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Abstract. We study the Vlasov-Poisson-Fokker-Planck (VPFP) system with

uncertainty and multiple scales. Here the uncertainty, modeled by multi-

dimensional random variables, enters the system through the initial data, while
the multiple scales lead the system to its high-field or parabolic regimes. We

obtain a sharp decay rate of the solution to the global Maxwellian, which re-

veals that the VPFP system is decreasingly sensitive to the initial perturbation
as the Knudsen number goes to zero. The sharp regularity estimates in terms

of the Knudsen number lead to the stability of the generalized Polynomial

Chaos stochastic Galerkin (gPC-SG) method. Based on the smoothness of the
solution in the random space and the stability of the numerical method, we

conclude the gPC-SG method has spectral accuracy uniform in the Knudsen
number.

1. Introduction. In this paper, we are interested in the Vlasov-Poisson-Fokker-
Planck (VPFP) system with multi-dimensional random inputs. The VPFP system
describes the Brownian motion of a large system of particles in a surrounding bath,
with a wide range of applications in plasma physics [4]. The physical system usu-
ally contains uncertainty, which can not be precisely described by deterministic
partial differential equations. In this paper, we will mainly focus on the system
with random initial input due to measurement errors or random impurity of the
environment, and study how the randomness will affect the physical system. The
uncertainty is modeled by multi-dimensional independent random variables with
given probability density functions. We first study how the random initial data
propagate in time, as well as the long-time behavior of the solution. We also study
the stability and the convergence rate of the numerical method to the VPFP system
with uncertainty, specifically, the generalized Polynomial Chaos stochastic Galerkin
(gPC-SG) method. Both problems need an understanding of the regularity of the
solution in the random space.
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There are plenty of developments regarding the solution of elliptic or parabolic
equations with uncertainty [2, 5, 6], while the regularity of the solution in the
random space to kinetic equations has seldom studied until recently [9, 15, 13,
16, 19, 17]. Kinetic equations give a uniform description of both mesoscopic and
macroscopic physical quantities in terms of the Knudsen number ε. When ε→ 0, the
microscopic kinetic model approaches to the macroscopic hydrodynamic models[3].
Numerical and analytical difficulties increase when ε is small. In the numerical
aspect, one efficient multiscale paradigm is the Asymptotic-Preserving schemes,
which mimic the asymptotic transitions from kinetic equations to their diffusion
or hydrodynamic limits in the numerically discrete space [12]. [14] extended this
concept to random kinetic equations by stochastic Asymptotic-Preserving (sAP)
methods. [13] gives the first result of uniform-in-ε regularity in the random space
for linear transport equation, [15] gives the first result on uniform regularity for a
nonlinear system, the Vlasov-Poisson-Fokker-Planck system. There are also some
other uniform regularity results, we mention some of them here [16, 22, 10, 17, 19,
17].

Depending on different scales, the VPFP system possesses two distinguished as-
ymptotic limits, the high field limit, and the parabolic limit [1]. For the determinis-
tic VPFP system without scaling parameters, [8, 18, 20] studied the convergence of
the weak solution to its asymptotic limits, while [11] gave regularity results for clas-
sical solution near the global Maxwellian. For the VPFP system with uncertainty
and scaling parameters, [15] get an exponential decay of the perturbative solution
independent of the small parameter ε under some mild initial condition, which leads
to a uniform regularity of the solution in the random space for both high field and
parabolic limits.

This paper studies the same VPFP system as [15], but in more physically inter-
esting setup. Space and velocity variables are in R3, and the random variable is
d-dimensional. As to the long-time behavior, the first improvement compared to
[15] is a much sharper decay rate to the global Maxwellian under a more general
condition on initial data. The upper bound for the decay of the random perturba-
tive solution near the global Maxwellian in a suitable Sobolev norm is O

(
e−t/ε

)
in

[15], which is improved to O
(
e−t/ε

1+a
)

, where a = 1 for parabolic regime and a = 0

for high field regime, under the condition that the initial perturbation is smaller
than O

(
ε−(1+a)

)
. This implies that for both regimes, as ε goes to 0, The range

of the initial perturbation that will decay exponentially becomes larger. While in
[15], only small random perturbation will decay exponentially in high field regime.
Other than obtaining a sharp estimate when ε is small, getting rid of the bad depen-
dency on large M in the initial condition for solutions in Sobolev norm HM

z (L2
x,v)

is another improvement in this paper. [15] mentioned briefly about eliminating the
dependency on M for the one-dimensional case at Appendix, we generate it in detail
for multi-dimension. Why a sharp estimation on HM

z (L2
x,v) in terms of small ε and

large M is not trivial and how we overcome the difficulties is stated in Section 2.3.
We treat the high field regime and the parabolic regime in a unified framework

in this paper. The regularity of the solution in the random space comes from
the study of the sensitivity of the perturbation near the global Maxwellian. With
carefully designed energy norms, we combine the microscopic energy estimate and
the macroscopic one to get the proper Lyapunov-type inequalities, which allows
us to obtain the uniform regularity in the random space in terms of the scaling
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parameter ε. Under some mild conditions on the initial data, we find that the
solution will decay exponentially to the global Maxwellian in a rate independent
of ε. Our results also reveal that the solution becomes less sensitive to the initial
random perturbation as ε goes to 0, in which we call it decreasing sensitivity to the
initial perturbation. Moreover, we complete the proof of the spectral convergence
for the gPC-SG method. When approximating the numerical solution by the K-th
order polynomial chaos basis, the error of the approximation solution in HM

z is
O(K−M ), which means that the gPC-SG method enjoys spectral accuracy.

This paper is organized as follows. In Sections 2 and 3, we study the analytic
solution of the VPFP system. In Sections 2.1 and 2.2, we introduce the VPFP
system with uncertainty we are interested in this paper and its perturbative solution
around the steady state. The main result Theorem 2.1 on the sensitivity of the
VPFP system under random perturbation is stated in Section 2.3. The difficulties
and the techniques in the proof of the sensitivity analysis are also included in Section
2.3. In the following Section 3, we give the complete proof of Theorem 2.1. In
Sections 4, 5, 6, we study the numerical method we use to approximate the solution
in the random space, that is, the gPC-SG method. We study the stability and
convergence rate of this method. In Section 4.1, we review the gPC-SG method
and apply it to the VPFP system. We give the main results Theorems 4.1 and 4.2
on the numerical method and the key techniques of the proof in Section 4.2. Finally,
we give the complete proof of Theorems 4.1 and 4.2 in Sections 5 and 6 respectively.

2. The Model and Asymptotic Preserving Scaling.

2.1. The VPFP system with uncertainty. Consider the Vlasov-Poisson-Fokker-
Planck (VPFP) System with initial random perturbation around the global Maxwe-
llian. The density distribution function f(t,x,v, z) under the action of an self-
consistent electrical potential φ(t,x, z) satisfies,{

∂tf + 1
δv · ∇xf − 1

ε∇xφ · ∇vf = 1
δεFf,

−∆xφ = ρ− 1, t > 0,x ∈ R3,v ∈ R3, z ∈ Iz ⊂ Rd,
(1)

with initial data

f(0,x,v, z) =M+
√
Mh0(x,v, z).

Here the distribution function f(t,x,v, z) depends on time t, position x, velocity
v and random variable z. The density function ρ(t,x, z) is defined as,

ρ(t,x, z) =

∫
R3

f(t,x,v, z)dv.

The collision operator F describes the Brownian motion of the particles,

Ff = ∇v ·
(
M∇v

(
f

M

))
,

where M is the global Maxwellian,

M(v) =
1

(2π)
3
2

e−
|v|2
2 .

In the dimensionless system, δ represents the reciprocal of the scaled thermal
velocity, while ε is the scaled thermal mean free path [20]. We will introduce two
different regimes for this system [1]. One is the high field regime, where δ = 1.
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Another is the parabolic regime, where δ = ε. We will study the two different
scalings in a unified framework, where we assume,

δ = εa, 0 ≤ a ≤ 1.

The random perturbation introduced by the initial data is characterized by a
d-dimensional random variable z ∈ Iz ⊂ Rd. It is in a properly defined probability
space (Σ,A,P), whose event space is Σ and is equipped with σ−algebra A and
probability measure P. Define π(z) : Iz → R+ as the probability density function
of the random variable z(ω), ω ∈ Σ. So one has a corresponding weighted L2 space
in the measure of

dµ(z) = π(z)dz.

We further define

‖f‖2µ =

∫
R3×R3×Iz

‖f‖22 dxdvdµ(z), or, =

∫
R3×Iz

‖f‖22 dxdµ(z) (2)

according to the dependent variables of f and here ‖·‖22 is the regular Euclidean
norm for vector function f ; and 〈f ,g〉µ is the corresponding inner product.

2.2. The perturbative solution. It is easy to check that the global Maxwellian
is a stationary solution to the VPFP system. We further introduce the perturbative
solution h(t,x,v, z), perturbative density σ(t,x,v), perturbative flux u(t,x, z), near
the the global Maxwellian,

h =
f −M√
M

, σ =

∫
R3

h
√
M dv, u =

∫
R3

hv
√
M dv. (3)

The perturbative solution h satisfies,∂th+
1

εa
v · ∇xh+

1

ε
v
√
M∇xφ−

1

ε1+a
Lh =

1

ε
∇xφ ·

(
∇vh−

v

2
h
)
,

∆xφ = −σ,

(4)

(5)

where L is the so-called linearized Fokker-Planck operator,

Lh =
1√
M
∇v ·

(
M∇v

(
h√
M

))
. (6)

It is straightforward to see that multiplying 1,v to (4), then integrating it over v
gives 

εa∂tσ +∇x · u = 0,

∂tu +
1

εa
∇xσ +

1

εa
∇x ·

∫
v ⊗ v

√
M(1−Π)hdv +

1

ε1+a
u +

1

ε
∇xφ

= −1

ε
∇xφσ.

(7)

(8)

We call (4)-(5) the microscopic system, and (7)-(8) the macroscopic system.

Moreover we define the projection onto the null space of L, N (L) = Span{
√
M}

as,

Πh :=

(∫
h
√
Mdv

)√
M = σ

√
M,

and one can check that,

‖h‖2L2
v

= ‖σ‖2L2
v

+ ‖(1−Π)h‖2L2
v
.
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One important property of the linearized Fokker Planck operator L is its local
coercivity, which can be stated in the following Proposition.

Proposition 1. Define

‖h‖ν =

∫
R3×R3

‖∇vh‖2 + (1 + ‖v‖2)h2dxdv, (9)

then the linearized Fokker-Planck operator defined in (6) satisfies

−
∫
hLh dxdv ≥ λ ‖(1−Π)h‖2ν . (10)

This is first introduced in [7], and [15] expanded it into the random space, and
specified that λ = 1

7 in this case.

2.3. Main result on the sensitivity analysis. We are interested in studying
how the perturbation h evolves in time in terms of the following norm,

‖h(t)‖2HMz =
∑
|β|≤M

∥∥∂βz h(t)
∥∥2
µ
.

Here ∂αz = ∂α1
z1 ∂

α2
z2 · · · ∂

αd
zd

for d-dimensional variables z and d-dimensional vector
α.

There are mainly two reasons why we are interested in this norm. The first is
that this norm indicates the sensitivity of the perturbation in the random space, so
we can understand how the initial randomness affects the system by studying the
evolution of this norm. Second, this norm reveals the regularity of the solution to
the VPFP system in the random space, which is important to prove the spectral
accuracy of the gPC-SG method introduced in Section 4.

