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Abstract. This paper investigates the incompressible limit of a system mod-

elling the growth of two cells population. The model describes the dynamics of
cell densities, driven by pressure exclusion and cell proliferation. It has been

shown that solutions to this system of partial differential equations have the

segregation property, meaning that two population initially segregated remain
segregated. This work is devoted to the incompressible limit of such system

towards a free boundary Hele Shaw type model for two cell populations.

1. Introduction. Diversity is key in biology. It appears at all kind of level from
the human scale to the microscopic scale, with million of cells types; each scales
impacting on the others. During development, the coexistence of different cells
types following different rules impact on the growth of tissue and then on the global
structures. In a more specific case, this can be observed in cancerous tissue with
the invasion of tumour cells in an healthy tissue creating abnormal growth. Fur-
thermore, not all cancerous cells play the same role. They can be proliferative or
quiescent depending on their positions, ages, . . . To study the influence of these
diverse cells on each others from a theoretical view, we introduce mathematical
model for multiple populations. In this paper we are interesting in the global dy-
namics and interactions of the two populations, meaning that we focus specifically
on continuous models.

In the already existing literature on macroscopic model, we distinguish two cat-
egories. The most common ones involved partial differential equations (PDE) in
which cells are represented by densities. These models have been widely used to
model growth of tissue [10, 31], in particular for tumor growth [1, 7, 11, 16]. Another
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way to model tissue growth is by considering free boundary models [17, 18, 21]. In
these models the tissue is described by a domain and its growth and movement
are driven by the motion of the boundary. The link between these two types of
model has been been made via an incompressible limit in [23, 24, 26, 28, 29, 30].
This link is interesting as both models have their advantages. On the one hand
PDE relying models, also called mechanical models, are widely studied with many
numerical and analytical tools. On the other hand free boundary models are closer
to the biologic vision of the tissue and allow to study motion and dynamics of the
tissue. This paper aims to extend the link between the mechanical and the free
boundary models, in the case of multiple populations system.

In the specific case of multiple populations, several mathematical models have
been already introduced. In particular in population dynamics, the famous Lotka-
Volterra system [25] models the dynamics of a predator-prey system. This model
has been extended to nonlinear diffusion Lotka-Volterra systems [3, 4, 5, 9]. For the
tumor growth modelling (see e.g. [14]), some models focus on mechanical property
of tissues such as contact inhibition [2, 6, 20] and mutation [19]. They have been
extended to multiple populations [19, 32]. Solutions to these models may have some
interesting spatial pattern known as segregation [3, 12, 27, 32].

The two cell populations system under investigation in this paper is an extension
on a simplest cell population model proposed in [10, 29]. Let n(x, t) be the density
of a single category of cell depending on the position x ∈ Rd and the time t > 0,
and let p(x, t) be the mechanical pressure of the system. The pressure is generated
by the cell density and is defined via a pressure law p = P (n). This pressure
exerted on cells induces a motion with a velocity field v = v(x, t) related to the
pressure through the Darcy’s law. The proliferation is modelled by a growth term
G(p) which is pressure dependent. In order to model the competition for space,
the function G is taken nonincreasing. Moreover, to model apoptosis, this function
takes negative values when the pressure is higher to some pressure value PM which
is often referred to as the homeostatic pressure [31]. With these assumptions, the
mathematical model reads

∂tn+∇ · (nv) = nG(p), on Rd × R+, (1)

v = −∇p, p = P (n).

In [24, 26, 28, 29, 30], the pressure law is given by P (n) = γ
γ−1n

γ−1 which allows

to recover the porous medium equation. However, in many tissues, cells may not
overlap, implying that the maximal packing density should be bounded by 1. To
take into account this non-overlapping constraint, the pressure law P (n) = ε n

1−n
has been taken in [23]. This latter choice of pressure law has also been taken in the
present paper. For this one population model, it has been shown in [23] that, in
the incompressible limit ε→ 0 (or γ → +∞ depending on the pressure expression),
the model converges towards a Hele-Shaw free boundary problem defined by:

∂tn0 + ∆p0 = n0G(p0), in Rd × R+,

with the relations (1− n0)p0 = 0, 1 ≤ n0 ≤ 1 and the complementary relation

p2
0(∆p0 +G(p0)) = 0, in Rd × R+.

In the region where p0 > 0 the limit density n0 is uniform equal to 1 which means
that the fluid cannot be further compressed. For this reason, we refer to this limit
as the incompressible limit.
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The previous model has the particularity to derive from the free energy

E(n) =

∫
R
P (n(x))dx.

as a gradient flow for the Wasserstein metric. Using this property a model for two
species of cells has been derived in the appendix of [15]. Let us denote n1(x, t) and
n2(x, t) the two cell densities depending on the position x ∈ Rd and the time t > 0.
We assume that the pressure depends on the total density n = n1 + n2. As the
pressure depends on a parameter ε, we introduce this dependancy in the notation.
We define the free energy for the two cell populations by,

E(nε) =

∫
R
P (n1ε(x) + n2ε(x))dx.

Restricting to the one dimensional case, the system of equation deriving from this
free energy is then defined by,

∂tn1ε − ∂x(n1ε∂xpε) = n1εG1(pε), (2)

∂tn2ε − ∂x(n2ε∂xpε) = n2εG2(pε), (3)

pε = P (nε) = ε
nε

1− nε
, (4)

nε = n1ε + n2ε, (5)

with G1, G2 the growth functions, and pε the pressure. The proposed system models
two different types of cells which have identical cell volumes and identical mechanical
properties. This assumption results in the two species having the same pressure
laws. Tissues consisting of different types of cells having roughly identical cell
volumes and mechanical properties are commonplace. Thanks to this assumption,
the gradient flow structure of the one-species model can be extended to the two-
species case. This would not be possible if different pressure laws were considered.
Here, the differences between the considered cell species lie in the growth terms.
Indeed, growth rates may differ significantly between different cell types. This is
well documented as growth rates can be easily measured (by e.g. recording the size
increase of the colony in time). On the other hand, it is much more difficult to make
pressure measurements in the tissue and to determine the exponent in the pressure
law.

The model (2)-(5) has been first introduced in [14]. An interesting feature of
this model is the preservation of the segregation of the species if they are initially
segregated. Recently, in [22], the existence of solutions on Rd has been shown but
not the segregation property. The existence of solutions with segregation for system
(2)-(5) has been proven in [2, 6] for a compact domain [−L,L] with L > 0, with
Neumann homogeneous boundary condition.

More precisely, we recall the precise statement of the main result in [2]:

Theorem 1.1 (Theorem 1.1 of [2]). Let ε > 0 be fixed. Given initial conditions
n1

ini
ε and n2

ini
ε satisfying,

∃ ζ0 ∈ R such that n1
ini
ε = niniε 1x≤ζ0 and n2

ini
ε = niniε 1x≥ζ0 , (6)

and

n1
ini
ε , n2

ini
ε ≥ 0 and 0 < A0 ≤ n1

ini
ε + n2

ini
ε ≤ B0 < 1, (7)

then there exists ζε ∈ C([0,∞)) ∩ C1((0,∞)) such that

n1ε(t, x) = nε(t, x)1x≤ζε(t) and n2ε(t, x) = nε(t, x)1x≥ζε(t), (8)
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and n1ε and n2ε respectively satisfy (2) on Ω− := {(t, x), x < ζε(t)} and (3) on
Ω+ := {(t, x), x > ζε(t)}. Moreover, we have n1ε, n2ε ∈ C2,1(Ω− ∪ Ω+), and n1ε ∈
C1(Ω− ∪ {(t, ζε(t)); t > 0}), n2ε ∈ C1(Ω+ ∪ {(t, ζε(t)); t > 0}). Here, for an open
subset ω of R2, Ck(ω̄) denotes the space of functions which are restrictions to ω of
functions having continuous derivatives up to the order k on an open set ω′ ⊃ ω̄
and Ck,1(ω) is the space of functions having continuous derivative up to the order k
in ω and such that the kth partial derivatives are Lipschitz continuous. In addition
nε = n1ε + n2ε is a solution to:

∂tnε − ∂x(nε∂xpε) = nεG1(pε) in the classical sense on {(t, x), x < ζε(t)},
∂tnε − ∂x(nε∂xpε) = nεG2(pε) in the classical sense on {(t, x), x > ζε(t)},
nε(t, ζε(t)

−) = nε(t, ζε(t)
+),

ζ ′ε(t) = −∂xpε(t, ζε(t)−) = −∂xpε(t, ζε(t)+),

∂xnε(t,±L) = 0 for t > 0.

(9)

In [2], the reaction terms are chosen to be affine decreasing. However, as men-
tioned by the authors, it is easy to verify that their proof can be extended to our
system under a set of assumptions for the growth functions which will be defined
later in this paper. We also mention that Theorem 1.1 above has been proved in [2]
for a smooth pressure law whereas here we have to deal with a possible singularity
when the density reaches the value 1. However, it is proved below that the solution
of the above system is always bounded away from 1, which allows us to extend the
result of [2] to the current framework.

The aim of this paper is is to study the incompressible limit ε → 0 for the two
populations systems. In dimension 1, the incompressible limit for a system with
different pressure laws and reaction terms is investigated in [8] through regularity
results obtained using Aronson-Benilan type estimates and methods similar to [22].
In the present paper we restrict the domain to a compact interval (−L,L) with
L > 0 and assume (6) and (7) are verified, in order to set ourself in the framework
of [2]. Then the two populations are initially in contact, which is reasonable. In
fact, when there is no contact, the system is equivalent to the one population model
[23]. In addition, outside the domain (−L,L), the system corresponds to the single
population model. Then our approach relies strongly on the description of the
solutions obtained in [2].

