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Abstract. We study time-harmonic Maxwell’s equations in meta-materials

that use either perfect conductors or high-contrast materials. Based on known
effective equations for perfectly conducting inclusions, we calculate the trans-

mission and reflection coefficients for four different geometries. For high-

contrast materials and essentially two-dimensional geometries, we analyze par-
allel electric and parallel magnetic fields and discuss their potential to exhibit

transmission through a sample of meta-material. For a numerical study, one

often needs a method that is adapted to heterogeneous media; we consider here
a Heterogeneous Multiscale Method for high contrast materials. The qualita-

tive transmission properties, as predicted by the analysis, are confirmed with
numerical experiments. The numerical results also underline the applicability

of the multiscale method.

1. Introduction. We study the transmission and reflection properties of meta-
materials, i.e., of periodic microstructures of a composite material with two com-
ponents. The interest in meta-materials has immensely grown in the last years
as they exhibit astonishing properties such as band gaps or negative refraction; see
[23, 33, 39]. The propagation of electromagnetic waves in such materials is modelled
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by time-harmonic Maxwell’s equations for the electric field E and the magnetic field
H: {

curlE = iωµ0µH ,

curlH = −iωε0εE .

(1.1a)

(1.1b)

We use the standard formulation with µ0, ε0 > 0 the permeability and permittivity
of vacuum, µ and ε the corresponding relative parameters, and ω > 0 the imposed
frequency. While most materials are non-magnetic, i.e., µ = 1, the electric permit-
tivity ε covers a wide range. In this paper, we study meta-materials consisting of
air (i.e., ε = 1) and a (metal) microstructure Ση. The microstructure is assumed
to be an η-periodic repetition of scaled copies of some geometry Σ. In the present
study, we investigate in detail four different geometries: Σ can be a metal cylin-
der (in two rotations), a metal plate, or the complement of an air cylinder; see
Fig. 2.2 and (2.6)–(2.9) for a detailed definition. For the electric permittivity in
the microstructure Ση, we consider two different cases: perfect conductors that are
formally obtained by setting ε = ∞, and high-contrast materials with ε = ε1η

−2,
where ε1 ∈ C is some complex number with Im(ε1) > 0. In both cases, our study
is based on the effective equations for the electric and magnetic field in the limit
η → 0.

The numerical simulation of electromagnetic wave propagation in such meta-
materials is very challenging because of the rapid variations in the electric permit-
tivity. Standard methods require the resolution of the η-scale, which often becomes
unfeasible even with today’s computational resources. In contrast, we resort to
homogenization and multiscale methods to extract macroscopic features and the
behaviour of the solution. The effective equations obtained by homogenization can
serve as a good motivation and starting point in this process.

Literature. Effective equations for Maxwell’s equations in meta-materials are
obtained in several different settings. One of the earliest results is contained in
[28] where also the case of perfect conductors is treated. In this standard setting
(which imposes neither high contrast nor singular geometries), the artificial dielec-
tric coefficients cannot have negative entries. This is different when inclusions with
high-contrast media are treated. In [6, 7, 13], the effect of artificial magnetism
(negative eigenvalues of the effective permeability µ) is explained in the framework
of Mie-resonance. On the other hand, long wires can lead to unusual effective per-
mittivities [5]. We mention that the wires have to be thin (there volume fraction
tends to 0 when the periodicity tends to 0) in order to have nontrivial results.

Artificial magnetism in high-contrast materials appears to be intimately related
to band-gap properties for small η: indeed, the key effective magnetism function
µeff(ω), independently introduced in [8] appears to be identical to the spectral func-
tion β(s) earlier introduced in [44] and then studied further e.g. in [45].

A combination of both structures, bulk inclusions and wires, is used to obtain
a negative-index meta-material in [30]. Topological changes in the material in the
limit η → 0, such as found in split rings, also incite unusual effective behaviour, see
[10, 31]. Perfect conductors were recently studied as well: split rings in [32] and
connected inclusion geometries in [40]. We mention that the geometry in [32] does
not include iterated homogenization, a tool that was used in the more theoretical
investigation of [35]. Finally, we briefly mention that the Helmholtz equation—as
the two-dimensional reduction of Maxwell’s equations—is often studied as the first
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example for unusual effective properties: high-contrast inclusions in [8] or high-
contrast layer materials in [11], just to name a few. An overview on this vast topic
is provided in [41]. Regarding high contrast problems with nontrivial topologies in
the context of elasticity we refer to [29] and [42].

With our results, we identify certain periodic geometries that cannot transmit
waves of a certain polarization. Even though this fact can be interpreted in terms
of the spectrum of the effective operator, we do not pursue the spectral analysis as,
e.g., [14, 45].

Concerning the numerical treatment, we focus on the Heterogeneous Multiscale
Method (HMM) [21, 22]. For the HMM, first analytical results concerning the ap-
proximation properties for elliptic problems have been derived in [1, 20, 37] and
then extended to other problems, such as time-harmonic Maxwell’s equations [26]
and the Helmholtz equation and Maxwell’s equations with high-contrast [38, 43].
Another related work is the multiscale asymptotic expansion for Maxwell’s equa-
tions [12]. For further recent contributions to HMM approximations for Maxwell’s
equations we refer to [17, 27]. Sparse tensor product finite elements for multiscale
Maxwell-type equations are analyzed in [15] and an adaptive generalized multiscale
finite element method is studied in [16].

Main results. We perform an analytical and a numerical study of transmission
properties of meta-materials that contain either perfect conductors or high-contrast
materials. The main results are the following:

1.) Using the effective equations of [40], we calculate the reflection and trans-
mission coefficients for four microscopic geometries Σ. Few geometrical parameters
are sufficient to fully describe the effective coefficients. We show that only certain
polarizations can lead to transmission.

2.) For the two geometries that are invariant in the e3-direction, we study the
limit behaviour of the electromagnetic fields for high-contrast media. When the
electric field is parallel to e3, all fields vanish in the limit. In contrast, when the
magnetic field is parallel to e3, transmission cannot be excluded due to resonances.

3.) Extensive numerical experiments for high-contrast media confirm the analyt-
ical results. The numerical experiments underline the applicability of the Hetero-
geneous Multiscale Method to these challenging settings.

Some further remarks on 2.) are in order. The results are related to homog-
enization results of [7, 13, 14], but we study more general geometries, since the
highly conducting material can be connected. Furthermore, the results are related
to [8, 11], where connected structures are investigated, but in a two-dimensional
formulation. We treat here properties of the three-dimensional solutions. We em-
phasize that the transmission properties of a high-contrast medium cannot be cap-
tured in the framework of perfect conductors, since the latter excludes resonances
on the scale of the periodicity (except if three different length-scales are considered
as in [32]).

Organization of the paper. The paper is organized as follows: In Section 2, we
detail the underlying problem formulations and revisit existing effective equations.
In Section 3, we compute the transmission coefficients for perfect conductors and
derive effective equations for high-contrast media. In Section 4, we briefly introduce
the Heterogeneous Multiscale Method. Finally, in Section 5 we present several
numerical experiments concerning the transmission properties of our geometries for
high-contrast materials.
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Figure 2.1. Waveguide domain G with periodic scatterer Ση con-
tained in the middle part QM and incident wave from the right.

2. Problem formulation and effective equations. This section contains the
formulation of the problem, including the description of the four microscopic ge-
ometries. We summarize the relevant known homogenization results and apply
them to the cases of interest.

2.1. Geometry and material parameters. We study time-harmonic Maxwell’s
equations with linear material laws. The geometry is periodic with period η > 0;
solutions depend on this parameter and are therefore indexed with η. On a domain
G ⊂ R3, the problem is to find Eη, Hη : G→ C3, such that{

curlEη = iωµ0H
η ,

curlHη = −iωε0εηE
η ,

(2.1a)

(2.1b)

subject to appropriate boundary conditions. In the following, we will give details on
the geometry G and on the choice of the material parameter εη, the relative permit-
tivity. We are interested in a sequence η = ηi with ηi > 0 for every i ∈ N satisfying
ηi → 0 as i → ∞. We assume that a sequence of solutions (Eη, Hη) is given, in
(2.11) below we will additionally assume some boundedness of the sequence. Our
interest is to study limits of the sequence.

