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Abstract. We propose a finite difference method based on the Lax-Friedrichs
scheme for a model of interaction between multiple solid particles and an in-

viscid fluid. The single-particle version has been studied extensively during

the past decade. The model studied here consists of the inviscid Burgers equa-
tion with multiple nonconservative moving source terms that are singular and

account for drag force interaction between the fluid and the particles. Each
particle trajectory satisfies a differential equation that ensures conservation of

momentum of the entire system. To deal with the singular source terms we

discretize a model that associates with each particle an advection PDE whose
solution is a shifted Heaviside function. This alternative model is well known

but has not previously been used in numerical methods. We propose a def-

inition of entropy solution which directly generalizes the previously defined
single-particle notion of entropy solution. We prove convergence (along a sub-

sequence) of the Lax-Friedrichs approximations, and also prove that if the set

of times where the particle paths intersect has Lebesgue measure zero, then
the limit is an entropy solution. We also propose a higher resolution version of

the scheme, based on MUSCL processing, and present the results of numerical

experiments.

1. Introduction. This paper concerns a one-dimensional model of solid-fluid in-
teraction:

∂tu+ ∂xf(u) =

K∑
k=1

λk (h′k(t)− u) δ(x− hk(t)), (x, t) ∈ R× (0, T ) := ΠT ,

mkhk
′′(t) = λk (u(hk(t), t)− h′k(t)) , t ∈ (0, T ), k = 1, . . . ,K,

u(x, 0) = u0(x), (hk(0), h′k(0)) = (hk,0, vk,0), k = 1, . . . ,K.

(1.1)
Here f(u) = u2/2, and δ(x) denotes the Dirac delta measure concentrated at x = 0.
The function u = u(x, t) models the velocity of the fluid, hk(t) models the location
of the kth solid particle at time t, λk > 0 is a drag coefficient associated with the
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kth particle, and mk > 0 is the mass of the kth particle. Study of the single-
particle version of (1.1) was initiated in [11], and has been the subject of a number
of additional papers.

The fluid velocity is governed by the inviscid Burgers equation ut + f(u)x = 0,
and the particle-fluid coupling is due to friction, more specifically the drag terms
λk (u− h′k) which appear in both the PDE and the ODEs in (1.1). Since there
is no viscosity, the velocity u(x, t) admits entropy weak solutions, meaning that
shock waves occur. This leads to complex interactions between the resulting shock
wave and the particles. When multiple particles are present there are interesting
features of the solutions that include particles drafting and passing by one another;
see Figure 4 or Figure 5.

There are some difficulties associated with (1.1), in addition to the well-known
ones associated with a nonlinear conservation law. The source terms on the right
side of the first equation are nonconservative products of distributions; their mean-
ing is not immediately clear. The differential equations appearing in the second line
are coupled to the conservation law. Due to discontinuities in u the meaning of the
right side of the DE’s is also not readily apparent. There are related difficulties in
designing practical numerical algorithms.

Notwithstanding these difficulties there has been much progress on the single-
particle version of (1.1). A notion of solution has been developed, well-posedness
has been proven, and numerical algorithms have been designed whose approxima-
tions are known to converge to the unique solution. In this paper we focus on the
multiple-particle problem, which has not been studied as thoroughly. We propose a
notion of entropy solution suitable for multiple particles, present a Lax-Friedrichs
difference scheme for the multiple-particle problem, and prove that the resulting
approximations converge to an entropy solution. This is accomplished under the
assumption that the particle paths do not intersect except possibly at a set of times
whose Lebesgue measure is zero.

Reference [4] developed a unifying framework for the jump conditions that hold
across a spatial flux discontinuity for a conservation law with discontinuous flux,
using the theory of L1-dissipative (L1D) admissibility germs. The relevant L1D
admissible germ for the problem discussed here is G(λ, c), which was identified in
[7].

Definition 1.1 (the germ G(λ, c), [7]). The germ G(λ, c) is the subset of R2 defined
by

G(λ, c) = (c, c)+{(a, b) ∈ R2 |b = a−λ}∪{(a, b) ∈ R2 |a ≥ 0, b ≤ 0, −λ ≤ a+b ≤ λ}.
(1.2)

Reference [6] gives a definition of entropy solution for the single-particle version
of (1.1). The following is a direct generalization of that definition to the multiple-
particle problem.

Definition 1.2 (entropy solution).

(i) Given hk ∈ W 1,∞([0, T ],R), k = 1, . . . ,K, let Γ =
⋃K
k=1{(hk(t), t)) : t ∈ [0, T )}.

A function u is a solution of the first equation of (1.1) with initial data u0 if
u ∈ L∞(ΠT ) ∩ C([0, T ]);L1

loc(R)), if u is a Kružkov entropy solution in ΠT \ Γ of
the Burgers equation with initial data u0, and if for a.e. t ∈ (0, T ) the one-sided
traces of u at each particle position satisfy(

u(hk(t)−, t), u(hk(t)+, t)
)
∈ G (λk(t), h′k(t)) , k = 1, . . . ,K. (1.3)
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(ii) A function hk is a solution of the second equation of (1.1) with initial data
(hk,0, vk,0) if hk ∈ W 2,∞([0, T ]), if hk(0) = hk,0, h′k(0) = vk,0, and if given given
u a Kružkov entropy solution of the Burgers equation in ΠT \ Γ we have for a.e.
t ∈ (0, T )

mkh
′′
k(t) =

(
1

2
u(hk(t)−, t)2 − h′k(t)u(hk(t)−, t)

)
−
(

1

2
u(hk(t)+, t)2 − h′k(t)u(hk(t)+, t)

)
.

(1.4)

(iii) With the notation ~h = (h1, . . . , hK), a pair (u,~h) satisfying (i) and (ii) above
is an entropy solution of the system (1.1).

Remark 1. Definition 1.2 requires strong one-sided traces u(hk(t)±, t) along each
path x = hk(t). Assuming that the particle trajectories do not intersect except
possibly on a subset of (0, T ) having Lebesgue measure zero, the results of [13]
guarantee existence of the required traces. This is due to the regularity of the paths
x = hk(t) and the fact that u is a Kružkov entropy solution of the Burgers equation
in ΠT \ Γ.

Assumption 1.1. The initial data satisfies u0 ∈ BV(R).

Above we have used the notation BV(R) to denote the set of functions of bounded
variation on R, i.e., those functions ρ : R 7→ R for which

TV(ρ) := sup

{
M∑
i=1

|ρ(ξi)− ρ(ξi−1)|

}
<∞,

where the sup extends over all M ≥ 1 and all partitions {ξ0 < ξ1 < . . . < ξM} of R.

Theorem 1.3 (Main theorem). The Lax-Friedrichs scheme described in Section 2
produces approximations that converge as the mesh size approaches zero, along a

subsequence, to a pair (u,~h) where u ∈ L∞(ΠT ) ∩ C([0, T ];L1
loc(R)) and hk ∈

W 2,∞([0, T ]), k = 1, . . . ,K. If the particle trajectories hk(t) do not intersect except

possibly on a subset of (0, T ) having Lebesgue measure zero, then (u,~h) is an entropy
solution in the sense of Definition 1.2.

As mentioned above, there has been significant progress on the single-particle
version of (1.1) [1, 5, 6, 7, 11]. The study of (1.1) started with reference [11]. Among
other things the authors completely solved the Riemann problem for K = 1, and
described the asymptotic behavior of solutions.

In reference [5], the authors introduce two finite volume methods for computing
approximate solutions. One is a Glimm-like scheme, and the other is a well-balanced
scheme that uses nonrectangular space-time cells near the interface. These methods
employ random sampling for placing the particle at a mesh interface at each time
step. The nonconservative source term is handled by using a certain well-balanced
scheme that was analyzed in [7]. They avoid the use of a moving mesh, and also
avoid the use of a Riemann solver for the full model. The case of multiple particles
is addressed, and is handled via a splitting method.

Reference [14] presents a finite volume scheme that is based on the well-balanced
scheme of [5, 7], but uses an adaptive stencil as an alternative to using a moving
grid. The multiple-particle case is handled by splitting.
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Reference [7] proves well-posedness for the problem

ut +
(
u2/2

)
x

= −λuδ(x), u(x, 0) = u0(x). (1.5)

This is a simplification of (1.1), but its analysis provides an important step in
analyzing the full problem. As mentioned above the germ G(λ, c), which is required
for the correct defintion of entropy solution, was identified in [7].

Reference [6] proves well-posedness of the model (1.1) for K = 1, assuming that
the initial data is of bounded variation. Approximate solutions are generated via
a wave-front tracking algorithm. Definition 1.2 is a direct generalization of the
definition for K = 1 appearing in [6].

Reference [1] presents a class of finite volume schemes for (1.1) when K = 1.
The schemes are similar to those in [5], but a moving grid is used, which keeps the
particle located at a fixed cell boundary. The approximations are shown to converge
to the unique entropy solution.

References [2] and [3] concern a generalized version of (1.1) (again, for K = 1),
where the fluid is governed by the inviscid compressible Euler equations.