However, how to get a sharp estimate of ‖h‖2HMz in terms of small ε and large M

is not trivial. First, we will explain why direct energy estimation on ‖h‖2µ couldn’t
give a sharp estimate in small ε and how we obtain an estimate that is sharp in ε
by designing a new Lyapunov functional. Later we will explain the issue with large
M .

We define ‖·‖2 as the regular L2 norm in x,v. If we do regular energy estimation
in x,v to (4), we will have

1

2
∂t

(
‖h‖2 +

1

ε1−a
‖∇xφ‖2

)
+

λ

ε1+a
‖(1−Π)h‖2ν .

1

ε
‖∇xφ‖H2

x
‖h‖2ν ,

where ‖∇xφ‖H2
x

comes from the Sobolev Embedding of ‖∇xφ‖L∞x for x ∈ R3. First

notice that the regularity in x for ∇xφ is different on both sides. The RHS is two
order higher than the LHS. In order to balance the norm on both sides, we do
energy estimation on

‖h‖2H3
x

=
∑
|α|≤3

‖∂αx h‖
2
,

and then we have

1

2
∂t

(
‖h‖2H3

x
+

1

ε1−a
‖∇xφ‖2H3

x

)
+

λ

ε1+a
‖(1−Π)h‖2H3

x(L
2
ν)

.
1

ε
‖∇xφ‖H3

x
‖h‖2H3

x(L
2
ν)
.

(11)

From the above inequality, we find that the only dissipative term ‖(1−Π)h‖2H3
x(L

2
ν)

from the linearized Fokker Planck operator can not balance the nonlinear term

‖∇xφ‖H3
x
‖h‖2H3

x(L
2
ν)

= ‖∇xφ‖H3
x

(
‖(1−Π)h‖2H3

x(L
2
ν)

+ ‖Πh‖2H3
x(L

2
ν)

)
on the RHS.
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We need dissipation of ‖Πh‖2H3
x

= ‖σ‖2H3
x

and ‖∇xφ‖2H3
x

to balance the nonlinear

term. So we design a new Lyapunov functional:

E(t, z) = ‖h‖2H3
x

+
1

ε1−a
‖∇xφ‖2H3

x
+
λ

4ε

∑
|α|≤3

〈u,∇xφ〉+
1

2ε
‖∇xφ‖2H3

x

 . (12)

The first two terms of the above functional also appears in (11), so it comes from
energy estimation of (4), while the third and fourth terms are obtained by multi-
plying ∇xφ to (8) and its corresponding derivatives. Therefore, the evolution of
this Lyapunov functional can be estimated by doing energy estimation on both the
microscopic equation (4) and the macroscopic equation (8). By involving the macro-
scopic equation, we can completely control the nonlinear term on the RHS of (11)

because the dissipative terms ‖σ‖2H3
x

can be obtained by
∑
|α|≤3 〈∂αx ∇xσ, ∂

α
x ∇xφ〉

and ‖∇xφ‖2H3
x

can be obtained from the last term on the LHS of (8). Combine this

two dissipative terms with ‖(1−Π)h‖2H3
x(L

2
ν)

from (11), we can entirely control the

nonlinear term ‖∇xφ‖H3
x
‖h‖2H3

x(L
2
ν)

and end up with the following inequality,

∂tE +
1

ε1+a
‖h‖H3

x(L
2
ν)

+
1

ε2
‖∇xφ‖2H3

x

.
√
E

(
1

ε(1+a)/2
‖h‖H3

x(L
2
ν)

+
1

ε(3−a)/2
‖∇xφ‖2H3

x

) (13)

where

E(t, z) = ‖h‖2H3
x

+
1

ε2
‖∇xφ‖2H3

x
. (14)

Since

−ε ‖h‖2 − 1

4ε
‖∇xφ‖2 ≤ 〈∂αx u, ∂αx∇xφ〉 ≤ ε ‖h‖2 +

1

4ε
‖∇xφ‖2 ,

E defined in (12) is equivalent to E defined in (14). If one applies continuity argu-
ment to (13), as long as initially

E(0, z) ≤ O
(

1

ε1+a

)
,

then the perturbation will exponentially decay in time as follows,

E(t, z) ≤ O
(
e−

t

ε1+a

)
E(0).

Integrating the above two equations over dµ(z) gives a sharp estimates in terms of

small ε on ‖h‖2µ.

Second issue is how to get a sharp estimate on ‖h‖HMz in terms of large M . First

notice that integrating
∑
|β|≤M

∥∥∂βz h∥∥2 over dµ(z) directly gives an estimation on

‖h‖2HMz , so we only need to do estimation on
∑
|β|≤M

∥∥∂βz h∥∥2. However, a sharp

estimation on
∑
|β|≤M

∥∥∂βz h∥∥2 is not trivial. This is because if we take partial

derivative of order β with respect to z and do energy estimation, then the nonlinear
term ∇xφh becomes〈

∂βz (∇xφh), ∂βz h
〉

=
∑
i≤β

(
β

i

)〈
∂β−iz ∇xφ∂

i
zh, ∂

β
z h
〉

.

(
β

[β/2]

)∑
i≤β

∥∥∂iz∇xφ
∥∥
H2

x

(∥∥∂β−iz h
∥∥2 +

∥∥∂βz h∥∥2) .
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Here for d-dimensional variable β, i, the notations
(
β
i

)
, |β| ≤M, i ≤ β, [β/2] repre-

sent

-

(
β

i

)
=

(
β1
i1

)(
β2
i2

)
· · ·
(
βd
id

)
, where

(
β

i

)
is the binomial coeffiecient;

- {|β| ≤M} =

{
β :

d∑
i=1

βi ≤M

}
; {i ≤ β} = {i : ij ≤ βi, for 1 ≤ j ≤ d};

- [β/2] = i, where ij is the smallest integer larger or equal to βj/2.

Since we need to do energy estimation on ∂βz h for all |β| ≤M , we add up all the
nonlinear terms,∑
|β|≤M

〈
∂βz (∇xφh), ∂βz h

〉
.
∑
|β|≤M

(
β

[β/2]

)∑
i≤β

∥∥∂iz∇xφ
∥∥
H2

x

(∥∥∂β−iz h
∥∥2 +

∥∥∂βz h∥∥2)

. max
|β|≤M

(
β

[β/2]

) ∑
|β|≤M

∥∥∂βz∇xφ
∥∥
H2

x

 ∑
|β|≤M

∥∥∂βz h∥∥2


. max
|β|≤M

(
β

[β/2]

)√
#{|β| ≤M}

√√√√ ∑
|β|≤M

∥∥∥∂βz∇xφ
∥∥∥2
H2
x

 ∑
|β|≤M

∥∥∂βz h∥∥2
 .

(15)
When one does energy estimation to another nonlinear term ∇xφ∂vh in the micro-
scopic equation and the nonlinear term −∇xφσ in the macroscopic equation, one
will have similar results. So the energy estimation on the corresponding Lyapunov
functional

EM,3(t, z) =
∑
|β|≤M

[∥∥∂βz h∥∥2H3
x

+
1

ε1−a
∥∥∂βz∇xφ

∥∥2
H3

x

+
λ

4ε

∑
|α|≤3

〈
∂βz u, ∂βz∇xφ

〉
+

1

2ε

∥∥∂βz∇xφ
∥∥2
H3

x


becomes

∂tEM,3 +
1

ε1+a

∑
|β|≤M

∥∥∂βz h∥∥H3
x(L

2
ν)

+
1

ε2

∑
|β|≤M

∥∥∂βz∇xφ
∥∥2
H3

x

. max
|β|≤M

(
β

[β/2]

)√
#{|β| ≤M}

√
EM,3

 1

ε(1+a)/2

∑
|β|≤M

∥∥∂βz h∥∥H3
x(L

2
ν)

+
1

ε(3−a)/2

∑
|β|≤M

∥∥∂βz∇xφ
∥∥2
H3

x

 ,

(16)

where

EM,3(t, z) =
∑
|β|≤M

∥∥∂βz h∥∥H3
x
− 1

ε2

∑
|β|≤M

∥∥∂βz∇xφ
∥∥
H3

x
.

Applying the continuity argument to (16) implies that only if initially

EM,3(0) ≤ O

[ max
|β|≤M

(
β

[β/2]

)2

#{|β| ≤M}

]−1 ≤ O( 1

M(M !)2

)
(17)
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the random perturbation will exponentially decay in time. This assumption is not
reasonable because stronger assumption is required on smoother initial random
perturbation. Therefore, the estimate on ‖h‖2HMz is not sharp enough for large M .

We will overcome this difficulty by adding a weight to ∂Mz h as follows,

‖h‖2HM,Nq
=
∑
|β|≤M

∑
|α|≤N

∥∥∥∥qββ!
∂βz ∂

α
x h

∥∥∥∥2
µ

(18)

where qβ is defined as,

qβ = (|β|+ 1)
q
, for q > d+ 1, (19)

here d is the dimension of random variable z. The weight qβ is used to eliminate

[#{|β| ≤M}]−1, while the weight 1
β! is used to absorb

[
max|β|≤M

(
β

[β/2]

)2]−1
.

To sum up, we obtain a sharp estimate in both small ε and large M on

‖h‖2HM,N =
∑
|β|≤M

∑
|α|≤N

∥∥∂βz ∂αx h∥∥2µ for ∀N ≥ 3,M ≥ 0

by doing energy estimation in x,v on EM,N ,

EM,N =
∑
|β|≤M

(
qβ
β!

)2 [∥∥∂βz h∥∥2HNx +
1

ε1−a
∥∥∂βz∇xφ

∥∥2
HNx

+
λ

4ε

 ∑
|α|≤N

〈
∂βz u, ∂βz∇xφ

〉
+

1

2ε

∥∥∂βz∇xφ
∥∥2
HNx

 ,
then integrate the final result over dµ(z) to get Theorem 2.1.

Before we present the main theorem on the sensitivity analysis, we first introduce
some constants that will be used frequently later.

Notation. - CS : For ∀h ∈ H2
x(L2

v), by Sobolev embedding∥∥∥‖h‖L2
v

∥∥∥
L∞x

≤ CS ‖h‖H2
x(L

2
v)

; (20)

for ∀h ∈ Hr
z (H2

x) with r the smallest constant strictly larger than d
2 , by Sobolev

embedding, ∥∥∥‖h‖L∞x ∥∥∥L∞z ≤ CS ‖h‖Hrz (H2
x)
. (21)

- A: For d−dimensional vector i,√√√√ ∞∑
|j|=0

|i|2
q2i
≤
∞∑
|j|=0

|i|
qi
≤ A := 22dπ(2q − d− 2), (22)

where qi is defined in (19). See Appendix A for the boundedness of the
constant A.

- CN :

CN = #{α = (α1, α2, α3) : |α| ≤ N} × max
|α|≤N,j≤α

(
α

j

)
. (23)
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Theorem 2.1. (Sensitivity under the initial perturbation) For ∀N ≥ 3,M ≥ 0, if
the initial energy satisfies

EM,N
q (0) ≤ C0

ε1+a
, (24)

then the analytic solution (h,∇xφ) decays in time as follows,

‖h(t)‖2HM,N ≤ (M !)2ξEM,N
q (0)e−

t

2ε1+a ,

‖∇xφ(t)‖2HM,N ≤ (M !)2ξ
(
ε2EM,N

q (0)
)
e−2t. (25)

Here all the constants are independent of ε and M , where C0 =
(

1
5ACNCS

)2
, ξ =

16+4λ
λ , λ,CS , A,CN are defined in (10), (20), (22), (23) respectively.

Remark 1. This theorem implies two things about the VPFP system with uncer-
tainty.