Note that the system allows to eliminate one unknown. Indeed, if we insert Hη

from (2.1a) into (2.1b), we obtain

curl curlEη = ω2µ0ε0εηE
η . (2.2)

Alternatively, substituting Eη from (2.1b) into (2.1a), we obtain

curl ε−1
η curlHη = ω2µ0ε0H

η . (2.3)

Geometry. As sketched in Fig. 2.1, with positive numbers `2, `3 > 0, the
unbounded macroscopic domain is the waveguide domain

G :=
{
x = (x1, x2, x3) ∈ R3 : x2 ∈ (−`2, `2) and x3 ∈ (−`3, `3)

}
. (2.4)

With another positive number L > 0, the domain is divided into three parts (left,
middle, right) as

QL :=
{
x ∈ G : x1 ≤ −L

}
, QM :=

{
x ∈ G : x1 ∈ (−L, 0)

}
,

and

QR := {x ∈ G : x1 ≥ 0} .
The scatterer Ση is contained in the middle part QM . For the boundary conditions,
we consider an incident wave from the right that travels along the x1-axis to the left.
We restrict ourselves here to normal incidence. For the analysis, we impose periodic
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Figure 2.2. The cube shows the periodicity cell Y . The mi-
crostructures Σ1, Σ3, and Σ4 are shown in dark grey. (A) The
metal cylinder Σ1. (B) The metal plate Σ3. (C) The metal part
Σ4 is the complement of a cylinder.

boundary conditions on the lateral boundaries of the domain G. For the numerics,
we will modify the boundary conditions slightly: we truncate G in x1-direction to
obtain a bounded domain G̃ and consider impedance boundary conditions (with

the incident wave as data) on the whole boundary of G̃. A typical choice is G̃ :=
G ∩ {x1 ∈ (−2L,L)}.

The scatterer Ση is given as an η-periodic structure. We use the periodicity cell
Y := [− 1

2 ,
1
2 ]3 and introduce the set Iη of all vectors such that a scaled and shifted

copy of Y is contained in QM , Iη := {j ∈ Z3|η(j+Y ) ⊂ QM}. A set Σ ⊂ Y specifies
the meta-material, which is defined as

Ση :=
⋃
j∈Iη

η (j + Σ) . (2.5)

For the microscopic structure Σ we consider the following four examples. The
metal cylinder (see Fig. 2.2a) is defined for r ∈ (0, 1/2) as

Σ1 :=
{
y = (y1, y2, y3) ∈ Y : y2

1 + y2
2 < r2

}
. (2.6)

The set Σ2 is obtained by a rotation which aligns the cylinder with the e1-axis,

Σ2 :=
{
y = (y1, y2, y3) ∈ Y : y2

2 + y2
3 < r2

}
. (2.7)

To define the metal plate (see Fig. 2.2b), we fix r ∈ (0, 1/2) and set

Σ3 :=
{
y = (y1, y2, y3) ∈ Y : y2 ∈ (−r, r)

}
. (2.8)

The fourth geometry is obtained by removing an “air cylinder” from the unit cube
(see Fig. 2.2c); for r ∈ (0, 1/2) we set

Σ4 := Y \
{
y = (y1, y2, y2) ∈ Y : y2

2 + y2
3 < r2

}
. (2.9)

Material parameters. We recall that all materials are non-magnetic, the rela-
tive magnetic permeability is µ ≡ 1. Outside the central region, there is no scatterer;
we hence set εη = 1 in QL and QR. The middle part QM contains Ση. We set εη = 1
in QM \ Ση. It remains to specify the electric permittivity εη in Ση. We consider
two different settings.

(PC) In the case of perfect conductors, we set, loosely speaking, εη = +∞ in

Ση. More precisely, we require that Eη and Hη satisfy (2.1) in G \ Ση and Eη =
Hη = 0 in Ση. Boundary conditions are induced on ∂Ση: The magnetic field Hη
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has a vanishing normal component and the electric field Eη has vanishing tangential
components on ∂Ση.

(HC) In the case of high-contrast media, we define the permittivity as

εη(x) :=


ε1

η2
if x ∈ Ση ,

1 if x ∈ G \ Ση ,
(2.10)

where ε1 ∈ C with Re(ε1) > 0, Im(ε1) > 0. Physically speaking, this means that
the scatterer QM consists of periodically disposed metal inclusions Ση embedded
in vacuum. The scaling with η2 means that the optical thickness of the inclusions
remains constant; see [7].

In both settings and throughout this paper, we consider sequences of solutions
(Eη, Hη)η to (2.1). We always assume that, for a bounded subdomain G̃ ⊂ G, the

sequences are bounded in L2(G̃;C3),

sup
η>0

∫
G̃

|Eη|2 + |Hη|2 <∞ . (2.11)

Let us remark that the specific geometry of the microstructures Σ1,Σ2, and Σ4

is not important; the cylinders could as well be cuboids.

2.2. Effective equations. Homogenization theory allows to consider the limit η →
0. One identifies limiting fields Ê and Ĥ (the latter does not coincide with the weak
limit of Hη) and limiting equations for these fields. Using the tool of two-scale
convergence, such results have been obtained for perfect conductors as well as for
high-contrast materials. We briefly summarize the main findings here; analysis and
numerics below are built upon these results.

Perfect conductors (PC). The homogenization analysis for this case has been
performed in [40]. Since the parameters of vacuum are used outside the scatterer,
the original Maxwell equations describe the limiting fields in QL and QR. In the
meta-material QM , however, different equations hold. There holds Eη⇀Ê and
Hη⇀µ̂Ĥ in L2(G) and the fields Ê and Ĥ solve

curl Ê = iωµ0µ̂Ĥ in G ,

curl Ĥ = −iωε0ε̂Ê in G \QM ,

(curl Ĥ)k = −iωε0(ε̂Ê)k in G , for every k ∈ NΣ ,

Êk = 0 in QM , for every k ∈ LΣ ,

Ĥk = 0 in QM , for every k ∈ NY \Σ .

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

The effective coefficients µ̂ and ε̂ are determined by cell-problems. For the cell-
problems, details on the index sets, and the derivation of system (2.12), we refer
to [40]. The index sets NΣ, LΣ, and NY \Σ are subsets of {1, 2, 3} and can be

determined easily from topological properties of Σ. Loosely speaking: An index k
is in the set LΣ, if there is a curve (loop) that runs in Σ and connects opposite
faces of Y in direction ek. An index k is in NΣ, if there is no loop of that kind. We
collect the index sets NΣ, LΣ, and NY \Σ for the geometries Σ1 to Σ4 in Table 2.1.

We will specify equations (2.12c)–(2.12e) for the four chosen geometries in Sec-
tion 3.1. With the effective equations for the perfect conductors at hand, one can
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Table 2.1. Index sets NΣ, LΣ, and NY \Σ for microstructures Σ1

to Σ4 of (2.6)–(2.9).

geometry metal cylinder Σ1 metal cylinder Σ2 metal plate Σ3 air cylinder Σ4

NΣ {1, 2} {2, 3} {2} ∅
LΣ {3} {1} {1, 3} {1, 2, 3}
NY \Σ ∅ ∅ {2} {2, 3}

ask for the transmission and reflection coefficients of the meta-material. This is the
goal of our analysis in Section 3.1.

High-contrast media (HC). Homogenization results for high-contrast media
are essentially restricted to the case of non-connected metal parts, i.e., to geometries
that are obtained by Σ which is compactly embedded in Y (it does not touch the
boundary of the cube); see, e.g., [6, 10, 7]. The few exceptions are mentioned below.

For such geometries, the limit equations have again the form of Maxwell’s equa-
tions, {

curl Ê = iωµ0µ̂Ĥ in G ,

curl Ĥ = −iωε0ε̂Ê in G .

(2.13a)

(2.13b)

In QL ∪QR, the effective fields coincide with the weak limits of the original fields,
and the effective relative coefficients are unit tensors. In the meta-material QM ,
however, the high-contrast in the definition of the permittivity εη in (2.10) leads to
non-trivial limit equations. The effective material parameters ε̂ and µ̂ are obtained
via cell problems and they can take values that are not to be expected from the
choice of the material parameters in the η-problem.

As discussed in Section 2.1, time-harmonic Maxwell’s equations can equivalently
be written as a single second order PDE for the H-field or the E-field. For the
H-field we obtain

curl ε̂−1 curl Ĥ = ω2ε0µ0µ̂Ĥ in G . (2.14)

Again, the effective material parameters ε̂−1 and µ̂ are defined via solutions of cell
problems and we refer to [13, 43] for details. We remark that the equivalence of
the two formulations (2.13) and (2.14) has been shown in [43]. In particular, the
effective permeability µ̂ agrees between both formulations and we have the relation

ε̂−1 = (ε̂)−1.
The effective equations (2.13) or (2.14) mean that, in the limit η → 0, the

meta-material QM with high-contrast permittivity εη behaves like a homogeneous
material with permittivity ε̂ and permeability µ̂. The occurrence of a permeability µ̂
in the effective equations is striking and this effect is known as artificial magnetism;
see [8]. Moreover, µ̂ depends on the frequency ω and it can have a negative real
part for certain frequencies. Negative values of the permeability are caused by (Mie)
resonances in the inclusions Σ and are studied in detail in [7, 43].

As mentioned, a crucial assumption for the homogenization analysis in [7, 13] is
that Σ is compactly contained in the unit cube. For the four geometries Σ1 to Σ4,
this assumption is clearly not met; we therefore ask whether certain components of
the effective fields Ê and Ĥ vanish in this case as in the case of perfect conductors.
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This motivates our analysis in Section 3.2 as well as the numerical experiments in
Section 5.

Regarding known results on non-compactly contained inclusions we mention the
thin wires in [9] and [30], and the dimensionally reduced analysis of the metal plates
Σ3 in [11].