When the two species are not in contact, the system is equivalent to the one
population model [23], this is why we limit ourself in this paper to the case where
the two populations are initially in contact. To use the solutions defined in [2], we
restrict the space to a compact domain (−L,L) with L > 0 and assume (6) and (7)
are verified. Outside the domain (−L,L), the system will be equivalent to the one
population model.

We firstly remark that by adding (2) and (3), we get,

∂tnε − ∂x(nε∂xpε) = n1εG1(pε) + n2εG2(pε) in (−L,L). (10)

Multiplying by P ′(nε) we find an equation for the pressure,

∂tpε−(
p2
ε

ε
+pε)∂xxpε−|∂xpε|2 =

1

ε
(pε+ε)

2(n1εG1(pε)+n2εG2(pε)) in (−L,L). (11)

Formally, passing at the limit ε→ 0, we expect the relation,

−p2
0∂xxp0 = p2

0(n10G1(p0) + n20G2(p0)) in (−L,L).
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In addition, passing formally to the limit ε → 0 into (4), it appears clearly that
(1− n0)p0 = 0. We consider the domain Ω0(t) = {x ∈ (−L,L), p0(x, t) > 0}, then,
from the latter identity, n0 = 1 on Ω0. Moreover, from the segregation property,
we have n1εn2ε = 0 when the two densities are initially segregated. Passing to
the limit ε → 0 into this relation implies n10n20 = 0. Then we may split Ω0(t)
into two disjoint sets Ω1(t) = {x ∈ (−L,L), n10(x, t) = 1} and Ω2(t) = {x ∈
(−L,L), n20(x, t) = 1}. Formally, it is not difficult to deduce from (11) that when
ε→ 0, we expect to have the relation

−p2
0∂xxp0 =

{
p2

0G1(p0) on Ω1(t),

p2
0G2(p0) on Ω2(t).

Then we obtain a free boundary problem of Hele-Shaw type: On Ω1(t), we have
n10 = 1 and −∂xxp0 = G1(p0), on Ω2(t), we have n20 = 1 and −∂xxp0 = G2(p0).

The outline of the paper is the following. In Section 2 we expose the main
results of this paper, which are the convergence of the continuous model (2)-(5)
when ε → 0 to a Hele-Shaw free boundary model, and uniqueness for this limiting
model. Section 3 is devoted to the proof of these main results. The proof on the
convergence relies on some a priori estimate and compactness techniques. We use
Hilbert duality method to establish uniqueness of solution to the limiting system.
Finally in Section 4, we present some numerical simulations of the system (2)-(5)
when ε is going to 0 and simulations of a specific application on tumor spheroid
growth.

2. Main results. In this paper we aim to prove the incompressible limit ε →
0 of the two populations model with non overlapping constraint (2)-(5) in one
dimension. We first introduce a list of assumptions on the growth terms and the
initial conditions. For the growth, we consider the following set of assumptions:

∃Gm > 0, ‖G1‖∞ ≤ Gm, ‖G2‖∞ ≤ Gm,
G′1, G

′
2 < 0, and ∃P 1

M , P
2
M > 0, G1(P 1

M ) = 0 and G2(P 2
M ) = 0,

∃ γ > 0, min( inf
[0,P 1

M ]
|G′1|, inf

[0,P 2
M ]
|G′2|) = γ,

PM := max(P 1
M , P

2
M ), ∃ gm ≥ 0, min

(
inf

[0,PM ]
G1, inf

[0,PM ]
G2

)
≥ −gm.

(12)

The set of assumptions on the growth rate is standard and similar to the one in
e.g. [23]. Notice that the boundedness and the decay of G1, G2 comes from the
modelling assumptions as explained in the introduction. For some technical reasons
in our computations, we add some additional smoothness assumptions and bounds
on the derivatives. The parameters P 1

M and P 2
M are called homeostatic pressures

which represent the maximal pressure that the tissue can handle before starting
dying. For the initial datas, we assume that there exists ε0 > 0 such that, for all
ε ∈ (0, ε0), for all x ∈ (−L,L),

0 ≤ n1
ini
ε , 0 ≤ n2

ini
ε , nini

ε = n1
ini
ε + n2

ini
ε , 0 < A0 ≤ nini

ε ≤ B0 < 1,

∃ ζ0 ∈ (−L,L) such that n1
ini
ε = nini

ε 1x≤ζ0 and n2
ini
ε = nini

ε 1x≥ζ0 ,

pini
ε := ε

nini
ε

1− niniε
≤ PM := max(P 1

M , P
2
M ), ∂xn

ini
ε (±L) = 0,
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max(‖∂xn1

ini
ε ‖L1(−L,L), ‖∂xn2

ini
ε ‖L1(−L,L)) ≤ C and ‖∂xxpini

ε ‖L1(−L,L) ≤ C,
∃nini

1 , nini
2 ∈ L1

+(−L,L), such that ‖n1
ini
ε − nini

1 ‖L1(−L,L) → 0

and ‖n2
ini
ε − nini

2 ‖L1(−L,L) → 0, as ε→ 0.

(13)
These initial conditions imply that n1

ini
ε and n2

ini
ε are uniformly bounded in

W 1,1(−L,L). Notice also that the existence of ζ0 being the interface between the
two species implies that the two populations are initially segregated.

From [2], we recover that at a fix ε > 0 under assumption (12), given ini-
tial conditions n1

ini
ε and n2

ini
ε satisfying (13), then there exists ζε ∈ C([0,∞)) ∩

C1((0,∞)) such that n1ε and n2ε verify (8) and n1ε and n2ε respectively satisfy (2)
on {(t, x), x ≤ ζε(t)} and (3) on {(t, x), x ≥ ζε(t)}. In addition nε = n1ε + n2ε is
solution to (9).

Remark 1. Considering n1ε and n2ε defined previously, we have for i = 1, 2

∂tniε = ∂tnε(t, x)1x≤ζε(t) + nεζ
′
ε(t)δx=ζε(t).

Given (9), for all ϕ ∈ C∞c (−L,L) we compute, for i = 1, 2∫
R
∂tniεϕ dx =

∫ ζε(t)

−∞
∂tnεϕ dx+ nε(t, ζε(t))ζ

′
ε(t)ϕ(ζε(t))

=

∫ ζε(t)

−L
∂x(nε∂xpε)ϕ dx+

∫ L

−L
niεGi(pε)ϕ dx+ nε(t, ζε(t))ζ

′
ε(t)ϕ(ζε(t))

=−
∫ ζε(t)

−L
nε∂xpε∂xϕ dx+ nε(t, ζε(t))∂xpε(t, ζε(t))ϕ(ζε(t))

+

∫ L

−L
niεGi(pε)ϕ dx− nε(t, ζε(t))∂xpε(t, ζε(t))ϕ(ζε(t))

=

∫ L

−L
niε∂xpε∂xϕ dx+

∫ L

−L
niεGi(pε)ϕ dx

=

∫ L

−L
(∂x(niε∂xpε) + niεGi(pε))ϕ dx.

Hence n1ε and n2ε are weak solutions to (2) and (3) on (−L,L) respectively. This
result will be used in the following.

Considering this particular solution, we are going to show the incompressible
limit ε→ 0 for system (2)-(5). The main result is the following

Theorem 2.1. Let T > 0, QT = (0, T ) × (−L,L) and D′(QT ) denote the space
of distributions on QT . Let G1, G2 and (n1

ini
ε ), (n2

ini
ε ) satisfy assumptions (12)–

(13). After extraction of subsequences, the densities n1ε, n2ε and the pressure pε,
solutions defined in (8)-(9), converge strongly in L1(QT ) as ε → 0 towards the
respective limit n10, n20 ∈ L∞([0, T ];L1(−L,L)) ∩ BV (QT ), and p0 ∈ BV (QT ) ∩
L2([0, T ];H1(−L,L)). Moreover, these functions satisfy:

0 ≤ n10(t, x) ≤ 1, 0 ≤ n20(t, x) ≤ 1, a.e. in QT , (14)

0 < A0e
−gmt ≤ n0(t, x) ≤ 1, 0 ≤ p0 ≤ PM , a.e. in QT , (15)

∂tn0 − ∂xxp0 = n10G1(p0) + n20G1(p0), in D′(QT ), (16)
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where n0 = n10 + n20, and

∂tn10 − ∂x(n10∂xp0) = n10G1(p0), in D′(QT ), (17)

∂tn20 − ∂x(n20∂xp0) = n20G2(p0), in D′(QT ), (18)

complemented with Neumann boundary conditions ∂xp0(±L) = 0. Moreover, we
have the relations

(1− n0)p0 = 0, a.e. in QT , (19)

and

n10n20 = 0, a.e. in QT , (20)

and the complementary relation

p2
0

(
∂xxp0 + n10G1(p0) + n20G2(p0)

)
= 0, in D′(QT ). (21)

Thanks to (19), we may consider the domain Ω0(t) where the pressure is non-
negative and the total density is equal to 1. The segregation pressure (20) leads us
to divide this domain in two subdomains where either the density n10 is equal to
1 or the density n20 is equal to 1. The complementary relation (21) describes the
evolution of the pressure inside these domains.

The proof of this convergence result is given in Section 3. It is straightforward to
observe that adding (2) and (3) provides an equation on the total density similar to
the one found in the one species case [23, 29]. Then we use a similar strategy for the
proof relying on a compatness method. However the presence of the two populations
generate some technical difficulties. To overcome them, we use the segregation
property. Notice that this paper is written in the specific case where the two species
are separated by one interface, but could be generalised to many interfaces. Using
the segregation of the species we are able to obtain a priori estimates on the densities,
the pressure and their spatial derivatives. The proof of convergence follows from
these new estimates. In order to obtain the complementary relation (21), we follow
the approach proposed in [8] which allows us to obtained further regularity.

