θ1 < ε implies

Eα(χ)− Eα(χ̃) > 0. (65)

Proof. 1. The left-hand side of (65), describing the difference between the old and
the new transportation cost, can be expressed as

|P − P ∗|
(
σ +

∑n
j=1 κj

)α
+
∑n
j=1 κ

α
j |P ∗ − Pj | − σα cos θa|P − P ∗|

−
∑n
j=1

(∑j
i=1 κi

)α
|Pj+1 − Pj |,

(66)

where, for notational convenience, we set Pn+1
.
= P . According to (66) we can write

Eα(χ)− Eα(χ̃) = A+ Sn , (67)
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where

A
.
= |P −P ∗|

σ +

n∑
j=1

κj

α

− σα cos θa

+

 n∑
j=1

κj

α (
|P ∗−P1| − |P −P1|

)
,

(68)

Sn =

n∑
j=1

καj |P ∗ − Pj | −
( n∑
j=1

κj

)α(
|P ∗ − P1| − |Pn+1 − P1|

)

−
n∑
j=1

( j∑
i=1

κi

)α
|Pj+1 − Pj |.

(69)

2. Notice that the quantity A in (68) would describe the difference in the costs
if all the mass κ = κ1 + · · ·+ κn were flowing through the point P1. We claim that

A ≥ |P − P ∗|
[
(σ + κ)α − σα cos θa + κα cos(θa + θ1)− κα

2

|P − P ∗|
|P1 − P ∗|

]
. (70)

Indeed, the last two terms within the square brackets in (70) are derived from

|P ∗ − P1| − |P − P1| = |P ∗ − P1|
[
1−

√
1− 2 |P−P

∗|
|P∗−P1| cos(θa + θ1) + |P−P∗|2

|P∗−P1|2

]
≥ |P ∗ − P1|

[
1−

(
1− |P−P∗|

|P∗−P1| cos(θa + θ1) + |P−P∗|2
2|P∗−P1|2

)]
.

Using Lemma 4.1, we can now choose ε′ > 0 small enough such that, if

|P − P ∗|
|P1 − P ∗|

< ε′, (71)

then the right hand side of (70) is strictly positive. It now suffices to observe that,
given all the angles θa, θ1, . . . , θn, by choosing ε > 0 small enough one achieves the
implication

β − θ1 < ε =⇒ |P − P ∗|
|P1 − P ∗|

< ε′. (72)

In turn, this implies the strict inequality

A > 0. (73)

3. To complete the proof of the lemma, it remains to prove that Sn ≥ 0. This
will be proved by induction on n. Starting from (69) and using the inequalities

|Pn − P1| ≤ |P ∗ − P1|,
( n∑
i=1

κi

)α
≤ καn +

( n−1∑
i=1

κi

)α
,
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we obtain

Sn =

n∑
j=1

καj |P ∗ − Pj | −
( n∑
j=1

κj

)α (
|P ∗ − P1| − |Pn − P1|

)︸ ︷︷ ︸
≥0

−
n−1∑
j=1

( j∑
i=1

κi

)α
|Pj+1 − Pj |

≥ καn|P ∗ − Pn|+
n−1∑
j=1

καj |P ∗ − Pj |

−
(
καn +

( n−1∑
j=1

κj

)α)(
|P ∗ − P1| − |Pn − P1|

)
−
( n−1∑
i=1

κi

)α
|Pn − Pn−1| −

n−2∑
j=1

( j∑
i=1

κi

)α
|Pj+1 − Pj |

=

n−1∑
j=1

καj |P ∗ − Pj | −
( n−1∑
j=1

κj

)α(
|P ∗ − P1| − |Pn−1 − P1|

)
−
n−2∑
j=1

( j∑
i=1

κi

)α
|Pj+1 − Pj |+ καn

(
|P ∗ − Pn|+ |Pn − P1| − |P ∗ − P1|

)
= Sn−1 + καn

(
|P ∗ − Pn| − |P ∗ − P1|+ |Pn − P1|

)
≥ Sn−1 ,

(74)

where in the second equality we have used |Pn−1 − P1| = |Pn − P1| − |Pn − Pn−1|.
Repeating this same argument, by induction we obtain

Sn ≥ Sn−1 ≥ · · · ≥ S1 .