Reference [10] specifically deals with a multiple-particle problem. The authors
prove well-posedness for a version of (1.1) where the particle paths hk(t) are given,
i.e., the second equation of (1.1) does not appear.

Let H(·) denote the Heaviside function, i.e., the characteristic function of [0,∞).
The system (1.1) has the following equivalent formulation [5, 11]:

∂tu+ ∂x(u2/2) =

K∑
k=1

λk (h′k(t)− u) ∂xwk, (x, t) ∈ ΠT ,

∂twk + h′k(t)∂xwk = 0, (x, t) ∈ ΠT , k = 1, . . . ,K,

mkhk
′′(t) = λk (u(hk(t), t)− h′k(t)) , t ∈ (0, T ), k = 1, . . . ,K,

u(x, 0) = u0(x), (hk(0), h′k(0)) = (hk,0, vk,0), k = 1, . . . ,K,

wk(x, 0) = H(x− hk,0), k = 1, . . . ,K.

(1.6)

Although the splitting approach for multiple particles used in [5] and [14] gives good
numerical results, extending the convergence analysis from the single-particle to the
multiple-particle problem seems difficult. Various bounds required for convergence
are not preserved by the splitting steps. The numerical schemes in those papers
are based on the model (1.1). In this paper we instead discretize (1.6), using Lax-
Friedrichs differencing for each of the PDEs. The advantage of this approach is
that the case of multiple particles is accommodated without splitting. This makes
it possible to obtain a number of estimates which taken together give a convergence
proof for the multiple-particle model. On the other hand, while the schemes of [1],
[5], and [14] give very sharply resolved shocks at the particle locations, our Lax-
Friedrichs method results in a substantial amount of smearing. With this in mind,
we additionally propose a higher resolution version of the scheme, based on MUSCL
processing.

The rest of the paper is organized as follows. In Section 2 we describe the Lax-
Friedrichs scheme mentioned above. In Section 3 we prove convergence, modulo
a subsequence, of the approximations for u, as well as the approximations for hk.
In Section 4 we prove convergence of the approximations for wk. In Section 5 we
verify that the subsequential limit u is a Kružkov entropy solution in ΠT \ Γ and
satisfies the jump condition (1.3). In Section 6 we prove that the limit hk satisfies
the differential equation (1.4). Section 6 concludes with the proof of Theorem 1.3.



THE LAX-FRIEDRICH SCHEME FOR MULTI-PARTICLE FLUID INTERACTION 147

Section 7 describes the MUSCL processing mentioned above. Section 8 presents the
results of some numerical experiments.

2. The Lax-Friedrichs scheme applied to (1.6). We use a uniform spatial mesh
size ∆x, and temporal step size ∆t. Define

xj = j∆x, j ∈ Z, tn = n∆t, 0 ≤ n ≤ N, (2.1)

where the integer N is such that N∆t ∈ [T, T + ∆t). Define Ij = [xj −∆x/2, xj +
∆x/2), In = [tn, tn+1). Let χj(x) denote the characteristic function of Ij , and χn(t)
the characteristic function of In We denote by Unj the finite difference approximation
of u(xj , t

n), Unj ≈ u(xj , t
n). Similarly Wn

k,j ≈ wk(xj , t
n). Let {Qnj } be a grid-

defined function such as {Unj } or {Wn
k,j}. We will use the following notational

abbreviations:

∆+Q
n
j = Qnj+1 −Qnj , ∆−Q

n
j = Qnj −Qnj−1, Q̂nj =

1

2

(
Qnj−1 +Qnj+1

)
,

Qnmin = inf
j∈Z

Qnj , Qnmax = sup
j∈Z

Qnj , ‖Qn‖∞ = sup
j∈Z

∣∣Qnj ∣∣ . (2.2)

Let v0(x) denote the initial data u0(x) or H(x−hk,0). The data v0(x) is discretized
via V 0

j = 1
∆x

∫
Ij
v0(x) dx, implying that

inf
x∈Ij

v0(x) ≤ V 0
j ≤ sup

x∈Ij
v0(x), and

∑
j∈Z

χj(x)V 0
j → v0(x) in L1

loc(R) as ∆x→ 0.

(2.3)
With the notation v0

min = infy∈R v0(y), v0
max = supy∈R v0(y), we have −∞ <

v0
min, v0

max < ∞. Due to our method of discretizing v0, v0
min ≤ V 0

min, V 0
max ≤ v0

max,∥∥V 0
∥∥
∞ ≤ ‖v0‖∞, and

∑
j∈Z

∣∣∆+V
0
j

∣∣ ≤ TV(v0).

We extend {Unj } and {Wn
k,j} from grid-defined functions to functions defined on

all of ΠT via

u∆(x, t) =

N∑
n=0

∑
j∈Z

χj(x)χn(t)Unj , w∆
k (x, t) =

N∑
n=0

∑
j∈Z

χj(x)χn(t)Wn
k,j . (2.4)

Similarly,

c∆k (t) =

N∑
n=0

χn(t)cnk , h∆
k (t) =

N∑
n=0

χn(t) (hnk + (t− tn)cnk ) , (2.5)

where cnk ≈ h′k(tn) and hnk ≈ hk(tn), with the initialization (h0
k, c

0
k) = (hk,0, vk,0)

Let µ = ∆t/∆x. The algorithm that we propose discretizes the first two equa-
tions of (1.6) via the Lax-Friedrichs scheme, the third equation using Euler’s method:

Un+1
j = Unj − µ∆−f̄

n
j+1/2 +

K∑
k=1

λkµ

2

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
,

Wn+1
k,j = Wn

k,j − µ∆−ḡ
n
k,j+1/2,

cn+1
k = cnk −

1

mk

∑
j∈Z

∆tλk
2

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
,

hn+1
k = hnk + cnk∆t.

(2.6)



148 JOHN D. TOWERS

Here

f̄nj+1/2 = f̄(Unj+1, U
n
j ) =

1

2

((
Unj+1

)2
/2 +

(
Unj
)2
/2
)
− q

2µ

(
Unj+1 − Unj

)
,

ḡnk,j+1/2 =
1

2

(
cnkW

n
k,j+1 + cnkW

n
k,j

)
− q

2µ

(
Wn
k,j+1 −Wn

k,j

)
,

(2.7)

where q is a parameter. For our purposes q ∈ (0, 1/2]. The numerical fluxes in (2.7)
result by applying the Lax-Friedrichs flux [12] to f(u) = u2/2 and gnk (w) = cnkw.

Remark 2. The scheme (2.6) preserves solutions where the fluid velocity and par-
ticle velocities are equal to the same constant: Unj = v for all j ∈ Z, cnk = v for
k = 1, . . . ,K.

Remark 3. Some explanation of the third equation of (2.6) is in order. Based on
the third equation of (1.6), the third equation of (2.6) should be (approximately)
equivalent to

cn+1
k = cnk −

1

mk
∆tλkc

n
k +

1

mk
∆tλkũ(hk(tn), tn),

where ũ(hk(tn), tn) ≈ u(hk(tn), tn). To see that the third equation of (2.6) is
actually of this form, note that since Wn

k,j ≈ H(xj − hk(tn)), the grid function

{(1/2)(Wn
k,j+1−Wn

k,j−1)/∆x} approximates δ(x−hk(tn)), a delta function concen-

trated at x = hk(tn). In particular, we expect (1/2)
∑
j∈Z

(
Wn
k,j+1 −Wn

k,j−1

)
≈ 1

(in fact this holds with “≈” replaced by “=”; this follows from (3.5) of Lemma 3.1),
and so we can write the third equation of (2.6) in the form

cn+1
k = cnk −

1

mk
∆tλkc

n
k +

1

mk
∆tλk(1/2)

∑
j∈Z

Ûnj
(
Wn
k,j+1 −Wn

k,j−1

)
.

Thus, by defining

ũ(hk(tn), tn) := (1/2)
∑
j∈Z

Ûnj
(
Wn
k,j+1 −Wn

k,j−1

)
≈
∫
R
u(x, tn)δ(x− hk(tn)) dx,

we have the desired approximation ũ(hk(tn), tn) ≈ u(hk(tn), tn). Clearly there
are other, possibly simpler, methods of discretizating the third equation of (1.6).
The reason for choosing this particular approximation is to ensure the discrete
conservation of momentum property discussed below.

From the first two equations of (1.1) it follows that, at least formally, the total
momentum of the system is conserved:

d

dt

(∫
R
u(x, t) dx+

K∑
k=1

mkh
′
k(t)

)
= 0. (2.8)

The scheme (2.6) enforces a discrete version of (2.8).

Proposition 1. Assume that there is a 0 < J ∈ Z such that Unj = 0 for |j| > J ,
and that ‖Un‖∞ <∞. Define the discrete momentum:

Mn = ∆x
∑
j∈Z

Unj +

K∑
k=1

mkc
n
k . (2.9)

The discrete momentum is conserved: Mn+1 =Mn for 0 ≤ n ≤ N .
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Proof. Multiplying by ∆x and summing the first equation of (2.6) over j ∈ Z gives

∆x
∑
j∈Z

Un+1
j = ∆x

∑
j∈Z

Unj +
∑
j∈Z

K∑
k=1

λk∆t

2

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
. (2.10)

Multiplying the third equation of (2.6) by mk and then summing over k gives

K∑
k=1

mkc
n+1
k =

K∑
k=1

mkc
n
k −

K∑
k=1

∑
j∈Z

∆tλk
2

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
. (2.11)

The proof is completed by adding (2.10) and (2.11).