3. Analysis of the microscopic geometries Σ1 to Σ4. In Section 3.1, we treat
the case of perfect conductors and compute the transmission coefficients from the
effective equations (2.12). In Section 3.2, we treat the case of high-contrast media
and discuss the possibility of nontrivial transmission coefficients.

3.1. Transmission and reflection coefficients for perfect conductors. We
compute the transmission and reflection coefficients for four different geometries:
metal cylinders, metal plate, and air cylinder. We consider the waveguide G =
QL∪Q̄M∪QR of Section 2.1 and impose periodic boundary conditions on the lateral
boundary of G. We recall that the four microscopic structures Σ1 to Σ4 are defined
in (2.6)–(2.9). Based on the effective equations (2.12) for the perfect conductors,
we compute the transmission and reflection coefficients for these geometries.

Results for perfect conductors. Before we discuss the examples in detail, we
present an overview of the results. The propagation of the electromagnetic wave in
vacuum is described by the time-harmonic Maxwell equations{

curl Ê = iωµ0Ĥ in QL ∪QR ,

curl Ĥ = −iωε0Ê in QL ∪QR .

(3.1a)

(3.1b)

For the electromagnetic fields, we use the time-convention e−iωt. From (3.1) we
deduce that both fields are divergence-free in QL ∪QR. We shall assume that the
electric field Ê : G→ C3 in QR is the superposition of a normalized incoming wave
with normal incidence and a reflected wave:

Ê(x) :=
(

e−ik0x1 +R eik0x1
)

ek , (3.2)

for x = (x1, x2, x3) ∈ QR and k ∈ {2, 3}. Here, R ∈ C is the reflection coefficient

and k0 = ω
√
ε0µ0. Note that the electric field Ê in (3.2) travels along the x1-axis

from right to left.
Due to (3.1a), the effective magnetic field Ĥ : G→ C3 is given by

Ĥ(x) = (−1)l
k0

ωµ0

(
e−ik0x1 −R eik0x1

)
el , (3.3)

where l = 2 if k = 3 and l = 3 if k = 2 and x ∈ QR. Equation (3.1b) is satisfied in
QR by our choice of k0.

On the other hand, for the transmitted electromagnetic wave in the left domain
QL, we make the ansatz

Ê(x) = T e−ik0(x1+L) ek and Ĥ(x) = (−1)l
k0

ωµ0
T e−ik0(x1+L) el , (3.4)

where T ∈ C is the transmission coefficient. We recall that L > 0 is the width of the
meta-material QM and {x1 = −L} is the interface between left and middle domain.
Since the meta-material in QM can lead to reflections, the transmission coefficient
T ∈ C does not necessarily satisfy |T | = 1.
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Our results are collected in Table 3.1. The table lists transmission coefficients
for the four geometries in the case that the incoming magnetic field H is parallel to
e3.

microstructure Σ transmission coefficient T

metal cylinder Σ1 T = 4p1
√
αγ
[
(α+ γ)(1− p2

1) + 2
√
αγ(1 + p2

1)
]−1

metal cylinder Σ2 T = 4p2
√
γ
[
(1 + γ)(1− p2

2) + 2
√
γ(1 + p2

2)
]−1

metal plate Σ3 T = 4p0α
[
(1 + α2)(1− p2

0) + 2α(1 + p2
0)
]−1

air cylinder Σ4 T = 0

Table 3.1. Overview of the transmission coefficients T when H
is parallel to e3. We see, in particular, that T is vanishing for the
structure Σ4, but it is nonzero for the other micro-structures. The
constant γ ∈ C depends on the microstructure and on solutions to
cell problems, and is defined in the subsequent sections, α := |Y \Σ|
is the volume fraction of air, L > 0 is the width of the meta-
material QM . We use k0 = ω

√
ε0µ0 and the numbers p0 := eik0L,

p1 := p0 ei
√
αγL, and p2 := p0 ei

√
γL.

In the remainder of this section we compute the transmission coefficient T and the
reflection coefficient R for the four microscopic geometries and verify, in particular,
the formulas of Table 3.1. Moreover, the effective fields in the meta-material QM
are determined.

3.1.1. The metal cylinder Σ1. The metal cylinder Σ1 has a high symmetry, which
allows to compute the effective permeability µ̂. To do so, we define the projection
π : Y → R2 onto the first two components, i.e., π(y1, y2, y3) := (y1, y2). Moreover,
we set Y 2 := π(Y ) and Σ2

1 := π(Σ1).
Choose l ∈ {1, 2} and denote by H l ∈ L2(Y ;C3) the distributional periodic

solution of 
curlH l = 0 in Y \ Σ1 ,

divH l = 0 in Y ,

H l = 0 in Σ1 ,

(3.5a)

(3.5b)

(3.5c)

with ∮
H l = el . (3.5d)

The normalization of the last equation is defined in [40]; loosely speaking, the left
hand side collects values of line integrals of H l, where the lines are curves in Y \Σ
and connect opposite faces of Y . Problem (3.5) is uniquely solvable by [40, Lemma
3.5]. Given the field H l = (H l

1, H
l
2, H

l
3) we define the field hl : Y 2 → C2 as

hl(y1, y2) :=

∫ 1

0

(−H l
2, H

l
1)(y1, y2, y3) dy3 . (3.6)
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Lemma 3.1. Let H l ∈ L2(Y ;C3) be the solution of (3.5). Then hl ∈ L2(Y 2;C2)
of (3.6) is a distributional periodic solution to the two-dimensional problem

div hl = 0 in Y 2 \ Σ2
1 ,

∇⊥ · hl = 0 in Y 2 ,

hl = 0 in Σ2
1 .

(3.7a)

(3.7b)

(3.7c)

Moreover, there exists a potential ψ ∈ H1
] (Y 2;C) such that hl = ∇ψ−δ2l e1 +δ1l e2.

Proof. The proof consists of a straightforward calculation.

The decomposition of hl allows to determine the effective permeability µ̂, which,
by [40], is given as

µ̂(x) := µeff1QM (x) + Id1G\QM (x) , (3.8)

where

(µeff)kl :=

∫
Y

H l · ek . (3.9)

Lemma 3.2 (Effective permeability for the metal cylinder). For the microstructure
Σ = Σ1 the permeability µeff is given by

µeff = diag
(
1, 1, |Y \ Σ1|

)
. (3.10)

Proof. To shorten the notation, we write y′ := (y1, y2) ∈ Y 2. Applying Fubini’s
theorem and using the decomposition of h1, we find that

(µeff)11 =

∫
Y

H1 · e1 =

∫
Y 2

h1
2(y′) dy′ =

∫
Y 2

∂2ψ(y′) dy′ + |Y 2| = 1 ,

where, in the last equality, we exploited that ψ is Y 2-periodic and that |Y 2| = 1.
A similar computation shows that (µeff)22 = 1.

To compute (µeff)12, we note that h1
1(y′) = ∂1ψ(y′). Applying Fubini’s theorem,

we find

(µeff)12 =

∫
Y

H1 · e2 = −
∫
Y 2

h1
1(y′) dy′ = −

∫
Y 2

∂1ψ(y′) dy′ = 0 .

As h2
2(y′) = ∂2ψ(y′), we can proceed as before and find (µeff)21 = 0.

One readily checks that H3(y) := 1Y \Σ1
(y) e3 is the solution of the cell problem

(3.5) with
∮
H3 = e3. The missing entries of the effective permeability matrix

µeff can now be computed using the formula for H3 and the definition of µeff in
(3.9).

Besides µ̂, we also need the effective permittivity ε̂. For l ∈ {1, 2, 3} we denote
by El ∈ L2(Y ;C3) the weak periodic solution to

curlEl = 0 in Y ,

divEl = 0 in Y \ Σ1 ,

El = 0 in Σ1 ,

(3.11a)

(3.11b)

(3.11c)

with ∫
Y

El = el . (3.11d)

Problem (3.11) is uniquely solvable by [40, Lemma 3.1]. Consequently, the solutions
to (3.11) are real vector fields. Indeed, for each index l ∈ {1, 2, 3} the vector
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field Im(El) : Y → R3 is a weak solution to (3.11) with
∫
Y

Im(El) = 0 and hence

Im(El) = 0 in Y .
As in [40] we set

ε̂(x) := εeff1QM (x) + Id1G\QM (x) , (3.12)

where

(εeff)kl :=

∫
Y

Ek · El . (3.13)

Lemma 3.3 (Effective permittivity for the metal cylinder). For the microstructure
Σ = Σ1, the permittivity εeff is given by

εeff = diag(γ, γ, 0) , (3.14)

where γ := (εeff)1,1.