To complete the results on the asymptotic limit of the model, an uniqueness
result for the Hele-Shaw free boundary model for two populations is provided in
Proposition 1 in §3.4. The proof of this uniqueness result for the limiting problem
is based on Hilbert’s duality method.

3. Proof of the main results. This section is devoted to the proof of Theorem
2.1, whereas in Section 3.4 the uniqueness of the solution to the Hele Shaw system
is established. We first establish some a priori estimates.

3.1. A priori estimates.

3.1.1. Nonnegativity principle. The following Lemma establishes the nonnegativity
of the densities.

Lemma 3.1. Let (n1ε, n2ε, pε) be a solution to (2) and (3) such that n1
ini
ε ≥ 0,

n2
ini
ε ≥ 0 and Gm <∞. Then, for all t ≥ 0, n1ε(t) ≥ 0 and n2ε(t) ≥ 0.

Proof. To show the nonnegativity we use the Stampaccchia method. We multiply
(2) by 1n1ε<0 and denote n− = max(0,−n) for the negative part, we get

1n1ε<0∂tn1ε − 1n1ε<0∂x(n1ε∂xpε) = 1n1ε<0n1εG1(pε).
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With the above notation, it reads

∂t(n1ε)− − ∂x((n1ε)−∂xpε) = (n1ε)−G1(pε).

We may integrate in space thanks to the continuity of n1ε on Ω−∪{(t, ζε(t)); t > 0})
and the fact that it is identically zero on Ω+ (as recalled in Theorem 1.1), which
implies its boundedness on [−L,L]. Using assumption (12) and ∂xpε(±L, t) =
p′ε(nε)∂xnε(±L, t) = 0, we deduce

d

dt

∫ L

−L
(n1ε)−dx ≤

∫ L

−L
(n1ε)−G1(pε)dx ≤ Gm

∫ L

−L
(n1ε)−dx.

Then we integrate in time,∫ L

−L
(n1ε)− dx ≤ eGmt

∫ L

−L
(n1

ini
ε )− dx.

With the initial condition n1
ini
ε > 0 we deduce n1ε > 0. With the same method we

can show that if n2
ini
ε > 0 we have n2ε > 0.

Remark 2. We notice that the positivity gives a formal proof of the segregation
of any solution of (2)-(5). Indeed, defining rε = n1εn2ε and multiplying (2) by n2ε,
(3) by n1ε and adding, we obtain the following equation for rε,

∂trε − ∂xrε ∂xpε − 2rε∂xxpε = rε(G1(pε) +G2(pε)).

Multiplying by 1rε<0 and formally integrating in time (using the same steps as for
the non negativity principle) gives, after an integration by parts,

d

dt

∫ R

−R
(rε)−dx−

∫ R

−R
(rε)−∂xxpεdx ≤ 2Gm

∫ R

−R
(rε)−.

Given that rini
ε = 0, under regularity assumptions on the pressure, it is clear that

rε = 0 at all time. Hence, at least formally, the segregation property applies to any
solution of the system, provided that the initial conditions are segregated. However,
in the present work, we will not need this remark as we use a stronger structural
property namely the existence of a single curve ζε(t) that separates the support of
n1ε (to the left of ζε(t)) with that of n2ε (to the right of ζε(t)) which is provided by
[2, 6].

3.1.2. A priori estimates. To show the compactness result we establish a priori
estimate on the densities, pressure and their derivatives. We first compute the
equation on the total density. As shown earlier n1ε and n2ε are respectively weak
solutions of (2) and (3). By summing the two equations we deduce that nε is a
weak solution of (10). Notice that this equation can be rewritten as,

∂tnε − ∂xxH(nε) = n1εG1(pε) + n2εG2(pε), (22)

with H(n) =
∫ n

0
uP ′(u)du = P (n)− ε ln(P (n) + ε) + ε ln ε.

We establish the following a priori estimates

Lemma 3.2. Let us assume that (12) and (13) hold. Let (n1ε, n2ε, pε) be a solution
to (2)–(5). Then, for all T > 0, and t ∈ (0, T ), we have the uniform bounds in
ε ∈ (0, ε0),

n1ε, n2ε in L∞([0, T ];L1 ∩ L∞(−L,L));

0 ≤ pε ≤ PM , 0 < A0e
−gmt ≤ nε(t) ≤

PM
PM + ε

≤ 1.
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Moreover, we have that (n1ε)ε and (n2ε)ε are uniformly bounded in L∞([0, T ],
W 1,1(−L,L)) and (pε)ε is uniformly bounded in L1([0, T ],W 1,1(−L,L)).

Proof. Comparison principle.
The usual comparison principle is not true for this system of equations. However

we are able to show some comparison between the total density and nM defined by
nM = PM

ε+PM
where PM is defined in (13). We deduce from (22) that

∂t(nε − nM )− ∂xx(H(nε)−H(nM )) ≤ n1εG1(P (nε))− nM1x≤ζε(t)G1(PM )

+ n2εG2(P (nε))− nM1x≥ζε(t)G2(PM ),

where we use the monotonicity of G1 and G2 from assumption (12).
Notice that, since the function H is nondecreasing, the sign of nε − nM is the

same as the sign of H(nε)−H(nM ). Moreover,

∂xxf(y) = f ′′(y)|∂xy|2 + f ′(y)∂xxy,

so for y = H(nε) − H(nM ) and f(y) = y+ the positive part, the so-called Kato
inequality reads ∂xxf(y) ≥ f ′(y)∂xxy. Thus multiplying the latter equation by
1nε−nM>0 and given (8) we obtain (denoting n+ = max(n, 0))

∂t(nε − nM )+ − ∂xx(H(nε)−H(nM ))+ ≤ (nε − nM )1x≤ζε(t)G1(P (nε))1nε−nM>0

+(nε − nM )1x≥ζε(t)G2(P (nε))1nε−nM>0

+nM (G1(P (nε))−G1(P (nM )) +G2(P (nε))−G2(P (nM )))1nε−nM>0.

Since the function P is increasing and G1 and G2 are decreasing (see (12)), we
deduce that the last term is nonpositive. Then, integrating on (−L,L) and using
∂xnε(±L, t) = 0, we deduce

d

dt

∫ L

−L
(nε − nM )+ dx ≤ ∂x(H(nε)−H(nM ))+(L, t)− ∂x(H(nε)−H(nM ))+(−L, t)

+

∫ ζε(t)

−L
(nε − nM )1nε−nM>0G1(P (nε)) dx

+

∫ L

ζε(t)

(nε − nM )1nε−nM>0G2(P (nε)) dx.

Given that nε ≤ nM implies P (nε) ≤ PM = max(P 1
M , P

2
M ), it follows that the two

last terms are nonpositive. Then, we deduce

d

dt

∫ L

−L
(nε − nM )+ dx ≤ 0.

L∞ bounds.
With the above comparison principle, we conclude that nε ≤ nM . Since the

function P is inscreasing, we deduce easily with the non-negativity principle (3.1)
that 0 ≤ pε ≤ PM , 0 ≤ n1ε ≤ nM and 0 ≤ n2ε ≤ nM .

Estimates from below.
From above, we deduce that the pressure is bounded by PM . Hence, using

assumption (12) we deduce

∂tnε − ∂xxH(nε) = n1εG1(P (nε)) + n2εG2(P (nε)) ≥ −nεgm.

Let us introduce nm := A0e
−gmt. We deduce

∂t(nm − nε)− ∂xx(H(nm)−H(nε)) ≤ −(nm − nε)gm.
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As above, for the comparison principle, we may use the positive part and the Kato
inequality to deduce

∂t(nm − nε)+ − ∂xx(H(nm)−H(nε))+ ≤ −(nm − nε)+gm.

Integrating in space and in time as above, we deduce that (nm − nε)+ = 0.
L1 bounds of nε, n1ε, n2ε and pε.
Integrating (22) on (−L,L) and using the nonnegativity of the densities from

Lemma 3.1 as well as the Neumann boundary conditions, we deduce

d

dt
‖nε‖L1(−L,L) ≤ Gm‖nε‖L1(−L,L).

Integrating in time, we deduce

‖nε‖L1(−L,L) ≤ eGmt‖nini
ε ‖L1(−L,L).

Since n1ε ≥ 0 and n2ε ≥ 0, we deduce the uniform bounds on ‖n1ε‖L1(−L,L) and on
‖n2ε‖L1(−L,L).

From the relation (4), we deduce pε = nε(ε + pε). Moreover, the bound pε ≤
PM := max(P 1

M , P
2
M ) implies

‖pε‖L1(−L,L) ≤ (ε+ PM )

∫ L

−L
|nε| dx ≤ CeGmt‖nini

ε ‖L1(−L,L).

L1 estimates on the x derivatives.
Recalling (8), we can refomulate (10) by

∂tnε − ∂xxH(nε) = nεG(pε, t, x) (23)

with G(p, t, x) = G1(p)1x≤ζε(t) +G2(p)1x≥ζε(t). The space derivative of this growth
function is given by,

∂xG(p, t, x) = (G1(p)−G2(p))δx=ζε(t) +G′1(p)∂xp1x≤ζε(t) +G′2(p)∂xp1x≥ζε(t).

We derive (23) with respect to x,

∂t∂xnε − ∂xx(∂xH(nε)) = ∂xnεG(pε, t, x) + nε(G1(pε)−G2(pε))δx=ζε(t)

+ nε(G
′
1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))∂xpε.