Define

Znj = Unj +
K∑
k=1

λkW
n
k,j , z∆(x, t) =

N∑
n=0

∑
j∈Z

χj(x)χn(t)Znj . (2.12)

Lemma 2.1. Znj satisfies the following (equivalent) evolution equations:

Zn+1
j = Znj − µ∆−f̄(Znj+1, Z

n
j ) +

µ

2

K∑
k=1

λkŴ
n
k,j

(
Znj+1 − Znj−1

)
, (2.13)

Zn+1
j = Znj +

1

2

(
q − µÛnj

)
∆+Z

n
j −

1

2

(
q + µÛnj

)
∆−Z

n
j . (2.14)

Remark 4. From (1.6) and the definition z = u +
∑K
k=1 λkwk, one can derive

(formally) the PDE

∂tz + ∂xf(z) =

K∑
k=1

λkwk∂xz. (2.15)

Evidently (2.13) is a discretization of (2.15).

Remark 5. It is clear by inspection of either (2.13) or (2.14) that the scheme (2.6)
preserves solutions of the form Znj = constant.

Proof. Using (2.12) and (2.6) we find that

Zn+1
j = Unj − µ∆−f̄

n
j+1/2 +

K∑
k=1

λkµ

2

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
+

K∑
k=1

λk

(
Wn
k,j − µ∆−ḡ

n
k,j+1/2

)
= Znj − µ∆−f̄

n
j+1/2 +

K∑
k=1

λkµ

2

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
− µ

K∑
k=1

λk∆−ḡ
n
k,j+1/2.

(2.16)

Next we use

∆−f̄
n
j+1/2 =

1

2
Ûnj
(
Unj+1 − Unj−1

)
− q

2µ
∆+∆−U

n
j ,

∆−ḡ
n
k,j+1/2 =

1

2
cnk
(
Wn
k,j+1 −Wn

k,j−1

)
− q

2µ
∆+∆−W

n
k,j .

(2.17)
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Substituting (2.17) into (2.16) and canceling (µ/2)
∑K
k=1 λkc

n
k (Wn

k,j+1 −Wn
k,j−1),

the result is

Zn+1
j = Znj −

µ

2
Ûnj
(
Unj+1 − Unj−1

)
+
q

2
∆+∆−U

n
j

− µ

2
Ûnj

K∑
k=1

λk
(
Wn
k,j+1 −Wn

k,j−1

)
+
q

2

K∑
k=1

λk∆+∆−W
n
k,j

= Znj −
µ

2
Ûnj
(
Znj+1 − Znj−1

)
+
q

2
∆+∆−Z

n
j

= Znj −
µ

2
Ûnj
(
∆+Z

n
j + ∆−Z

n
j

)
+
q

2

(
∆+Z

n
j −∆−Z

n
j

)
.

(2.18)

The identity (2.14) is immediate from (2.18).
For the proof of (2.13), we start from the second equality of (2.18) and substitute

Ûnj = Ẑnj −
∑K
k=1 λkŴ

n
k,j , which results in

Zn+1
j = Znj −

µ

2

(
Ẑnj −

K∑
k=1

λkŴ
n
k,j

)(
Znj+1 − Znj−1

)
+
q

2
∆+∆−Z

n
j

= Znj −
µ

2
Ẑnj
(
Znj+1 − Znj−1

)
+
µ

2

(
K∑
k=1

λkŴ
n
k,j

)(
Znj+1 − Znj−1

)
+
q

2
∆+∆−Z

n
j

= Znj −
µ

2

(
f(Znj+1)− f(Znj−1)

)
+
q

2
∆+∆−Z

n
j

+
µ

2

(
K∑
k=1

λkŴ
n
k,j

)(
Znj+1 − Znj−1

)
.

(2.19)

The identity (2.13) now follows directly from (2.19).

3. Convergence of u∆ and h∆
k . Let ∆ = (∆x,∆t). For our convergence analysis

we will assume that ∆→ 0 with µ fixed, and satisfying the following CFL condition:

µmax

(
max

1≤k≤K

∣∣c0k∣∣ , ‖z0‖∞ +

K∑
k=1

λk, ‖u0‖∞ +

K∑
k=1

λk

)
≤ q ≤ 1/2. (3.1)

Additionally we assume that

∆t ≤ mk/λk, k = 1, . . . ,K, (3.2)

which will be satisfied automatically for ∆ sufficiently small.

Define z0(x) = u0(x) +
∑K
k=1 λkH(x−hk(0)). Due to the method of discretizing

u0 and H(x− hk(0)), it follows from from (2.12) that Z0
j = 1

∆x

∫
Ij
z0(x) dx. Using

the notation z0
min = infy∈R z0(y), z0

max = supy∈R z0(y), we have −∞ < z0
min, z0

max <

∞, and z0
min ≤ Z0

min, Z0
max ≤ z0

max, and
∥∥Z0

∥∥
∞ ≤ ‖z0‖∞.

Lemma 3.1. The following properties hold:

z0
min ≤ Znj ≤ z0

max, ‖Zn‖∞ ≤ ‖z0‖∞ , (3.3)

u0
min −

K∑
k=1

λk ≤ Unj ≤ u0
max +

K∑
k=1

λk, ‖Un‖∞ ≤ ‖u0‖∞ +
K∑
k=1

λk, (3.4)

Wn
k,j ∈ [0, 1], ∆+W

n
k,j ≥ 0,

∑
j∈Z

∆+W
n
k,j = 1, (3.5)
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|cnk | ≤ max

(∣∣c0k∣∣ , ‖u0‖∞ +

K∑
k=1

λk

)
. (3.6)

Proof. The proof is by induction on n. Clearly all of (3.3), (3.4), (3.5), and (3.6)
hold at n = 0. Assume that those assertions hold at time step n. From (3.1) and
the induction hypothesis it follows that

µ

(
‖Zn‖∞ +

K∑
k=1

λk

)
≤ q, µ |cnk | ≤ q, k = 1, . . . ,K. (3.7)

To prove that (3.3) holds at time step n+ 1 we rewrite (2.14) using incremental
coefficients:

Zn+1
j = Znj + Cnj+1/2∆+Z

n
j −Dn

j−1/2∆−Z
n
j , (3.8)

where

Cnj+1/2 =
1

2

(
q − µÛnj

)
, Dn

j−1/2 =
1

2

(
q + µÛnj

)
. (3.9)

Using Ûnj = Ẑnj −
∑K
k=1 λkŴ

n
k,j , and Ŵn

k,j ∈ [0, 1] we see that Cnj+1/2 ≥ 0, Dn
j−1/2 ≥

0 due to (3.7). At the same time Cnj+1/2 +Dn
j−1/2 = q ≤ 1/2. Next we rewrite (3.8):

Zn+1
j = (1− Cnj+1/2 −D

n
j−1/2)Znj + Cnj+1/2Z

n
j+1 +Dn

j−1/2Z
n
j−1. (3.10)

From (3.10) it is clear that Zn+1
j is a convex combination of Znj+1, Znj , Znj−1, imply-

ing that Znmin ≤ Zn+1
j ≤ Znmax. Invoking the induction hypothesis then completes

the proof of (3.3) for n+ 1.
Next we prove that (3.5) holds for n+1. We rewrite the second equation of (2.6):

Wn+1
k,j = (1− αnk − βnk )Wn

k,j + αnkW
n
k,j+1 + βnkW

n
k,j−1, (3.11)

where

αnk =
1

2
(q − µcnk ), βnk =

1

2
(q + µcnk ). (3.12)

By (3.7) we have αnk ≥ 0, βnk ≥ 0, and (3.1) implies αnk +βnk = q ≤ 1/2. Thus Wn+1
k,j

is a convex combination of Wn
k,j−1,W

n
k,j ,W

n
k,j+1, implying that Wn+1

k,j ∈ [0, 1] after

invoking the induction hypothesis. By differencing (3.11) we get

∆+W
n+1
k,j = (1− αnk − βnk )∆+W

n
k,j + αnk∆+W

n
k,j+1 + βnk∆+W

n
k,j−1. (3.13)

Invoking the induction hypothesis again yields ∆+W
n+1
k,j ≥ 0. Finally, summing

(3.13) over j and then applying the induction hypothesis yields
∑
j∈Z ∆+W

n+1
k,j = 1.

