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Abstract. We introduce non-Abelian Kuramoto model on S3 in the most

general form. Following an analogy with the classical Kuramoto model (on
the circle S1), we study some interesting variations of the model on S3 that

are obtained for particular coupling functions. As a partial case, by choosing

“standard” coupling function one obtains a previously known model, that is
referred to as Kuramoto-Lohe model on S3.

We briefly address two particular models: Kuramoto models on S3 with

frustration and with external forcing. These models on higher dimensional
manifolds have not been studied so far. By choosing suitable values of param-

eters we observe different nontrivial dynamical regimes even in the simplest
setup of globally coupled homogeneous population.

Although non-Abelian Kuramoto models can be introduced on various sym-

metric spaces, we restrict our analysis to the case when underlying manifold is
the 3-sphere. Due to geometric and algebraic properties of this specific mani-

fold, variations of this model are meaningful and geometrically well justified.

1. Introduction. The tendency of coupled oscillators to synchronize their oscil-
lations is universal phenomenon with a great variety of manifestations in Nature
[33]. However, synchronization is just one particular example of self-organization
phenomena that are observed in populations of coupled oscillators.

In 1975, Kuramoto has proposed a paradigmatic model of this kind. Since then,
Kuramoto model attracts a stable and enduring interest of researchers in Physics
and other fields. Success of the Kuramoto model stems from its simplicity combined
with nontriviality. Indeed, even in its original form, the Kuramoto model exhibits
surprisingly rich variety of dynamical regimes. In addition, it is very tractable for
the rigorous (and nontrivial) mathematical analysis.

In Kuramoto model, oscillators’ states are described only by their phases ϕl ∈
[0, 2π] while the amplitudes are neglected. The second crucial assumption is that
oscillators are coupled through the first harmonics only (and not through higher
harmonics). After adopting these simplifications, Kuramoto has written the system
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of ODE’s describing the population of N coupled oscillators in the following form
[19, 20]

ϕ̇l = ωl +
K

N

N∑
m=1

sin(ϕm − ϕl), l = 1, . . . , N. (1)

Here, ϕl(t) and ωl ∈ R are respectively the phase and the intrinsic frequency of the
l-th oscillator, and K is a global coupling strength.

Underline that the original setup introduced by Kuramoto assumed the popula-
tion of nonidentical oscillators (as their intrinsic frequencies ωl are different) with
the global (all-to-all) coupling.

Kuramoto has also conducted mathematical analysis of his model and found ana-
lytically the critical coupling strength Kc depending on the width of the distribution
of intrinsic frequencies, such that transition towards partial synchronization takes
place for K > Kc, see [1, 20, 42].

Following seminal papers of Kuramoto, numerous generalizations and variations
of his model have been studied, see survey [1] and references therein. The most
commonly studied generalizations include phase shift [37] or time-delay [40] in the
coupling function. In addition, the system (1) with an external periodic forcing is
frequently studied, see [36, 41]. In some papers [18, 30], combination of these (and
some other) effects has been studied.

In the present paper, we study generalization of the Kuramoto model in a com-
pletely different direction. In order to introduce such a generalization, emphasize
that the state of each oscillator in (1) is represented by a point on the unit circle S1,
and the Kuramoto model is a dynamical system on the N -torus TN = S1×· · ·×S1.

Some authors have extended this setup by proposing systems of coupled gener-
alized “oscillators” that evolve on higher dimensional symmetric spaces. In such a
setup, each “oscillator” is described by a point on a certain symmetric space, such
as a unitary matrix group, a sphere or Grassmannian. Such models are named non-
Abelian Kuramoto models or Kuramoto-Lohe models. In particular, non-Abelian
Kuramoto model on unitary matrix groups U(n) is written as [9, 24]

iU̇lU
∗
l = Hl −

iK

2N

N∑
m=1

(UlU
∗
m − UmU∗

l ), l = 1, . . . , N. (2)

This is the system of matrix ODE’s for complex matrices Ul, and Hl are given
Hermitian matrices. The notion U∗

l stands for the conjugate matrix of Ul. Notice
that (2) preserves U(n), i.e. if the initial conditions satisfy Ul(0) ∈ U(n) one has
that Ul(t) ∈ U(n) for any t.