Proof. As shown in Table 2.1, we find that NΣ1
= {1, 2}. From [40, Lemma 3.2]

we hence deduce that (εeff)k,3 as well as (εeff)3,k vanish for all k ∈ {1, 2, 3}. We
claim that the matrix εeff is symmetric. Because of (εeff)k,3 = (εeff)3,k = 0 we
only have to prove that (εeff)1,2 = (εeff)2,1. As the solutions E1 and E2 of the cell
problem (3.11) are real vector fields, we compute that

(εeff)1,2 =

∫
Y

E1 · E2 =

∫
Y

E2 · E1 = (εeff)2,1 .

To show that (εeff)1,2 = (εeff)2,1 = 0, we consider the map M : Y → Y that is
defined by the diagonal matrix diag(−1, 1, 1). Note that M(Σ1) = Σ1. To shorten
the notation, we set E := E1. Consider the vector field F : Y → R3,

F (x) := ME(Mx) =

−E1

E2

E3

 (−x1, x2, x3) .

One readily checks that F is a solution to the cell problem (3.11) with
∫
Y
F = − e1 .

Due to the unique solvability of the cell problem (3.11), we conclude that that
F = −E. Similarly, we find that ME2 ◦M = E2. Thus

(εeff)1,2 =

∫
Y

E1 ·E2 = −
∫
Y

ME1(My)·ME2(My) dy = −
∫
Y

E1 ·E2 = −(εeff)1,2 .

Hence (εeff)1,2 = (εeff)2,1 = 0.
We are left to prove (εeff)2,2 = (εeff)1,1. To do so, we consider the rotation map

R : Y → Y which is defined by the matrix0 −1 0
1 0 0
0 0 1

 .

Then R(Σ1) = Σ1. Moreover, as the cell problem (3.11) is uniquely solvable, we
find that RE2 ◦R = −E1. Thus

(εeff)1,1 =

∫
Y

E1 · E1 =

∫
Y

RE2(Ry) ·RE2(Ry) dy =

∫
Y

E2 · E2 = (εeff)2,2 .

This proves the claim.
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By Theorem 4.1 of [40], the microstructure Σ1 together with the effective permit-
tivity from (3.14) and permeability from (3.10) implies that the effective equations
are 

∂2Ĥ3 − ∂3Ĥ2 = −iωε0(ε̂Ê)1 in G ,

∂3Ĥ1 − ∂1Ĥ3 = −iωε0(ε̂Ê)2 in G ,

Ê3 = 0 in QM .

(3.15a)

(3.15b)

(3.15c)

The equations (3.15) do not repeat (2.12a) and (2.12b). Due to (2.12a), the effective

electric field is divergence-free. As we assume that Ê travels along the x1-axis,
the first component Ê1 vanishes. Due to (3.15c) we expect no transmission if the
effective electric field is polarized in e3-direction. For nontrivial transmission, we
may therefore make the following ansatz for the effective electric field Ê : G→ C3,

Ê(x) :=
(

e−ik0x1 +R eik0x1
)

e2 for x = (x1, x2, x3) ∈ QR .

Thanks to (2.12b) the magnetic field Ĥ is given by

Ĥ(x) = − k0

ωµ0

(
e−ik0x1 −R eik0x1

)
e3 for x = (x1, x2, x3) ∈ QR .

In the meta-material QM we write

Ê(x) =
(
TM e−ik1x1 +RM eik1x1

)
e2

and

Ĥ(x) = − k1

ωµ0α

(
TM e−ik1x1 −RM eik1x1) e3

for x ∈ QM , where we used equation (2.12a) and (3.10) to determine the magnetic
field with α := |Y \ Σ1|. To compute the value of k0 we use equation (2.12b) and
we find that k0 = ω

√
ε0µ0. From (3.15b) we deduce that k1 = k0

√
αγ. In QL we

choose (3.4) as the ansatz for Ê and Ĥ, where k = 2 and l = 3.

Lemma 3.4 (Transmission and reflection coefficients). Given the electric and mag-

netic fields Ê and Ĥ as described above. Set α := |Y \ Σ1|, k1 = ω
√
ε0µ0αγ, and

p1 := eik1L. The coefficients are then given by

R =
(α− γ)(1− p2

1)

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
, TM=

2
√
α(
√
α+
√
γ)

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
,

RM = −
2
√
αp2

1(
√
α−√γ)

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
, T=

4
√
αγp1

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
.

Proof. By (2.12a) the tangential trace of Ê has no jump across the surfaces {x ∈
G : x1 = 0} and {x ∈ G : x1 = −L}. Thus

TM +RM = 1 +R and T = p1TM +
1

p 1

RM . (3.16)

The effective field Ĥ is parallel to e3 and hence, by (3.15b), the third component

Ĥ3 does not jump across the surfaces {x ∈ G : x1 = 0} and {x ∈ G : x1 = −L}. We
may therefore conclude that√

γ

α

(
TM −RM

)
= 1−R and T =

√
γ

α

(
p1TM −

1

p 1

RM

)
. (3.17)
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Here we used that k0 = ω
√
µ0ε0 and k1 = k0

√
αγ. Solving the equations on the

left-hand side in (3.16) and (3.17) for R and the other two equations for T , we find
that

TM +RM − 1 = R = 1−
√
γ

α
(TM −RM ) (3.18)

and

p1TM +
1

p1
RM = T =

√
γ

α

(
p1TM −

1

p1
RM

)
. (3.19)

Setting d+ := 1 +
√
γ/α and d− := 1 −

√
γ/α, equations (3.18) and (3.19) can be

written as

d+TM = 2− d−RM and p1d−TM = − 1

p1
d+RM . (3.20)

Solving each of the two equations in (3.20) for RM and then equating the two
expressions for RM , we obtain

TM =
2d+

d2
+ − d2

−p
2
1

=
2(1 +

√
γ/α)

(1 +
√
γ/α)2 − (1−

√
γ/α)2p2

1

=
2
√
α(
√
α+
√
γ)

(
√
α+
√
γ)2 − (

√
α−√γ)2p2

1

.

Note that (
√
α +
√
γ)2 − (

√
α −√γ)2p2

1 = (α + γ)(1 − p2
1) + 2

√
αγ(1 + p2

1), which
yields the formula for TM . From the second equation in (3.20), we deduce that

RM = −p2
1

d−
d+

TM = −p2
1

√
α−√γ
√
α+
√
γ
TM = −

2
√
αp2

1(
√
α−√γ)

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
.

By (3.18), we have that

R = TM +RM − 1 =
2
√
α(
√
α+
√
γ)− 2

√
αp2

1(
√
α−√γ)

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
− 1

=
(α− γ)(1− p2

1)

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
.

To compute the coefficient T we use equation (3.16) and find that

T =
2
√
α(
√
α+
√
γ)p1 − 2

√
α(
√
α−√γ)p1

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
=

4
√
α
√
γp1

(α+ γ)(1− p2
1) + 2

√
αγ(1 + p2

1)
.

This proves the claim.

3.1.2. The metal cylinder Σ2. Similar to the previous section, we shall determine
the transmission and reflection coefficients for a metal cylinder, considering the mi-
crostructure Σ2. We define the effective permeability and the effective permittivity
µ̂, ε̂ : G → C3 as in (3.8) and (3.12). Following the reasoning of Section 3.1.1, we
find that the µeff and εeff are given by

µeff = diag
(
|Y \ Σ2|, 1, 1

)
and εeff = diag(0, γ, γ) ,
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where γ ∈ C is defined as γ :=
∫
Y
E2 · E2. The effective equations for the mi-

crostructure Σ2 are 
∂3Ĥ1 − ∂1Ĥ3 = −iωε0(ε̂Ê)2 in G ,

∂1Ĥ2 − ∂2Ĥ1 = −iωε0(ε̂Ê)3 in G ,

Ê1 = 0 in QM .

(3.21a)

(3.21b)

(3.21c)

We may take a similar ansatz for the effective fields as in Section 3.1.1 and obtain
the following transmission and reflection coefficients. Note that k1 in Section 3.1.1
has to be replaced by k2 := k0

√
γ.

Lemma 3.5 (Transmission and reflection coefficients). Within the setting of Sec-
tion 3.1.1, we set k2 = ω

√
ε0µ0γ and p2 := eik2L. The reflection and transmission

coefficients for Σ2 are given by

R =
(1− γ)(1− p2

2)

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)
, TM=

2(1 +
√
γ)

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)
,

RM = −
2p2

2(1−√γ)

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)
, T =

4p2
√
γ

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)
.

Note that in the above transmission and reflection coefficients the volume fraction
of air α = |Y \Σ2| does not appear. This is different for the metal cylinder Σ1; see
Lemma 3.4.

Proof. Thanks to (2.12a) we know that the tangential components of Ê do not jump
across the surfaces {x ∈ G : x1 = 0} and {x ∈ G : x1 = −L}. Hence

1 +R = TM +RM and T = p2TM +
1

p2
RM . (3.22)

The effective field Ĥ is parallel to e3 and hence, due to (3.21a), the third component

Ĥ3 does neither jump across {x ∈ G : x1 = 0} nor across {x ∈ G : x1 = −L}. We
may therefore conclude that

1−R =
√
γ(TM −RM ) and T =

√
γ

(
p2TM −

1

p2
RM

)
. (3.23)

Here we used that k2 = k0
√
γ = ω

√
ε0µ0γ.