To prove (3.4) holds at n+1, we employ the result of the previous two paragraphs.
Recalling (2.12), the proven bound on Zn+1

j is equivalent to

z0
min −

K∑
k=1

λkW
n+1
k,j ≤ U

n+1
j ≤ z0

max −
K∑
k=1

λkW
n+1
k,j . (3.14)

It is readily verified that u0
min ≤ z0

min and z0
max ≤ u0

max +
∑K
k=1 λk. Replacing z0

min

and z0
max in (3.14), the result is

u0
min −

K∑
k=1

λkW
n+1
k,j ≤ U

n+1
j ≤ u0

max +

K∑
k=1

λk −
K∑
k=1

λkW
n+1
k,j . (3.15)

Recalling that λk > 0 and Wn+1
k,j ∈ [0, 1], it is clear that (3.4) holds.
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To verify that (3.6) holds for n+1, we start with the third formula of (2.6), from
which it is evident that

cn+1
k =

1− ∆tλk
2mk

∑
j∈Z

(
Wn
k,j+1 −Wn

k,j−1

) cnk +
∆tλk
2mk

∑
j∈Z

(
Wn
k,j+1 −Wn

k,j−1

)
Ûnj .

(3.16)

The induction hypothesis yields
∑
j∈Z

(
Wn
k,j+1 −Wn

k,j−1

)
= 2, and so after taking

absolute values, and applying (3.2), equation (3.16) becomes∣∣cn+1
k

∣∣ ≤ (1− ∆tλk
mk

)
|cnk |+

∆tλk
2mk

∑
j∈Z

(
Wn
k,j+1 −Wn

k,j−1

) ∣∣∣Ûnj ∣∣∣
≤
(

1− ∆tλk
mk

)
|cnk |+

∆tλk
2mk

∑
j∈Z

(
Wn
k,j+1 −Wn

k,j−1

) (
‖u0‖∞ +

K∑
k=1

λk

)

=

(
1− ∆tλk

mk

)
|cnk |+

∆tλk
mk

(
‖u0‖∞ +

K∑
k=1

λk

)
≤
(

1− ∆tλk
mk

)
max

(∣∣c0k∣∣ , ‖u0‖∞ +

K∑
k=1

λk

)
+

∆tλk
mk

(
‖u0‖∞ +

K∑
k=1

λk

)
,

(3.17)

from which the desired inequality follows readily.

Lemma 3.2. Unj and Znj satisfy spatial variation bounds:

∑
j∈Z

∣∣∆+Z
n
j

∣∣ ≤ TV(u0) +

K∑
k=1

λk, (3.18)

and ∑
j∈Z

∣∣∆+U
n
j

∣∣ ≤ TV(u0) + 2

K∑
k=1

λk. (3.19)

Proof. We claim that the scheme is a so-called Total Variation Decreasing (TVD)
scheme with respect to the variable Znj , i.e.,∑

j∈Z

∣∣∆+Z
n+1
j

∣∣ ≤∑
j∈Z

∣∣∆+Z
n
j

∣∣ . (3.20)

To prove the claim we use (3.8). We have shown that Cnj+1/2, D
n
j+1/2 ≥ 0. It suffices

by a standard result [12, p. 116] to show that Cnj+1/2 +Dn
j+1/2 ≤ 1. Using (3.9) we

find that

Cnj+1/2 +Dn
j+1/2 = q − µ

4

(
Unj+1 + Unj−1

)
+
µ

4

(
Unj+2 + Unj

)
≤ q + µ ‖Un‖∞

≤ q + µ
(
‖u0‖∞ +

K∑
k=1

λk

)
≤ 2q.

(3.21)
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Here we have used (3.1) to get the last inequality. The desired bound then results
by recalling that q ≤ 1/2. Then by induction it follows from (3.18) that∑

j∈Z

∣∣∆+Z
n
j

∣∣ ≤∑
j∈Z

∣∣∆+Z
0
j

∣∣ ≤ TV(z0). (3.22)

It is readily verified using (2.12) that∑
j∈Z

∣∣Unj+1 − Unj
∣∣− K∑

k=1

λk ≤
∑
j∈Z

∣∣Znj+1 − Znj
∣∣ ≤∑

j∈Z

∣∣Unj+1 − Unj
∣∣+

K∑
k=1

λk. (3.23)

Then (3.18) follows from (3.22) and the n = 0 version of (3.23), along with the fact
that

∑
j∈Z

∣∣∆+U
0
j

∣∣ ≤ TV(u0). Finally, (3.19) results from (3.18) and (3.23).

Lemma 3.3. The following time continuity estimate holds:∑
j∈Z

∣∣Un+1
j − Unj

∣∣ ≤ B, (3.24)

where the constant B is independent of ∆.

Proof. Rearranging the first equation of (2.6), and using (2.17) to rewrite ∆−f̄
n
j+1/2

yields

Un+1
j − Unj =

1

2
(q − µÛnj )∆+U

n
j −

1

2
(q + µÛnj )∆−U

n
j

+
µ

2

K∑
k=1

λk(cnk − Ûnj )(Wn
k,j+1 −Wn

k,j−1).
(3.25)

After taking absolute values, applying the triangle inequality, then using the bounds
on cnk and Ûnj provided by Lemma 3.1, we sum over j ∈ Z. The result is∑

j∈Z

∣∣Un+1
j − Unj

∣∣ ≤ B1

∑
j∈Z

∣∣∆+U
n
j

∣∣+B2

K∑
k=1

∑
j∈Z

∣∣Wn
k,j+1 −Wn

k,j−1

∣∣ , (3.26)

where B1 and B2 are ∆-independent constants. The proof is completed by invoking

Lemma 3.2, along with the observation that
∑
j∈Z

∣∣∣Wn
k,j+1 −Wn

k,j−1

∣∣∣ = 2, which

follows from (3.5).

Lemma 3.4. The particle velocity approximations satisfy the following bound:∣∣cn+1
k − cnk

∣∣ ≤ λk∆t

mk

(
max

(∣∣c0k∣∣ , ‖u0‖∞ +

K∑
k=1

λk

)
+ ‖u0‖∞ +

K∑
k=1

λk

)
. (3.27)

Proof. We start with the third formula of (2.6). Subtracting cnk from both sides,
taking absolute values, and then using the triangle inequality, the result is∣∣cn+1

k − cnk
∣∣ ≤ 1

mk

∑
j∈Z

∆tλk
2

∣∣∣cnk − Ûnj ∣∣∣ (Wn
k,j+1 −Wn

k,j−1

)
≤ 1

mk

∑
j∈Z

∆tλk
2

(|cnk |+ ‖Un‖∞)
(
Wn
k,j+1 −Wn

k,j−1

)
=

∆tλk
mk

(|cnk |+ ‖Un‖∞) .

(3.28)

The proof of (3.27) is completed using (3.4) and (3.6).
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Lemma 3.5. The approximations u∆ converge boundedly a.e. and in L1
loc(ΠT )

as ∆ → 0, along a subsequence, to some u ∈ L∞(ΠT ) ∩ C([0, T ];L1
loc(R)). For

each k ∈ {1, . . . ,K} the sequence h∆
k converges (along the same subsequence) in

W 1,∞([0, T ]) to some hk ∈ W 2,∞([0, T ]), and c∆k converges (also along the same
subsequence) to h′k in L1

loc((0, T )).

Proof. The proof is a standard argument (e.g., the proof of Proposition 2.4 of [1])
using Lemmas 3.1, 3.2, and 3.3 for the u portion, and Lemmas 3.1 and 3.4 for the
hk portion.

Remark 6. In Sections 5 and 6 we will assume that the particle trajectories do
not intersect except possibly on a subset of (0, T ) having Lebesgue measure zero.
The convergence result above holds without any assumptions about particle path
intersections.

In what follows (u,~h) refers to a fixed subsequential limit of the type whose
existence is guaranteed by Lemma 3.5. When taking the limit as ∆ → 0 it is
understood to be along this fixed subsequence.

4. Convergence of w∆
k and z∆.

Lemma 4.1. Wn
k,j satisfies a spatial variation bound and a time continuity estimate

for each k ∈ {1, . . . ,K}:∑
j∈Z

∣∣∆+W
n
k,j

∣∣ = 1,
∑
j∈Z

∣∣∣Wn+1
k,j −W

n
k,j

∣∣∣ ≤ 1/2. (4.1)

Proof. The first part of (4.1) is evident from (3.5). For the second part of (4.1), we
write (3.11) in the form

Wn+1
k,j −W

n
k,j = αnk∆+W

n
k,j − βnk∆−W

n
k,j . (4.2)

Taking absolute values, and recalling from the proof of Lemma 3.1 that αnk , β
n
k ∈

[0, 1] yields ∣∣∣Wn+1
k,j −W

n
j

∣∣∣ ≤ αnk ∣∣∆+W
n
k,j

∣∣+ βnk
∣∣∆−Wn

k,j

∣∣ . (4.3)

Then summing over j ∈ Z and using
∑
j∈Z

∣∣∣∆+W
n
k,j

∣∣∣ = 1, αnk + βnk ≤ 1/2, gives the

second part of (4.1)

Lemma 4.2. As ∆→ 0, w∆
k (x, t)→ H(x− hk(t)) boundedly a.e. and in L1

loc(ΠT )
for each k ∈ {1, . . . ,K}.

Proof. Lemma 4.1 along with Wn
k,j ∈ [0, 1] (Lemma 3.1) guarantees that w∆

k con-

verges along a subsequence in L1
loc(R+ × R) and boundedly a.e. to some wk ∈

L∞(ΠT ) ∩ C([0, T ];L1
loc(R)).