From this point of view we can refer to the classical Kuramoto model on S1 as
Abelian Kuramoto model. This terminology underlines the most essential features
of higher-dimensional models, since multiplication on the group U(n) for n > 1 is
not commutative. Still, (2) is an extension of the classical Kuramoto model, since
for the case of U(1) it reduces to (1).

Interest in various non-Abelian Kuramoto models is motivated by potential phys-
ical interpretations (so-called quantum synchronization, see for instance [13, 14, 16,
25]). In addition, non-Abelian Kuramoto models with zero frequencies (Hl ≡ 0)
play an important role in distributed and cooperative control on non-Euclidean
spaces. For instance, the system (2) with Hl ≡ 0 appears as the distributed con-
sensus algorithm in [38, 39]. Similar systems on spheres Sd−1 are written in real
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coordinates (using unit vectors in Rd instead of matrices) as models of opinion
dynamics [4] or controllable swarms on spheres [26, 31].

The main purpose of the present paper is to introduce non-Abelian Kuramoto
model on S3 in the general form. After that, various physical effects are analyzed
in the framework of this general model by choosing coupling functions of different
types. By including some of these effects one can observe different kinds of col-
lective behavior and a variety of dynamical regimes. This might have interesting
applications in Physics, but also in modeling opinion dynamics, or designing various
communication protocols for swarms that evolve on S3.

In the next section some well-known variations of the Kuramoto model on the
circle S1 are recalled. We start with the general Kuramoto model on S1 and show
how these variations are obtained for different coupling functions. In Section 3 we
introduce general non-Abelian Kuramoto model on S3 and obtain some known and
unknown variations of this model. Kuramoto models on S1 can be written using
complex numbers in order to represent points on the unit circle. In analogy, non-
Abelian Kuramoto model on S3 is written using the algebra of quaternions, with
points on S3 represented by unit quaternions. In sections 4 and 5 we respectively
examine some basic features of particular models with phase-shifted coupling (frus-
tration) and external driving. Finally, Section 6 contains some concluding remarks.

2. General Kuramoto model on the circle. We start from the classical Ku-
ramoto model on S1 written in the general form

ϕ̇l = feiϕl + ωl + f̄ e−iϕl , l = 1, . . . , N, (3)

where f = f(t, ϕ1, . . . , ϕN ) is a global complex-valued coupling function .
By introducing the change of variables zl = eiϕl one can represent phases by unit

complex numbers. In these variables (3) is written as

żl = i(fz2
l + ωlzl + f̄), l = 1, . . . , N.

The first step in study of the Kuramoto model typically consists in defining the
complex order parameter

〈z〉 =
1

N

N∑
l=1

zl =
1

N

N∑
l=1

eiϕl

and the real order parameter: r = |〈z〉|.
In the rest of this section we substitute some commonly used coupling functions

f in (3) in order to recover several well-known variations of the Abelian Kuramoto
model.

Example 1. (Standard Kuramoto model) Assume that the coupling strength is
proportional to the complex order parameter and consider the coupling function of
the following form

f = i
K

2N

N∑
l=1

e−iϕl =
iK

2
¯〈z〉.

Plugging this coupling function in (3) yields the standard Kuramoto model (1).
One can consider the case K > 0 (attractive coupling) or K < 0 (repulsive

coupling).
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Example 2. (Kuramoto model with phase shift) Consider the following coupling
function

f = i
K

2N

N∑
l=1

e−i(ϕl−β) =
iK

2
eiβ ¯〈z〉.

This choice of f turns (3) into

ϕ̇l = ωl +
K

N

N∑
m=1

sin(ϕm − ϕl − β), l = 1, . . . , N.

This is Kuramoto model with the phase shift β. It is also sometimes referred to as
Kuramoto model with frustration or Kuramoto-Sakaguchi model. This model still
draws attention of many researchers. Recent advances in study of different aspects
of this model can be found in [11, 12, 15, 32].

Example 3. (Kuramoto model with time-delayed coupling) The third frequently
studied model is obtained for the following coupling function

f = i
K

2N

N∑
l=1

e−iϕl(t−τ). (4)

Plugging (4) into (3) yields

ϕ̇l(t) = ωl +
K

N

N∑
m=1

sin(ϕm(t− τ)− ϕl(t)), l = 1, . . . , N.

This is the Kuramoto model with the global time delay τ in the coupling. Various
aspects of Kuramoto model with the global time delay in coupling have been studied
or applied in [27, 35, 44].