1. The random perturbation around the steady state will exponentially decay. As
ε→ 0, the VPFP system becomes less sensitive to the random perturbation.

2. The regularity of the solution to the VPFP system in the random space is
preserved. Furthermore, the regularity result is uniform in ε.

3. Sensitivity analysis for the solution with initial random perturbation.
In this section, we will prove Theorem 2.1. Theorem 2.1 is about the energy in
HM

z

(
HN

x (L2
v)
)
, however, we will first prove the energy in HN

x (L2
v) for {∂βz h}|β|≤M ,

and then one just need to do another integral over µ(z) to EM,N
h .

For fixed z, we define the weighted energy as,

EM,N
h (t, z) =

∑
|β|≤M

∑
|α|≤N

∥∥∥∥qββ!
∂αx ∂

β
z h

∥∥∥∥2 ,
EM,N
∇xφ

(t, z) =
∑
|β|≤M

∑
|α|≤N

∥∥∥∥qββ!
∂αx ∂

β
z∇xφ

∥∥∥∥2 ,
where qβ is defined in (19). Accordingly, we define the dissipation terms as,

DM,N
h1

(t, z) =
∑
|β|≤M

∑
|α|≤N

∥∥∥∥qββ!
∂αx (1−Π)∂βz h

∥∥∥∥2
ν

,

DM,N
σ (t, z) =

∑
|β|≤M

∑
|α|≤N

∥∥∥∥qββ!
∂αx∇x∂

β
z σ

∥∥∥∥2 ,
DM,N
∇xφ

(t, z) =
∑
|β|≤M

∑
|α|≤N

∥∥∥∥qββ!
∂αx ∂

β
z∇xφ

∥∥∥∥2 .
The main strategy is to do energy estimates on the following micro-macro systems.
By taking ∂βz , |β| ≤M to (4) - (5) and (7) - (8), one has the micro-macro system,

∂t∂
β
z h+ 1

εav · ∇x∂
β
z h+ 1

εv
√
M · ∂βz∇xφ− 1

ε1+aL∂
β
z h

= 1
ε

∑
i≤β

(
β
i

)
∂β−iz ∇xφ ·

(
∇v∂

i
zh− v

2 ∂
i
zh
)

∆xφβ = −∂βz σ;

(26)

and,
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εa∂t∂
β
z σ +∇x · ∂βz u = 0,

∂t∂
β
z u +

1

εa
∇x∂

β
z σ +

1

εa
∇x ·

∫
v ⊗ v

√
M(1−Π)∂βz hdv

+
1

ε1+a
∂βz u +

1

ε
∂βz∇xφ = −1

ε

∑
i≤β

(
β

i

)
∂β−iz ∇xφ∂

i
zσ

(27)

(28)

If one does energy estimates on (26), one obtains estimates on EM,N
h + 1

ε1−aE
M,N
φ

as in Lemma 3.4, and further by doing estimates on (28), one obtains estimates on
GM,N as in Lemma 3.5, where

GM,N =
∑
|β|≤M

∑
|α|≤N

(
qβ
β!

)2 〈
∂αx ∂

β
z u, ∂αx ∂

β
z∇xφ

〉
+

1

2ε
EM,N
∇xφ

. (29)

Combine the two energy estimates in Lemma 3.4 and 3.5 in a proper way, one can
obtain a Lyapunov-type inequality as in Lemma 3.6 for

EM,N ∼ EM,N
h +

1

ε2
EM,N
φ ,

which is exactly the energy we want to estimate. Finally apply the continuity
argument to Lemma 3.6, one can obtain the sensitivity result in Theorem 2.1.

To get the optimal estimates, one needs to carefully deal with the two non-

linear terms in (26) and (27), that is
∑
i≤β

(
β

i

)
∂β−iz ∇xφ ·

(
∇v∂

i
zh−

v

2
∂izh
)

and

∑
i≤β

(
β

i

)
∂β−iz ∇xφ∂

i
zσ, so we list the estimates for this two terms in Lemma 3.2, 3.3

respectively.

Lemma 3.1. For d−dimensional vector β and q > d+ 1, one has∑
i≤β

|i|
qi
ai ≤ A

√∑
i≤β

a2i .

Proof. See Appendix A.

Lemma 3.2. For N ≥ 3, M ≥ 0, the following inequality holds,∣∣∣∣∣∣
∑
|β|≤M

∑
i≤β

(
β

i

)(
qβ
β!

)2 ∑
|α|≤N

〈
∂αx

[
∂β−iz ∇xφ ·

(
∇v∂

i
zh−

v

2
∂izh
)]
, ∂αx ∂

β
z h
〉∣∣∣∣∣∣

≤
√

5

2
2qACNCS

(√
EM,N
∇xφ

(
DM,N
σ + 2DM,N

h1

)
+

√
EM,N
h

(
1

ε
1−a
2

DM,N
∇xφ

+ ε
1−a
2 DM,N

h1

))
,

where q, CS, A, CN are constants defined in (19), (20), (22), (23).

Proof. First note,〈
∂αx

[
∂β−iz ∇xφ ·

(
∇v∂

i
zh−

v

2
∂izh
)]
, ∂αx ∂

β
z σ
√
M
〉

=
〈
∂αx
[
∂β−iz ∇xφ∂

i
zh
]
,−∇v

(
∂αx ∂

β
z σ
√
M
)
− v

2
∂αx ∂

β
z σ
√
M
〉
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=
〈
∂αx
(
∂β−iz ∇xφ∂

i
zh
)
, ∂αx ∂

β
z σ
(v

2

√
M− v

2

√
M
)〉

=0. (30)

So break ∂αx ∂
β
z h = ∂αx ∂

β
z σ
√
M+ (1−Π) ∂αx ∂

β
z h, one has,∑

|α|≤N

〈
∂αx

[
∂β−iz ∇xφ ·

(
∇v∂

i
zh−

v

2
∂izh
)]
, ∂αx ∂

β
z h
〉

=
∑
|α|≤N

〈
∂αx

[
∂β−iz ∇xφ ·

(
∇v∂

i
zh−

v

2
∂izh
)]
, (1−Π)∂αx ∂

β
z h
〉

=
∑
|α|≤N

∑
j≤α

(
α

j

)〈
∂α−jx ∂β−iz ∇xφ · ∂jx

(
∇v∂

i
zh−

v

2
∂izh
)
, (1−Π)∂αx ∂

β
z h
〉

=
∑
|α|≤N

 ∑
|j|≤ |α|2

+
∑
|j|> |α|2

(α
j

)
〈
∂α−jx ∂β−iz ∇xφ∂

j
x∂

i
zh,
(
−v

2
−∇v

)
(1−Π)∂αx ∂

β
z h
〉

≤
√

5

4

∑
|α|≤N

∑
|j|≤ |α|2

(
α

j

)
CS
∥∥∂α−jx ∂β−iz ∇xφ

∥∥∥∥∂jx∂izh∥∥H2
x

∥∥(1−Π)∂αx ∂
β
z h
∥∥
ν

+

√
5

4

∑
|α|≤N

∑
|j|> |α|2

(
α

j

)
CS
∥∥∂α−jx ∂β−iz ∇xφ

∥∥
H2

x

∥∥∂jx∂izh∥∥∥∥(1−Π)∂αx ∂
β
z h
∥∥
ν

≤
√

5CNCS
∥∥∂β−iz ∇xφ

∥∥
HNx

∥∥∂izh∥∥HNx ∥∥(1−Π)∂βz h
∥∥
HNx (L2

v,ν)
, (31)

where the first inequality comes from the Sobolev embedding (20) and∥∥∥(v

2
−∇v

)
(1−Π)∂αx ∂

β
z h
∥∥∥ ≤√5

4

∥∥(1−Π)∂αx ∂
β
z h
∥∥
ν
. (32)

While the last inequality is true for ∀N ≥ 3. Therefore,∣∣∣∣∣∣
∑
|β|≤M

∑
i≤β

(
β

i

)(
qβ
β!

)2

(31)

∣∣∣∣∣∣
≤
√

5CNCS
∑
|β|≤M

∑
i≤β

qβ
qiqβ−i

∥∥∥∥ qβ−i
(β − i)!

∂β−iz ∇xφ

∥∥∥∥
HNx

∥∥∥qi
i!
∂izh
∥∥∥
HNx∥∥∥∥qββ!

(1−Π)∂βz h

∥∥∥∥
HNx (L2

v,ν)

≤
√

5

2
2qCNCS

∑
|β|≤M

∑
i≤β

1

qβ−i

∥∥∥∥ qβ−i
(β − i)!

∂β−iz ∇xφ

∥∥∥∥
HNx

(∥∥∥qi
i!
∂izh
∥∥∥2
HNx

+

∥∥∥∥qββ!
(1−Π)∂βz h

∥∥∥∥2
HNx (L2

v,ν)

)
+

√
5

2
2qCNCS

∑
|β|≤M

∑
i≤β

1

qi

∥∥∥qi
i!
∂izh
∥∥∥
HNx(

1

εe

∥∥∥∥ qβ−i
(β − i)!

∂β−iz ∇xφ

∥∥∥∥2
HNx

+ εe
∥∥∥∥qββ!

(1−Π)∂βz h

∥∥∥∥2
HNx (L2

v,ν)

)
, (33)
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for e = 1−a
2 . One obtains the last inequality by using Young’s inequality and

qβ
qiqβ−i

≤ 2q

qβ−i
+ 2q

qi
.

Let

∥∥∥∥ qβ−i
(β − i)!

∂β−iz ∇xφ

∥∥∥∥2
HNx

= aβ−i,
∥∥ qi

i! ∂
i
zh
∥∥2
HNx

= b2i ,
∥∥∥ qββ! (1−Π) ∂βz h

∥∥∥2
HNx (L2

v,ν)

= c2β, then the last second term of (33) can be bounded by
∑
|β|≤M

∑
i≤β

aβ−i

qβ−i

(
b2i

+c2β

)
≤
(∑

|β|≤M
aβ
qβ

)(∑
|i|≤M b2i

)
+
(∑

|i|≤M
ai
qi

)(∑
|β|≤M c2β

)
. One can do sim-

ilar estimates to the last term. Therefore, applying Lemma 3.1 to (33) and breaking∥∥∂izh∥∥2HNx ≤ ∥∥∂izσ∥∥2HNx +
∥∥(1−Π)∂izh

∥∥2
HNx (L2

v,ν)
gives,

(33) ≤
√

5

2
2qACNCS

√
EM,N
∇xφ

(
DM,N
σ + 2DM,N

h1

)
+

√
5

2
2qACNCS

√
EM,N
h

(
1

εe
DM,N
∇xφ

+ εeDM,N
h1

)
. (34)

Lemma 3.3. For N ≥ 3, M ≥ 0, the following inequality holds,∣∣∣∣∣∣
∑
|β|≤M

∑
i≤β

∑
|α|≤N

(
β

i

)(
qβ
β!

)2 〈
∂αx
(
∂β−iz ∇xφ∂

i
zσ
)
, ∂αx ∂

β
z∇xφ

〉∣∣∣∣∣∣
≤2qACNCS

√
EM,N
∇xφ

(
1

ε
1−a
2

DM,N
∇xφ

+ ε
1−a
2 DM,N

σ

)
,

where q, CS, A, CN are constants defined in (19), (20), (22), (23).