A standard Lax-Wendroff calculation [9] proves that wk is a weak solution of

∂twk + h′k(t)∂xwk = 0, wk(x, 0) = H(x− hk(0)). (4.4)

One such weak solution is wk(x, t) = H(x − hk(t)). We will show that this is the
only weak solution and the proof will be complete. Assume that wk and w̃k are
both weak solutions of (4.4). This implies that for every φ ∈ C∞0 (R× [0, T ]),∫ T

0

∫
R

(w̃k − wk) {φt + h′k(t)φx} dx dt =

∫ T

0

(w̃k − wk)φ(x, T ) dt. (4.5)
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Fix ψ ∈ C∞0 (R× [0, T ]). Let

φ(x, t) =

∫ t

T

ψ (x− hk(t) + hk(σ), σ) dσ. (4.6)

It is readily verified that φt + h′k(t)φx = ψ, φ(·, T ) = 0. Substituting into (4.5), we
have ∫ T

0

∫
R

(w̃k − wk)ψ(x, t) dx dt = 0. (4.7)

Since (4.7) holds for any ψ ∈ C∞0 (R× [0, T ]), we conclude that w = w̃ a.e.

The following lemma is a direct consequence of (2.12), Lemma 3.5, and Lemma 4.2.

Lemma 4.3. Define z(x, t) = u(x, t)+
∑K
k=1 λkH(x−hk(t)). As ∆→ 0, z∆(x, t)→

z(x, t) boundedly a.e. and in L1
loc(ΠT ).

5. Jump and entropy conditions for u. In this section we verify that the sub-
sequential limit u is a Kružkov entropy solution in ΠT \ Γ and satisfies the jump
condition (1.3).

Here and in Section 6 we will employ the test function 0 ≤ ψδ(x) ∈ C∞0 (R), δ > 0,
such that ψδ(0) = 1, supp(ψδ) = [−δ, δ], and

ψ′δ(x) =

{
ηδ(x+ δ/2), x ≤ 0,

−ηδ(x− δ/2), x ≥ 0,
(5.1)

where ηδ denotes the standard C∞(R) mollifier:

supp(ηδ) = [−δ/2, δ/2], ηδ(x) ≥ 0 ∀x ∈ R,
∫
R
ηδ(x) dx = 1. (5.2)

Assumption 5.1. Assume that the particle trajectories do not intersect except
possibly on a subset F ⊂ (0, T ) having Lebesgue measure zero.

Remark 7. The set F has the form F = ∪i 6=jFi,j , where

Fi,j := {t ∈ (0, T )|hi(t) = hj(t)}.
Since each of the particle paths t 7→ hk(t) is continuous, each Fi,j is closed, and
thus F is also a closed subset of (0, T ). There are no particle path intersections in
the open set E := (0, T ) \F . E is a countable disjoint union of open intervals, E =
∪Mm=1(am, bm), where 1 ≤ M ≤ ∞ and each (am, bm) ⊆ (0, T ). By Assumption 5.1,
E is of full measure, meas((0, T ) \ E) = 0.

Lemma 5.1. Define U = [u0
min−

∑K
k=1 λk, u

0
max +

∑K
k=1 λk]. Referring to (2.6), let

G(Unj+1, U
n
j , U

n
j−1) = Unj −µ∆−f̄

n
j+1/2. Then G is nondecreasing with respect to each

of Unj+1, U
n
j , U

n
j−1 if Unj+1, U

n
j , U

n
j−1 ∈ U . Referring to (2.13), Zn+1

j is nondecreasing

with respect to each of Znj+1, Z
n
j , Z

n
j−1 if Znj+1, Z

n
j , Z

n
j−1 ∈ [z0

min, z
0
max].

Proof. The partial derivatives of G are

∂G

∂Unj
= 1− q, ∂G

∂Unj+1

= −µ
2
Unj+1 +

q

2
,

∂G

∂Unj−1

=
µ

2
Unj−1 +

q

2
. (5.3)

Clearly ∂G/∂Unj ≥ 0 since q ≤ 1/2. For ∂Un+1
j /∂Unj±1,

∂G

∂Unj±1

≥ 1

2
(q − µ ‖Un‖∞) ≥ 1

2

(
q − µ

(
‖u0‖∞ +

K∑
k=1

λk

))
. (5.4)
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In view of (5.4) and (3.1) it is clear that ∂G/∂Unj±1 ≥ 0.

For Zn+1
j we use (2.13) to compute

∂Zn+1
j

∂Znj
= 1− q,

∂Zn+1
j

∂Znj+1

=
q

2
− µ

2
Znj+1 +

µ

2

K∑
k=1

λkŴ
n
k,j ,

∂Zn+1
j

∂Znj−1

=
q

2
+
µ

2
Znj−1 −

µ

2

K∑
k=1

λkŴ
n
k,j .

(5.5)

It is readily verified that each of these partial derivatives is nonnegative using (3.1)

and the fact that Ŵn
k,j ∈ [0, 1].

The following lemma is a straightforward consequence of (3.5) and Lemma 4.2.

Lemma 5.2. Define

Snj =

K∑
k=1

λkŴ
n
k,j , S∆(x, t) =

N∑
n=0

∑
j∈Z

χj(x)χn(t)Snj . (5.6)

Snj has the following properties:

0 ≤ Snj ≤
K∑
k=1

λk, ∆+S
n
j ≥ 0,

∑
j∈Z

∆+S
n
j =

K∑
k=1

λk, (5.7)

and as ∆→ 0, S∆(x, t)→
∑K
k=1 λkH(x− hk(t)) boundedly a.e. and in L1

loc(ΠT ).

Lemma 5.3. The following discrete entropy inequalities hold for all κ ∈ [z0
min, z

0
max]:

Zn+1
j ∨ κ ≤ Znj ∨ κ− µ∆−f̄(Znj+1 ∨ κ, Znj ∨ κ) +

µ

2
Snj
(
Znj+1 ∨ κ− Znj−1 ∨ κ

)
,

Zn+1
j ∧ κ ≥ Znj ∧ κ− µ∆−f̄(Znj+1 ∧ κ, Znj ∧ κ) +

µ

2
Snj
(
Znj+1 ∧ κ− Znj−1 ∧ κ

)
.

(5.8)

Proof. Writing (2.13) in the form Zn+1
j = P (Znj+1, Z

n
j , Z

n
j−1), it is readily apparent

that P (κ, κ, κ) = κ. Using this observation the proof is a standard calculation
[8, 9], using the fact that P is a nondecreasing function of all three arguments
(Lemma 5.1).

Lemma 5.4. The limit solution u satisfies the jump condition (1.3) for a.e. t ∈
(0, T ) and each k ∈ 1, . . . ,K.

Proof. We start with the first inequality in (5.8), and use the identity

Aj (Bj+1 −Bj−1) = ∆+ (AjBj)−Bj+1∆+Aj + ∆− (AjBj)−Bj−1∆−Aj . (5.9)

This results in

Zn+1
j ∨ κ ≤ Znj ∨ κ

− µ∆−

(
f̄(Znj+1 ∨ κ, Znj ∨ κ)− 1

2
Snj+1(Znj+1 ∨ κ)− 1

2
Snj (Znj ∨ κ)

)
− µ

2

(
(Znj+1 ∨ κ)∆+S

n
j + (Znj−1 ∨ κ)∆−S

n
j

)
.

(5.10)

Since ∆±S
n
j ≥ 0, we have

(Znj+1 ∨ κ)∆+S
n
j ≥ κ∆+S

n
j , (Znj−1 ∨ κ)∆−S

n
j ≥ κ∆−S

n
j , (5.11)
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and so we can replace (5.10) by

Zn+1
j ∨ κ ≤ Znj ∨ κ

− µ∆−

(
f̄(Znj+1 ∨ κ, Znj ∨ κ)− 1

2
Snj+1(Znj+1 ∨ κ)− 1

2
Snj (Znj ∨ κ)

)
− µκ

2

(
Snj+1 − Snj−1

)
.

(5.12)

Following the proof of the Lax-Wendroff theorem [9], let φ be a nonnegative test
function with φ(x, 0) = 0, and φnj := φ(xj , t

n). We multiply (5.12) by φnj ∆x, and
then sum over j ∈ Z, n ≥ 0. After summation by parts the result is

∆x∆t
∑
j∈Z

∑
n≥0

(Zn+1
j ∨ κ)

φn+1
j − φnj

∆t

+ ∆x∆t
∑
j∈Z

∑
n≥0

(
f̄(Znj+1 ∨ κ, Znj ∨ κ)− 1

2
Snj (Znj ∨ κ)− 1

2
Snj+1(Znj+1 ∨ κ)

)∆+φ
n
j

∆x

+ ∆x∆tκ
∑
j∈Z

∑
n≥0

Snj
∆+φ

n
j

∆x
≥ 0.

(5.13)

Letting ∆ ↓ 0 and recalling z∆ → z, S∆ →
∑K
k=1 λkH(x− hk(t)) yields∫ T

0

∫
R

(z ∨ κ)φt dx dt+

∫ T

0

∫
R

(
f(z ∨ κ)−

K∑
l=1

λlH(x− hl(t))(z ∨ κ)
)
φx dx dt

+ κ

∫ T

0

∫
R

K∑
l=1

λlH(x− hl(t))φx dx dt ≥ 0.