Observing that

S1 = κα1 |P ∗ − P1| − κα1
(
|P ∗ − P1| − |P2 − P1|

)
− κα1 |P2 − P1| = 0,

the proof of the lemma is completed.

Remark 4. As soon as all the masses σ, κ1, . . . , κn and all the angles θa, β, θ1, . . . , θn
have been assigned, the difference between the two irrigation costs in (65) is a
positive homogeneous function of the distance |P1 − P ∗|. We can thus replace (65)
with the inequality

Eα(χ)− Eα(χ̃) > c0 |P1 − P ∗|, (75)

for some c0 > 0 depending on all the above constants. Notice that, by continuity,
the bound (75) remains valid if θa is replaced by some other angle θ′a, with |θ′a− θa|
sufficiently small.

4.1. Completion of the proof. Let µ be an optimal measure, maximizing the
functional (15), and let χ : Θ × R+ 7→ R2 be an optimal irrigation plan for µ.
According to (6), we assume that all paths are parameterized by arc-length.

As remarked at the beginning of this section, a proof of Theorem 2.5 can be
achieved by showing that, for an optimal solution, the point P ∗ = (p∗1, p

∗
2) intro-

duced at (44) must coincide with the origin. We recall that by definition we must
necessarily have p∗2 ≥ 0 since the maximal curve γ contains the origin. Moreover,
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p∗2 = 0 implies p∗1 = 0, since by a projection argument, this leads to a lower irri-
gation cost. Throughout the following we shall thus assume p∗2 > 0 and derive a
contradiction.

1. Call
Θ∗

.
=
{
ξ ∈ Θ ; χ(ξ, t∗) = P ∗ for some t∗ > 0

}
(76)

the set of particles that move through P ∗. Notice that, by the single path property,
there exists a unique path γ : [0, t∗] 7→ R2 such that

γ(0) = 0, γ(t∗) = P ∗, χ(ξ, t) = γ(t) for all ξ ∈ Θ∗, t ∈ [0, t∗]. (77)

As a consequence, in (76) the time t∗ is the same for all ξ ∈ Θ∗.
Within the set Θ∗ of all particles reaching P ∗, we distinguish the ones which

proceed to the left or to the right of P ∗, namely

Θ∗ = Θl ∪Θr . (78)

Here Θl denotes the set of particles that, after reaching P ∗, move along the hori-
zontal line {(z1, z2); z1 = p∗1, z2 > p∗2} to the left of P ∗. Moreover, Θr = Θ∗ \Θl is
the set of particles which, after reaching P ∗, move to the right. For all ξ ∈ Θr and
t > t∗, we thus have

χ(t, ξ) ∈
{

(z1, z2) ; z1 ≥ p∗1, z2 ≤ p∗2
}
. (79)

For future use, we denote

σ
.
= meas(Θl), κ

.
= meas(Θr). (80)
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Figure 11. Left: in the shaded region ∆ above the curve γ, the mea-
sure µ cannot concentrate any mass. Otherwise, by shifting this mass
downward until it hits a point on γ, we would obtain a second measure
µ̃ which gathers the same amount of sunlight, but has a lower irrigation
cost. As a consequence, by the interior regularity property, the flow out
of P ∗ is locally supported on a finite number of line segments. Right:
the construction used in steps 4–6 of the proof of Theorem 2.5.

2. In connection with the path γ at (77), consider the set (the shaded region in
Fig. 11)

∆
.
=
{

(z1, z2) ; there exists ẑ1 < z1 and t ∈ [0, t∗] such that (ẑ1, z2) = γ(t)
}
.