Proof. We first sum over |α| ≤ N ,∑
|α|≤N

〈
∂αx
(
∂β−iz ∇xφ∂

i
zσ
)
, ∂αx ∂

β
z∇xφ

〉
=

1

2

∑
|α|≤N

∑
j≤α

(
α

j

)(〈
∂α−jx ∂β−iz ∇xφ∂

j
x∂

i
zσ, ∂

α
x ∂

β
z∇xφ

〉
−
〈
∂α−jx ∂β−iz ∇xφ∂

j
x∇x · ∂iz∇xφ, ∂

α
x ∂

β
z∇xφ

〉)
=

1

2

∑
|α|≤N

∑
j≤α

(
α

j

)(〈
∂α−jx ∂β−iz ∇xφ∂

j
x∂

i
zσ, ∂

α
x ∂

β
z∇xφ

〉
−
〈
∂α−jx ∂β−iz σ ∂jx∂

i
z∇xφ, ∂

α
x ∂

β
z∇xφ

〉
−
〈
∂α−jx ∂β−iz ∇xφ∂

j
x∂

i
z∇xφ, ∂

α
x ∂

β
z σ
〉)
.
(35)

Noticing by changing j and α− j, i and β − i, the following equality holds,∑
|β|≤M

∑
i≤β

(
β

i

) ∑
|α|≤N

∑
j≤α

(
α

j

)(
qβ
β!

)2 〈
∂α−jx ∂β−iz σ ∂jx∂

i
z∇xφ, ∂

α
x ∂

β
z∇xφ

〉
=
∑
|β|≤M

∑
i≤β

(
β

i

) ∑
|α|≤N

∑
j≤α

(
α

j

)(
qβ
β!

)2 〈
∂jx∂

i
zσ ∂

α−j
x ∂β−iz ∇xφ, ∂

α
x ∂

β
z∇xφ

〉
. (36)

Therefore, (36) shows that the first term and second term in (35) can be cancelled
out when summing over |β| ≤ M , i ≤ β. Therefore one just needs to prove the
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bounds for∣∣∣∣∣∣−1

2

∑
|β|≤M

∑
i≤β

(
β

i

)(
qβ
β!

)2 ∑
|α|≤N

∑
j≤α

(
α

j

)〈
∂α−jx ∂β−iz ∇xφ∂

j
x∂

i
z∇xφ, ∂

α
x ∂

β
z σ
〉∣∣∣∣∣∣ .
(37)

We first sum over
∑
|α|≤N

∑
j≤α, similar to (31), one separates {j ≤ α} into{

|j| ≤ |α|2
}

and
{
|j| > |α|

2

}
, then using the Sobolev Embedding on

∥∥∂jx∂iz∇xφ
∥∥
L∞x

or
∥∥∂α−jx ∂β−iz ∇xφ

∥∥
L∞x

, to bound them by
∥∥∂jx∂iz∇xφ

∥∥
H2

x
or
∥∥∂α−jx ∂β−iz ∇xφ

∥∥
H2

x

respectively. Then one ends up with the following bound,∑
|α|≤N

∑
j≤α

(
α

j

)〈
∂α−jx ∂β−iz ∇xφ∂

j
x∂

i
z∇xφ, ∂

α
x ∂

β
z σ
〉

≤2CNCS
∥∥∂β−iz ∇xφ

∥∥
HNx

∥∥∂iz∇xφ
∥∥
HNx

∥∥∂βz σ∥∥HNx . (38)

Afterwards, for
∑
|β|≤M

∑
i≤β, similar to (33)-(34), it is straightforward to get,

(37) ≤

∣∣∣∣∣∣12
∑
|β|≤M

∑
i≤β

(
β

i

)(
qβ
β!

)2

(38)

∣∣∣∣∣∣ ≤ 2qACNCS

√
EM,N
∇xφ

(
1

εd
DM,N
∇xφ

+ εdDM,N
σ

)
for d = 1−a

2 .

The following is some equalities and inequalities that will be frequently used
later.

Proposition 2. .

(a)
〈
v
√
M∇xφ, h

〉
= εa

2 ∂t ‖∇xφ‖2.

(b) |〈u, ∂t∇xφ〉| ≤ 1
εa ‖u‖

2
.

(c) 〈∇xσ,∇xφ〉 = ‖σ‖2.

(d) 〈u,∇xφ〉 = εa

2 ∂t ‖∇xφ‖2.

(e)
〈
∇x ·

∫
v ⊗ v

√
M (1−Π)hdv,∇xφ

〉
≤ 3γ

2 ‖(1−Π)h‖2ν + 1
2γ ‖σ‖

2
, for any

positive constant γ.

Proof. (a) By the definition of u in (3), the continuity equation (7), the Poisson
equation (5), one has,〈

v
√
M∇xφ, h

〉
= 〈∇xφ,u〉 = −〈φ,∇x · u〉 = εa 〈φ, ∂tσ〉

=− εa 〈φ, ∂t∆xφ〉 =
εa

2
∂t ‖∇xφ‖2 .

(b) By (7), (5) and L2 boundedness of ∇∆−1∇ (See Riesz potential [21]),

|〈u, ∂t∇xφ〉| = |〈∇x · u, ∂tφ〉| =
∣∣〈∇x · u, ∂t∆−1x σ

〉∣∣
=

1

εa
∣∣〈∇x · u,∆−1x ∇x · u

〉∣∣ ≤ 1

εa
‖u‖2 .

(c) By (5) ,

〈∇xσ,∇xφ〉 = −〈σ,∆xφ〉 = ‖σ‖2 .
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(d) By (7), (5),

〈u,∇xφ〉 = −〈∇x · u, φ〉 = εa 〈∂tσ, φ〉 = −εa 〈∂t∆xφ, φ〉 =
εa

2
∂t ‖∇xφ‖2 .

(e) By Young’s inequality,

(e) =

3∑
i,j=1

〈∫
vjvi
√
M∂xi(1−Π)hdv, ∂xjφ

〉

≤

∣∣∣∣∣∣
3∑

i,j=1

〈
‖vi(1−Π)h‖L2

v

∥∥∥vj√M∥∥∥
L2

v

, ∂xi∂xjφ

〉∣∣∣∣∣∣
≤1

2

3∑
i,j=1

(
γ ‖(1−Π)h‖2ν +

1

γ

∥∥∥vj√M∥∥∥2
L2

v

∥∥∂xi∂xjφ∥∥2)
≤3γ

2
‖(1−Π)h‖2ν +

1

2γ

∥∥∇2
xφ
∥∥2 ≤ 3γ

2
‖(1−Π)h‖2ν +

1

2γ
‖σ‖2 .

Lemma 3.4. The Microscopic energy estimate is

1

2
∂t

(
EM,N
h +

1

ε1−a
EM,N
∇xφ

)
+

λ

ε1+a
DM,N
h1

≤
√

5

2ε
2qACNCS

(√
EM,N
∇xφ

(
DM,N
σ + 2DM,N

h1

)
+

√
EM,N
h

(
1

ε
1−a
2

DM,N
∇xφ

+ ε
1−a
2 DM,N

h1

))
, (39)

where q, CS, A, CN are constants defined in (19), (20), (22), (23).

Proof. If one takes ∂αx and multiplies
(
qβ
β!

)2
∂αx ∂

β
z h to (26), then integrates it over

x,v, sums over |α| ≤ N , |β| ≤M , by Proposition 2 (a), Proposition 1 and Lemma
3.2, it is straightforward to get the above Lemma.

Lemma 3.5. The Macroscopic energy estimate is

∂tG
M,N +

1

4εa
DM,N
σ +

1

ε
DM,N
∇xφ

≤ 4

εa
DM,N
h1

+ 2qACNCS

√
EM,N
φ

ε

(
1

ε
1−a
2

DM,N
∇xφ

+ ε
1−a
2 DM,N

σ

)
, (40)

where q, CS, A, CN are constants defined in (19), (20), (22), (23), GM,N is defined
in (29).

Proof. If one takes ∂αx and multiplies
(
qβ
β!

)2
∂αx ∂

β
z∇xφ to (28), then integrates it

over x, finally sums it over |α| ≤ N , |β| ≤ M , by Lemma 3.3, and Proposition 2
(c), (d), it is straightforward to get,

∂t

 ∑
|β|≤M

∑
|α|≤N

(
qβ
β!

)2 〈
∂αx ∂

β
z u, ∂αx ∂

β
z∇xφ

〉
+

1

2ε
EM,N
∇xφ

+
1

εa
DM,N
σ +

1

ε
DM,N
∇xφ
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≤
∑
|β|≤M

∑
|α|≤N

(
qβ
β!

)2 (〈
∂αx ∂

β
z u, ∂t∂

α
x ∂

β
z∇xφ

〉
− 1

εa

〈
∇x ·

∫
v ⊗ v

√
M (1−Π) ∂αx ∂

β
z hdv, ∂

α
x ∂

β
z∇xφ

〉)

+ 2qACNCS

√
EM,N
φ

ε

(
1

ε
1−a
2

DM,N
∇xφ

+ ε
1−a
2 DM,N

σ

)
(41)

Then by Proposition 2 (b), (e), one has,

(41) ≤ 1

εa
DM,N
h1

+
3γ

2
DM,N
h1

+
1

2γ
DM,N
σ

+ 2qACNCS

√
EM,N
φ

ε

(
1

ε
1−a
2

DM,N
∇xφ

+ ε
1−a
2 DM,N

σ

)
.

Let γ = 2εa, by the fact that εa ≤ 1
εa , one completes the proof.

Lemma 3.6. The micro-macro energy estimate is

1

2
∂tEM,N +

λ

2ε1+a
DM,N
h1

+
λ

32ε1+a
DM,N
σ +

λ

8ε2
DM,N
∇xφ

≤
√

5

2
2qACNCS

√
EM,N

(
3

ε
1+a
2

DM,N
h1

+
2

ε
1+a
2

DM,N
σ +

2

ε
3−a
2

DM,N
∇xφ

)
, (42)

where q, CS, A, CN are constants defined in (19), (20), (22), (23). EM,N is

equivalent to EM,N = EM,N
h + 1

ε2E
M,N
∇xφ

in the sense of,

λ

16
EM,N ≤ EM,N ≤

(
1 +

λ

4

)
EM,N .

Proof. (39) + λ
8ε (40) gives,

1

2
∂tEM,N +

λ

2ε1+a
DM,N
h1

+
λ

8ε

(
1

4εa
DM,N
σ +

1

ε
DM,N
∇xφ

)

≤
√

5

2
2qACNCS


√
EM,N
∇xφ

ε2

(
DM,N
σ + 2DM,N

h1

)

+

√
EM,N
h

(
1

ε
3−a
2

DM,N
∇xφ

+
ε

1−a
2

ε
DM,N
h1

))

+
λ

8
2qACNCS

√
EM,N
φ

ε2

(
1

ε
3−a
2

DM,N
∇xφ

+
ε

1−a
2

ε
DM,N
σ

)
, (43)

where EM,N =
(
EM,N
h + 1

ε1−aE
M,N
∇xφ

)
+ 2λ

8εG
M,N . By definition of GM,N in (29) and

the fact that ‖u‖2 ≤ ‖h‖2, one can bound GM,N by

−εEM,N
h +

1

4ε
EM,N
∇xφ

≤ GM,N ≤ εEM,N
h +

3

4ε
EM,N
∇xφ

.
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Thus one can bound EM,N by,(
1− λ

4

)
EM,N
h +

λ

16ε2
EM,N
∇xφ

≤ EM,N ≤
(

1 +
λ

4

)
EM,N
h +

1 + 3λ
16

ε2
EM,N
∇xφ

, (44)

λ

16
EM,N ≤ EM,N ≤

(
1 +

λ

4

)
EM,N . (45)

Therefore, (43) becomes,

1

2
∂tEM,N +

λ

2ε1+a
DM,N
h1

+
λ

32ε1+a
DM,N
σ +

λ

8ε2
DM,N
∇xφ

≤
√

5

2
ACNCS

√
EM,N

(
3

ε
1+a
2

DM,N
h1

+
2

ε
1+a
2

DM,N
σ +

2

ε
3−a
2

DM,N
∇xφ

)
. (46)

By Lemma 3.6 and the continuity argument, if initially,√
EM,N (0, z) ≤ λ

72ACNCS

1

ε
1+a
2

, (47)

then for t > 0, the RHS of (42) ≤ λ

4ε1+a
DM,N
h1

+
λ

64ε1+a
DM,N
σ +

λ

16ε2
DM,N
∇xφ

, there-

fore,

1

2
∂tEM,N +

λ

4ε1+a
DM,N
h1

+
λ

64ε1+a
DM,N
σ +

λ

16ε2
DM,N
∇xφ

≤ 0.