Solving the equations on the left-hand side in (3.22) and (3.23) for R and the
other two for T , we find that

TM +RM − 1 = R = 1−√γ(TM −RM )

and

p2TM +
1

p2
RM = T =

√
γ

(
p2TM −

1

p2
RM

)
.

Setting c+ := 1 +
√
γ and c− := 1−√γ, these two equations can be re-written as

c+TM = 2− c−RM and c−p2TM = − 1

p2
c+RM . (3.24)

We can solve for TM and obtain

TM =
2c+

c2+ − c2−p2
2

=
2(1 +

√
γ)

(1 +
√
γ)2 − (1−√γ)2p2

2

.
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Note that (1 +
√
γ)2 − (1−√γ)2p2

2 = (1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2), which proves
the formula for TM . By (3.24) we then conclude that

RM = −p2
2

c−
c+
TM = −p2

2

1−√γ
1 +
√
γ
TM = −

2p2
2(1−√γ)

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)
.

To determine the coefficient R we recall from above that R = TM + RM − 1 and
hence

R =
2(1 +

√
γ)− 2p2

2(1−√γ)− (1 +
√
γ)2 + (1−√γ)2p2

2

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)

=
(1− γ)(1− p2

2)

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)
.

As T = p2TM + 1/p2RM , we find that

T =
2p2(1 +

√
γ)− 2p2(1−√γ)

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)
=

4p2
√
γ

(1 + γ)(1− p2
2) + 2

√
γ(1 + p2

2)
.

This proves the claim.

We chose the same polarization for the electric and the magnetic field as in
Section 3.1.1. By symmetry of the microstructure, we may as well assume that Ê is
parallel to e3 and Ĥ is parallel to e2 and obtain the same reflection and transmission
coefficients.

3.1.3. The metal plate. We consider the microstructure Σ3; that is, a metal plate
which is perpendicular to e2. Following the reasoning in Section 5.2 in [40], we
determine the effective equations and obtain:

∂3Ĥ1 − ∂1Ĥ3 = −iωε0α
−1Ê2 in QM ,

Ê1 = Ê3 = 0 in QM ,

Ĥ2 = 0 in QM ,

(3.25a)

(3.25b)

(3.25c)

where α := |Y \ Σ3|.
The electromagnetic wave is assumed to travel in e1-direction from right to left.

Moreover, by (2.12a), the electric field is divergence free. Hence, the first component

Ê1 vanishes. Because of (3.25b) we expect no transmission if the electric field
is polarized in e3-direction. We may therefore make the following ansatz for the
effective electric field Ê : G→ C3,

Ê(x) :=
(

e−ik0x1 +R eik0x1
)

e2 for x = (x1, x2, x3) ∈ QR .

Thanks to (2.12b), the magnetic field Ĥ is given by

Ĥ(x) = − k0

ωµ0

(
e−ik0x1 −R eik0x1

)
e3 for x ∈ QR .

By equation (3.25b), the first and the third component of the effective electric field
are trivial; from this and equation (2.12a), we deduce that

Ê(x) =
(
TM e−ik3x1 +RM eik3x1

)
e2

and

Ĥ(x) = − k3

ωµ0α

(
TM e−ik3x1 −RM eik3x1

)
e3
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for x ∈ QM . The value of k3 can be determined by (3.25a) and we find that

k3 = k0 = ω
√
ε0µ0. In QL, we choose (3.4) as the ansatz for Ê and Ĥ, where k = 2

and l = 3.

Lemma 3.6 (Transmission and reflection coefficients). Given the effective fields Ê

and Ĥ as described above. Set α := |Y \ Σ3| and p0 := eiω
√
ε0µ0L. The reflection

and transmission coefficients are given by

R =
(α2 − 1)(1− p2

0)

(1 + α2)(1− p2
0) + 2α(1 + p2

0)
, TM=

2α(α+ 1)

(1 + α2)(1− p2
0) + 2α(1 + p2

0)
,

(3.26)

RM = − 2αp2
0(α− 1)

(1 + α2)(1− p2
0) + 2α(1 + p2

0)
, T =

4p0α

(1 + α2)(1− p2
0) + 2α(1 + p2

0)
.

(3.27)

Proof. From (2.12a) we deduce that curl Ê has no singular part and hence the

tangential trace of Ê along the surfaces {x ∈ G : x1 = 0} and {x ∈ G : x1 = −L}
does not jump. Thus

TM +RM = 1 +R and T = p0TM +
1

p0
RM . (3.28)

As Ĥ is parallel to e3, we deduce from (3.25a) that Ĥ3 does not jump across the
surfaces {x ∈ G : x1 = 0} and {x ∈ G : x1 = −L}. This implies that

1−R =
1

α

(
TM −RM

)
and T =

1

α

(
p0TM −

1

p0
RM

)
. (3.29)

Here we used that k0 = k3 = ω
√
ε0µ0. Note that α > 0 and hence we find a > 0

such that
√
a = 1/α. With this new parameter a, the equations in (3.29) read

√
a(TM −RM ) = 1−R and T =

√
a

(
p0TM −

1

p0
RM

)
. (3.30)

Thus the equations in (3.28) and (3.30) have the same structure as the equations
in (3.22) and (3.23). We may therefore use the formulas for R, T,RM , and TM
derived in Section 3.1.2. Note that

1 +
√
a =

α+ 1

α
1−
√
a =

α− 1

α
, and 1− a =

α2 − 1

α2
.

Thus

TM =
2(1 +

√
a)

(1 +
√
a)2 − (1−

√
a)2p2

0

=
2α(α+ 1)

(1 + α2)(1− p2
0) + 2α(1 + p2

0)
,

RM = − 2p2
0(1−

√
a)

(1 +
√
a)− (1−

√
a)p2

0

= − 2αp2
0(α− 1)

(1 + α2)(1− p2
0) + 2α(1 + p2

0)
,

R =
(1− a)(1− p2

0)

(1 +
√
a)− (1−

√
a)p2

0

=
(α2 − 1)(1− p2

0)

(1 + α2)(1− p2
0) + 2α(1 + p2

0)
,

and

T =
4p0
√
a

(1 +
√
a)2 − (1−

√
a)2p2

0

=
4p0α

(1 + α2)(1− p2
0) + 2α(1 + p2

0)
.

This proves the claim.
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3.1.4. The air cylinder. We consider the microstructure Σ4; that is, an air cylinder
with symmetry axis parallel to e1 (see Fig. 2.2c). Combining the effective equa-
tions (2.12) with the index sets in Table 2.1, we obtain the effective system for this
case: {

Ê = 0 in QM ,

Ĥ2 = Ĥ3 = 0 in QM .

(3.31a)

(3.31b)

As in the previous sections, we choose the following ansatz for the effective fields
Ê, Ĥ : G→ C3,

Ê(x) :=
(

e−ik0x1 +R eik0x1
)

e2 and Ĥ(x) = −
(

eik0x1 −R e−ik0x1
)

e3

for x ∈ QR. Equation (2.12b) determines the wave number and we find that k0 =

ω
√
ε0µ0. The effective electric field Ê vanishes in the meta-material QM and hence,

by (2.12a) and (3.31b), there is also no effective magnetic field inQM . So Ê = Ĥ = 0

in QM . Equation (2.12a) implies that the tangential trace of Ê does not jump across
the surface {x ∈ G : x1 = 0}. Thus

R = −1 .

As no field is transmitted through the meta-material QM , there is neither an electric
nor an magnetic field in QL. In other words, Ê = Ĥ = 0 in QL. We have thus
shown that

R = −1 and T = 0 .

3.2. Vanishing limiting fields in high-contrast media, 2D-analysis. In this
section, we perform an analysis of high-contrast media. Of the four geometries
Σ1 to Σ4, we study the two e3-invariant geometries: the metal cylinder Σ1 and the
metal plate Σ3, compare Fig. 2.2. We analyze the time-harmonic Maxwell equations
(2.1) with the high-contrast permittivity εη of (2.10). We recall that the sequence of

solutions (Eη, Hη)η is assumed to satisfy the L2(G̃)-bound (2.11). We are interested
in the limit behaviour of (Eη, Hη)η as η → 0.

When we consider perfect conductors, the effective equations (2.12) imply that
some components of Eη or Hη converge weakly to 0 in the meta-material QM . For
media with high-contrast, we do not have such a result (we recall that homoge-
nization usually considers compactly contained geometries Σ ⊂ Y ). In this section
we ask for Σ1 and Σ3: do the electric fields (Eη)η converge weakly in L2(QM ;C3)
to 0 as η → 0? Is this weak convergence in fact a strong convergence? The same
questions are considered for the magnetic fields (Hη)η.