Example 4. (Kuramoto model with external forcing) In order to introduce the
model with external forcing, we slightly modify (3) by including an additional term

ϕ̇l = feiϕl + (ωl − δ) + f̄ e−iϕl , l = 1, . . . , N,

with δ ∈ R and consider the following coupling function

f =
i

2

(
K

N

N∑
l=1

e−iϕl −D

)
=
i

2

(
K ¯〈z〉 −D

)
,

with D ∈ R. The substitution yields the system

ϕ̇l = (ωl − δ) +
K

N

N∑
m=1

sin(ϕm − ϕl) +D sinϕl.

This is Kuramoto model with external driving. The frequency of an external signal
is δ ∈ R, and D ∈ R is its intensity.

Kuramoto model with external driving has also been studied in a number of
papers, see for instance [2, 7].

Clearly, a number of other effects can be studied as partial cases of (3). Here,
we have singled out the most commonly studied ones. It is important to underline
that (3) assumes the coupling depending on the first harmonic only, the presence
of higher harmonics in the coupling function leads beyond the family of Kuramoto
models. Another crucial assumption is that the coupling is global (or mean field
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coupling). This assumption allows time-delayed or phase-shifted coupling, but ex-
cludes coupling with distributed time delays [21, 28, 29] or coupling through complex
networks [3, 34].

At this point we end Section 2. It does not contain new results and all the
examples of this Section are very well known. However, in the sequel we will in-
troduce new non-Abelian Kuramoto models on S3 following an analogy with the
above considerations.

3. General non-Abelian Kuramoto model on the three-sphere. We start
this Section with a short discussion about the concept of “generalized phase oscil-
lator”.

Classical phase oscillator is represented by a single phase (angle) ϕ ∈ [0, 2π].
Alternatively, by substituting z = eiϕ one can represent states of the oscillator by
unit complex numbers. Configuration space for the classical oscillator is the unit
circle S1.

In the absence of coupling, oscillator performs simple periodic motions given by
the complex-valued ODE:

ż = iωz, ω ∈ R. (5)

The real number ω determining the velocity of these periodic motion is a natural
(intrinsic) frequency of the oscillator.

There are several natural ways to extend this concept by introducing generalized
oscillators whose states are represented by points on higher-dimensional manifolds.
Recently, there is a growing interest in populations of coupled generalized oscillators.
Such extensions yield generalized Kuramoto models on certain higher-dimensional
manifolds.

One possible approach stems from the observation that S1 is a Lie group. Hence,
it is natural to consider oscillators whose states (“phases”) are represented by points
on a certain (compact) Lie group M . The “phase” m of such generalized oscillators
evolves by the following ODE:

d

dt
m = g(t) ·m+m · h(t), (6)

where g(t) and h(t) belong to the Lie algebra m of the group M for each t ≥ 0.
Classical result from the geometric theory of ODE’s states that if m(0) ∈M and

g(t), h(t) ∈ m for each t, then motions (6) are restricted to M , i.e. m(t) ∈ M for
each t > 0.

In this context g(t) and h(t) are interpreted as intrinsic “frequencies” of the
“oscillator” and m(t) is the “phase” at the moment t.

Classical phase oscillators evolving by ODE (5) are recovered from this general
scheme for the case M = S1 with the corresponding Lie algebra m isomorphic to
R. This means that the phase and the frequency of a classical oscillator can be
described by a point on the unit circle and a real number, respectively.

Emphasize that the group M is in general non-Abelian and oscillators can have
left and right intrinsic frequencies as in eq. (6).

By considering populations of generalized oscillators whose motions are described
by (6) and introducing coupling between them, one obtains non-Abelian Kuramoto
models, such as (2).

However, extension of the concept of oscillator does not necessarily requires man-
ifold M to be a Lie group. In fact, Kuramoto model has been extended to symmetric
spaces, notably on spheres, see [5, 6, 22, 23, 43]. In this approach, states (“phases”)
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of generalized oscillators are described by points on the d−1-sphere Sd−1 and writ-
ten as unit vectors in the d-dimensional real space. In this setup their intrinsic
frequencies are given by d× d anti-symmetric matrices with real entries.

The common point of these two approaches is the non-Abelian Kuramoto model
on S3, as it is the only sphere (along with S1) with the group property.