Because of the fact that DM,N
h1

+DM,N
σ ≥ EM,N

h and DM,N
∇xφ

= EM,N
∇xφ

, one has,

∂tEM,N +
λ

32ε1+a
EM,N
h +

λ

8ε2
EM,N
∇xφ

≤ 0. (48)

If one integrates (48) over time, and uses the equivalent relationship between EM,N

and EM,N in (45), (48) implies,

λ

16
EM,N ≤

(
1 +

λ

4

)
EM,N (0)− λ

32ε1+a

∫ t

0

EM,N
h (s)ds− λ

8

∫ t

0

EM,N
∇xφ

(s)

ε2
ds.

So one ends up with two inequalities for EM,N
h and EM,N

∇xφ
respectively,

EM,N
h (t) ≤ 16 + 4λ

λ
EM,N (0)− 1

2ε1+a

∫ t

0

EM,N
h (s)ds,

EM,N
∇xφ

(t)

ε2
≤ 16 + 4λ

λ
EM,N (0)− 2

∫ t

0

EM,N
∇xφ

(s)

ε2
ds.

By Grownwall’s inequality, one has the decay rates for EM,N
h and EM,N

∇xφ
,

EM,N
h (t) ≤ 16 + 4λ

λ
e−

t

2ε1+aEM,N (0),

EM,N
∇xφ

(t) ≤ (16 + 4λ)

λ
e−2t

(
ε2EM,N (0)

)
.

However, we want to estimate h and ∇xφ in the random space, that is, ‖h‖HM,N ,
‖∇xφ‖HM,N . Actually, this norm can be bounded by

∫
EM,Ndµ(z) up to a constant.
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So by integrating (47) over µ(z), the initial constrain becomes,

EM,N
q (0) =

∫
EM,N (0, z)dµ(z) ≤ 16

λ

∫
Iz

EM,N (0, z)dµ(z) ≤
(

1

5ACNCS

1

ε
1+a
2

)2

.

(49)

In addition, since β1! · · ·βd! ≤ (β1 + · · ·+ βd)!, hence min
|β|≤M

{(
qβ
β!

)2
}
≥
(

1

M !

)2

,

so ‖h(t)‖HM,N ≤
(

1
M !

)2 ∫
EM,N
h (t)dµ(z), ‖∇xφ(t)‖HM,N ≤

∫
EM,N
∇xφ

(t)dµ(z). There-

fore, under the condition of (49),

‖h(t)‖2HM,N ≤ (M !)2ξe−
t

2ε1+aEM,N
q (0),

‖∇xφ(t)‖2HM,N ≤ (M !)2ξe−2tε2EM,N
q (0),

which completes the proof of Theorem 2.1.

4. The gPC-SG Method.

4.1. The numerical method. In this section, we will review a numerical method
gPC-SG and apply to the VPFP system with uncertainty. We will prove the stability
and the spectral accuracy of the method.

For random variable z = (z1, · · · , zd), if zi, 1 ≤ i ≤ d are independent of each
other and the probability density function of zi is πi(zi), then

dµ(z) = π(z)dz =

(
d∏
i=1

πi(zi)

)
dz.

Therefore, let {Φik}∞k=0 be the corresponding orthogonal polynomial basis with re-
spect to πi(zi)dzi, then the orthogonal polynomial basis for µ(z) can be written
as,

Φi = Φ1
i1 · · ·Φ

d
id
,

where i = (i1, · · · , id). {Φi}|i|≥0 satisfies the orthogonal condition under the mea-
sure µ(z), ∫

Iz

ΦiΦjdµ(z) = δij =

{
1, i = j,

0, i 6= j.

The K-th order subspace is therefore spanned by {Φi}|i|≤K .
As a popular numerical method, the generalized Polynomial Chaos stochastic

Galerkin (gPC-SG) method is to find the approximate solution in the truncated

K-th order subspace. Insert the approximate solution
(
f̂K , φ̂K

)
in the form of,

f̂K =
∑
|i|≤K

f̂i(t,x,v)Φi(z), φ̂K =
∑
|i|≤K

φ̂i(t,x,v)Φi(z)

into (1) and then project it onto the subspace, one has the system for the approxi-
mate solution,

〈
∂tf̂

K + 1
εav · ∇xf̂

K − 1
ε∇xφ · ∇vf̂

K ,ΦK
〉

=
〈

1
ε1+aF f̂

K ,ΦK
〉
,

−
〈

∆xφ̂
K ,ΦK

〉
=
〈
ρ̂K − 1,ΦK

〉
,
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where ΦK(z) = {Φi}|i|≤K is the vector function that contains all basis functions up
to K-th order. Similarly the approximation for the perturbative solution h(t,x,v, z)
is defined as,

ĥK =
f̂K −M√
M

=
∑
|i|≤K

∂̂izh(t,x,v)Φi(z) = ĥK ·ΦK ;

and correspondingly the approximation for the perturbative density and flux,

σ̂K =
∑
|i|≤K

σ̂i(t,x)Φi(z) = σ̂K ·ΦK , ûK =
∑
|i|≤K

ûi(t,x)Φi(z) = ûK ·ΦK ,

where ĥK(t,x,v), σ̂K(t,x,v), ûK(t,x,v) are deterministic vector functions. There-

fore
(
ĥK ,∇xφ̂

K
)

satisfies,
〈
∂tĥ

K + 1
εav · ∇xĥ

K + 1
εv
√
M∇xφ̂

K − 1
ε1+aLĥ

K ,ΦK
〉

= 1
ε

〈
∇xφ̂

K ·
(
∇vĥ

K − v
2 ĥ

K
)
,ΦK

〉
,〈

∆xφ̂
K ,ΦK

〉
= −

〈
σ̂K ,ΦK

〉
,

(50)

or equivalently, the deterministic coefficients of ĥK , i.e. the vector function
(
ĥK ,

φ̂K
)

=
(
ĥβ(t,x,v),∇xφ̂β(t,x,v)

)
|β|≤K

satisfies the following deterministic sys-

tem, 
∂tĥβ + 1

εav · ∇xĥβ + 1
εv
√
M∇xφ̂β − 1

ε1+aLĥβ
= 1

ε

∑
|κ|,|γ|≤K Eκγβ∇xφ̂κ ·

(
∇vĥγ − v

2 ĥγ

)
,

∆xφ̂β = −σ̂β, for |β| ≤ K,
(51)

where

Eκγβ =

∫
Iz

ΦκΦγΦβ dµ(z). (52)

Theorem 4.1 and Theorem 4.2 about the approximate solution by gPC-SG are based
on the following condition of the basis functions Φβ(z).

Condition 1. The basis functions Φβ(z) satisfy,

‖Φβ(z)‖L∞ ≤ cβ, for all |β| ≥ 0,

where cβ is a function of β satisfying,

(a) If |β| ≤ |γ|, then cβ ≤ cγ ;
(b) cλβ ≤ C (λ) cβ, for any constant λ. Specifically, we define

c2β = C2cβ, for ∀β. (53)

Remark 2. For example, if the basis functions Φi(zi) satisfy

‖Φi(zi)‖L∞ ≤ ci, for all i ≥ 0,

then the basis functions Φβ(z) satisfy

‖Φβ(z)‖L∞ ≤
d∏
i=1

cβi , for all |β| ≥ 0.
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Remark 3. This is a generalization of the condition given in [19]. The i.i.d normal-
ized Legendre polynomials, which corresponds to Uniform distribution in [−1, 1]d

with pdf π(zi) = 1
2d

, and the Chebyshev polynomials, which corresponds to the ran-

dom variable with pdf π(zi) = 2

π
√

1−z2i
satisfy this condition. Specifically, for the

normalized Legendre polynomials, cβ =
∏d
i=1(βi + 1)1/2, while for the Chebyshev

polynomials, cβ = 1.

4.2. Main results on stability and accuracy of the gPC-SG method. We

want to estimate the error of the approximation ĥK obtained by the gPC-SG
method. We first decomposed the error into two parts,

h− ĥK = h− h̄K︸ ︷︷ ︸
hKp

+ h̄K − ĥK︸ ︷︷ ︸
hKe

,

where h̄K is the projection of h onto ΦK ,

h̄K :=

(∫
hΦKdµ(z)

)
·ΦK , ∇xφ̄

K :=

(∫
∇xφΦKdν(z)

)
·ΦK .

The first part of the error hKp is caused by the gPC projection, which is related
to the smoothness of the solution in the random space, which has been studied in
Section 2 and 3. On the other hand, the second part of the error hKe is caused by
the stochastic Galerkin, which is related to the stability of the gPC-SG method.

The difficulty in the proof of the stability of the gPC-SG method is to get a sharp

estimate on
∥∥∥ĥK∥∥∥2 in terms of large K. If we directly estimate

∥∥∥ĥK∥∥∥2, then similar

to the sensitivity analysis in (15), the nonlinear term on the RHS of (51) will be as
large as

O

(
K max
|κ|,|γ|,|β|≤K

Eκγβ

)
,

so only when the initial data is as small as∥∥∥ĥK∥∥∥2 ≤ O([K max
|κ|,|γ|,|β|≤K

Eκγβ

]−1)
, (54)

the gPC method is stable. Actually, there is a much sharper estimates in terms of

large K. Under Condition 1, we introduce a weight to ĥβ as follows,∥∥∥ĥK∥∥∥2
ω

=
∑
|β|≤K

∥∥∥ωβĥβ

∥∥∥2
where

ωβ = cβqβ. (55)

Here the weight cβ is used to eliminate
[
max|κ|,|γ|,|β|≤K Eκγβ

]−1
, while qβ is used

to eliminate K−1 in (54).
Before we come to the final results on the stability and accuracy of the gPC-SG

method, we will first define some constants that will be frequently used later.

Notation. - Â:

Â = 2C22q, (56)

with C2 defined in (53), q defined in (19).
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- D: h̄ =
(∫
h(0)ΦKdµ(z)

)
· ΦK is the projection of h ∈ HM,0 onto ΦK ,

where ΦK are orthonormal bases under dµ(z), then by classical approximation
theorem, ∥∥h− h̄∥∥2

µ
≤
D ‖h‖2HM,0
(K + 1)2M

. (57)

Theorem 4.1. (Stability of the gPC-SG method) Let

ÊK,Nω (t) =
∥∥∥ĥK(t)

∥∥∥2
HNx,ω

+

∥∥∥∇xφ̂
K(t)

∥∥∥2
HNx,ω

ε2
, (58)

under Condition 1, for ∀N ≥ 3, if initially,

ÊK,Nω (0) ≤
(

1

5ÂCNCS

)2
1

ε1+a
, (59)

then the approximation solution (ĥK ,∇xφ̂
K) obtained by gPC-SG method decays in

time as follows,∥∥∥ĥK(t)
∥∥∥
HNx,ω

≤ ξÊK,Nω (0)e−
t

2ε1+a ,
∥∥∥∇xφ̂

K(t)
∥∥∥2
HNx,ω

≤ ξ
(
ε2ÊK,Nω (0)

)
e−2t.