(5.14)

After simplifying the last integral the result is∫ T

0

∫
R

(z ∨ κ)φt dx dt+

∫ T

0

∫
R

(
f(z ∨ κ)−

K∑
l=1

λlH(x− hl(t))(z ∨ κ)
)
φx dx dt

− κ
K∑
l=1

λl

∫ T

0

φ(hl(t), t) dt ≥ 0.

(5.15)

A similar calculation starting from the second inequality of (5.8) yields∫ T

0

∫
R

(z ∧ κ)φt dx dt+

∫ T

0

∫
R

(
f(z ∧ κ)−

K∑
l=1

λlH(x− hl(t))(z ∧ κ)
)
φx dx dt

− κ
K∑
l=1

λl

∫ T

0

φ(hl(t), t) dt ≤ 0.

(5.16)

Recalling Assumption 5.1 and Remark 7, fix an interval Im := (am, bm) ⊆ (0, T )
where there are no path intersections, and fix a particle path, indexed by k. For this
calculation we will use the abbreviations z±(t) = z(hk(t)±, t) and ck(t) = h′k(t). The
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ordering of the particles does not change in Im, so we can assume that the particles
are labeled so that

h1(t) < h2(t) < · · · < hk(t) < · · · < hK(t), t ∈ Im. (5.17)

Let φ(x, t) = ψδ(x − hk(t))ρ(t), where 0 ≤ ρ ∈ C∞0 (Im). Letting δ ↓ 0 in (5.15)
yields∫

Im
{f(z− ∨ κ)− ck(z− ∨ κ)−

(
f(z+ ∨ κ)− ck(z+ ∨ κ)− λk(z+ ∨ κ)

)
− γk

(
z− ∨ κ− z+ ∨ κ

)
− λkκ}ρ(t) dt ≥ 0,

(5.18)

where γk =
∑
l<k λl, and we have abbreviated z± = z±(t), ck = ck(t). Another

such test function calculation, this time with (5.16) results in∫
Im
{f(z− ∧ κ)− ck(z− ∧ κ)−

(
f(z+ ∧ κ)− ck(z+ ∧ κ)− λk(z+ ∧ κ)

)
− γk

(
z− ∧ κ− z+ ∧ κ

)
− λkκ}ρ(t) dt ≤ 0.

(5.19)

Continuing with the abbreviation z± = z±(t), ck = ck(t), for a.e. t ∈ Im we have

f(z− ∨ κ)− ck(z− ∨ κ)−
(
f(z+ ∨ κ)− ck(z+ ∨ κ)− λk(z+ ∨ κ)

)
− γk

(
z− ∨ κ− z+ ∨ κ

)
− λkκ ≥ 0,

(5.20)

f(z− ∧ κ)− ck(z− ∧ κ)−
(
f(z+ ∧ κ)− ck(z+ ∧ κ)− λk(z+ ∧ κ)

)
− γk

(
z− ∧ κ− z+ ∧ κ

)
− λkκ ≤ 0.

(5.21)

Fix a time t ∈ Im where (5.20), (5.21) hold. If z− = z+ then (5.20) and (5.21)
are satisfied. So assume for now that z− 6= z+. Substituting z− ≤ κ ≤ z+ into
(5.20) and then (5.21) gives

z− ≤ κ ≤ z+ =⇒

{
f(z+)− f(κ) ≤ (λk + c̃k)(z+ − κ),

f(z−)− f(κ) ≤ c̃k(z− − κ).
(5.22)

where c̃k = ck + γk. Repeating this calculation with z+ ≤ κ ≤ z−, we find that

z+ ≤ κ ≤ z− =⇒

{
f(z+)− f(κ) ≥ (λk + c̃k)(z+ − κ),

f(z−)− f(κ) ≥ c̃k(z− − κ).
(5.23)

Plugging κ = z− into the first inequality of (5.22) and then into the first inequality
of (5.23), and recalling f(z) = z2/2, yields

z+ + z− ≤ 2(λk + c̃k). (5.24)

The second inequality of (5.22) (for z− < z+) or the second inequality of (5.23)
(for z− > z+) implies that in either case

z− ≥ c̃k. (5.25)

Substituting κ = z+ into the second inequalities of (5.22) and (5.23) yields

z+ + z− ≥ 2c̃k. (5.26)

Finally, with ε > 0, we substitute κ = z+ − ε into the first inequality of (5.22), and
κ = z+ + ε into the first inequality of (5.23). Sending ε ↓ 0 results in

z+ ≤ λk + c̃k. (5.27)
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Thus either z+ = z− or all of (5.24), (5.25), (5.26), (5.27) hold. Let u± =
u(hk(t)±, t). Substituting z− = u−+γk, z+ = u+ +γk +λk into these relationships
we have shown that either

u+ − ck = u− − ck − λk, (5.28)

or

u− − ck ≥ 0, u+ − ck ≤ 0, −λk ≤ (u− − ck) + (u+ − ck) ≤ λk. (5.29)

Recalling Definition 1.1, and that ck = h′k(t), it is evident from (5.28), (5.29) that

(u−, u+) ∈ G(λk, ck) = G(λk, h
′
k(t)), (5.30)

and this holds for a.e. t ∈ Im. The proof is completed by repeating this argument
for each k ∈ {1, . . . ,K} and each m ∈ {1, . . . ,M}.

Lemma 5.5. The following discrete entropy inequality holds for each κ ∈ R:∣∣Un+1
j − κ

∣∣ ≤ ∣∣Unj − κ∣∣− µ∆−F̄
(
Unj+1, U

n
j

)
+
µ

2

K∑
k=1

λk

∣∣∣cnk − Ûnj ∣∣∣ (Wn
k,j+1 −Wn

k,j−1

)
,

(5.31)

where F̄
(
Unj+1, U

n
j

)
= f̄(Unj+1 ∨ κ, Unj ∨ κ)− f̄(Unj+1 ∧ κ, Unj ∧ κ).

Proof. First assume that κ ∈ U = [u0
min−

∑K
k=1 λk, u

0
max +

∑K
k=1 λk]. We write the

first equation of (2.6) in the form

Un+1
j = G(Unj+1, U

n
j , U

n
j−1) +Qnj , (5.32)

where

V n+1
j := G(Unj+1, U

n
j , U

n
j−1) = Unj − µ∆−f̄

n
j+1/2,

Qnj =
µ

2

K∑
k=1

λk

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
.

(5.33)

Invoking the monotonicity of G (Lemma 5.1), a standard calculation [8, 9] yields∣∣V n+1
j − κ

∣∣ ≤ ∣∣Unj − κ∣∣− µ∆−F̄
(
Unj+1, U

n
j

)
, (5.34)

for κ ∈ U . Substituting V n+1
j = Un+1

j −Qnj , and using the triangle inequality yields

(5.31), assuming κ ∈ U .

Now take the case where κ /∈ U , say κ < u0
min −

∑K
k=1 λk. In that case (5.31)

reduces to

Un+1
j ≤ Unj − µ∆−f̄

n
j+1/2 +

∣∣Qnj ∣∣ . (5.35)

which, recalling the first equation of (2.6), is clearly satisfied. The case where

κ > u0
max +

∑K
k=1 λk is handled similarly.

Lemma 5.6. The limit u is a Kružkov entropy solution in ΠT \ Γ of the Burgers
equation with initial data u0.

Proof. Define F (a, b) = f(a ∨ b) − f(a ∧ b) = sgn(a − b)(a2/2 − b2/2). We must
show that u satisfies∫ T

0

∫
R

(|u− κ|φt + F (u, κ)φx) dx dt+

∫
R

|u0 − κ|φ(x, 0) dx ≥ 0 (5.36)

for every κ ∈ R and every nonnegative test function φ ∈ C∞0 (R× [0, T ) \ Γ).
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The proof is based on the discrete entropy inequality (5.31). Due to the bounds
on Unj and cnk (Lemma 3.1), we have for some B > 0 which independent of ∆,

µ

2

K∑
k=1

λk

∣∣∣cnk − Ûnj ∣∣∣ (Wn
k,j+1 −Wn

k,j−1

)
≤ µ

2
B

K∑
k=1

λk
(
Wn
k,j+1 −Wn

k,j−1

)
. (5.37)

Substituting into (5.31) the result is∣∣Un+1
j − κ

∣∣ ≤ ∣∣Unj − κ∣∣− µ∆−F̄
(
Unj+1, U

n
j

)
+
µ

2
B

K∑
k=1

λk
(
Wn
k,j+1 −Wn

k,j−1

)
.

(5.38)
Multiplying by φnj = φ(xj , t

n) and then summing by parts we find that

∆x∆t
N∑
n=0

∑
j∈Z

{∣∣Un+1
j − κ

∣∣ (φn+1
j − φnj )/∆t+ F̄

(
Unj+1, U

n
j

)
(φnj+1 − φnj )/∆x

}
−B

K∑
k=1

λk∆x∆t

N∑
n=0

∑
j∈Z

Wn
k,j

1

2
(φnj+1 − φnj−1)/∆x+ ∆x

∑
j∈Z

∣∣U0
j − κ

∣∣φ0
j dx ≥ 0.