Let us point out that Eη · 1Ση → 0 in L2(QM ;C3). Indeed, the L2-estimate
(2.11) can be improved to

sup
η>0

∫
G̃

(
|εη| |Eη|2 + |Hη|2

)
<∞ . (3.32)

We mention [10, Section 3.1] as one reference where this observation has also been
exploited. The observation is a consequence of an integration by parts formula; it
can be applied for the x2-x3-periodic scattering problem in an identical way since
integration by parts does not produce boundary terms at periodicity boundaries.
Thus

ε1

η2

∫
Ση

|Eη|2 =

∫
G̃

|εη| |Eη|21Ση ≤
∫
G̃

(
|εη| |Eη|2 + |Hη|2

)
≤ C . (3.33)
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So we have that
∥∥Eη1Ση

∥∥2

L2(G̃)
≤ η2C which implies that Eη1Ση → 0 in L2(QM ;C3)

as η → 0.
We recall that the two geometries of interest are x3-independent. We therefore

consider two different cases: In Section 3.2.1, we study electric fields Eη that are
parallel to e3. In Section 3.2.2, we study magnetic fields Hη that are parallel to e3.
By linearity of the equations, superpositions of these two cases provide the general
behaviour of the material.

We will assume that the fields are x3-independent. This is a strong assumption,
which can be justified for x3-independent incoming fields with a uniqueness property
of solutions. In the rest of this section the fields Eη(x) and Hη(x) depend only on
(x1, x2).

Results for high-contrast media. In the E-parallel setting, the electric fields
(Eη)η converge strongly to 0 in L2(QM ;C3), the magnetic fields converge weakly
to 0 in L2(QM ;C3). On the other hand, when the magnetic fields Hη are parallel
to e3, we can neither expect the electric fields nor the magnetic fields to converge
weakly to 0 in L2(QM ;C3).

3.2.1. Parallel electric field. We consider here the case of parallel electric fields,
i.e., Eη(x) := (0, 0, uη(x)) with uη = uη(x1, x2). By abuse of notation, we will

consider G̃ also as a domain in R2 and write (x1, x2) ∈ G̃ when (x1, x2, 0) ∈ G̃;
similarly for Ση. In this setting, the magnetic field Hη has no third component,
Hη(x) = (Hη

1 (x1, x2), Hη
2 (x1, x2), 0), and Maxwell’s equations (2.1) reduce to the

two-dimensional system{
−∇⊥uη = iωµ0(Hη

1 , H
η
2 ) in G ,

∇⊥ · (Hη
1 , H

η
2 ) = −iωε0εηu

η in G ,

(3.34a)

(3.34b)

where we used the two-dimensional orthogonal gradient, ∇⊥u := (−∂2u, ∂1u), as
well as the two-dimensional curl, ∇⊥ ·(H1, H2) := −∂2H1+∂1H2. The system (3.34)
can equivalently be written as a scalar Helmholtz equation

−∆uη = ω2ε0µ0εηu
η in G ⊂ R2 . (3.35)

A solution of this Helmholtz equation provides the fields in the form Eη = (0, 0, uη)
and Hη = i(ωµ0)−1(∇⊥uη, 0).

Lemma 3.7 (Trivial limits for Eη ‖ e3). For η > 0 small, let Ση ⊂ G̃ ⊂ R2 be a mi-

croscopic geometry that is given by Σ1 or Σ3, and let the permittivity εη : G̃→ C be

defined by (2.10). Let Eη, Hη : G̃→ C3 be solutions with Eη(x) = (0, 0, uη(x1, x2))
that satisfy the estimate (2.11). Then

Eη → 0 and Hη ⇀ 0 in L2(QM ) as η → 0 .

Proof. The L2-boundedness of Eη implies the L2-boundedness of uη, and the L2-
boundedness of Hη implies the L2-boundedness of ∇uη. Therefore, the sequence
(uη)η is bounded in H1(G̃), and we find a subsequence η → 0 (not relabeled) and

a limit function u ∈ H1(G̃) such that uη ⇀ u in H1(G̃) and uη → u in L2(G̃) as
η → 0.

We write

uη1QM = uη1QM\Ση + uη1Ση . (3.36)

The left hand side converges strongly to u1QM . The first term on the right hand side
of (3.36) is the product of a strongly L2(QM )-convergent sequence and a weakly
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L2(QM )-convergent sequence: 1QM\Ση ⇀ α in L2(QM ), where α ∈ (0, 1) is the
volume fraction of Y \ Σ. We find that the first term on the right hand side
converges in the sense of distributions to αu. The estimate (3.33) provides the
strong convergence of the second term on the right hand side of (3.36) to zero. The
distributional limit of (3.36) provides

u1QM = αu1QM + 0 , (3.37)

and hence u = 0, since α 6= 1. We have therefore found

Eη = (0, 0, uη)→ 0 and Hη = (∇⊥uη, 0) ⇀ 0 in L2(QM ;C3) as η → 0 ,

which was the claim.

3.2.2. Parallel magnetic field. We now consider a magnetic field that is parallel to
e3, Hη(x) = (0, 0, uη(x1, x2)), with all quantities being x3-independent. This H-
parallel case is the interesting case for homogenization and it has the potential to
generate magnetically active materials. It was analyzed e.g. in [6, 7, 11, 24]. In this
setting, Maxwell’s equations (2.1) reduce to{

∇⊥ · (Eη1 , E
η
2 ) = iωµ0u

η in G ,

−∇⊥uη = −iωε0εη(Eη1 , E
η
2 ) in G .

(3.38a)

(3.38b)

System (3.38) can equivalently be written as a scalar Helmholtz equation:

−∇ ·
(

1

εη
∇uη

)
= ω2ε0µ0u

η in G . (3.39)

In (3.35), the high-contrast coefficient is outside the differential operator, which
induces a trivial limit behaviour of solutions. In contrast, (3.39) has the high-
contrast coefficient inside the differential operator, which leads to a much richer
behaviour of solutions.

The case Σ = Σ3 is the metal plate (see Fig. 2.2b) that was studied in [11].
The result of [11] is the derivation of a limit system with nontrivial solutions. In
particular, the weak limit of (uη)η can be non-trivial. Similar results are available
for metallic wires Σ = Σ1 (see Fig. 2.2a); the results of [7] imply that also in this
case the weak limit of (uη)η can be non-trivial.

We therefore observe that the H-parallel case does not allow to conclude Hη ⇀ 0
in L2(QM ;C3). We note that Hη = (0, 0, uη) 6⇀ 0 implies, by boundedness of the
magnetic field and equation (3.38a), also Eη 6⇀ 0.

4. Finite element based multiscale approximation. In this section, we present
numerical multiscale methods that are used to study Maxwell’s equations in high-
contrast media from a numerical point of view. We introduce the necessary notation
for finite element discretisations and briefly discuss the utilized approaches. Based
on these methods, numerical experiments illustrating the transmission properties of
the microstructures are presented in Section 5.

4.1. Variational problem for the second order formulation. We study time-
harmonic Maxwell’s equations in their second-order formulation for the magnetic
field H (2.3). The macroscopic domain G̃ is assumed to be bounded and we impose

impedance boundary conditions on the Lipschitz boundary ∂G̃ with the outer unit
normal n:

curlH × n− ik0(n×H)× n = g ,
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where g ∈ L2(∂G̃) with g · n = 0 is given and k0 = ω
√
ε0µ0 is the wavenumber.

These boundary conditions can be interpreted as first-order approximation to the
Silver-Müller radiation conditions (used for the full space R3); the data g are usually
computed from an incident wave. For the material parameters, we choose µ = 1 and
εη as specified in (2.10). Multiplying with a test function and integrating by parts

results in the following variational formulation: Find Hη ∈ Himp(G̃) such that∫
G

ε−1
η curlHη · curlψ − k2

0H
η · ψ dx− ik0

∫
∂G

Hη
T · ψT dσ =

∫
∂G

g · ψT (4.1)

for all ψ ∈ Himp(G̃), where Himp(G̃) := {v ∈ L2(G̃;C3)| curl v ∈ L2(G̃;C3), vT ∈
L2(∂G̃)} and vT := v − (v · n)n denotes the tangential component. Existence and
uniqueness of the solution to this problem for fixed η is shown, for instance, in [36].

4.2. Traditional finite element discretisation. The standard finite element dis-
cretisation of (4.1) is a Galerkin procedure with a finite-dimensional approximation

space Vh ⊂ Himp(G̃) which consists of piecewise polynomial functions on a (tetra-

hedral) mesh of G̃. In detail, we denote by Th = {Tj |j ∈ J} a partition of G̃ into
tetrahedra. We assume that TH is regular (i.e., no hanging nodes or edges occur),
shape regular (i.e., the minimal angle stays bounded under mesh refinement), and

that it resolves the partition into the meta-material QM and air G̃ \QM . To allow

for such a partition, we implicitly assume G̃ and QM to be Lipschitz polyhedra.
Otherwise, boundary approximations have to be used which only makes the fol-
lowing description more technical. We define the local mesh size hj := diam(Tj)
and the global mesh size h := maxj∈J hj . As conforming finite element space for
Himp(G), we use the lowest order edge elements introduced by Nédélec, i.e.,

Vh := {vh ∈ Himp(G̃)|vh|K(x) = a+ b× x with a, b ∈ C3, ∀K ∈ Th}.
It is well known (see [36], for instance), that the finite element method with this
test and trial space in (4.1) yields a well-posed discrete solution Hh. Furthermore,
the following a priori error estimate holds

‖Hη −Hh‖H(curl) ≤ Ch(‖Hη‖H1(G̃) + ‖ curlHη‖H1(G̃)).