Here all the constants are independent of ε and K, where Â, ξ, CN , CS are the same
constants in Thoerem 2.1.

Remark 4. The above theorem tells us that the gPC-SG method is stable under
a mild condition on the initial randomness.

Remark 5. Notice there is another sufficient initial condition directly on (h(0,x,
v, z), ∇xφ(0,x, z)) to guarantee the stability of the gPC-SG method, which has
been derived in Remark 7.

Based on the regularity of the solution in the random space as in Theorem 2.1
and the stability of the gPC-SG method as in Theorem 4.1, one has the following
Theorem about the spectral convergence of the gPC-SG method.

Theorem 4.2. (Spectral convergence of the gPC-SG method) Under Condition 1,
for ∀M,K, if initially,

EM+r,3
q , ÊK,3ω (0) ≤ D0C0

ε1+a
,

then the error decays in time as follows,∥∥∥h− ĥK(t)
∥∥∥2
µ
≤ I0(t)e−

λ

2ε1+a
t

(K + 1)2M
,
∥∥∥∇xφ̂

K(t)−∇xφ̂
∥∥∥2
µ
≤ ε2I0(t)e−

λ

2ε1+a
t

(K + 1)2M
. (60)

Here r is the smallest integer strictly larger than d
2 ,

C0 =

(
M !

5AC3CS

)2

, D0 =

(
λ

48Ar!ξ

)2

,

I0(t) = DDME
M+r,3
q (0)

[
1 +

500

λ2

(
ξÊK,3ω (0) +DrE

r,3
q (0)

)
t

]
,

and ξ are the same constants as in Theorem 2.1, λ,C3, CS , A, Â,D are defined in
(20) - (57).
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Remark 6. The above Theorem tells us as long as the initial data (h,∇xφ) has
enough regularity in the random space, and the initial perturbation around the
global Maxwellian is smaller than O( 1

ε1+a ), then the gPC-SG method enjoys spectral
accuracy.

5. Stability of the gPC-SG method. In this section, we will prove Theorem

4.1. We will study the stability of the gPC-SG method in terms of ÊK,Nh , ÊK,N∇xφ

defined as follows,

ÊK,Nh =
∑
|α|≤N

∑
|β|≤K

ω2
β

∥∥∥∂αx ĥβ∥∥∥2 , ÊK,N∇xφ
=
∑
|α|≤N

∑
|β|≤K

ω2
β

∥∥∂αx ∂βz∇xφ
∥∥2 ,

where ĥβ is the β-th component of the vector function ĥK(t,x,v), same for φ̂β. Also

D̂K,N
h1

, D̂K,N
σ , D̂K,N

∇xφ
are the corresponding dissipations of (1−Π)ĥK , σ̂K ,∇xφ̂

K in

the norm of ‖·‖HNω . One needs to do energy estimation on (51) to get the estimates

for ÊK,Nh and ÊK,N∇xφ
. Actually, if one compares (51) with (26), one finds the only

difference is the nonlinear term. Therefore, one can use the same proof strategy to

estimates ÊK,Nh +
ÊK,N∇xφ

ε2 , except we need to re-estimate the nonlinear term again.
Before we estimate the nonlinear term, we first define a characterized function

χγκβ,

χγκβ = 1{γi+κi≥βi, κi+βi≥γi, γi+βi≥κi, ∀0≤i≤d}, (61)

which implies,

Eγκβ =

∫
ΦγΦκΦβdµ(z) ≤ min{‖Φγ‖L∞z , ‖Φκ‖L∞z , ‖Φβ‖L∞z }χγκβ

≤cmin{γ,κ,β}χγκβ. (62)

Here the first inequality comes from the orthogonality of the basis. The second
one is because of the first property of ‖Φγ‖L∞z in Condition 1. Moreover, from the

definition of χ, one has the following Lemma.

Lemma 5.1. For any multi-dimensional vectors β,κ,γ, positive integer K and
functions hγ , gκ, fβ, the following inequality holds,∑

|β|≤K

∑
|κ|≤K

∑
|γ|≤|κ|

ωβcγχγκβ

ωκωγ
‖hγ‖

(
c1 ‖gκ‖2 + c2 ‖fβ‖2

)

≤Â
√ ∑
|κ|≤K

‖hγ‖2
c1 ∑

|κ|≤K

‖gκ‖2 + c2
∑
|β|≤K

‖fβ‖2
 ,

where Â defined in (56).

Proof. First, notice
cγ
ωγ

= 1
qγ

by the definition of ωγ in (55); Besides that, since χγκβ

is nonzero only when |β| ≤ |γ| + |κ| ≤ 2|κ|, and the first property in Condition
1, so

ωβχγκβ

ωκ
≤ c2κq2κχγκβ

cκqκ
; Finally, by the second property in Condition 1 and the

definition of qκ in(19), one has,
ωβχγκβ

ωκ
≤ C22qχγκβ. Therefore, one has,∑

|β|≤K

∑
|κ|≤K

∑
|γ|≤|κ|

ωβcγχγκβ

ωκωγ
‖hγ‖

(
c1 ‖gκ‖2 + c2 ‖fβ‖2

)
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≤C22q
∑
|γ|≤K

1

qγ
‖hγ‖

c1 ∑
|κ|≤K

‖gκ‖2
∑
|β|≤K

χγκβ + c2
∑
|β|≤K

‖fβ‖2
∑
|κ|≤K

χγκβ


≤2C22q

∑
|γ|≤K

|γ|
qγ
‖hγ‖

c1 ∑
|κ|≤K

‖gκ‖2 + c2
∑
|β|≤K

‖fβ‖2


≤Â
√ ∑
|κ|≤K

‖hγ‖2
c1 ∑

|κ|≤K

‖gκ‖2 + c2
∑
|β|≤K

‖fβ‖2
 . (63)

The second inequality is because that by the definition of χγκβ, for fixed |γ| ≤ |κ|,
it is not zero only when |κ|− |γ| ≤ |β| ≤ |κ|+ |γ|, so the first term

∑
|β|≤K χγκβ ≤

2|γ|; while the second term is similar. The last inequality comes from the definition
of A in (22).

Now based on Lemma 5.1, and the bound for Eγκβ in (62), one can bound the
two nonlinear terms as stated in the following Lemma.

Lemma 5.2. Under Condition 1, for N ≥ 4, one can bound the nonlinear term as∣∣∣∣∣∣
∑
|β|≤K

∑
|γ|≤K,|κ|≤K

ω2
βEγκβ

∑
|α|≤N

〈
∂αx

[
∇xφ̂γ ·

(
∇vĥκ −

v

2
ĥκ

)]
, ∂αx ĥβ

〉∣∣∣∣∣∣
≤
√

5

2
ÂCNCS

(√
ÊK,N∇xφ

(
D̂K,N
σ + 2D̂K,N

h1

)
+

√
ÊK,Nh

(
1

ε
1−a
2

D̂K,N
σ + ε

1−a
2 D̂K,N

h1

))
,

(64)∣∣∣∣∣∣
∑
|β|≤K

∑
|γ|≤K,|κ|≤K

ω2
βEγκβ

∑
|α|≤N

〈
∂αx

(
∇xφ̂β−i σ̂i

)
, ∂αx∇xφ̂β

〉∣∣∣∣∣∣
≤ÂCNCS

√
ÊK,N∇xφ

(
1

ε
1−a
2

D̂K,N
∇xφ

+ ε
1−a
2 D̂K,N

σ

)
, (65)

where Â, CN , CS are constants defined in (56), (23), (20).

Proof. Similar to (30) - (33), one has,∑
|α|≤N

〈
∂αx

[
∇xφ̂γ ·

(
∇vĥκ −

v

2
ĥκ

)]
, ∂αx ĥβ

〉
≤
√

5CNCS

∥∥∥∇xφ̂γ

∥∥∥
HNx

∥∥∥ĥκ∥∥∥
HNx

∥∥∥(1−Π)ĥβ

∥∥∥
HNx (L2

v,ν)
.

Then summing over |β|, |γ|, |κ| ≤ K, one has,∣∣∣∣∣∣
∑
|β|≤K

∑
|κ|,|γ|≤K

ω2
βEγκβ

∑
|α|≤N

〈
∂αx

[
∇xφ̂γ ·

(
∇vĥκ −

v

2
ĥκ

)]
, ∂αx ĥβ

〉∣∣∣∣∣∣
≤
√

5CNCS
∑
|β|≤K

∑
|κ|≤K

∑
|γ|≤K

ωβcmin{γ,κ,β}χγκβ

ωκωγ∥∥∥ωγ∇xφ̂γ

∥∥∥
HNx

∥∥∥ωκĥκ

∥∥∥
HNx

∥∥∥ωβ(1−Π)ĥβ

∥∥∥
HNx (L2

v,ν)
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≤
√

5

2
CNCS

∑
|β|≤K

∑
|κ|≤K

∑
|γ|≤|κ|

ωβcγχγκβ

ωκωγ

∥∥∥ωγ∇xφ̂γ

∥∥∥
HNx

(
εb
∥∥∥ωκĥκ

∥∥∥2
HNx

+
1

εb

∥∥∥ωβ(1−Π)ĥβ

∥∥∥2
HNx (L2

v,ν)

)
+

√
5

2
CNCS

∑
|β|≤K

∑
|κ|≤K

∑
|γ|>|κ|

ωβcκχγκβ

ωκωγ∥∥∥ωκĥκ

∥∥∥
HNx

(
1

εe

∥∥∥ωγ∇xφ̂γ

∥∥∥2
HNx

+ εe
∥∥∥ωβ(1−Π)ĥβ

∥∥∥2
HNx (L2

v,ν)

)
where the first inequality comes from (62), while the second inequality comes from
Young’s inequality. Then by Lemma 5.1, one completes the proof of (64). The proof
for (65) is similar to it, so we omit it here.

Compare Lemma 5.2 with Lemma 3.2 and 3.3, one notes that the estimates for
the two nonlinear terms are similar, so one ends up with the similar energy estimates
for ÊK,N in Theorem 4.1.

Remark 7. Here we derive a sufficient condition on the initial data (h(0,x,v, z),
∇xφ(0,x, z)). We require

ÊK,Nω (0) ≤ C0, (66)

in Theorem 4.1, where C0 =
(

1
5ÂCNCS

)2
1

ε1+a . Since ĥK(0) =
(∫
h(0)ΦKdµ(z)

)
·ΦK

is the projection of h onto ΦK , where ΦK are orthonormal bases under dµ(z), so
one has, ∥∥∥h(0)− ĥK(0)

∥∥∥2
H0,N

=
∑
|β|>K

∥∥∥ĥβ(0)
∥∥∥2
HNx

, (67)

where ĥβ(0) =
∫
h(0)Φβdµ(z). By the classical approximation theorem, we know

that for h ∈ HM,N , ∥∥∥h(0)− ĥK(0)
∥∥∥2
H0,N

≤
D ‖h(0)‖2HM,N

(K + 1)2M
, (68)

for some constant D depending on the measure µ(z). Plug (67) into (68), one gets,∥∥∥ĥβ(0)
∥∥∥2
HNx

≤
D ‖h(0)‖2HM,N

(|β|+ 1)2M
.

Similarly, one can get the bound for ∇xφ̂β,∥∥∥∇xφ̂β(0)
∥∥∥2
HNx

≤
D ‖∇xφ(0)‖2HM,N

(|β|+ 1)2M
.