We multiply by sign(∂xnε) = sign(∂xpε) and use the Kato inequality,

∂t|∂xnε| − ∂xx(|∂xH(nε)|) ≤ |∂xnε|G(pε, t, x)

+ nε(G1(pε)−G2(pε))δx=ζε(t)sign(∂xinε)

+ nε(G
′
1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))|∂xpε|.

We integrate in space on (−L,L). Using the fact that max[0,P 1
M ]G

′
1 ≤ −γ < 0 and

max[0,P 2
M ]G

′
2 ≤ −γ < 0 (see (12)) and that ∂xH(nε)(±L, t) = H ′(nε)∂xnε(±L, t) =

0,

∂t

∫ L

−L
|∂xnε| dx ≤ Gm

∫ L

−L
|∂xnε| dx− γ

∫ L

−L
nε|∂xpε| dx

+ nε(t, ζε(t))|G1(pε(t, ζε(t))−G2(pε(t, ζε(t))|.

Using Gronwall’s lemma and the uniform bound on nε and G1 and G2 (see (12)),
we deduce that, for all t > 0,

‖∂xnε(t)‖L1(−L,L) +γ

∫ t

0

∫ L

−L
nε|∂xpε| dxds ≤ CeGmt

(
‖∂xnini

ε ‖L1(−L,L) + 1
)
. (24)
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Given the estimate from below from Lemma 3.2, namely A0e
−gmT ≤ nε(t), and

using (24), we recover

γA0e
−gmt‖∂xpε‖L1(QT ) ≤ CeGmt

(
‖∂xnini

ε ‖L1(−L,L) + 1
)
. (25)

Hence we have a uniform bound on ∂xpε in L1(QT ). To recover the estimate on
∂xn1ε and ∂xn2ε we deduce from (8),

∂xn1ε = ∂xnε1x≤ζε(t) + nεδx=ζε(t),

∂xn2ε = ∂xnε1x≤ζε(t) − nεδx=ζε(t).

So

‖∂xn1ε‖L1(−L,L) =

∫
x≤ζε(t)

∂xin1ε dx+ nε(t, ζε(t)) ≤ ‖∂xnε‖L1(−L,L) + ‖n1ε‖∞,

and

‖∂xn2ε‖L1(−L,L) =

∫
x≥ζε(t)

∂xin2ε dx− nε(t, ζε(t)) ≤ ‖∂xnε‖L1(−L,L) + ‖n2ε‖∞.

This concludes the proof.

3.1.3. L2 estimate for ∂xp.

Lemma 3.3 (L2 estimate for ∂xp). Let us assume that (12) and (13) hold. Let
(n1ε, n2ε, pε) be a solution to (2)–(5). Then, for all T > 0 we have a uniform bound
on ∂xpε in L2(QT ).

Proof. For a given function ψ we have, multiplying (5) by ψ(nε),

∂tnεψ(nε)− ∂x(nε∂xpε)ψ(nε) = (n1εG1(pε) + n2εG2(pε))ψ(nε).

Integrating on (−L,L), we have

d

dt

∫ L

−L
Ψ(nε) dx+

∫ L

−L
nε∂xnε·∂xpεψ′(nε) dx =

∫ L

−L
(n1εG1(pε)+n2εG2(pε))ψ(nε) dx,

where Ψ is an antiderivative of ψ. We choose ψ(n) = ε(ln(n)− ln(1− n) + 1
1−n ) so

that nεψ
′(nε) = P ′(nε). Inserting the expression of ψ, we get

d

dt

∫ L

−L
εnε ln

( nε
1− nε

)
dx+

∫ L

−L
|∂xpε|2dx

≤ Gm
∫ L

−L
εnε

∣∣∣∣ln(nε)− ln(1− nε) +
1

1− nε

∣∣∣∣ dx.
After integrating in time and using the expression of the pressure (4), we have∫ L

−L
εnε ln

(pε
ε

)
dx−

∫ L

−L
εnini
ε ln

(
nini
ε

1− nini
ε

)
dx+

∫ T

0

∫ L

−L
|∂xpε|2 dxdt

≤ Gm
∫ T

0

∫ L

−L

(
εnε

∣∣∣ ln(pε
ε

)∣∣∣+ pε

)
dx.
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Then, to prove that ∂xpε ∈ L2(QT ), we are left to find a uniform bound on∫ L
−L εnε| ln(pεε )|dx. Using the expression of pε in (4), we have∫ L

−L
εnε| ln

(pε
ε

)
| dx ≤

∫ L

−L
εnε| ln pε| dx+ ε| ln(ε)|

∫ L

−L
nε dx

≤
∫ L

−L
(1− nε)pε| ln pε| dx+ ε| ln(ε)|

∫ L

−L
nε dx

Since nε is bounded in L1, the second term of the right hand side is uniformly
bounded with respect to ε. Moreover given that 0 ≤ pε ≤ PM and x 7→ x| lnx| is
uniformly bounded on [0, PM ], we get∫ L

−L
(1− nε)pε| ln(pε)| dx ≤ C

∫ L

−L
1pε>0 dx ≤ 2LC.

This concludes the proof.

3.1.4. L1 estimate for ∂tp.

Lemma 3.4 (L1 estimate for ∂tp). Let us assume that (12) and (13) hold. Let
(n1ε, n2ε, pε) be a solution to (2)–(5). Then, for all T > 0 we have the uniform
bound: ‖∂tpε‖L1(QT ) ≤ CT .

Proof. Introduce wε = ∂xxpε + G(pε, t, x). The equation on the pressure (11) can
be rewritten as

∂tpε = (
p2
ε

ε
+ pε)wε + |∂xpε|2 in (−L,L). (26)

As for all T > 0 we have a uniform bound on ∂xpε in L2(QT ), we are left to find an

estimate for the term (
p2ε
ε +pε)wε. The control of this term is based on the previous

work [23] and the recent publication [8]. We consider the equation satisfied by wε,

∂twε = ∂xx(∂tpε) + ∂t(G(pε, t, x))

= ∂xx
(
(
p2
ε

ε
+ pε)wε

)
+ 2∂x(∂xxpε∂xpε)

+ (G′1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))∂tpε + ζ ′ε(t)δx=ζε(t)(G1(pε)−G2(pε)).

We recall that ζ ′ε(t) = −∂xpε(ζε(t)). Therefore, using also the definition of wε, we
get

∂twε = ∂xx
(
(
p2
ε

ε
+ pε)wε

)
+ 2∂x(wε∂xpε)− 2∂x

(
G(pε, t, x)∂xpε

)
+ (G′1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))((

p2
ε

ε
+ pε)wε + |∂xpε|2)

− ∂xpε(ζε(t))δx=ζε(t)(G1(pε)−G2(pε)).

(27)

Moreover, we have

∂x
(
G(pε, t, x)∂xpε

)
= G(pε, t, x)∂xxpε + (G′1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))|∂xpε|

2

+ (G2(pε)−G1(pε))∂xpεδx=ζε(t)

= G(pε, t, x)wε − (G(pε, t, x))2

+ (G′1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))|∂xpε|
2

+ (G2(pε)−G1(pε))∂xpεδx=ζε(t).

(28)
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Then inserting (28) in (27), we get

∂twε = ∂xx((
p2
ε

ε
+ pε)wε) + 2∂x(wε∂xpε)

+ (G′1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))(
p2
ε

ε
+ pε)wε

+ 2(G(pε, t, x))2 − 2G(pε, t, x)wε + ∂xpε(ζε(t))δx=ζε(t)(G1(pε)−G2(pε))

− (G′1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))|∂xpε|
2.

(29)
Since G1 and G2 are decreasing functions, the last term of the equality is positive.
By multiplying (29) by −1wε≤0, we get

∂t(wε)− ≤ ∂xx
(
(
p2
ε

ε
+ pε)(wε)−

)
+ 2∂x((wε)−∂xpε)

+ (G′1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))(
p2
ε

ε
+ pε)(wε)−

− 2(G(pε, t, x))21wε≤0 − 2G(pε, t, x)(wε)−

− 1wε≤0∂xpε(ζε(t))δx=ζε(t)(G1(pε)−G2(pε)).

Using assumption (12), we get

∂t(wε)− ≤ ∂xx((
p2
ε

ε
+ pε)(wε)−) + 2∂x((wε)−∂xpε)− γ(

p2
ε

ε
+ pε)(wε)−

− 2G(pε, t, x)(wε)− + 2Gm|∂xpε(ζε(t))|δx=ζε(t).
(30)

We want to integrate on (−L,L), we first observe that at any time t ∈ [0, T ],

∫ L

−L
∂xx
(
(
p2
ε

ε
+ pε)(wε)−

)
(t, x)dx

= ∂x
(
(
p2
ε

ε
+ pε)(wε)−

)
(t, L)− ∂x

(
(
p2
ε

ε
+ pε)(wε)−

)
(t,−L).

Besides, by differentiating the equation of the pressure (26) we have

∂t(∂xpε) = ∂x
(
(
p2
ε

ε
+ pε)wε

)
+ 2∂xpε∂xxpε.

Then, given that the pressure is subject to homogeneous Neumann boundary con-
ditions,

∂x((
p2
ε

ε
+ pε)wε)(t,±L)

=
d

dt

(
∂xpε(t,±L)

)
− 2∂xpε(t,±L) ∂xxpε(t,±L) = 0, ∀t ∈ [0, T ],

and so

∂x
(
(
p2
ε

ε
+ pε)(wε)−

)
(t,±L) = −∂x

(
(
p2
ε

ε
+ pε)wε

)
(t,±L)1wε≤0 = 0, ∀t ∈ [0, T ].
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Therefore, integrating (30) on (−L,L), we obtain

d

dt

∫ L

−L
(wε)−dx+ γ

∫ L

−L
(
p2
ε

ε
+ pε)(wε)−dx

≤ −
∫ L

−L
2G(pε, t, x)(wε)−dx+ 2Gm|∂xpε(ζε(t))|.