In the present paper we focus on this model due to its special relevance and
potential applications, that are briefly mentioned in the present paper. In order
to introduce the model we need coordinates on S3. A convenient framework is
provided by the algebra of quaternions.

Algebra of quaternions has originally been introduced by Hamilton [10] as an
appropriate tool to work with rotations in 3-dimensional space. General quaternion
is written as q = q1 + q2 · i+ q3 · j+ q4 ·k, with three basis vectors (imaginary units)

i, j,k. Norm of quaternion q is defined as |q| =
√
q2
1 + q2

2 + q2
3 + q2

4 . If |q| = 1 we
say that q is a unit quaternion. Real part of a quaternion q is defined as <q = q1.
We say that q is a pure quaternion, if <q = 0.

Manifold S3 is parametrized by the set of unit quaternions in a pretty analo-
gous way as S1 is parametrized by the set of unit complex numbers. The set of
unit quaternions is a group with the corresponding Lie algebra consisting of pure
quaternions.

Applying the general scheme to S3, we study oscillators whose “phases” are
described by unit quaternions ql, evolving by linear quaternion-valued ordinary
differential equations (QODE’s)

q̇l = wlql + qlul, (7)

where wl and ul are pure quaternions, interpreted as intrinsic frequencies of the
oscillator l. As explained above for the case of general Lie group, if ql(0) is a unit
quaternion, the solution ql(t) of (7) will be a unit quaternion for any t. In other
words, motions (7) are restricted to S3.

Now, conceive a population of oscillators ql that are coupled through a certain
function f satisfying the following system of QODE’s [17]

q̇l = qlfql + wlql + qlul − f̄ , l = 1, . . . , N. (8)

Here, f = f(t, q1, . . . , qN ) is a quaternionic function. The notion f̄ stands for the
conjugate quaternion, i.e. if f = f1+f2·i+f3·j+f4·k, then f̄ = f1−f2·i−f3·j−f4·k.

Remark 1. Using the isomorphism between the group of unit quaternions and
SU(2) matrices, (8) can be treated as a system of matrix ODE’s on the unitary
group SU(2). The corresponding Lie algebra su(2) consists of skew-Hermitian 2×2
matrices with zero trace. It is isomorphic to the algebra of pure quaternions.

Multiplication rules and various ways to represent quaternions provide conve-
nient ways to involve geometric concepts on S3 in study of collective evolution of
generalized coupled oscillators. Throughout this article, we will use Cayley-Dickson
form of a quaternion ql:

ql = zl + vl · j,
where zl and vl are complex numbers.

As ql are unit quaternions, they can be further represented as

ql = eiϕl cos θl + eiψl sin θl · j, (9)

where ϕl, ψl ∈ [0, 2π] and θl ∈ (0, π/2). This representation corresponds to Hopf
(angular) coordinates that parametrize each point on S3 by three angles.
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In order to study (8) it is useful to introduce the quaternionic order parameter

〈q〉 =
1

N

N∑
l=1

ql

and the global real order parameter r = |〈q〉|.
As the sphere in 4D has much richer geometry then the circle, we can also

introduce some concepts that do not have analogues in the classical model. For
instance, define two marginal complex order parameters in the following way

rϕ(t)eiµ(t) =
1

N

N∑
l=1

eiϕl(t), rψ(t)eiν(t) =
1

N

N∑
l=1

eiψl(t),

then the real numbers

rϕ =

∣∣∣∣∣ 1

N

N∑
l=1

eiϕl(t)

∣∣∣∣∣ , rψ =

∣∣∣∣∣ 1

N

N∑
l=1

eiψl(t)

∣∣∣∣∣
are called angular order parameters.

Example 5. (Standard non-Abelian Kuramoto model on S3) Standard non-Abelian
Kuramoto model (Kuramoto-Lohe model) on the group SU(2) with the group man-
ifold S3 is obtained from (8) for the coupling function of the form

f = − K

2N

N∑
l=1

q̄l = −K
2

¯〈q〉, (10)

and zero values of the right frequencies: ul = 0.
Indeed, inserting (10) into (8) yields

q̇l = − K

2N

N∑
m=1

qlq̄mql + wlql +
K

2N

N∑
m=1

qm. (11)

On the other hand, multiply all equations in (2) by −i and by matrices Ul from the
right. Than (2) is rearranged as

U̇l = −iHlUl +
K

2N

N∑
m=1

(UlU
∗
mUl − Um), l = 1, . . . , N, (12)

where −iHl are zero-trace skew Hermitian matrices. The system (12) on SU(2) is
exactly the same as (11), where matrices Ul ∈ SU(2) correspond to unit quaternions
ql and skew Hermitian matrices −iHl correspond to pure quaternions wl.