Therefore the condition (66) becomes,

D

(
‖h(0)‖2HM,N +

‖∇xφ(0)‖2HM,N
ε2

) ∑
|β|≤K

ω2
β

(|β|+ 1)2M
≤ C0,

hence a sufficient initial condition for the stability of the gPC-SG method is,

‖h(0)‖2HM,N +
‖∇xφ(0)‖2HM,N

ε2
≤ C0

ε1+a
1

D
∑
|β|≤K

c2β
(|β|+1)2M−2q

.

If cβ grows algebraically, then there exists an positive integer p, such that, cβ .
(|β| + 1)p up to a constant, which implies that as long as M > d

2 + q + p, then
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∑
|β|≤K

c2β
(|β|+1)2M−2q can be bounded by a finite constant A (the proof is the same

as Appendices A).
To sum up, another sufficient condition to enjoy the stability of gPC-SG method

as in (25) is that firstly the bound of the basis Φβ grows algebraically as ‖Φβ‖L∞z .

(|β|+ 1)p, and initially

‖h(0)‖2HM,N +
‖∇xφ(0)‖2HM,N

ε2
≤ C0

ADε1+a
, (69)

for N ≥ 3, M > d
2 + q + p.

6. Spectral convergence of the gPC-SG method. In this section, we will prove
Theorem 4.2. Let us define the projection of the analytic perturbative solution h
onto the subspace ΦK = {Φβ}|β|≤K as,

h̄K :=

(∫
hΦKdµ(z)

)
·ΦK , ∇xφ̄

K :=

(∫
∇xφΦKdν(z)

)
·ΦK .

Then we can decompose the error of the approximation solution
(
ĥK ,∇φ̂K

)
in the

subspace ΦK into two parts,

h− ĥK = hKp + hKe := (h− h̄K) + (h̄K − ĥK), (70)

∇xφ−∇xφ̂
K = ∇xφ

K
p +∇xφ

K
e := (∇xφ−∇xφ̄

K) + (∇xφ̄
K −∇xφ̂

K), (71)

where
(
hKp ,∇xφ

K
p

)
represents for the projection error,

(
hKe ,∇xφ

K
e

)
are errors from

the stochastic Gelarkin. Define vector functions, energy and dissipation terms for
error as follows,

hKe :=

∫ (
h− ĥK

)
ΦKdµ(z) = (he,β)|β|≤k , where he,β =

∫ (
h− ĥK

)
Φβdµ(z);

φKe =

∫ (
∇xφ− φ̂K

)
ΦKdµ(z) = (∇xφe,β)|β|≤k ,

where ∇xφe,β =

∫ (
∇xφ− φ̂K

)
Φβdµ(z);

ẼhKe =
∥∥hKe ∥∥2µ ; Ẽ∇xφKe

=
∥∥ ∇xφ

K
e

∥∥2
µ

;

D̃hKe
=
∥∥∥∥∥(1−Π)hKe

∥∥
L2

v,ν

∥∥∥2 ; D̃∇xφKe
=
∥∥∇xφ

K
e

∥∥2 ; D̃σKe
=
∥∥σKe ∥∥2 .

Here is the proof sketch of the spectral convergence of the gPC-SG method. Project
the microscopic system for the perturbative solution (4)-(5) onto the truncated
subspace {ΦK}, and then subtract the approximate perturbative system (50) from
it, one has the following microscopic error system,

∂th
K
e +

1

εa
v · ∇xhKe +

1

ε
v
√
MφKe −

1

ε1+a
LhKe

=
1

ε

∫ [
∇xφ ·

(
∇vh−

v

2
h
)
− φ̂K ·

(
∇vĥ

K − v

2
ĥK
)]

ΦKdµ(z),

∆xφ
K
e = −σKe .

(72)

(73)

If one does energy estimate to the above system, one has microscopic error estimates
as in Lemma 6.1. If one multiplies v

√
M, and integrate over v to (72), then one
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has the following macroscopic system of error,

∂tu
K
e +

1

εa
∇xσ

K
e +

1

εa
∇x ·

∫
v ⊗ v

√
M(1−Π)hKe dv +

1

ε1+a
uKe +

1

ε
φKe

=− 1

ε

∫ (
∇xφσ −∇xφ̂

K σ̂K
)

ΦKdν(z) (74)

If one does energy estimate to it, one will obtain estimates as Lemma 6.2. If one
combines the microscopic and macroscopic error estimates in a proper way as in
Lemma 6.3, and then based on Corollary 1, one can obtain the spectral convergence
of the gPC-SG method.

From Theorems 2.1 and 4.1, one can derive the following Corollary.

Corollary 1. Under the same condition in Theorems 2.1 and 4.1, if (h(0,x,v, z),
∇xφ(0,x, z)) ∈ HM+r,3, then the following inequalities hold,

‖σ‖2Hr,2 ≤ ‖h‖
2
Hr,2 ≤ DrE

r,3
q (0), ‖∇xφ‖2Hr,2 ≤ ε

2DrE
r,3
q (0), (75)∥∥∥∇xφ̂

K
∥∥∥2
ω
≤
∥∥∥∇xφ̂

K
∥∥∥2
H2

x,ω

≤ ε2ξÊK,3ω (0), (76)

∥∥hKp ∥∥2µ ,∥∥σKp ∥∥2Hr,2 ≤ ∥∥hKp ∥∥2Hr,2 ≤ DDME
M+r,3
q (0)

(K + 1)2M
,

∥∥∇xφ
K
p

∥∥2
µ
≤
ε2DDME

M,3
q (0)

(K + 1)2M
; (77)

where ξ = 16+4λ
λ , Dr = (r!)

2
ξ,DM = (M !)

2
ξ, D is a constant defined in (57)

Proof. (75) and (76) is a direct corollary from Theorems 2.1 and 4.1 respectively.
(77) comes from the classical approximation theorem of orthogonal basis. For h ∈
HM+r,2

z , ∥∥hKp ∥∥2Hr,2 ≤ D ‖h‖2HM+r,2

(K + 1)2M
≤
DDME

M+r,3
q (0)

(K + 1)2M

where the second inequality comes from Theorem 2.1, similar bounds can be ob-

tained for
∥∥∇xφ

K
p

∥∥2
µ
.

Lemma 6.1. The microscopic error estimate is

1

2
∂t

(
ẼhKe +

1

ε1−a
Ẽ∇xφKe

)
+

λ

ε1+a
D̃hKe

≤ 30

ε1−aλ

(∥∥hKp ∥∥2Hr,2 ∥∥∥∇xφ̂
K
∥∥∥2
ω

+ ‖h‖2Hr,2
∥∥∇xφ

K
p

∥∥2
µ

)
+

15A2

ε1−aλ

∥∥∥∇xφ̂
K
∥∥∥2
H2

x,ω

D̃σKe

+

(
15A2

ε1−aλ

∥∥∥∇xφ̂
K
∥∥∥2
H2

x,ω

+
λ

6ε1+a

)
D̃hKe

+
30

ε1−aλ
‖h‖2Hr,2 D̃∇xφKe

. (78)

Proof. If one multiplies he,β to the β−th row of (72), integrates it over x,v, and
sums over |β| ≤ K, one has,

1

2
∂t

(
ẼhKe +

1

ε1−a
Ẽ∇xφKe

)
+

λ

ε1+a
D̃hKe

≤1

ε

∑
|β|≤K

〈
∇xφ ·

(
∇vh−

v

2
h
)
−∇xφ̂

K ·
(
∇vĥ

K − v

2
ĥK
)

Φβ, he,β

〉
µ
. (79)
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By (30) and integral by parts, the nonlinear term becomes,

RHS of (79) = −1

ε

∑
|β|≤K

〈(
∇xφh−∇xφ̂

K ĥK
)

Φβ,
(v

2
+∇v

)
(1−Π)he,β

〉
µ
.

(80)

First notice that

∇xφh−∇xφ̂
K ĥK =

(
∇xφ−∇xφ̂

K
)
h+∇xφ̂

K
(
h− ĥK

)
=
(
∇xφ

K
e +∇xφ

K
p

)
h+∇xφ̂

K
(
hKe + hKp

)
=∇xφ̂

KhKe︸ ︷︷ ︸
I

+hKp ∇xφ̂
K + h

(
∇xφ

K
e +∇xφ

K
p

)︸ ︷︷ ︸
II

.

For I, one can use the definition of ωβ in (55) and the bound for Eγκβ in (62),
bound it in a similar way as in Lemma 5.2.∣∣∣∣∣∣

∑
|β|≤K

〈
IΦβ,

(v

2
+∇v

)
(1−Π)he,β

〉
µ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|β|≤K

〈∫
∇xφ̂

KhKe Φβ dµ(z),
(v

2
+∇v

)
(1−Π)he,β

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

|γ|,|κ|,|β|≤K

Eγκβ

〈
∇xφ̂γ he,κ,

(v

2
+∇v

)
(1−Π)he,β

〉∣∣∣∣∣∣
≤
√

5

2

∑
|γ|,|κ|,|β|≤K

∣∣∣∣Eγκβ

ωγ

∥∥∥ωγ φ̂γ

∥∥∥
H2

x

‖he,κ‖ ‖(1−Π)he,β‖ν

∣∣∣∣
≤
√

5

4

∑
|β|≤K

∑
|κ|≤K

∑
|γ|≤K

χγκβ

qγ

(
1

δ1

∥∥∥ωγ φ̂γ

∥∥∥2
H2

x

‖he,κ‖2 + δ1 ‖(1−Π)he,β‖2ν

)

≤
√

5

4

 1

δ1

 ∑
|γ|≤K

1

qγ

∥∥∥ωγ φ̂γ

∥∥∥2
H2

x

 ∑
|κ|≤K

‖he,κ‖2
 ∑

|β|≤K

χγκβ


+δ1

 ∑
|γ|≤K

1

qγ

 ∑
|β|≤K

‖(1−Π)he,β‖2ν

 ∑
|κ|≤K

χγκβ


≤
√

5

4

 1

δ1

 ∑
|γ|≤K

2|γ|
qγ

∥∥∥φ̂K∥∥∥2
H2

x,ω

(
D̃σKe

+ D̃hKe

)
+ δ1

 ∑
|γ|≤K

2|γ|
qγ

 D̃hKe


≤
√

5

2
A

(
1

δ1

∥∥∥φ̂K∥∥∥2
H2

x,ω

(
D̃σKe

+ D̃hKe

)
+ δ1D̃hKe

)
, (81)

where the second inequality is because of
Eγκβ

ωγ
≤ cγχγκβ

cγqγ
. The first term of the last

second inequality is because that for fixed γ,κ, by the definition of χγκβ in (61),
it is nonzero only if |κ| − |γ| ≤ |β| ≤ |κ| + |γ|, so

∑
|β|≤K χγκβ ≤ 2|γ|; while the

second term is because that for fixed γ, β,
∑
|κ|≤K χγκβ ≤ 2|γ|, A is defined in

(22).
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For II, by the Sobolev embedding (21), one has,∥∥∥∥∥hKp ∥∥L∞x ∥∥∥L∞z ≤ CS ∥∥hKp ∥∥Hrz (H2
x)
,
∥∥∥‖h‖L∞x ∥∥∥L∞z ≤ CS ‖h‖Hrz (H2

x)
,

where r is the smallest constant strictly larger than d
2 . So one can bound the second

part of the nonlinear term by,∣∣∣∣∣∣
∑
|β|≤K

〈
IIΦβ,

(v

2
+∇v

)
(1−Π)he,β

〉
µ

∣∣∣∣∣∣
=
∣∣∣〈hKp φ̂K + h

(
∇xφ

K
e +∇xφ

K
p

)
,
(v

2
+∇v

)
(1−Π)hKe

〉∣∣∣
≤δ2

∥∥hKp ∥∥2Hr,2 ∥∥∥φ̂K∥∥∥2ω + δ2 ‖h‖2Hr,2
(
D̃∇xφKe

+
∥∥∇xφ

K
p

∥∥2
µ

)
+

5

2δ2
D̃hKe

. (82)

Combine (81) and (82), one has,

(80) ≤1

ε

[(
δ2
∥∥hKp ∥∥2Hr,2 ∥∥∥∇xφ̂

K
∥∥∥2
ω

+ δ2 ‖h‖2Hr,2
∥∥∇xφ

K
p

∥∥2
µ

)
+

√
5A

2δ1

∥∥∥φ̂K∥∥∥2
H2

x,ω

D̃σKe

+

(√
5A

2δ1

∥∥∥∇xφ̂
K
∥∥∥2
H2

x,ω

+

√
5Aδ1
2

+
5

2δ2

)
D̃hKe

+ δ2 ‖h‖2Hr,2 D̃∇xφKe

]
, (83)

for δ1 = λ
6
√
5Aεa

, δ2 = 30εa

λ , which completes the proof.