Note that we may integrate in space thanks to the regularity of the pressure given in
Theorem 1.1. Indeed, thanks to the interface conditions at ζε(t), ∂xpε is continuous
on [−L,L] and continuously differentiable on [−L, ζε(t)) and (ζε(t), L]. Then, ∂xxpε
is a bounded function. Then, from its definition, it follows that wε is bounded on
[−L,L] and therefore is in L1(−L,L). Moreover, we observe that

|∂xpε(ζε(t))| ≤
∫ ζε(t)

−L
|∂xxpε|dx ≤

∫ L

−L
(|wε|+ |G(pε, t, x)|)dx.

Moreover, since |wε| = wε + 2(wε)−, we have∫ L

−L
|wε| dx = 2

∫ L

−L
(wε)− dx+

∫ L

−L
(∂xxpε +G(pε)) dx ≤ 2

∫ L

−L
(wε)− dx+ 2LGm,

where we use Neumann boundary condition and (12) for the last inequality. Then
we get

d

dt

∫ L

−L
(wε)−dx+ γ

∫ L

−L
(
p2
ε

ε
+ pε)(wε)−dx ≤ C(

∫ L

−L
(wε)−dx+ 1), (31)

with C a constant. Thanks to (13), we have ‖∂xxpiniε ‖L1(−L,L) ≤ C and thus

‖wε(t = 0)‖L1(−L,L) ≤ C. Then using Gronwall Lemma we get
∫ L
−L(wε)− ≤ C with

C independent of ε. Besides, we also have

γ

∫ T

0

∫ L

−L
(
p2
ε

ε
+ pε)(wε)− dxdt ≤ C

(∫ T

0

∫ L

−L
(wε)− dxdt+ T

)
≤ CT .

Since ∂tpε = (
p2ε
ε + pε)wε + |∂xpε|2 ≥ (

p2ε
ε + pε)wε, it is clear that (∂tpε)− ≤ (

p2ε
ε +

pε)(wε)−. Then,

‖∂tpε‖L1([0,T ]×(−L,L)) =

∫ T

0

d

dt

∫ L

−L
pε dxdt+ 2

∫ T

0

∫ L

−L
(∂tpε)− dxdt

≤ ‖pε(T )‖L1(−L,L) + 2

∫ T

0

∫ L

−L
(
p2
ε

ε
+ pε)(wε)− dxdt

≤ ‖pε(T )‖L1(−L,L) + 2
CT
γ

< +∞.

This concludes the proof.

3.2. Proof of theorem 1.

3.2.1. Convergence. In the last paragraph we have found a priori estimates for the
densities and their space derivatives. To use a compactness argument, we need to
obtain estimates on the time derivative. To do so, we are going to use the Aubin
Lions theorem [33]. More precisely, we have
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Lemma 3.5. Assume that (12) and (13) hold. Let (n1ε, n2ε, pε) be a solution to
(2)–(5). Then, there exist n10, n20, p0 belonging to BV (QT ) and satisfying (14)–
(15), such that, up to extraction of subsequences, (n1ε)ε, (n2ε)ε, (pε)ε converge
strongly in L1(QT ) and almost everywhere in QT towards n10, n20, p0, respectively,
and (∂xpε)ε converges weakly in L2(QT ) towards ∂xp0.

Proof. According to Lemma 3.3, n1ε∂xpε and n2ε∂xpε are in L2(QT ). Moreover
thanks to Lemma 3.2, we have that n1εG1(pε) and n2εG2(pε) are uniformly bounded
in L∞([0, T ];L1∩L∞(−L,L)), so ∂tn1ε and ∂tn2ε are uniformly bounded in L2([0, T ],
W−1,2(−L,L)). We also have n1ε and n2ε bounded in L1([0, T ],W 1,1(−L,L)).
Since we are working in one dimension, we have the following embeddings

W 1,1(−L,L) ⊂ L1(−L,L) ⊂W−1,2(−L,L).

The Aubin Lions theorem implies that {u ∈ L1([0, T ],W 1,1
loc (−L,L)); u̇ ∈ L2([0, T ],

W−1,2(−L,L))} is compactly embedded in L1([0, T ], L1(−L,L)). So we can extract
strongly converging subsequences n1ε and n2ε in L1(QT ). Thanks to Lemma 3.2
and 3.4 we know that pε is bounded in W 1,1(QT ). Therefore we may apply Helly’s
theorem and recover strong convergence in L1(QT ).

As a consequence, up to extraction of subsequences, (n1ε)ε, (n2ε)ε, and (pε)ε
converge strongly in L1(QT ) and a.e. towards some limits denoted n10, n20, and
p0, respectively. Moreover, due to the uniform estimate on (∂xpε)ε in L2(QT ) from
Lemma 3.3, we may extract a subsequence, still denoted (∂xpε)ε, which converges
weakly in L2(QT ) towards ∂xp0. Passing to the limit in the uniform estimates of
Lemma 3.2 gives (14) and (15) and n10, n20, n0, p0 belongs to BV (QT ).

3.2.2. Limit model. From Lemma 3.5, we have the convergence, up to subsequences,
of (n1ε)ε, (n2ε)ε, and (pε)ε. In this section we look for the equations satisfied by
these limits. In particular we have

Lemma 3.6. Assume that (12) and (13) hold. Let (n1ε, n2ε, pε) be a solution to
(2)–(5) and (n10, n20, p0) its limit given by Lemma 3.5. Then n10, n20 are solutions
to Eqs. (17) and (18) respectively and relations (19) and (20) are verified.

Proof. We recall that

∂tnε − ∂xx(pε − ε ln(pε + ε)) = n1εG1(pε) + n2εG2(pε).

From the uniform bounds on pε, we get,

ε ln ε ≤ ε ln(pε + ε) ≤ ε ln(PM + ε).

Thus, the term in the Laplacian converges strongly to p0. Then, thanks to the
strong convergence of nε and pε, we deduce that in the sense of distributions

∂tn0 − ∂xxp0 = n10G1(p0) + n20G2(p0).

Moreover, let φ ∈ W 1,α(QT ) with φ(T, x) = 0 (α > 2) be a test function. We
multiply equation (2) by φ and integrate using the Neumann boundary conditions,
we get

−
∫ T

0

∫ L

−L
n1ε∂tφdtdx−

∫ L

−L
n1
ini
ε (x)φ(0, x) dx+

∫ T

0

∫ L

−L
n1ε∂xpε∂xφdxdt

=

∫ T

0

∫ L

−L
n1εG1(pε)φdxdt.
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Due to the strong convergence of n1ε and pε, we can pass easily to the limit ε→ 0
into the first term of the left hand side and into the term in the right hand side.
For the second term, we use the assumptions on the initial data to pass into the
limit. For the third term, we can pass to the limit in a product of a weak-strong
convergence from standard arguments, then we arrive at

−
∫ T

0

∫ L

−L
n10∂tφdtdx−

∫ L

−L
nini1 (x)φ(0, x) dx+

∫ T

0

∫ L

−L
n10∂xp0∂xφdxdt

=

∫ T

0

∫ L

−L
n10G1(p0)φdxdt,

for any test function φ ∈W 1,α(QT ). Then we obtain the weak formulation of (17)
with Neumann boundary conditions on p0. We proceed by the same token to recover
(18).

Passing into the limit in the relation (1− nε)pε = εnε implies

(1− n0)p0 = 0.

We can also pass to the limit for the segregation and deduce n10n20 = 0.

To conclude the proof of Theorem 2.1, we are left to establish the relation (21).

3.3. Complementary relation. In this section we prove the following results.

Lemma 3.7. Assume that (12) and (13) hold. Let (n1ε, n2ε, pε) be a solution
to (2)–(5) and let (n10, n20, p0) be its limit as in Lemma 3.5. Then (n10, n20, p0)
satisfies the complementary relation (21).

Proof. The approach is based on the previous work [23] and the recent publication
[8]. In the weak sense, the complementary relation is equivalent to∫∫

QT

(
−2φp0|∂xp0|2 − p20∂xp0 ∂xφ+ φp20G(p0)

)
dxdt = 0, ∀φ ∈ D((0, T )× (−L,L)).

(32)

Multiplying the pressure equation (11) by ε, recalling the relation pε = nε(pε + ε)
from (4), we get

ε∂tpε − pε(ε+ pε)∂xxpε − ε|∂xpε|2 = pε(ε+ pε)G(pε),

where we recall the definition nεG(pε) = n1εG1(pε) + n2εG2(pε). We multiply this
last equation by a test function φ ∈ D((0, T ) × Rd) and integrate on (−L,L) and
obtain:∫∫

QT

p2
εφ(∂xxpε +G(pε)) dxdt = ε

∫∫
QT

φ(∂tpε − |∂xpε|2 − pε(∂xxpε +G(pε)) dxdt

= ε

∫∫
QT

(φ∂tpε + pε∂xpε ∂xφ− φpεG(pε)) dxdt.