(5.39)

Letting ∆→ 0, and using u∆ → u, w∆
k → H(x− hk(t)), results in∫ T

0

∫
R

(|u− κ|φt + F (u, κ)φx) dx dt−B
K∑
k=1

λk

∫ T

0

∫
R
H(x− hk(t))φx dx dt

+

∫
R
|u0(x)− κ| dx ≥ 0.

(5.40)

The proof is finished by observing that
∫
RH(x−hk(t))φx dx = 0, since φ(hk(t), t) =

0.

6. Differential equation for hk and proof of the main theorem. In this
section we prove that the limit hk satisfies the differential equation (1.4). This
section also contains the proof of Theorem 1.3. Assumption 5.1 (restriction on
particle intersections) remains in effect in this section.

Lemma 6.1. The limit hk(t) satisfies the differential equation (1.4) for each k ∈
1, . . . ,K and a.e. t ∈ (0, T ). Also, (hk(0), h′k(0)) = (hk,0, vk,0).

Proof. Fix a particle with index k, 1 ≤ k ≤ K. Let ank = (cn+1
k − cnk )/∆t. The third

equation of (2.6) yields

mka
n
k = −

∑
j∈Z

λk
2

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
. (6.1)

Define ψnj = ψδ(xj −hk(tn)), where ψδ is defined by (5.1). Let ξ(t) ∈ C∞0 ((0, T ))
and define ξn = ξ(tn). We re-write (6.1) in the form

mka
n
k = −λk

2

∑
j∈Z

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
ψnj

− λk
2

∑
j∈Z

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
(1− ψnj ).

(6.2)
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Next we multiply by ξn∆t and sum over n :

mk∆t
∑
n≥0

ankξ
n = −λk

2
∆t
∑
n≥0

∑
j∈Z

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
ψnj ξ

n

− λk
2

∆t
∑
n≥0

∑
j∈Z

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
(1− ψnj )ξn.

(6.3)

We solve for
(
cnk − Ûnj

)(
Wn
k,j+1 −Wn

k,j−1

)
in the first equation of (2.6),(

cnk − Ûnj
) (
Wn
k,j+1 −Wn

k,j−1

)
=

2

λkµ

(
Un+1
j − Unj + µ∆−f̄

n
j+1/2

)
− 1

λk

∑
l 6=k

λl

(
cnl − Ûnj

) (
Wn
l,j+1 −Wn

l,j−1

)
,

(6.4)

and substitute into the first sum on the right side of (6.3). The result is

mk∆t
∑
n≥0

ankξ
n = −∆x

∑
n≥0

∑
j∈Z

(
Un+1
j − Unj + µ∆−f̄

n
j+1/2

)
ψnj ξ

n

︸ ︷︷ ︸
S1

+
1

2
∆t
∑
n≥0

∑
j∈Z

∑
l 6=k

λl

(
cnl − Ûnj

) (
Wn
l,j+1 −Wn

l,j−1

)
ψnj ξ

n

︸ ︷︷ ︸
S2

−λk
2

∆t
∑
n≥0

∑
j∈Z

(
cnk − Ûnj

) (
Wn
k,j+1 −Wn

k,j−1

)
(1− ψnj )ξn︸ ︷︷ ︸

S3

.

(6.5)

Summing the left side of (6.5) by parts, we find that

mk∆t
∑
n≥0

ankξ
n = −mk∆t

∑
n≥0

cn+1
k

ξn+1 − ξn

∆t
. (6.6)

Letting ∆ ↓ 0 in (6.6), and using c∆k → h′k, the result is

mk∆t
∑
n≥0

ankξ
n → −mk

∫ T

0

h′k(t)ξ′(t) dt, (6.7)

and for S1, summation by parts followed by sending ∆→ 0 yields

S1 →
∫ T

0

∫
R
{u ∂t (ψδ(x− hk(t))ξ(t)) + f(u) ∂x (ψδ(x− hk(t))ξ(t))} dx dt. (6.8)

We next estimate S2. Fix l 6= k. It suffices to estimate S2,l, where

S2,l =
1

2
∆t
∑
n≥0

∑
j∈Z

λl

(
cnl − Ûnj

) (
Wn
l,j+1 −Wn

l,j−1

)
ψnj ξ

n. (6.9)

Since cnl and Ûnj are bounded (Lemma 3.1), and
(
Wn
l,j+1 −Wn

l,j−1

)
≥ 0, ψnj ≥ 0,

|S2,l| ≤ B∆t
∑
n≥0

|ξn|
∑
j∈Z

(
Wn
l,j+1 −Wn

l,j−1

)
ψnj (6.10)
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where B is some positive number independent of δ and ∆. Summation by parts
yields ∑

j∈Z

(
Wn
l,j+1 −Wn

l,j−1

)
ψnj =

∑
j∈Z

(
Wn
l,j+1ψ

n
j+1 −Wn

l,j−1ψ
n
j−1

)
−
∑
j∈Z

(
Wn
l,j+1 +Wn

l,j

)
∆+ψ

n
j .

(6.11)

The first sum on the right is telescoping and is equal to zero. Thus, referring back
to (6.10) we have

|S2,l| ≤ −B∆t
∑
n≥0

|ξn|
∑
j∈Z

(Wl,j+1 +Wl,j) ∆+ψ
n
j

= −2B∆x∆t
∑
n≥0

|ξn|
∑
j∈Z

1

2
(Wl,j+1 +Wl,j) ∆+ψ

n
j /∆x.

(6.12)

Letting ∆→ 0 yields

lim sup
∆→0

|S2,l| ≤ −2B

∫ T

0

|ξ(t)|
∫
R
wl(x, t)∂xψδ(x− hk(t)) dx dt. (6.13)

Recalling that wl(x, t) = H(x− hl(t)), we find that∫
R
wl(x, t)∂xψδ(x− hk(t)) dx =

∫ ∞
x=hl(t)

∂xψδ(x− hk(t)) dx = −ψδ(hl(t)− hk(t)).

(6.14)

Substituting into (6.13) yields the desired estimate of S2,l:

lim sup
∆→0

|S2,l| ≤ 2B

∫ T

0

|ξ(t)|ψδ(hl(t)− hk(t)) dt. (6.15)

We claim that S3 → 0. Since cnk and Ûnj are bounded (Lemma 3.1), and ψnj ≤ 1,
Wn
k,j+1 −Wn

k,j−1 ≥ 0,

|S3| ≤ B∆t
∑
n≥0

|ξn|
∑
j∈Z

(
Wn
k,j+1 −Wn

k,j−1

)
(1− ψnj ). (6.16)

where B is some positive number independent of the mesh size ∆. Using the formula
(6.11) with 1− ψnj replacing ψnj ,∑
j∈Z

(
Wn
k,j+1 −Wn

k,j−1

)
(1− ψnj ) =

∑
j∈Z

(
Wn
k,j+1(1− ψnj+1)−Wn

k,j−1(1− ψnj−1)
)

+
∑
j∈Z

(
Wn
k,j+1 +Wn

k,j

)
∆+ψ

n
j .

(6.17)

In the second term on the right side we have used ∆+(1−ψnj ) = −∆+ψ
n
j . The first

sum on the right is telescoping and is equal to 2. Thus, referring back to (6.16) we
have

|S3| ≤ 2B∆t
∑
n≥0

|ξn|+B∆t
∑
n≥0

|ξn|
∑
j∈Z

(Wk,j+1 +Wk,j) ∆+ψ
n
j

= 2B∆t
∑
n≥0

|ξn|+ 2B∆t∆x
∑
n≥0

|ξn|
∑
j∈Z

1

2
(Wk,j+1 +Wk,j) ∆+ψ

n
j /∆x.

(6.18)
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Letting ∆→ 0 yields

lim sup
∆→0

|S3| ≤ 2B

∫ T

0

|ξ(t)| dt+ 2B

∫ T

0

|ξ(t)|
∫
R
wk(x, t)∂xψδ(x− hk(t) dx dt.