(81)
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We claim that the measure µ cannot concentrate any mass on the open set ∆.
Indeed, if µ(∆) > 0, then we consider the measure µ̂ obtained by vertically shifting
all the mass in ∆ until it touches some point on the curve Γ. More precisely, let
φ : ∆ 7→ {γ(t); t ∈ [0, t∗]} be a measurable map such that φ(z1, z2) = (ẑ1, z2), with
ẑ1 as in (81). Furthermore, outside the set ∆ we extend the map by the identity,
that is, φ(z1, z2) = (z1, z2). Let µ̂ be the push-forward of the measure µ by the map
φ. This new measure µ would then satisfy

Sn(µ̂) = Sn(µ), Iα(µ̂) < Iα(µ),

contradicting the optimality of µ.

3. The previous argument shows that there are no sinks inside ∆. Hence all
particles ξ ∈ Θr continue to move to the right of P ∗, eventually crossing the z1-
axis. For ξ ∈ Θr we can thus define the stopping time

τ(ξ)
.
= min{t > t∗ ; χ(ξ, t) = (z1, 0) for some z1 ≥ p∗1},

and introduce the measure µ, supported on the z1-axis, defined by

µ(V ) = meas
{
ξ ∈ Θr ; χ(ξ, τ(ξ)) ∈ V

}
.

We observe that the restriction of χ to the set{
(ξ, t) ; ξ ∈ Θr , t ∈ [t∗, τ(ξ)]

}
yields an optimal transport plan from a point mass located at P ∗ to the measure
µ.

By the interior regularity property (see Theorem 8.16 in [1], or Theorem 4.10
in [19]), outside a neighborhood of the support of µ, the optimal transport plan
is supported on a finite union of line segments. In particular, restricted to the set
{z2 > p∗2/2}, all paths χ(ξ, ·), with ξ ∈ Θr, t > t∗ are contained within finitely
many line segments.

4. By the previous step, within a neighborhood of P ∗, all particle paths which
move out of P ∗ are contained in finitely many straight lines starting at P ∗.

Adopting the same notation used in Lemma 4.2, we call σ = meas(Θl) the amount
of mass which moves horizontally to the left of P ∗. As in (63), we call θ1, . . . , θn
the angles formed by the line segments to the right of P ∗ with a horizontal line (see
Fig. 11, right). The fluxes along these line segments are denoted by κ1, . . . , κn. We
introduce the decomposition

Θr = Θ1 ∪ · · · ∪Θn , (82)

where Θi denotes the set of particles ξ ∈ Θr that move along the i-th segment.
Notice that, with this notation, one has κi = meas(Θi).

We recall that, by Lemma 3.5, all particle paths χ(ξ, t), ξ ∈ Θr, lie below the
segment γ∗ with endpoints P ∗, Q∗. This implies that all angles θ1, . . . , θn are
strictly smaller than π

2 − θ0. By the assumption (17), we are led to consider two
cases.

Case 1: 1/2 ≤ α ≤ 1 and 0 ≤ θ1 < π/2,

Case 2: 0 < α < 1/2 and

cos θ1 > cos
(π

2
− θ0

)
= sin θ0 ≥ 1− 22α−1. (83)
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5. In this step, under the assumption that p∗2 > 0, we construct a competing
measure µ̃. Using Lemma 4.2, this will eventually allow us to conclude that the
measure µ is not optimal.

For t < t∗, consider the unit vector

w(t) =
γ(t)− γ(t∗)

|γ(t)− γ(t∗)|
.

By compactness, there exists an increasing sequence tν → t∗− such that

lim
ν→∞

w(tν) = w, (84)

for some unit vector w = (w1, w2), with w1 ≤ 0, w2 ≤ 0. Call θa ∈ [0, π/2] the
angle between w and a horizontal line.

In connection with the masses σ, κ1, . . . , κn and the angles θ1, . . . , θn defined
above, we now choose an angle β > θ1, sufficiently close to θ1, so that the conclusion
of Lemma 4.2 holds. In particular, by Remark 4 the inequality (75) holds.