The coupling (10) can be attractive or repulsive for positive and negative values
of K respectively.

4. Non-Abelian Kuramoto-Sakaguchi model on the three-sphere. In this
Section we introduce the Kuramoto model with frustration on S3. In order to
figure out how this model should look like, compare the coupling functions for the
classical case in examples 1 and 2. It is easy to see that these functions differ by the
multiplier eiβ , that is, model with frustration in Example 2 is obtained by rotating
(conjugation of) the complex order parameter ¯〈z〉 by an angle β in the complex
plane.

Analogously, in order to introduce non-Abelian model with frustration on S3,
one should rotate ¯〈q〉 in formula (10). Rotations in 4-dimensional space are realized
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through multiplication of a quaternion by two unit quaternions from left and the
right. More precisely, consider the point in 4-dimensional space that corresponds
to a quaternion s. General SO(4) rotation of this point is obtained as

R(s) = a · s · b,
where a and b are unit quaternions.

Hence, we consider the model (8) with the coupling function

f = − K

2N
a ·

(
N∑
l=1

q̄l

)
· b = − K

2N
a · ¯〈q〉 · b,

with arbitrary unit quaternions a and b.
We can represent quaternion a by three angles

a = eiα cos γ + eiβ sin γ · j, (13)

where α, β ∈ [0, 2π] and γ ∈
(
0, π2

)
.

In total, we have 6 real parameters in the model (3 angles for each quaternion
a and b). For simplicity, set b = 1 and investigate the impact of the remaining
three parameters α, β and γ on the dynamics. Than the coupling function f can
be written as

f =− K

2N
a · ¯〈q〉 · b

=− K

2N

(
eiα cos γ + eiβ sin γ · j

)
·

(
N∑
l=1

(
e−iϕl cos θl − eiψl sin θl · j

))
· 1

=− K

2N

N∑
l=1

(
e−i(ϕl−α) cos γ cos θl + e−i(ψl−β) sin γ sin θl

)
− K

2N

N∑
l=1

(
ei(ϕl+β) sin γ cos θl − ei(ψl+α) cos γ sin θl

)
· j. (14)

In all simulations of this Section we will assume that the population is homoge-
neous, i.e. that all oscillators have identical frequencies.1

Depending on parameters α, β, γ the model (8), (14) can exhibit three quali-
tatively different dynamical regimes: synchronization, desynchronization (conver-
gence towards incoherent state), and oscillating order parameter. A closer look
unveils that dynamics of the order parameter qualitatively depends only on the
parameter α.

If α ∈ (0, π2 ) or α ∈ ( 3π
2 , 2π) the system achieves a stable equilibrium where

the KL oscillators are synchronized, see Figure 1. Figure 2 shows that the order
parameter converges to zero when α ∈

(
π
2 ,

3π
2

)
.

For α = π
2 or α = 3π

2 the order parameter oscillates, as well as pairwise scalar
product (angles) between KL oscillators, see Figure 3.

In order to understand why the phase shift α is crucial for the dynamics, notice
that the quaternion ¯〈q〉 corresponds to a point in 4-dimensional unit ball B4, and
a quaternionic multiplication a · ¯〈q〉 rotates this point in 4-dimensional space. The
rate (velocity) of synchronization is determined by a cosine between vectors repre-
sented by quaternions ¯〈q〉 and a · ¯〈q〉. Oscillators will synchronize if and only if this

1Numerical simulations of all models in the present paper are implemented using Wolfram
Mathematica package and 4th order Runge-Kutta method for solving large systems of ODE’s.