Therefore, the estimates of Lemmas 3.2 and 3.4 yield∣∣∣∣∫∫
QT

p2
εφ(∂xxpε +G(pε)) dxdt

∣∣∣∣ ≤ ε(‖φ‖L∞‖∂tpε‖L1(QT )

+ ‖∂xφ‖L∞PM‖∂xpε‖L1(QT ) + ‖φ‖L∞Gm‖pε‖L1(QT )) −−−→
ε→0

0.
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Moreover, we have∫∫
QT

p2
εφ(∂xxpε +G(pε)) dxdt =

∫∫
QT

(−2φpε|∂xpε|2) dxdt

−
∫∫

QT

(p2
ε∂xpε∂xφ+ p2

εG(pε)φ) dxdt = Iε + IIε. (33)

We want to study the convergence of the terms Iε and IIε. The convergence of the
term IIε is obtained from the strong convergence of pε and the weak convergence
of ∂xpε (see Lemma 3.5). We have

IIε −−−→
ε→0

−
∫∫

QT

(p2
0∂xp0∂xφ+ p2

0G(p0)φ) dxdt.

The convergence of the term Iε requires the strong convergence of (a subsequence
of) ∂xpε and hence, some compactness of ∂xpε. The control of the space derivative
follows from Eq. (31). Indeed given the boundary conditions ∂xpε(t,±L) = 0, we
have ∫ L

−L
|∂xxpε| dx =

∫ L

−L
∂xxpε dx+ 2

∫ L

−L
(∂xxpε)− dx

≤ 2

∫ L

−L

(
(wε)− +Gm

)
dx ≤ C. (34)

Therefore ‖∂xxpε(t)‖L1(−L,L) ≤ C and sup0≤t≤T ‖∂xxpε(t)‖L1(−L,L) ≤ C uniformly
with respect to ε. The control of the time derivative of ∂xpε requires further analysis.
We will use the Fréchet-Kolmogorov compactness method and proves that∫ T−h

0

∫ L

−L
|∂xpε(t+ h, x)− ∂xpε(t, x)| dxdt −−−−→

h→0+
0, (35)

uniformly when ε→ 0. Let us denote, for h > 0, uh,ε = ∂xpε(t+ h, x)− ∂xpε(t, x).
Let us consider 0 ≤ ω ∈ C∞c (R), compactly supported, with ‖ω‖L1(R) = 1. We

introduce the mollifiers (ωη){η>0} defined by ωη(x) = 1
ηω(xη ), such that, for any

η > 0, ‖ωη‖L1(R) = ‖ω‖L1(R) = 1 and

‖∂xωη‖L1(R) =

∫
R

∣∣∣∣ 1

η2
ω′
(x
η

)∣∣∣∣ dx =
1

η
‖ω′‖L1(R).

Moreover, for any f ∈W 1,1(−L,L), we have

‖f − f ∗ ωη‖L1(−L,L) ≤ Cη‖f ′‖L1(−L,L). (36)

Then, we compute,∫ T−h

0

∫ L

−L
|uh,ε(t, x)| dxdt ≤

∫ T−h

0

∫ L

−L
|uh,ε(t, x)− uh,ε(t, ·) ∗ ωη(x)| dxdt

+

∫ T−h

0

∫ L

−L
|uh,ε(t, ·) ∗ ωη(x)| dxdt.

For the first term of the right hand side, we get with (36),∫ T−h

0

∫ L

−L
|uh,ε(t, x)− uh,ε(t, ·) ∗ ωη(x)| dxdt ≤ Cη

∫ T−h

0

∫ L

−L
|∂xuh,ε| dxdt

≤ 2Cη‖∂xxpε‖L1(QT ) −−−→
η→0

0,
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uniformly with respect to ε, thanks to the estimate (34). To estimate the second
term of the right hand side, we compute∫ T−h

0

∫ L

−L
|uh,ε(t, ·) ∗ ωη(x)| dxdt =

∫ T−h

0

∫ L

−L
|(pε(t+ h)− pε(t)) ∗ ∂xωη(x)| dxdt

≤ ‖∂xωη‖L1(R)

∫ T−h

0

∫ L

−L

∫ t+h

t

|∂tpε(s, x)| dsdxdt

≤ Ch

η
‖∂tpε‖L1(QT ),

which is uniformly bounded with respect to ε thanks to Lemma 3.4. Choosing
η =

√
h and letting h going to 0, we deduce from the above consideration that

(35) holds true. From the Fréchet-Kolmogorov compactness, we deduce that the
sequence (∂xpε)ε is precompact in L1(QT ). Passing in the limit in (33) we recover
(32). This concludes the proof of Theorem 2.1.

3.4. Uniqueness of solutions. In this section, we focus on the uniqueness of
solutions to the limiting problem (16)–(20). We first observe that from (16) and
(20), we have

∂tn0 − ∂xx(n0p0) = n10G1(p0) + n20G2(p0), in D′(QT ). (37)

Since we have the segregation property given by (20), we deduce that the support of
n10 and of n20 are disjoints. Then, by taking test functions with support included
in the support of n10 or of n20 in the weak formulation of (37), we deduce that

∂tn10 − ∂xx(n10p0) = n10G1(p0), in D′(QT ), (38)

∂tn20 − ∂xx(n20p0) = n20G2(p0), in D′(QT ). (39)

We are going to prove that system (38)–(39) complemented with the segregation
property (20) and the relation (19) admits an unique solution. More precisely our
result reads:

Proposition 1. Let us assume that assumptions (12) on Gi, i = 1, 2 holds. There
exists a unique solution (n10, n20, p0) to the problem (38)-(39)-(19)-(20) with 0 ≤
ni0 ≤ 1 for i = 1, 2.

Proof. We follow the idea developped in [29] and adapt the Hilbert’s duality method.
Consider two solutions (n10, n20, p0) and (ñ10, ñ20, p̃0) of the system (38)-(39)-(19)-
(20). Making the difference and denoting qi = ni0p0 and q̃i = ñi0p̃0, for i = 1, 2, we
have

∂t(n10 − ñ10)− ∂xx(q1 − q̃1) = n10G1(p0)− ñ10G1(p̃0), in D′(QT ),

∂t(n20 − ñ20)− ∂xx(q2 − q̃2) = n20G2(p0)− ñ20G2(p̃0), in D′(QT ).

We first observe that on the set {n10 > 0} ∩ {p0 > 0}, we have q1 = p0 from (19).
Hence we have n10G1(p0) = n10G1(q1). The same observation holds for the other
terms in the right hand side of these latter equations. For any suitable test functions
ψ1 and ψ2, we have, for i = 1, 2,∫∫

QT

[
(ni0− ñi0)∂tψi + (qi− q̃i)∂xxψi + (ni0Gi(qi)− ñi0Gi(q̃i))ψi

]
dxdt = 0. (40)

This can be rewritten as, for i = 1, 2,∫∫
QT

(ni0− ñi0 +qi− q̃i)
(
Ai∂tψi+Bi∂xxψi+AiGi(qi)ψi−CiBiψi

)
dxdt = 0, (41)
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where

Ai =
ni0 − ñi0

ni0 − ñi0 + qi − q̃i
, Bi =

qi − q̃i
ni0 − ñi0 + qi − q̃i

, Ci = −ñi0
Gi(qi)−Gi(q̃i)

qi − q̃i
,

and we define Ai = 0 as soon as ni0 = ñi0 and Bi = 0 as soon as qi = q̃i, whatever is
the value of their denominators. It is shown in Lemma 3.8 below that, for i = 1, 2,
we have 0 ≤ Ai ≤ 1, 0 ≤ Bi ≤ 1, 0 ≤ Ci ≤ γ.

The idea of the Hilbert’s duality method consists in solving the dual problem,
which is defined here by, for any smooth function Φi, i = 1, 2,{

Ai∂tψi +Bi∂xxψi +AiGi(qi)ψi − CiBiψi = AiΦi, in QT ,

∂ψi(±L) = 0 in (0, T ), ψi(·, T ) = 0 in (−L,L).
(42)

If such a system admits a smooth solution, then, by choosing ψi as a test function
in (41), we get ∫∫

QT

(ni0 − ñi0 + qi − q̃i)AiΦi dxdt = 0.

From the expression of Ai, we deduce∫∫
QT

(ni0 − ñi0)Φi dxdt = 0,

for any smooth function Φi, i = 1, 2. It is obvious to deduce the uniqueness for the
density. Uniqueness for the pressure will follow from (40).

However, the dual problem (42) is not uniformly parabolic and its coefficients are
not smooth. Then, in order to make this step rigorous, a regularization procedure is
required. It can be done exactly as in [29, p 109-110]. For the sake of completeness
of this paper, this regularizing procedure is recalled in Appendix A.

Lemma 3.8. Under assumptions (12), we have 0 ≤ Ai ≤ 1, 0 ≤ Bi ≤ 1, 0 ≤ Ci ≤
γ, for i = 1, 2.

Proof. We observe that, for i = 1, 2, ni0 > ñi0 implies qi ≥ q̃i. Indeed, either
ñi0 = 0 and then q̃i = 0 ≤ qi, or 0 < ñi0 < 1 and then from the segregation
property (20) we have ñ0 = ñi0 and from the relation (1 − ñ0)p̃0 = 0 we deduce
that p̃0 = 0, thus q̃i = 0 ≤ qi. Similarly, for i = 1, 2, ñi0 > ni0 implies q̃i ≥ qi. By
setting Ai = 0 whenever ñi0 = ni0, we conclude that 0 ≤ Ai ≤ 1.

By the same token, we show that, for i = 1, 2, qi ≥ q̃i implies ni0 ≥ ñi0. Indeed,
from qi = ni0p0 > 0, we deduce that ni0 > 0 which implies n0 = ni0, and then
p0 > 0 implies from (19) that ni0 = 1 ≥ ñi0. Hence, 0 ≤ Bi ≤ 1.

Finally, the bound on Ci is a direct consequence of the fact that Gi is nonin-
creasing and Lipschitz (see (12)) and that 0 ≤ ñi0 ≤ 1.