Next, we choose ν ≥ 1 sufficiently large (its precise value will be determined
later), and consider the point P = (p1, p2) = γ(tν). Again referring to Fig. 11, right,
we denote by γ̃ the straight line through P , forming an angle β with a horizontal
line. As in Lemma 4.2, we denote by P1, . . . , Pn the points where γ̃ intersects the
line segments through P ∗, forming angles 0 ≤ θn < · · · < θ1 with a horizontal line.

A new measure µ̃ and a new irrigation plan χ̃ are now defined as follows.

• The measure µ̃ is obtained from µ by vertically shifting all the mass located
on the horizontal line to the left of P ∗ downward on the horizontal line to the
left of P . More precisely, µ̃ is the push-forward of µ by the map

φ(z1, z2) =

{
(p1, z2) if z1 = p∗1, z2 > p∗2,

(z1, z2) otherwise.

• Recalling (78), for ξ /∈ Θ∗ we simply set χ̃(ξ, t) = χ(ξ, t) for all t ≥ 0.
• Particles ξ ∈ Θl move along the path γ up to the point P . Then the move

horizontally to the left of P , stopping at a point χ̃(ξ, T̃ (ξ)) on the same vertical
line as χ(ξ, T (ξ)).

• Particles ξ ∈ Θr move along the path γ up to the point P . Then they move
along γ̃ until they reach the corresponding points P1, . . . , Pn. Afterwards, the
remaining portions of their trajectories are exactly as before.

6. By construction we have Sn(µ̃) = Sn(µ). To analyze the cost of the new
irrigation plan χ̃, consider the set

Θ†ν
.
=
{
ξ ∈ Θ \Θ∗ ; χ(ξ, tν) = γ(tν) = P}.

This is the set of particles that go through P , but do not reach P ∗ afterwards:
either they stop along γ, or they move to some other branch bifurcating from γ
before reaching P ∗.

We observe that, in the case where Θ†ν = ∅, one can immediately apply Lemma 4.2
and conclude

Iα(µ̃) ≤ Eα(χ̃) < Eα(χ) = Iα(µ). (85)

The following analysis will show that the same conclusion can still be reached,
provided that P is sufficiently close to P ∗ and

δν
.
= meas(Θ†ν) (86)
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is sufficiently small. For future use, we observe that

lim
ν→∞

tν = t∗, lim
ν→∞

δν = 0. (87)

We are now ready to estimate the difference between the two irrigation costs, in
the general case.

(1) For ξ /∈ Θ∗ ∪Θ†ν , we have

χ(ξ, t) = χ̃(ξ, t),
∣∣χ(ξ, t)

∣∣
χ

=
∣∣χ̃(ξ, t)

∣∣
χ̃

(88)

for all t > 0. Hence these particles do not contribute to the difference in the
transportation cost.

(2) For ξ ∈ Θ†ν , the first identity in (88) still holds for all t > 0. However, the
second one holds only for t /∈ [tν , τ(ξ)], where

τ(ξ) = sup
{
t ∈ [tν , T (ξ)] ; χ(ξ, t) = γ(t)

}
< t∗

is the time when the particle ξ either stops, or leaves the path γ. We estimate the
difference

A
.
=

∫
Θ†ν

∫ τ(ξ)

tν

(∣∣χ̃(ξ, t)
∣∣α−1

χ̃
−
∣∣χ(ξ, t)

∣∣α−1

χ

)
dt dξ

≤
∫

Θ†ν

∫ τ(ξ)

tν

∣∣χ̃(ξ, t)
∣∣α−1

χ̃
dt dξ ≤

[
meas(Θ†ν)

]α · (t∗ − tν).