For the setting of (4.1) as discussed in this paper, however, two major problems
arise. First, due to the discontinuities of the electric permittivity ε−1

η the necessary
regularity of Hη is not available, see [4, 19, 18]. Second, even in the case of sufficient
regularity the right-hand side of the error estimate experiences a blow-up with
‖Hη‖H1(G̃) + ‖ curlHη‖H1(G̃) → ∞ for η → 0. In other words, a typical solution

of (4.1) is subject to (strong) oscillations in η such that its derivative does not
remain bounded for the periodicity length tending to zero. As a consequence, the
error estimate has a η-dependent right-hand side of the type hη−1. Therefore,
convergence of standard finite element discretisations is only to be expected in the
asymptotic regime when h� η, i.e., the mesh has to resolve the oscillations in the
PDE coefficients. As discussed in the introduction, this can become prohibitively
expensive.

4.3. Heterogeneous multiscale method. As a remedy to these limitations of the
standard finite element method, we consider a specific multiscale method. The idea
is to extract macroscopic properties of the solution with η-independent complexity
or computational effort, respectively. The basic idea directly comes up from the
effective equation (2.14): Since this effective equation is independent of η, it can be
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discretised on a rather coarse mesh Th without the need to resolve the η-scale, i.e.,
we can have h > η. This results in an approximation of the homogenized solution
Ĥ, which contains important macroscopic information of Hη. However, for the
discretisation of the homogenized equation, the effective material parameters ε̂ and
µ̂ need to be known, at least at the (macroscopic) quadrature points. This can
be achieved by introducing another, again η-independent, mesh ThY = {Sl|l ∈ I}
of the unit cube Y with maximal mesh size hY = maxl∈I diam(Sl). We assume
that ThY is regular and shape regular and resolves the partition of Y into Σ and
Y \ Σ. Furthermore, ThY has to be periodic in the sense that it can be wrapped
to a regular triangulation of the torus, i.e., no hanging nodes or edges over the
periodic boundary. Note that hY denotes the mesh size of the triangulation of the
unit cube. Thus, it is in no way related to η and can be of the same order as h.
Based on this mesh, the cell problems occurring in the definition of ε̂ and µ̂ can be
discretised with standard (Lagrange and Nédélec) finite element spaces. For details

we refer to [43]. All in all, we can now compute the homogenized solution Ĥ of
(2.14) as follows: 1. Compute discrete solutions of the cell problems (see [7] or[43])
using the mesh ThY and the associated standard finite element spaces. 2. Compute

the effective parameters ε̂ (or ε̂−1) and µ̂ approximatively with the discrete cell
problems solutions. 3. Compute the discrete homogenized solution of (2.14) with
the approximated effective coefficients and using the mesh Th with the associated
finite element space Vh as introduced above.

This (naive) discretisation scheme for the effective equation (2.14) in fact can be
interpreted as a specification of the Heterogeneous Mutliscale Method (HMM) in
the perfectly periodic case. The Finite Element Heterogeneous Multiscale Method,
introduced by E and Enguist [21, 22], sets up a macroscopic sesquilinear form to
compute the HMM solution Hh, which is an approximation of the homogenized solu-
tion Ĥ. The macroscopic sesquilinear form is very similar to the effective sesquilin-
ear form associated with the left-hand side of (2.14), but the effective material
parameters are not computed a priori. In contrast, local variants of the cell prob-
lems are set up on η-scaled cubes Y ηj = ηY + xj around macroscopic quadrature
points xj . We can still use the mesh ThY of the unit cube Y and transform it to
a partition ThY (Y ηj ) of the scaled unit cell Y ηj . Similarly, also the finite element

spaces associated with ThY can be transferred to spaces on ThY (Y ηj ) using a suitable
affine mapping. The finescale computations result in so called local reconstructions,
which consist of the macroscopic basis functions and the corresponding (discrete)
cell problem solutions. Averages (over Y ηj ) of these local reconstructions then enter
the macroscopic sesquilinear form. A detailed definition of the HMM for Maxwell’s
equations in high-contrast media is presented in [43], where also the connection
to analytical homogenization as well as the possibility to treat more general than
purely periodic problems are discussed. We only want to emphasize one important
feature of the HMM in [43]: Apart from the (macroscopic) approximation Hh, dis-
crete correctors HhY ,1, HhY ,2, and HhY ,3 can be determined from the discrete cell
problems (in a second post-processing step). Via these correctors, we can define the
zeroth order L2-approximation H0

HMM := Hh +∇yHhY ,2(·, ·η ) +HhY ,3(·, ·η ), which

corresponds to the first term of an asymptotic expansion and is used to approximate
the true solution Hη. We again refer to [43] for details and note that it has been
observed in several numerical examples that these correctors are a vital part of the
HMM-approximation, see [26, 25, 38, 43]. We close by remarking that in Section 5
below, we extend the described HMM of [43] to general microstructures although
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Table 5.1. Summary of analytical predictions of the transmission
properties and references to numerical results. The first row pro-
vides the geometry. The second row indicates possible transmission
polarizations (of H) according to the theory of perfect conductors
of Section 3.1. The third row indicates the possibility of transmis-
sion based on Section 3.2: We mention cases in which we cannot
derive weak convergence to 0. An entry “-” indicates that no an-
alytical result can be applied. The last row provides the reference
to the visualization of the numerical calculation for high-contrast
media.

geometry metal cylinder Σ1 metal cylinder Σ2 metal plate Σ3 air cyl. Σ4

transmission (PC) e3-polarized e2 and e3-polarized e3-polarized no

nontriv. limit (HC) e3-polarized - e3-polarized -

numerical example Fig. 5.1 Fig. 5.3 Fig. 5.4 Fig. 5.5

the validity of the homogenized models in these cases is not shown so far, see the
discussion in Sections 2.2 and 3.2.

5. Numerical study of transmission properties for high-contrast inclu-
sions. In this section, we numerically study the transmission properties in the case
of high-contrast for the three micro-geometries: the metal cylinder, the metal plate,
and the air cylinder. Since the aim of this paper is a better understanding of the dif-
ferent microstructures and their effect, we focus on the qualitative behaviour rather
than explicit convergence rates. The implementation was done with the module
dune-gdt [34] of the DUNE software framework [3, 2].

Setting. We consider Maxwell’s equations in the second-order formulation for
the H-field (4.1) with a high-contrast medium as defined in (2.10). It remains to
specify the macroscopic geometry, the boundary data g, the material parameter ε1,
and the frequency. We use a slab-like macroscopic geometry similar to Section 2.1,
but we truncate G also in the x1-direction to have a finite computational domain G̃,
as described in the previous section. We choose G̃ = (0, 1)3 with the meta-material
located in QM = {x ∈ G|0.25 ≤ x1 ≤ 0.75}. Note that QM is translated in x1-
direction compared to Section 2.1, but this does not influence the qualitative results
of the analysis. As in Section 2.1, we assume that an incident wave Hinc from the
right travels along the x1-axis to the left, i.e., Hinc = exp(−ikx1)p with a normalized
polarization vector p ⊥ e1. This incident wave is used to compute the boundary
data g as g = curlHinc × n− ik0n× (Hinc × n). We choose the inverse permittivity
as ε−1

1 = 1.0−0.01i and note that ε1 is only slightly dissipative. In all experiments,
we choose the same wavenumber k0 = 12 and the periodicity parameter η = 1/8.

As explained in the previous section, we want to use the Heterogeneous Multi-
scale Method to obtain good approximations with reasonable computational effort.
We use the mesh sizes hy = h =

√
3 · 1/16 and compute the macroscopic HMM-

approximation Hh as well as the zeroth order approximation H0
HMM, which also

utilizes information of the discrete correctors. To demonstrate the validity of the
HMM, we use two different reference solutions. First, the homogenized reference
solution Ĥ is computed as solution to (2.14) on a mesh with size h =

√
3 · 1/48,
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Σ̃1

e1

e3

e2

Figure 5.1. Metal cuboid Σ̃1, the magnitude of Re(Ĥ) is plot-
ted. Left: The H-field is e3-polarized and the plot shows values in
the plane x3 = 0.5. The analysis of both, (PC) and (HC) yields:
transmission is possible. Right: The H-field is e2-polarized and
the plot shows values in the plane x2 = 0.545. Since the H-field is
not parallel to e3, the analysis of (PC) and (HC) predicts that no
transmission is possible. Inlet in the middle: Microstructure in the
unit cube.

where the effective material parameters are calculated approximatively using a dis-
cretisation of the unit cube with mesh size hY =

√
3 · 1/24. Second, the (true)

reference solution Hη is computed as direct finite element discretisation of (4.1) on

a fine grid with href =
√

3 · 1/64.