THE GENERAL NON-ABELIAN KURAMOTO MODEL ON THE 3-SPHERE 119

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
-1.0

-0.5

0.0

0.5

1.0

a) b)

Figure 1. The population of N = 50 KL oscillators with intrinsic
frequencies wl = (0.3, 1.3, 0.9), ul = (1.7, 0.5, 1.4) and phase shifts
α = π

3 , β = π
4 , γ = π

3 achieves coherent state: (a) evolution of
the order parameters (thick line for the global order parameter r
and dashed and dotted lines for rϕ and rψ respectively) and (b)
cosines of the angles between some pairs of KL oscillators. Initial
conditions are sampled from the von Mises-Fisher on S3 with mean
direction µ = (0.5, 0.5, 0.5, 0.5) and the concentration κ = 2.5.
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Figure 2. The population of N = 50 KL oscillators with intrin-
sic frequencies wl = (0.3, 1.3, 0.9), ul = (1.7, 0.5, 1.4) and phase
shifts α = 2π

3 , β = π
4 , γ = π

3 achieves a fully incoherent state: (a)
evolution of the order parameters (thick line for the global order
parameter r and dashed and dotted lines for rϕ and rψ respectively)
and (b) cosines of the angles between some pairs of KL oscillators.
Initial conditions are sampled from the von Mises-Fisher on S3 with
mean direction µ = (0.5, 0.5, 0.5, 0.5) and the concentration κ =
2.5.

cosine is positive. Now, as quaternion a is represented by (13), one can check that
multiplication by a rotates the 4-dimensional space by an angle whose cosine equals
cosα cos γ. Since γ ∈ (0, π/2), this cosine is positive if and only if α ∈ (0, π/2) or
α ∈ (3π/2, 2π). Hence, qualitative dynamics of r depends only on α. Angle γ affects
the velocity of synchronization (or desynchronization), but does not have impact
on asymptotic behavior of r. (Synchronization, or desynchronization, occurs at the
maximal pace when γ = 0.) Parameter β in its turn affects the direction (radial
axis) of synchronization, but has no influence on order parameter r.
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Figure 3. Oscillations of the system with N = 50 KL oscillators
with intrinsic frequencies wl = (0.3, 1.3, 0.9), ul = (1.7, 0.5, 1.4)
and phase shifts α = π

2 , β = π
4 , γ = π

3 : (a) evolution of the order
parameters (thick line for the global order parameter r and dashed
and dotted lines for rϕ and rψ respectively) and (b) cosines of
the angles between some pairs of KL oscillators. Initial conditions
are sampled from the von Mises-Fisher on S3 with mean direction
µ = (0.5, 0.5, 0.5, 0.5) and the concentration κ = 2.5.

In the boundary case when α = π/2 or α = 3π/2, the cosine between ¯〈q〉 and
a · ¯〈q〉 is zero and the dynamics of r is determined by higher order terms, leading to
oscillatory dynamics, as shown in Figure 3.

5. Non-Abelian Kuramoto model with external driving. In this Section we
include additional terms in (8) and consider the following system

q̇l = qlfql + (wl − v)ql + ql(ul − p)− f̄ , l = 1, . . . , N, (15)

where v and p are pure quaternions.
Further, suppose that the coupling function f is of the form

f = −1

2

(
K

N

N∑
l=1

q̄l −D1 −D2 · j

)
= −1

2

(
K ¯〈q〉 −D1 −D2 · j

)
, (16)

where D1, D2 ∈ R.
The system of QODE’s (15), (16) is the non-Abelian Kuramoto model on S3 with

an external forcing. Frequencies of an external signal are given by pure quaternions
v and p, and D = D1 +D2 · j is an intensity of this signal. (Notice that in general
the signal intensity is given by two real numbers D1 and D2).

In order to get some feeling that this is really the model with external forcing, it
is instructive to rewrite (15),(16) in angular coordinates. Representing ql as (9) and
writing pure quaternions p, v, w, u in the form p = pa · i + p2 · j, where pa ∈ R and
p2 ∈ C (and similar for v, wl, ul), we plug (16) into (15) and obtain the following
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Figure 4. Evolution of the global and angular order parameters
(thick line for the global order parameter r and dashed and dotted
lines for rϕ and rψ respectively) in the population of N = 50 non-
identical oscillators with the external forcing. The global coupling
strength is set at K = 1, the frequencies of the external signal are
p = 0, v = (1.2, 2.3, 3.7) and the intensity of external forcing is
(a) D = 0.5 + 0.5j; (b) D = 0.9 + 0.5j and (c) D = 1.2 + 0.5j.
The right intrinsic frequencies ul are zero, and the left intrinsic
frequencies are sampled from the 3-dimensional Gaussian distri-
bution with the expectation vector (1, 2, 3) and covariance matrix
((2,−1/4, 1/3) , (−1/4, 2/3, 1/5) , (1/3, 1/5, 1/2)).