(89)

(3) It remains to estimate the difference in the cost for transporting particles
ξ ∈ Θ∗, namely

B
.
=

∫
Θ∗

(∫ T̃ (ξ)

0

∣∣χ̃(ξ, t)
∣∣α−1

χ̃
dt−

∫ T (ξ)

0

∣∣χ(ξ, t)
∣∣α−1

χ
dt

)
dξ . (90)

The estimate of B is based on the following observation. If the portion of the curve
γ between P and P ∗ were a straight segment, and if on this segment the multiplicity
were constantly equal to σ + κ, then we could use Lemma 4.2 and Remark 4. By
(75) we could thus conclude

B ≤ −c0 |P1 − P ∗|. (91)

In the general case, recalling (86), the multiplicity along γ is estimated by

σ + κ ≤
∣∣γ(t)

∣∣
χ
≤ σ + κ+ δν for all t ∈ [tν , t

∗].

The presence of the additional particles ξ ∈ Θ†ν increases the multiplicity and hence
reduces the cost of χ. The amount by which this cost is reduced can be bounded
above by ∫

Θ∗

∫ t∗

tν

[
(σ + κ)α−1 − (σ + κ+ δν)α−1

]
dt dξ

=
[
(σ + κ)α−1 − (σ + κ+ δν)α−1

]
(σ + κ) (t∗ − tν).

(92)

On the other hand, the fact that the curve γ is not necessarily a straight line
increases the cost of χ in an amount which is bounded below by

(σ + κ) · (σ + κ+ δν)α−1 ·
(

(t∗ − tν)− |P ∗ − P |
)
. (93)
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Combining all the previous observations, from (89), (91), (92), and (93), we
conclude

Eα(χ̃)− Eα(χ) ≤ δαν (t∗ − tν)− c0|P1 − P ∗|

+
[
(σ + κ)α−1 − (σ + κ+ δν)α−1

]
(σ + κ) (t∗ − tν)

−(σ + κ) · (σ + κ+ δν)α−1 ·
(

(t∗ − tν)− |P ∗ − P |
)
.

(94)

We claim that, for some choice of ν ≥ 1 large enough, the right hand side of (94)
becomes negative, thus contradicting the optimality of the measure µ. We consider
two cases.

Case 1: (t∗ − tν) ≤ 2|γ(tν) − P ∗| for infinitely many integers ν ≥ 1. When this
inequality holds, (94) yields

Eα(χ̃)− Eα(χ) ≤ 2δαν |γ(tν)− P ∗| − c0|P1 − P ∗|

+
[
(σ + κ)α−1 − (σ + κ+ δν)α−1

]
· 2(σ + κ)|γ(tν)− P ∗|.

(95)
We now observe that the limit (84) implies an inequality of the form

|γ(tν)− P ∗| ≤ C|P1 − P ∗|,

for a suitable constant C and all ν sufficiently large. Therefore, as δν → 0, it is clear
that the right hand side of (95) becomes negative. This contradicts the optimality
of µ.

Case 2: (t∗ − tν) ≥ 2|γ(tν) − P ∗| for infinitely many integers ν ≥ 1. When this
inequality holds, (94) yields

Eα(χ̃)− Eα(χ) ≤ δαν (t∗ − tν) +
[
(σ + κ)α−1 − (σ + κ+ δν)α−1

]
(σ + κ) (t∗ − tν)

−(σ + κ) · (σ + κ+ δν)α−1 · 1
2 (t∗ − tν).

(96)
When δν is sufficiently small, the right hand side of (96) becomes negative. Once
again, this contradicts the optimality of µ.

5. The case d = 2, α = 0. We give here a proof of Theorem 2.6.

1. Assume that there exists a unit vector w∗ ∈ R2 such that

K =

∫
n∈S1

∣∣∣〈w∗,n〉∣∣∣ η(n) dn > c.

Let v = (cosβ, sinβ) be a unit vector perpendicular to w∗, with β ∈ [0, π]. Let µ
be the measure supported on the segment {rv ; r ∈ [0, `]}, with constant density λ
w.r.t. 1-dimensional Lebesgue measure.