4. Numerical simulations.

4.1. Numerical scheme. The numerical simulations are performed using a finite
volume method similar as the one proposed in [13, 15]. The scheme used for the
conservative part is a classical explicit upwind scheme. To facilitate the reading of
this paper, we recall here the scheme used. We divide the computational domain
into finite-volume cells Cj = [xj−1/2, xj+1/2] of uniform size ∆x with xj = j∆x,

j ∈ {1, ...,Mx}, and xj =
xj−1/2+xj+1/2

2 so that

−L = x1/2 < x3/2 < ... < xj−1/2 < xj+1/2 < ... < xMx−1/2 < xMx+1/2 = L,
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and define the cell average of functions n1(t, x) and n2(t, x) on the cell Cj by

n̄βj (t) =
1

∆x

∫
Cj

nβ(t, x) dx, β ∈ {1, 2}.

The scheme is obtained by integrating system (2)-(3) over Cj and is given by

n̄k+1
βj

= −
F kβ,j+1/2 − F

k
β,j−1/2

∆x
+ n̄k+1

βj
Gβ(pkj ) for β = 1, 2, (43)

where F kβ,j+1/2 are numerical fluxes approximating −nkβukβ := −nkβ∂x(pkβ) and de-

fined by:

F kβ,j+1/2 = (ukβj+1/2
)+n̄kβj + (ukβj+1/2

)−n̄kβj+1
, β ∈ {1, 2},

where

uβ
k
j+1/2 =

−
pkj+1 − pkj

∆x
, ∀j ∈ {2, ...,Mx − 1},

0, otherwise ,

with the discretized pressure

pkj =
εnkj

1− nkj
, nkj = n̄k1j + n̄k2j .

We use the usual notation (u)+ = max(u, 0) and (u)− = min(u, 0) for the positive
part and, respectively, the negative part of u. Neumann boundary conditions are
also implemented at the boundaries of the computational model.

In order to illustrate the time dynamics for the model, we plot in Fig 1 the
densities computed thanks to the above scheme for ε = 1 at different times : (a)
t = 0, (b) t = 0.1, (c) t = 0.3, (d) t = 0.6, (e) t = 1 and (f) t = 2. For this numerical
simulation, the densities are initialized by

nini
1 (x) = 0.5 1[−L;0.25](x) and nini

2 (x) = 0.5 1[0.25;L](x), (44)

with L = 5, and the growth rates are defined by

G1(p) = 10(1− p) and G2(p) = 10(1− p/2). (45)

We recall that we have defined the parameters P 1
M and P 2

M as the values of the pres-
sure for which the growth functions vanish (see (12)). In this case their numerical
values are given by P 1

M = 2 and P 2
M = 1. Then, we define

N1
Mε = p−1(P 1

M ) =
P 1
M

ε+ P 1
M

and N2
Mε = p−1(P 2

M ) =
P 2
M

ε+ P 2
M

. (46)

Since the growth functions are different, clearly N2
Mε < N1

Mε.
In Fig 1 the red and blue species are initially segregated and equal to 0.5. At

first the dynamics is driven by the growth term, so the two species grow and reach
their respective maximal packing values N1

Mε and N2
Mε. Once this value is reached

(t = 1, 2 on both panel (ii), (iii) and (iv)), we observe two phenomena. First a
bump is created on the left side of the interface, in the domain of n2. This bump
help the total densities to stay continuous, as it joins the two maximal densities.
It also means that, at the interface, the pressure is going to be higher than the
limit pressure P 2

M . Then the derivative of the pressure at the interface is positive,
which induces a motion of the interface representing the fact that the red species n1

pushes the blue species n2. This motion of the interface is the second phenomenon
which is observed.
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Figure 1. Densities n1 (blue), n2 (red) and pressure p as functions
of position x at different times: a) t = 0, (b) t = 0.1, (c) t = 0.3,
(d) t = 0.6, (e) t = 1 and (f) t = 2; in the case ε = 1 with the
initial densities and growth rate defined by (44)-(45).

4.2. Influence of the parameter ε. In order to illustrate our main result on the
limit ε→ 0, we show, in this section, some numerical simulations of the model (2)-
(3) when ε goes to 0. We also compare with the analytical solution of the limiting
Hele-Shaw free boundary model. To perform these simulations we use the numerical
scheme (43) complemented with the initial condition (44) and the growth function
(45). For the limiting model, we use the initial conditions

nini
1 (x) = 1[−L;0.25](x) and nini

2 (x) = 1[0.25;L](x),

and the growth function (45). The analytical expressions of the solution to the
limiting Hele-Shaw system is computed in [15].

Fig 2 displays the time dynamics of the densities for different values of ε: (a)
ε = 1, (b) ε = 0.1, (c) ε = 0.01, and (d) ε = 0.001, along with solution to the Hele-
Shaw system (e). For all simulations, the densities are plotted at times t = 0.5,
t = 1 and t = 1.5.

We observe in Fig. 2 that the time dynamics of the numerical solutions is similar
for each case and follows the dynamics presented above for the case ε = 1. The
main difference observed is the maximal packing value N1

Mε and N2
Mε. Indeed since

the maximal packing values are given by (46), when ε → 0, the maximal packing
value converges to 1. This is consistent with the numerical results shown in Fig. 2.
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(a) ε = 1

(b) ε = 0.1

(c) ε = 0.01

(d) ε = 0.001

(e) Hele-Shaw system

Figure 2. Densities n1 (blue), n2 (red) and pressure p as functions
of position x at different times: (i) t = 0.5, (ii) t = 1, (iii) t = 1.5;
and for different values of ε: (a) ε = 1, (b) ε = 0.1, (c) ε = 0.01,
(d) ε = 0.001, (e) Hele-Shaw system.
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In addition we observe that as ε decreases the stiffness of the densities increases. In
overall we observe that as ε→ 0 densities converge to Heaviside functions.

4.3. Particular solutions: Tumor spheroid. One interested application of this
study is tissue development. Since we consider a system with two populations of
cells, we can for example consider the case of tumour with proliferative cells, whose
density is denoted n2, and quiescent cells, whose density is denoted n1.
Solution of the limiting Hele-Shaw problem. We assume that initially the tumor
is a spheroid centered in 0 and is composed by a spherical core representing the
quiescent cells surrounded by a ring representing the proliferative cells. Then, we
are looking for particular solution of the limiting Hele-Shaw problem (2)-(3) under
the form:

n1(t, x) = 1Ω1(t)(x) with Ω1(t) = {n1(x, t) = 1} = B[−R1(t),R1(t)],

n2(t, x) = 1Ω2(t)(x) with Ω2(t) = {n2(x, t) = 1} = B(−L,L) \B[−R1(t),R1(t)].

The radius R1(t), with R1(t) < L, is computed according to the geometric motion
rules {

R′1(t) = −∂xp(R1(t)),

R1(0) = R0
1,

where p is the solution of

−∂xxp = n1G1(p) + n2G2(p) in Ω1(t) ∪ Ω2(t).

Such functions n1 and n2 are solutions to the limiting Hele-Shaw problem (2)-(3).
Indeed by differentiating the densities, in the distributional sense, we get,

∂tn1 = R′1(t)(δx=R1(t) − δx=−R1(t)),

∂x(n1∂xp) = (δx=R1(t) − δx=−R1(t))∂xp+ 1[−R1(t),R1(t)]∂xxp.

Since R′1(t) = −∂xp(R1(t)), it follows that

∂tn1 − ∂x(n1∂xp) = 1[−R1(t),R1(t)]G1(p) = n1G1(p).

By applying the same computation on n2 we get,

∂tn2 − ∂x(n2∂xp) = n2G2(p).

Analytical solution. As this paper is reduced to the case of dimension 1, we can
compute the exact solution of the limiting Hele-Shaw problem (2)-(3) with this
initial configuration for some simple expression of the growth terms G1 and G2.
For instance, let us suppose that the growth terms are linear,

G1(p) = g1(P 1
M − p) and G2(p) = g2(P 2

M − p).

This choice means that as the pressure increases, the tumor will grow more slowly,
until the pressure reach a critical value (P 1

M or P 2
M depending of the species) where

the growth rate takes negative values, modelling the apoptosis of cells. The solution
of the pressure equation is given by,

p(x, t) =

{
(P 1
M − P 2

M )
√
g2 sinh(

√
g2(R1(t)−L)) cosh(

√
g1x)

λ on Ω1(t),

(P 1
M − P 2

M )
√
g1 cosh(

√
g2(x−L)) sinh(

√
g1R1(t))

λ on Ω2(t).

with

λ =
√
g1 cosh(

√
g2(R1 − L)) sinh(

√
g1R1)−√g2 sinh(

√
g2(R1 − L)) cosh(

√
g1R1),
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Computing the derivatives at the interface R1(t) we deduce that,

R′1(t) = −√g1g2(P 1
M − P 2

M )
sinh(

√
g2(R1(t)− L)) cosh(

√
g1R1(t))

λ
. (47)

We are interested in the study of the evolution of R1 in time, in function of the
parameters g1, g2, P

1
M , P

2
M . Given that 0 ≤ R1(t) ≤ L, it is straightfoward that

λ ≤ 0. From (47), we deduce that the sign of R′1(t) ≥ 0 is the same as the sign of
P 1
M − P 2

M .
Numerical simulations. Finally we show some simulations of the mechanical problem
for the case of spheroid tumor growth. We run the simulations with ε = 0.01 as
we have shown in Section 4.2 that the simulations are close enough from the free
boundary model. We consider two populations with the same space configuration
as at the beginning of this section,

n1 = 0.5 1B[−R1(t),R1(t)]
and n2 = 0.5 1B[−L,L]\[−R1(t),R1(t)]

,

with

R1(0) = 0.5 and R2(0) = 1.5.