Main results. Before we discuss the examples in detail, we present an overview
of the results. The qualitative transmission properties of the meta-material are in
good agreement with the theory of Section 3.1, although the numerical examples
consider high-contrast media instead of perfect conductors. The predictions and
the corresponding numerical examples are summarized in Table 5.1. In contrast
to perfect conductors, the high-contrast medium leads to rather high intensities
and amplitudes of the H-field inside the inclusions Ση. Depending on the chosen
wavenumber, Mie-resonances inside the inclusions can occur for high-contrast me-
dia; see Section 3.2 and [7, 43]. Our numerical experiments also show that the HMM
yields (qualitatively) good approximations, although the validity of the underlying
effective models is not proved for the studied geometries.

5.1. Metal cuboids Σ̃1 and Σ̃2. Instead of metal cylinders with circular base we
study metal cuboids with square base, so that we do not have to deal with boundary
approximations in our numerical method. We choose Σ̃1 = (0.25, 0.75)2 × (0, 1)

and Σ̃2 = (0, 1) × (0.25, 0.75)2. Note that this choice influences the value of γ,
but not the other results of Sections 3.1.1 and 3.1.2. Due to the symmetry of
the microstructure, the effective material parameters are diagonal matrices with
a11 = a22, but with a different value a33; see the analytical computations in Section
3.1.1. Up to numerical errors, we obtain the same structure for the computed
approximative effective parameters.

Comparing the homogenized reference solution Ĥ for e2- and e3-polarized incom-
ing waves for Σ̃1 in Fig. 5.1, we observe that the e3-polarized wave is transmitted
almost undisturbed through the meta-material. For the e2-polarization, however,
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Σ̃1

e1

e3

e2

Figure 5.2. Test of numerical schemes for the metal cuboid Σ̃1.
We consider an e3-polarized incoming H-field and plot the solution
in the plane x3 = 0.5; the colors indicate the magnitude of the ref-
erence solution Re(Hη) (left) and the zeroth order approximation
Re(H0

HMM) (right). Inlet in the center: Microsctructure in the unit
cube with visualization plane in red.

Σ̃2

e1

e3
e2

Figure 5.3. Metal cuboid Σ̃2. We study an e3-polarized incident
H-field and plot the magnitude of Re(Ĥ) (left) and Re(Hη) (right)
in the plane x2 = 0.545. The analysis (PC) predicts transmission in
this case, the analysis (HC) does not exclude transmission. Middle:
Microstructure in the unit cube with visualization plane in red.

the field intensity in QL := {x ∈ G : x ≤ 0.25} is very low, corresponding to small
transmission factors. This matches the analytical predictions of Section 3.1.1, which
yields transmission only for e3-parallel H-fields. The same effect is predicted for
high-contrast media by the analysis of Section 3.2.1.

The HMM can reproduce the behaviour of the homogenized and of the hetero-
geneous solution. For the comparison, we only consider the e3-polarized incoming
wave in Fig. 5.2 and compare the zeroth order approximation H0

HMM (right) to
the (true) reference solution Hη (left). Errors are still visible, but the qualitative

agreement is good, even for the coarse mesh size of h = hY =
√

3 · 1/16 chosen for
the HMM. In particular, the rather cheaply computable zeroth order approxima-
tion H0

HMM can capture most of the important features of the true solution, even
for inclusions of high-contrast. This clearly underlines the potential of the HMM.
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Σ3

e1

e3

e2

Figure 5.4. Metal plate Σ3. The colors indicate the magnitude
of Re(Ĥ) in the plane x3 = 0.5. Left: The H-field is e3-polarized.
The analysis (PC) predicts transmission, the analysis (HC) cannot
exclude transmission. Right: The H-field is e2-polarized. The
analysis (PC and HC) predicts that no transmission is possible.

Moreover, Fig. 5.2 underlines the specific behaviour of Hη in the inclusions Σ̃η for
high-contrast media. As analyzed in Section 3.2.2, Hη cannot be expected to vanish
in the inclusions in the limit η → 0 due to possible resonances; see [6]. We observe
rather high field intensities in the inclusions; see also [43] for a slightly different
inclusion geometry.

We also study the rotated metal cuboid Σ̃2. In correspondence to the analysis of
Section 3.1.2, we observe transmission for an e3-polarized incident wave; see Fig. 5.3.
Note that the homogenized reference solution looks different to Σ̃1 because of the
rotation of the geometry, which is also reflected in the different structure and values
of the reflection and transmission coefficients. The reference solution in Fig. 5.3
(right) shows the high field intensities in the metal cuboids induced by the high-
contrast permittivity.

5.2. Metal plate Σ3. As in Section 3.1.3, we choose a metal plate perpendicular to
e2 of width 0.5, i.e. Σ3 = (0, 1)× (0.25, 0.75)× (0, 1). Discretising the cell problems

with mesh size hY =
√

3 · 1/24, we obtain—up to numerical errors—the effective
material parameters as diagonal matrices with

ε̂−1 ≈ diag(10−4, 0.5, 10−4) ,

Re µ̂ ≈ diag(0.228303,−0.044672, 0.228303) .

Although we consider high-contrast media, this corresponds astonishingly well to
the analytical results for perfect conductors of Section 3.1.3: The structure of the

matrices agrees and the non-zero value of ε̂−1 = |Y \ Σ| is as expected from the
theory of perfect conductors. Due to the contributions of the inclusions, the values
of µhom are different from the case of perfect conductors.

Section 3.1.3 shows that, for perfect conductors, only an H-field polarized in
e3-direction can be transmitted through the meta-material. Our numerical exper-
iments allow a similar observation for high-contrast media in Fig. 5.4: The ho-
mogenized reference solution only shows a non-negligible intensity in the domain
QL = {x ∈ G|x3 ≤ 0.25} left of the scatterer if the incident wave is polarized in
e3 direction. Note that we have some reflections from the boundary in Fig. 5.4
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Σ̃4

e1

e3

e2
Σ̃4

e1

e3

e2

Figure 5.5. Metal block with holes. Left: The structure Σ̃4, we
plot the magnitude of Re(Hη) in the plane x3 = 0.545 for e3-
polarized incoming H-field. The analysis (PC) predicts no trans-
mission, the analysis (HC) cannot exclude transmission. Right: A

geometry in which the cylinders Σ̃4 are rotated in e3-direction. We
plot the magnitude of Re(Hη) in the plane x3 = 0.5 for e3-polarized
incoming H-field. Small pictures show the microstructures in the
unit cube and the visualization planes in red.

since we do not use perfectly matched layers as boundary conditions. The observed
transmission properties for high-contrast media are in accordance with the theory
in Section 3.2: For an e3-polarized H-field as in the left figure, we cannot expect a
(weak) convergence to zero. This corresponds to the observed non-trivial transmis-
sion. By contrast, in the right figure, the H-field is e2-polarized and no transmission
can be observed. This corresponds to the analysis of Section 3.2.1, which shows that
Hη converges to zero, weakly in L2(QM ).

5.3. Air cuboid Σ̃4. As with the metal cylinder, we equip the air cylinder of
Section 3.1.4 with a square base in order to have a geometry-fitting mesh. To be
precise, we define the microstructure Σ̃4 = (0, 1)3 \ ((0, 1) × (0.25, 0.75)2). The

effective permittivity ε̂−1 vanishes almost identically for this setting; numerically
we obtain only entries of order 10−5 for a discretisation of the corresponding cell
problem with mesh size hY =

√
3 · 1/24. As discussed in Section 3.1.4, no transmis-

sion through this meta-material is expected for the high conductors. We observe
the same for high-contrast media in Fig. 5.5: The (true) reference solution (almost)
vanishes in the left part QL in all situations. Here, we only depict e3-polarized inci-
dent waves, once for Σ̃4 as described and once for the rotated air cuboid with main
axis in e3-direction (this is the setting of Section 3.1.1 with interchanged roles of
metal and air). Note that inside the microstructure, high intensities and amplitudes
of the Hη-field occur due to resonances in the high-contrast medium.

Conclusion. We analyzed the transmission properties of meta-materials consist-
ing of perfect conductors or high-contrast materials. Depending on the geometry
of the microstructure, certain entries in the effective material parameters vanish,
which induces that also certain components of the solution vanish. This influences
the transmission properties of the material. Transmission is possible only for cer-
tain polarizations of the incoming wave. For perfect conductors, we derived closed
formulas for the reflection and transmission coefficients. Using the Heterogeneous



TRANSMISSION PROPERTIES OF META-MATERIALS 55

Multiscale Method, the homogenized solution as well as some features of the exact
solution can be approximated on rather coarse meshes and, in particular, with a
cost that is independent of the periodicity length. Our numerical experiments of
three representative geometries with high-contrast materials confirm the theoretical
predictions of their transmission properties.
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[9] G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small
volume fraction, SIAM J. Appl. Math., 66 (2006), 2061–2084.
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