Then the payoff achieved by µ is estimated by

Sη(µ)− cI0(µ) = ` ·
∫
S1

(
1− exp

{
− λ∣∣〈w∗,n〉∣∣}

) ∣∣∣〈w∗,n〉∣∣∣ η(n) dn− c `
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≥ ` · (1− e−λ)

∫
S1

∣∣∣〈w∗,n〉∣∣∣ η(n) dn− c `

=
[
(1− e−λ)K − c

]
`.

(97)

By choosing λ > 0 large enough, the first factor on the right hand side of (97)
is strictly positive. Hence, by increasing the length `, we can render the payoff
arbitrarily large.

2. Next, assume that K ≤ c. Consider any Lipschitz curve s 7→ γ(s), parame-
terized by arc-length s ∈ [0, `]. Then, for any measure µ supported on γ, the total
amount of sunlight from the direction n captured by µ satisfies the estimate

Sn(µ) ≤
∫ `

0

∣∣∣〈γ̇(s)⊥, n〉
∣∣∣ ds.

Indeed, it is bounded by the length of the projection of γ on the line E⊥n perpen-
dicular to n. Integrating over the various sunlight directions, one obtains

Sη(µ) ≤
∫ `

0

∫
S1

∣∣∣〈γ̇(s)⊥, n〉
∣∣∣ η(n) dn ds ≤ K `.

More generally, µ =
∑
i µi can be the sum of countably many measures supported

on Lipschitz curves γi. In this case, since the sunlight functional is sub-additive,
one has

Sη(µ) ≤
∑
i

Sη(µi) ≤
∑
i

K`i .

Hence

Sη(µ)− cI0(µ) ≤
∑
i

K`i − c
∑
i

`i ≤ 0.

This concludes the proof of case (ii) in Theorem 2.6.

6. Concluding remarks. We first clarify the role of the assumption (17), used in
Theorem 2.5 when 0 < α < 1/2.

Consider the problem of irrigating two masses M0,M1 > 0 from the origin. Then,
as shown in Fig. 12, left, the optimal bifurcation angle satisfies

cos θ =
1− λ2α − (1− λ)2α

2λα(1− λ)α
, λ =

M0

M0 +M1
. (98)

For a proof, see Lemma 12.2 of [1]. As a consequence, we have the implications

1
2 < α ≤ 1 =⇒ cos θ ∈ ]0, 22α−1 − 1],

α = 1
2 =⇒ cos θ = 0,

0 ≤ α < 1
2 =⇒ cos θ ∈ [22α−1 − 1, 0[ .

Notice that cos θ = 22α−1−1 when M0 = M1 and hence λ = 1/2. As a consequence,
regardless of the relative sizes of M0,M1, we have:

• When α ≥ 1/2, a bifurcation with an angle θ > π/2 cannot be optimal.
• When α < 1/2, a bifurcation with an angle θ such that cos θ < 22α−1 − 1

cannot be optimal.
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This is the underlying motivation for the assumption (17), repeatedly used in the
proofs. Notice that a similar assumption (54) was introduced in Lemma 4.1.

It is interesting to speculate whether the conclusion of Theorem 2.5 may still
hold when α < 1/2 while the angle θ0 > 0 is arbitrarily small. Consider any
measure µ supported on the two half-lines Γ0 ∪ Γ1 as shown in Fig. 12, right. The
necessary conditions derived for the problem (18) allow us to compute the total
mass concentrated by the measure µ on each of these half-lines. Indeed, according
to (26) and (27), we have

M0
.
= µ(Γ0) =

(
sin θ0

c

)1/α

, M1 = µ(Γ1) =

(
1

c

)1/α

. (99)

Therefore

λ =
M0

M0 +M1
=

(sin θ0)1/α

1 + (sin θ0)1/α
, sin θ0 =

λα

(1− λ)α
. (100)

In order for this configuration to be optimal, a necessary condition is

cos θ =
1− λ2α − (1− λ)2α

2λα(1− λ)α
≥ cos

(
θ0 +

π

2

)
= − sin θ0 . (101)