system for ϕl, ψl, θl

ϕ̇l = wal + ual − va − pa+
i
2 [(ū2l − p̄2) tan(θl)e

−i(ϕl−ψl) − (w̄2l − v̄2) tan(θl)e
i(ϕl+ψl)−

(u2l − p2) tan(θl)e
i(ϕl−ψl) + (w2l − v2) tan(θl)e

−i(ϕl+ψl)]+

K
N cos(θl)

N∑
m=1

(sin(ϕm − ϕl + θm) + sin(ϕm − ϕl − θm)) +D1
sin(ϕl)
cos(θl)

;

ψ̇l = wal − ual − va + pa+
i
2 [(ū2l − p̄2) cot(θl)e

−i(ϕl−ψl) + (w̄2l − v̄2) cot(θl)e
i(ϕl+ψl)−

(u2l − p2) cot(θl)e
i(ϕl−ψl) − (w2l − v2) cot(θl)e

−i(ϕl+ψl)]+

K
N sin(θl)

N∑
m=1

(cos(ψm − ψl − θm)− cos(ψm − ψl + θm))−D2
sin(ψl)
sin(θl)

;

θ̇l = 1
2 [(ū2l − p̄2)e−i(ϕl−ψl)+

(w̄2l − v̄2)ei(ϕl+ψl) + (u2l − p2)ei(ϕl−ψl) + (w2l − v2)e−i(ϕl+ψl)]−
K sin(θl)

N

N∑
m=1

(cos(ϕm − ϕl − θm) + cos(ϕm − ϕl + θm))+

K cos(θl)
N

N∑
m=1

(sin(ψm − ψl + θm)− sin(ψm − ψl − θm))+

D1 sin(θl) cos(ϕl) +D2 cos(θl) cos(ψl).
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Here, as explained above, wal, ual, va, pa are real numbers and w2l, u2l, v2, p2 are
complex numbers. From the above system of ODE’s we can see that D1 acts as
intensity of the forcing for angles ϕl, while D2 is for angles ψl. However, ϕl and ψl
are coupled through θl.

Heterogeneous population of KL oscillators can be entrained by an external signal
to frequencies v and p. As in the case with classical Kuramoto oscillators on S1,
partial synchronization will occur for critical values of the signal strength. For
sufficiently large D1 and D2 a portion of oscillators whose intrinsic frequencies wl
and ul are close to v and p will be entrained by external signal.

Figure 4 shows simulation results for a population with zero right intrinsic fre-
quencies ul, while the left frequencies wl are sampled from the Gaussian distribution
on R3. (Here, we use the isomorphism of pure quaternions with the vector space
R3). The Figure demonstrates that a larger portion of the population gets entrained
as the external driving grows stronger.

6. Conclusion. We have introduced the general non-Abelian Kuramoto model on
S3. This model includes some important special cases that have not been studied
so far. In particular, a widely studied model (2) arise as a partial case of (8)
with the standard coupling function (10) and vanishing right intrinsic frequencies
ul. Very recently, DeVille [8] has studied some solutions and multistable regimes
in non-Abelian Kuramoto models on certain Lie groups. In his paper a variation
of non-Abelian model with frustration has been proposed, however, his approach
differs significantly from ours.

We have restricted our attention to the model on one specific Lie group, namely
the 3-sphere S3. This case is of a special importance, due to the central role of S3

in several group homomorphisms. In addition, algebraic and geometric properties
of S3 make the model natural, well justified and tractable for study. In particular,
collective behavior is better understood through angular order parameters rϕ and
rψ that can be introduced on S3. The model on S3 can be written either in the form
of quaternion-valued ODE’s or real-valued ODE’s for three angles (Hopf coordinates
on the three-sphere). In short, we believe that the Kuramoto models on S3 and S1

are the most important ones for physical interpretations and applications.
The models presented in sections 4 and 5 have natural interpretations and poten-

tial applications in different fields. For instance, the model with an external forcing
(15)-(16) can be relevant in modeling opinion dynamics in Sociophysics. On the
other hand, systems with phase shifts studied in Section 4 can be applied in coop-
erative control, as they provide receipts of how to design communication protocols
in order to ensure formation keeping of the swarm.
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and suggestions.
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