Lemma 6.2. The macroscopic error estimate is

∂tGe +
1

4εa
D̃σKe

+
1

ε
D̃∇xφKe

≤ 4

εa
D̃hKe

+
5

2ε

(∥∥σKp ∥∥2Hr,2 ∥∥∥∇xφ̂
K
∥∥∥2
ω

+ ‖σ‖2Hr,2
∥∥∇xφ

K
p

∥∥2
µ

)
+

(
20A2

ε

∥∥∥∇xφ̂
K
∥∥∥2
H2

x,ω

+
10

ε
‖∇xφ‖2Hr,2

)
D̃σKe

+
1

2ε
D̃∇xφKe

, (84)

where Ge =
〈
uKe ,∇xφ

K
e

〉
+ 1

2ε Ẽ∇xφKe
.

Proof. Multiplying ∇xφe,β to the β-th row of (74), integrating it over x,v, and
summing over |β| ≤ K, since the linear part of (74) is similar to the linear part of
(28), it is straightforward to get the LHS of (84) and the first term on the RHS.
For the nonlinear term, we use the same method as in Lemma 6.1. Similar to (81)
- (83), one can bound the nonlinear term by,∣∣∣〈∇xφ̂

KσKe + σKp ∇xφ̂
K + σ

(
∇xφ

K
e +∇xφ

K
p

)
,∇xφ

K
e

〉∣∣∣
≤2A

(
δ3

∥∥∥φ̂K∥∥∥2
H2

x,ω

D̃σKe
+

1

δ3
D̃∇xφKe

)
+

1

2δ4

∥∥σKp ∥∥2Hr,2 ∥∥∥∇xφ̂
K
∥∥∥2
ω

+
δ4
2
D̃∇xφKe

+
〈
σ∇xφ

K
e ,∇xφ

K
e

〉
+

1

2δ5
‖σ‖2Hr,2

∥∥∇xφ
K
p

∥∥2
µ

+
δ5
2
D̃∇xφKe

, (85)

for δ3 = 10A, δ4 = 1
5 , δ5 = 1

5 . In order to get a sharp estimate, we need to carefully

deal with
〈
σ∇xφ

K
e ,∇xφ

K
e

〉
. Using (5) and integration by parts,〈

σ∇xφ
K
e ,∇xφ

K
e

〉
= −2

〈
∇xφσ

K
e ,∇xφ

K
e

〉
≤ 1

δ6
‖∇xφ‖2Hr,2 D̃σKe

+ δ6D̃∇xφKe
,

for δ6 = 1
10 , which completes the proof.
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Combine Lemma 6.1, Lemma 6.2 in a proper way, one has the following Lemma.

Lemma 6.3. Under the condition of

ÊK,N (0) ≤ C̃0

ε1+a
, Er,3q (0) ≤ C̃0

ε1+a
,

one has micro-macro error estimates,

∂tEe +
λ

32ε1+a
ẼhKe +

λ

16ε2
Ẽ∇xφKe

≤ I,

where C̃0 is the same as defined in Theorem 4.2 and

λ

16

(
ẼhKe +

1

ε2
Ẽ∇xφKe

)
≤ Ee ≤

(
1 +

λ

4

)(
ẼhKe +

1

ε2
Ẽ∇xφKe

)
,

I ≤ 31DM

λK2M

(
ξEM+r,3

q (0)ÊK,3ω (0) +DrE
r,3
q (0)EM,3

q (0)
)
.

Proof. (78) + λ
8ε (84) gives

1

2
∂tEe +

λ

2ε1+a
D̃hKe

+
λ

32ε1+a
D̃σKe

+
λ

8ε2
D̃∇xφKe

≤ 30

ε1−aλ

(∥∥hKp ∥∥2Hr,2 ∥∥∥∇xφ̂
K
∥∥∥2
ω

+ ‖h‖2Hr,2
∥∥∇xφ

K
p

∥∥2
µ

)
︸ ︷︷ ︸

I

+
5λ

16ε2

(∥∥σKp ∥∥2Hr,2 ∥∥∥∇xφ̂
K
∥∥∥2
ω

+ ‖σ‖2Hr,2
∥∥∇xφ

K
p

∥∥2
µ

)
︸ ︷︷ ︸

I

+

(
15A2

ε1−aλ

∥∥∥∇xφ̂
K
∥∥∥2
H2

x,ω

+
λ

6ε1+a

)
︸ ︷︷ ︸

II

D̃hKe

+

(
15A2

ε1−aλ

∥∥∥∇xφ̂
K
∥∥∥2
H2

x,ω

+
λ

8ε

(
20A2

ε

∥∥∥∇xφ̂
K
∥∥∥2
H2

x,ω

+
10

ε
‖∇xφ‖2Hr,2

))
︸ ︷︷ ︸

III

D̃σKe

+

(
30

ε1−aλ
‖h‖2Hr,2 +

λ

16ε2

)
︸ ︷︷ ︸

IV

D̃∇xφKe
, (86)

where Ee = ẼhKe + 1
ε1−a Ẽ∇xφKe

+ λ
4εGe. Moreover, similar to (44) - (46), Ee is

equivalent to ẼhKe + 1
ε2 Ẽ∇xφKe

in the sense of

λ

16

(
ẼhKe +

1

ε2
Ẽ∇xφKe

)
≤ Ee ≤

(
1 +

λ

4

)(
ẼhKe +

1

ε2
Ẽ∇xφKe

)
.

By Corollary 1, one has,

I ≤ 31DDM

λ(K + 1)2M

(
ξEM+r,3

q (0)ÊK,3ω (0) +DrE
r,3
q (0)EM,3

q (0)
)
,

II ≤ 15ε1+aA2ξ

λ
ÊK,3ω (0) +

λ

6ε1+a
,
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III ≤ 16A2ξ

λ
ÊK,3ω (0) +

5λDrE
r,3
q (0)

4
,

IV ≤ 30Dr

λε1−a
Er,3q (0) +

λ

16ε2
.

In order to control the RHS of (86) by the dissipation terms on the LHS, we require

II ≤ λ
4ε1+a , III ≤ λ

64ε1+a , IV ≤ 3λ
32ε2 , so ÊK,N (0), Er,3q (0) has to be bounded by,

ÊK,3ω (0) ≤ λ2

64× 32ε1+aA2ξ
, Er,3q (0) ≤ λ2

32× 30Drε1+a
.

Under the above initial condtion, (86) becomes,

1

2
∂tEe +

λ

64ε1+a
ẼhKe +

λ

32ε2
Ẽ∇xφKe

≤ I,

which completes the proof.

Based on the micro-macro error estimates and the fact that ẼhKe (0)+ 1
ε2 Ẽ∇xφ(0) =

0, one obtains,

ẼhKe (t) ≤ 16I

λ
t− λ

32ε1+a

∫ t

0

ẼhKe (s)ds,

Ẽ∇xφKe
(t) ≤ 16ε2I

λ
t− λ

16

∫ t

0

Ẽ∇xφKe
(s)ds.

By Grownwall’s inequality, one has,

ẼhKe (t) ≤ 16

λ
te−

λ

2ε1+a
tI, Ẽ∇xφKe

(t) ≤ 16

λ
te−2tε2I.

Then by (70), (71), one can bound the error of the approximation solution
(
ĥK , φ̂K

)
by ∥∥∥h− ĥK∥∥∥2

µ
≤
∥∥hKp ∥∥2µ +

∥∥hKe ∥∥2µ ≤ ‖h‖2HM+r,0

(K + 1)2(M+r)
+

16

λ
te−

λ

2ε1+a
tI.

Hence, under the condition of

EM+r,3
q , ÊK,3ω (0) ≤ C0

ε1+a
, ÊK,3ω (0) ≤ λ2

64× 32ε1+aA2ξ
,

Er,3q (0) ≤ λ2

32× 30Drε1+a
, (87)

one can obtain ∥∥∥h− ĥK∥∥∥2
µ
≤I0(t)e−

λ

2ε1+a
t

(K + 1)2M
,

where

I0

=

(
DME

M+r,3
q (0) +

16× 31DDM t

λ2

(
ξEM+r,3

q (0)ÊK,3ω (0) +DrE
r,3
q (0)EM,3

q (0)
))

≤DDME
M+r,3
q (0)

[
1 +

500

λ2

(
ξÊK,3ω (0) +DrE

r,3
q (0)

)
t

]
.

Note that the initial condition (59) in Theorem 4.2 is a sufficient condition to (87).
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Appendices.

A. The proof of Lemma 3.1. First, notice that

∑
i≤β

|i|
qi
ai ≤

√√√√∑
j≤β

(
|j|
qj

)2∑
j≤β

a2i ≤ A
√∑

i≤β

a2i ,

where A =
∑∞
|j|=0

|j|
(|j|+1)q . Since

A ≤
∫ ∞
1

|j|
(|j|+ 1)

q dj ≤
∫ ∞
1

d ‖j‖
‖j‖q

dj1 · · · djd,

by changing variables,

j1 = ρ cos θ1,

j2 = ρ sin θ1 cos θ2,

...

jd−1 = ρ sin θ1 · · · sin θd−2 cos θd−1,

jd = ρ sin θ1 · · · sin θd−2 sin θd−1,

one has,

A ≤
∫ ∞
0

(
d

ρ(q−1)

)
ρd−1 (sin θ1)

d−2
(sin θ2)

d−3 · · · (sin θd−2) dρ dθ1 · · · dθd−1

=

∫ ∞
0

(
d

ρq−d

)
dρ

∫ π

0

(sin θ1)
d−2

dθ1 · · ·
∫ π

0

sin θd−2 dθd−2

∫ 2π

0

1 dθd−1.

Since,∫ π

0

(sin θ1)
d−2

dθ1 · · ·
∫ π

0

sin θd−2 dθd−2 =

{
πm−1

(m−1)! , d = 2m
2m−1πm−2

(2m−3)(2m−5)···3·1 , d = 2m− 1,

by simple calculation,

∫ π

0

(sin θ1)
d−2

dθ1 · · ·
∫ π

0

sin θd−2 dθd−2 ≤ 11, then one has,

A ≤ 22dπ

∫ ∞
0

1

ρq−d
dρ = 22dπ (2q − d− 2) , for q > d+ 1,

which completes the proof.
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