Indeed, if (101) fails, a better configuration could be constructed as shown in Fig. 12,
right. Here A and B are points along Γ0 and Γ1 respectively, at distance ε > 0
from the origin, while P is a suitable point such that the angle between PA and
PB equals θ. To uniquely determine P , we again refer to the necessary conditions
in Lemma 12.2 of [1]. Replacing the segments 0A and 0B with the three segments
0P , PA, and PB, we can obtain a new configuration where the transportation
cost is reduced by O(1) · ε, while keeping the same value of the sunlight functional.
Therefore, our initial configuration where the measure µ is supported on Γ0 ∪ Γ1

would not be optimal.
The inequality (101) is precisely what is needed to rule out this possibility.

Namely, if (101) holds, then the point P cannot lie inside the sector bounded by Γ0

and Γ1. Recalling (100), we can write (101) in the form

1− λ2α − (1− λ)2α

2λα(1− λ)α
≥ − λα

(1− λ)α
.

Equivalently:
φ(λ)

.
= (1− λ)2α − λ2α − 1 ≤ 0. (102)

We observe that φ(0) = 0 while φ(1) = −2. In addition,

φ′(λ) = −2α[(1− λ)2α−1 + λ2α−1] < 0

for 0 < λ < 1. This implies that φ(λ) < 0 for 0 < λ < 1. Therefore, the necessary
conditions for optimality (101) are always satisfied, even when the angle θ0 is very
small.

We conclude this paper by discussing possible extensions of our results.

(I) Motivated by the previous analysis, we conjecture that the conclusion of
Theorem 2.5 remains valid even without the assumption (17). Namely, for all
0 < α < 1/2 and every θ0 ∈ [0, π/2], the optimal measure µ is still supported on the
union of the two rays Γ0 ∪Γ1. To achieve a proof, however, an additional argument
will be needed. More specifically, the assumption (54) in Lemma 4.1 can be removed
only by imposing some additional restriction on the value of λ = σ

κ+σ ∈ [0, 1]. Our
construction in Section 4, however, does not yield such information.
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Figure 12. Changing the transport plan, when θ0 > 0 is very small.
If in the irrigation problem the bifurcation angle satisfies θ > θ0 + π

2
,

then the original configuration, where all the mass is supported along
Γ0 ∪ Γ1, would not be optimal. The analysis at (102) shows that this
situation never happens.

(II) In Theorem 2.5 it was assumed that sunlight comes from one single direction.
In the case considered at (4), where sunlight comes with varying intensity from
different directions, one may conjecture that a similar result still holds true. This
guess seems very reasonable if the support of the function η ∈ L1(S1) is contained
within a small sector, say [θ0 − δ, θ0 + δ]. We remark, however, that proving such a
result will require a substantially different approach. In the proof of Theorem 2.5,
we repeatedly used the fact (highlighted in Remark 1) that, shifting part of the mass
of µ along the direction n of sunlight, one obtains a new measure µ̃ which collects
exactly the same amount of sunlight: Sn(µ̃) = Sn(µ). This crucial property fails as
soon as we replace Sn with Sη, allowing sunlight to come from different directions.

(III) It would be interesting to analyze the optimal branch configuration in
three space dimensions. To fix ideas, assume that sunlight comes from the direction
parallel to n = (cos θ0, 0, sin θ0), and call e = (0, 0, 1) the unit vector in the vertical
direction. Then it is easy to see that the optimal measure µ must be supported
within the convex closure of the two half-planes

Γ0
.
=
{
v ∈ R3 ; 〈v,n〉 ≥ 0, 〈v, e〉 = 0

}
, Γ1

.
=
{
v ∈ R3 ; 〈v,n〉 = 0, 〈v, e〉 ≥ 0

}
.

In addition, the Hausdorff measure of Supp(µ) must be ≥ 2. Otherwise, the col-
lected sunlight would be Sn(µ) = 0. A challenging question is whether the support
of µ is indeed contained in a two-dimensional surface. In this case, the optimal
irrigation plan should have a structure similar to the one studied in [16].
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