(6.19)
Substituting wk(x, t) = H(x− hk(t)), and using ψδ(0) = 1, the result is∫

R
wk(x, t)∂xψδ(x− hk(t)) dx =

∫ ∞
x=hk(t)

∂xψδ(x− hk(t)) dx = −1. (6.20)

Plugging (6.20) into (6.19) completes the proof of the claim.
Combining S3 → 0 with (6.7), (6.8), and (6.15) we have

−mk

∫ T

0

h′k(t)ξ′(t) dt =∫ T

0

∫
R
{u(ψδ(x− hk(t))ξ(t))t + f(u)(ψδ(x− hk(t))ξ(t))x} dx dt

+

∫
R
u0(x)ψδ(x− hk(0))ξ(0) dx+Rk,

(6.21)

where

|Rk| ≤ 2B
∑
l 6=k

∫ T

0

|ξ(t)|ψδ(hl(t)− hk(t)) dt. (6.22)

Next we consider the limit when δ → 0 in (6.21), (6.22). Due to Assumption 5.1
(restriction on particle intersections), if l 6= k then |hl(t)− hk(t)| > 0 for a.e.
t ∈ (0, T ) and thus

ψδ(hl(t)− hk(t))→ 0 for a.e. t ∈ (0, T ), (6.23)

with the result that Rk → 0. Let

[u(hk(t), t)] = u(hk(t)+, t)− u(hk(t)−, t),

[f(u(hk(t), t))] = f(u(hk(t)+, t))− f(u(hk(t)−, t)).
(6.24)

A straightforward calculation using (5.1), (5.2) gives∫ T

0

∫
R
{u(ψδ(x− hk(t))ξ(t))t + f(u)(ψδ(x− hk(t))ξ(t))x} dx dt

→
∫ T

0

{h′k(t)[u(hk(t), t)]− [f(u(hk(t), t))]} ξ(t) dt,
(6.25)

and ∫
R
u0(x)ψδ(x− hk(0))ξ(0) dx→ 0. (6.26)

The result is that (6.21) becomes

−mk

∫ T

0

h′k(t)ξ′(t) dt

=

∫ T

0

{h′k(t)[u(hk(t), t)]− [f(u(hk(t), t))]} ξ(t) dt.
(6.27)

After integrating the left side by parts the result is∫ T

0

{mkh
′′
k(t)− [u(hk(t), t)]h′k(t)− [f(u(hk(t), t))]} ξ(t) dt = 0, (6.28)
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implying that (1.4) holds for a.e. t ∈ [0, T ].
The observation that for all ∆ > 0, h∆

k (0) = hk,0 and c∆k (0) = vk,0 proves the
assertion that (hk(0), h′k(0)) = (hk,0, vk,0).

Proof of the main theorem.

Proof. Lemma 3.5 provides the convergence portion of Theorem 1.3. That the limit

(u,~h) is an entropy solution results from Lemmas 5.4, 5.6, and 6.1.

Remark 8. For the single-particle case, Theorem 8 of [6] states that Definition 1.2
is sufficient for uniqueness. Thus if K = 1, the Lax-Friedrichs approximations
(u∆, h∆

1 ) converge to the unique entropy solution, and convergence is along the
entire computed sequence, not just a subsequence.

7. Improved resolution via MUSCL processing. It is possible to somewhat
reduce the excessively diffusive nature of Lax-Friedrichs differencing without adding
too much complexity by using the MUSCL approach. Our incorporation of MUSCL
processing is standard [12]. Let M(·, ·) denote the minmod function:

M(a, b) =
1

2
(sgn(a) + sgn(b)) min(|a| , |b|). (7.1)

We replace the numerical fluxes f̄nj+1/2, ḡnk,j+1/2 in (2.7) by

f̃nj+1/2 =
1

2

((
Un,−j+1

)2
/2 +

(
Un,+j

)2
/2
)
− q

2µ

(
Un,−j+1 − U

n,+
j

)
,

g̃nk,j+1/2 =
1

2

(
cnkW

n,−
k,j+1 + cnkW

n,+
k,j

)
− q

2µ

(
Wn,−
k,j+1 −W

n,+
k,j

)
,

(7.2)

where

Un,±j = Unj ±
1

2
M(∆+U

n
j ,∆−U

n
j ),

Wn,±
k,j = Wn

k,j ±
1

2
M(∆+W

n
k,j ,∆−W

n
k,j).

(7.3)

We do not presently have any convergence results or even stability estimates for
the resulting scheme with MUSCL processing incorporated. A moderate amount
of numerical experience indicates that the algorithm produces approximations that
converge to the same solution as the basic algorithm of Section 2.

8. Numerical examples. Following are a few numerical examples. We refer to
the scheme of Section 2 as the basic scheme, and the modified scheme of Section 7
as the MUSCL scheme. We used q = 1/2 in all examples.

Example 8.1. This is a single-particle Riemann problem, with

(uL, uR) = (.15,−.15), (h(0), h′(0)) = (0, .65), λ = .5, m = 2. (8.1)

The exact solution is available for comparison, using the results of [11]. See Figure 1.
The approximations appear to improve when the mesh size is halved, as expected.
It is also apparent that the MUSCL scheme is more accurate than the basic one.

The sharp transition at x ≈ 0.8 is a shock that is collocated with the particle.
With our Lax-Friedrichs scheme there is some smearing of the shock. We must rely
on a very small mesh size, even with the MUSCL version, to obtain a very sharp
transition. The schemes of [1], [5], and [14] resolve this type of shock ( i.e., the
shock is collocated with the particle) with no smearing.
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Figure 1. Example 8.1. Top: Fluid velocity u at t = 1. Exact
solution is solid line, with sharp corners. Bottom: Particle position
error vs. time. Basic scheme (left plots) and MUSCL scheme (right
plots). ∆x = .0025 (dashed line), and ∆x = .00125 (solid line).
Both approximations used µ = .25.
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Figure 2. Example 8.2. Fluid velocity u at t = 1. Basic
scheme (left plots) and MUSCL scheme (right plots). Exact solu-
tion (dashed line) and approximate solution (solid line). Top plots
used ∆x = .005, bottom plots used ∆x = .000625. All approxi-
mations used µ = .25. A spurious kink is visible. Its magnitude
diminishes with grid refinement.

Example 8.2. This is another single-particle Riemann problem with

(uL, uR) = (.25, .75), (h(0), h′(0)) = (0, .65), λ = .5, m = 1. (8.2)

As in the previous example the exact solution is available via [11]. This example
displays a spurious kink, see Figure 2, that appears in some cases where a particle’s
velocity h′k(t) lies between u(h−k (t), t) and u(h+

k (t), t). The kink is probably due
to the large numerical viscosity of the Lax-Friedrichs scheme. The size of the kink
diminishes, as expected, when the mesh shrinks. Also the MUSCL approximation
has a smaller kink than the basic approximation.
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Example 8.3. This is a two-particle example with z(x, t) = constant = ẑ. It
is possible to explicitly solve this type of problem. With z(x, t) = ẑ, we have
u(x, t) = ẑ − λ1H(x − h1(t)) − λ2H(x − h2(t)). Thus the problem reduces to
determining the particle paths h1(t) and h2(t). This can be accomplished using the
differential equations (1.4), which become

h′′k +
λk
mk

h′k = σk(t), k = 1, 2. (8.3)

Here

σk(t) =
λkẑ − λ2

k/2

mk
+ pk(t), (8.4)

where

p1(t) =

{
0, h1(t) < h2(t),

−λ1λ2

m1
, h1(t) > h2(t),

p2(t) =

{
−λ1λ2

m2
, h1(t) < h2(t),

0, h1(t) > h2(t).
(8.5)

Assume that the particle trajectories do not intersect except for a finite set of
times τν with 0 < τ1 < . . . < τM < T . Define τ0 = 0, τM+1 = T , and let
rk = λk/mk. The solution of (8.3), (8.4), (8.5) can be expressed piecewise. For
t ∈ (τν , τν+1) the solution is

hk(t) = hk(τν)+
h′k(τν)

rk
(1−exp(−rk(t−τν)))− σk

r2
k

(1−exp(−rk(t−τν)))+
σk
rk

(t−τν).

(8.6)
The parameters used in this example are

m1 = .025,m2 = .02, (h1(0), h′1(0)) = (.2, 1.2), (h2(0), h′2(0)) = (.3, 0.9),

λ1 = .75, λ2 = .5, ẑ = .5.
(8.7)

See Figures 3 and 4. From Figure 3 it appears that the MUSCL scheme is more
accurate than the basic scheme, as expected. We also see that the discrete L1 er-
ror in u decreases as we decrease the mesh size. Figure 4 shows the approximate
and exact particle trajectories. At the level of discretization shown, the particle
trajectories produced by the basic scheme do not quite agree with the exact trajec-
tories. This discrepancy diminishes when the mesh size is decreased (not shown),
but convergence is slow. For the MUSCL scheme the resolution is better; the ex-
act and computed trajectories are not visually distinguishable at this level of grid
refinement.

Example 8.4. This is another two-particle example. This time the particles are
initially heading toward each other, and the fluid is initially at rest. Unlike the
previous example the true solution is not known. In Figure 5 we show the particle
trajectories at three levels of grid refinement. It appears that the particle trajec-
tories are converging as the mesh size is refined. The MUSCL scheme is better
able to resolve the fine details of the trajectory, especially after the first crossing of
trajectories.

The initial fluid velocity is zero, u0(x) = 0. The other parameters of the problem
are

m1 = .04,m2 = .02, (h1(0), h′1(0)) = (.1,−2), (h2(0), h′2(0)) = (−.1, 4), λ1 = λ2 = 1.
(8.8)
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Figure 3. Example 8.3. Solution u using basic scheme at t =
.125 (upper left), and using MUSCL (upper right). True solution
(dashed line) and approximate solution (solid line). Both upper
plots computed with ∆x = .00325, µ = .25. The lower plots show
the error in u in discrete L1 norm as a function of time using the
basic scheme (lower left) and MUSCL scheme (lower right). Uses
∆x = .00325 and ∆x = .001625, µ = .25.
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