We fix the parameter ε to the value 1. The growth rates are going to defined the
dynamics of the two populations. In the first example, we choose growth func-
tions such that we observe death of the inner species n1, which corresponds to the
apoptosis of one population of cells. The growth functions are defined by

G1(p) = 10(1− p) and G2(p) = 10(1− p/2), (48)

In a second example we display an example where the species n1 grows and pushes
the surrounding species n2.

G1(p) = 10(4− p) and G2(p) = 10(1− p/2). (49)

In Fig 3, we display the time dynamics of the densities of these two examples at
different time step: (i) t = 0, (ii) t = 0.1, (iii) t = 0.3, (iv) t = 0.6, (v) t = 1. It
illustrates the two different behaviours mentionned above by (48) and (49). In Fig
3 (a) the red species grows and the blue species disappears since the pressure in the
domain is bigger that P 1

M . In Fig 3 (b), the blue species pushes the red species and
propagates.

Appendix A. Uniqueness of solutions: Regularized dual problem. In this
appendix we prove rigorously Proposition 1 using a regularization procedure for the
dual problem 42. We follow closely the ideas in [29, p 109-110] which are recall
here for the sake of completness of this paper. Since the coefficients Ai, Bi are not
strictly positive and not smooth, then we need to regularize the problem 42. For
i = 1, 2, let Aki , Bki , Cki and Gki be sequences of smooth functions such that,

‖Ai −Aki ‖L2(QT ) <
αi
k
,

1

k
< Aki ≤ 1,

‖Bi −Bki ‖L2(QT ) <
βi
k
,

1

k
< Bki ≤ 1,

‖Ci − Cki ‖L2(QT ) <
δ1,i
k
, 0 ≤ Cki ≤M1,i, ‖∂tCki ‖L1(QT ) ≤ K1,i,

‖Gi(qi)−Gki ‖L2(QT ) <
δ2,i
k
, |Gki | < M2,i, ‖∂xGki ‖L2(QT ) ≤ K2,i,
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(a) Case 1

(b) Case 2

Figure 3. Densities n1 (blue), n2 (red) and p (black) as functions
of position x for different growth function at different times: (i)
t = 0.3, (ii) t = 0.6, (iii) t = 1, (iv) t = 1.5.

for some constant αi, βi, δ1,i, δ2,i,M1,i,M2,i,K1,i,K2,i. For any smooth function Φi,
i = 1, 2, we consider the following regularised dual system,

{
∂tψ

k
i +

Bki
Aki
∂xxψ

k
i +Gki ψ

k
i − Cki

Bki
Aki
ψki = Φi, in QT ,

∂xψ
k
i (±L) = 0 in (0, T ), ψki (·, T ) = 0 in (−L,L).

(50)

As the coefficients
Bki
Aki

for i = 1, 2, are positive, continuous and bounded below away

from zero, the dual equation is uniformly parabolic in QT . Then we can solve it
and we denote ψki the solution of (50). This solution ψki is smooth and can be used
as a test function in (41).

Using (41) and (50), for i = 1, 2,

∫∫
QT

(ni0 − ñi0)Φi dxdt = I1,i − I2,i − I3,i + I4,i,



82 PIERRE DEGOND, SOPHIE HECHT AND NICOLAS VAUCHELET

where

I1,i =

∫∫
QT

(ni0 − ñi0 + qi − q̃i)
Bki
Aki

(Ai −Aki )(∆ψki − Cki ψki ) dxdt,

I2,i =

∫∫
QT

(ni0 − ñi0 + qi − q̃i)(Bi −Bki )(∆ψki − Cki ψki ) dxdt,

I3,i =

∫∫
QT

(ni0 − ñi0)(Gi(qi)−Gki )ψki dxdt,

I4,i =

∫∫
QT

(ni0 − ñi0 + qi − q̃i)Bi(Ci − Cki )ψki dxdt.

We intend to show that at the limit k → +∞, Ij,i converges to 0 for j = 1, 2, 3, 4
and i = 1, 2. To show the convergence, we are going to find estimates on ψki and
its derivative:

• As ψki is solution of (50) with Cki nonnegative and Gki uniformly bounded,
from the maximum principle we get,

‖ψki ‖L∞(QT ) ≤ κ1,

where κ1 is independent of k.
• Multipling (50) by ∂xxψ

k
i − Cki ψki and integrating on Ω× (t, T ), we get

1

2
‖∂xψki (t)‖2L2(−L,L) +

∫∫
Ω×(t,T )

Bki
Aki
|∂xxψki − Cki ψki |2 dxdt = −

∫ L

−L
(Cki

(ψki )2

2
)(t) dx

+

∫∫
(−L,L)×(t,T )

(
− ∂tCki

(ψki )2

2
−Gki |∂xψki |2 − ψki ∂xGki ∂xψki + Cki G

k
i (ψki )2

+ψki ∂xxΦi − ΦiC
k
i ψ

k
i

)
dxdt

≤ K

(
1− t+

∫ T

t

‖∂xψki (s)‖2L2(−L,L)ds

)
,

(51)
with K a constant independent of k. By using Gronwall lemma we get the
following bound,

sup
0≤t≤T

‖∂xψki ‖L2(QT ) ≤ κ2,

with κ2 independent of k.
• Using (51), we get

‖
(Bki
Aki

)1/2

(∂xxψ
k
i − Cki ψki )‖L2(QT ) ≤ κ3,

with κ3 independent of k.
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We use these bounds to prove the convergence of the integrals Ij,i for j = 1, 2, 3, 4
and i = 1, 2. We get,

I1,i = K̃

∫∫
QT

Bki
Aki
|Ai −Aki ||∂xxψki − Cki ψki | dxdt ≤ K̃‖(

Bki
Aki

)1/2

(Ai −Aki )‖L2(QT )

≤ K̃k1/2‖(Ai −Aki )‖L2(QT ) ≤ K̃αk−1/2

I2,i = K̃

∫∫
QT

|Bi −Bki ||∂xxψki − Cki ψki | dxdt ≤ K̃‖(
Aki k

1/2

Bki

)1/2

(Bi −Bki )‖L2(QT )

≤ K̃k1/2‖(Bi −Bki )‖L2(QT ) ≤ K̃βk−1/2,

I3,i =

∫∫
QT

|ni0 − ñi0||G1(q1)−Gki ||ψki | dxdt ≤ K̃‖(Gi(qi)−Gki )‖L2(QT ) ≤ K̃
δ2,i
n
,

I4,i = K̃

∫∫
QT

Bi|Ci − Cki ||ψki | dxdt ≤ K̃‖(Ci − Cki )‖L2(QT ) ≤
K̃

n
.

where K̃ is a contant independent of of k. It justifies that limk→+∞ Ij,i = 0 for
j = 1, 2, 3, 4 and i = 1, 2. Then

lim
k→+∞

∫∫
QT

(ni0 − ñi0)Φi dxdt = 0,

for any smooth function Φi for i = 1, 2. This implies that n10 = ñ10 and n20 = ñ20.
Then, we deduce from (40),∫∫

QT

[
(qi − q̃i)∂xxψi + ni0(Gi(qi)−Gi(q̃i))ψi

]
dxdt = 0.

By using ψi = qi − q̃i, we recover qi = q̃i for i = 1, 2. It concludes the proof.
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by cell division and apoptosis, Proc. Natl. Acad. Sci., 107 (2010), 20863–20868.
[32] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. of

Theor. Biol., 79 (1979), 83–99.

[33] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. (4), 146 (1987),
65–96.

Received January 2019; revised September 2019.

E-mail address: p.degond@imperial.ac.uk

E-mail address: sophie.hecht15@imperial.ac.uk, sh5015@ic.ac.uk

E-mail address: vauchelet@math.univ-paris13.fr

http://www.ams.org/mathscinet-getitem?mr=MR3292119&return=pdf
http://dx.doi.org/10.4171/IFB/327
http://dx.doi.org/10.4171/IFB/327
http://www.ams.org/mathscinet-getitem?mr=MR3162474&return=pdf
http://dx.doi.org/10.1007/s00205-013-0704-y
http://dx.doi.org/10.1007/s00205-013-0704-y
http://www.ams.org/mathscinet-getitem?mr=MR3393324&return=pdf
http://dx.doi.org/10.1098/rsta.2014.0283
http://dx.doi.org/10.1098/rsta.2014.0283
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535270/
http://dx.doi.org/10.1073/pnas.1011086107
http://dx.doi.org/10.1073/pnas.1011086107
http://www.ams.org/mathscinet-getitem?mr=MR540951&return=pdf
http://dx.doi.org/10.1016/0022-5193(79)90258-3
http://www.ams.org/mathscinet-getitem?mr=MR916688&return=pdf
http://dx.doi.org/10.1007/BF01762360
mailto:p.degond@imperial.ac.uk
mailto:sophie.hecht15@imperial.ac.uk, sh5015@ic.ac.uk
mailto:vauchelet@math.univ-paris13.fr

	1. Introduction
	2. Main results
	3. Proof of the main results
	3.1. A priori estimates
	3.2. Proof of theorem 1
	3.3. Complementary relation
	3.4. Uniqueness of solutions

	4. Numerical simulations
	4.1. Numerical scheme
	4.2. Influence of the parameter e
	4.3. Particular solutions: Tumor spheroid

	Appendix A. Uniqueness of solutions: Regularized dual problem
	Acknowledgments
	Data statement
	REFERENCES

