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Abstract. Gas flow through pipeline networks can be described using 2 × 2
hyperbolic balance laws along with coupling conditions at nodes. The numer-

ical solution at steady state is highly sensitive to these coupling conditions

and also to the balance between flux and source terms within the pipes. To
avoid spurious oscillations for near equilibrium flows, it is essential to design

well-balanced schemes. Recently Chertock, Herty & Özcan[11] introduced a

well-balanced method for general 2× 2 systems of balance laws. In this paper,
we simplify and extend this approach to a network of pipes. We prove well-

balancing for different coupling conditions and for compressors stations, and

demonstrate the advantage of the scheme by numerical experiments.

1. Introduction. The study of mathematical models for gas flow in pipe networks
has recently gained interest in the mathematical community, see e.g. [3, 4, 9, 12, 27].
While in the engineering literature [31] the topic has been discussed some decades
ago, a complete mathematical theory has only emerged recently, see e.g. [16] for the
Euler system on networks, [14] for the p–system on networks and [8] for a recent
review article on general mathematical models on networks. Depending on the
scale of phenomena of interest, different mathematical models for gas flow might
be useful. A complete hierarchy of fluid–dynamic models has been developed and
discussed in [9]. Therein, typical flow rates and pressure conditions are given and
it is shown that a steady state algebraic model can be sufficient to describe average
states in a gas network. Models based on an asymptotic expansion of the pressure
may lead to further improvements in case of typical, slowly varying, temporal flow
patterns [23, 18]. If a finer resolution of the spatial and temporal dynamics is
required, the isothermal Euler equations (1) provide a suitable model [3]. Here we
focus on schemes which capture both steady states and small temporal and spatial
perturbations.

Schemes which preserve a steady state exactly are called well-balanced, and their
development is a lively topic in the field of hyperbolic balance laws, see e.g. the
monograph [32]. Usually, these schemes use specific knowledge of an equilibrium
state. As a consequence, well-balanced schemes for still water such as [1, 29], or
for moving water, [30], or for wet-dry fronts such as [6, 10], which all approximate
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solutions to the shallow water equations, use different discretization techniques. A
unified approach to well-balancing in one space dimension was recently proposed
by Chertock, Herty and Özcan [11], who integrate the source term in space and
subtract it from the numerical flux. This results in a new set of so-called equilibrium
variables. The equilibrium variables are then reconstructed, and their values at the
cell interfaces are used to compute numerical fluxes, which involve a new equilibrium
limiter. Chertock et al. demonstrated the feasibility of this approach using a second
order scheme for subsonic gas flow in a pipe with wall friction.

To the best of our knowledge, there is currently no well-balanced scheme for
hyperbolic flows on networks. Here spurious oscillations may not only be caused
by an imbalance of numerical fluxes and source terms, but also by discretization
errors at junctions and compressors. In the present paper, we extend the equilibrium
variable approach and develop a second order well-balanced scheme on a network.
We also simplify the numerical fluxes introduced in [11] by removing the equilibrium
limiter. High-order schemes for gas networks have been introduced only recently
in [2, 7, 28]. A challenging question would be to extend our new well-balancing
method to these more accurate schemes.

In the following we introduce the mathematical model for the temporal and
spatial dynamics of gas flow in pipe networks. For simplicity, we study a single
node x = xo where M pipes meet. The flow within each pipe i = 1 . . .M is
governed by the isothermal Euler equations

(Ui)t + F (Ui)x = S(Ui) (1)

with conservative variables Ui, flux F (Ui) and source S(Ui) given by

Ui =

[
ρi
qi

]
, F (Ui) =

[
qi

q2i
ρi

+ p(ρi)

]
, S(Ui) =

[
0

− fg,i
2Di

qi|qi|
ρi

]
. (2)

Here ρi, qi and p(ρi) are the density, momentum, and pressure of the gas, fg,i is the
friction factor and Di the diameter of pipe i. The pressure of the gas is given by
Gamma-law,

p(ρ) = κργ for γ ≥ 1. (3)

For the numerical tests we focus on the special case of isothermal pressure,

p(ρ) = ρRT = a2ρ, (4)

with speed of sound a > 0. However the well-balanced scheme discussed in the
following sections, including the proofs of Theorems 3.1 and 4.1 are valid for any
pressure given by Gamma-law (3). We complete (1) with initial conditions within
and boundary conditions at the ends of the pipes. The boundary conditions at a
node of multiple pipes are implicitly given by coupling conditions [3, 35], which take
the form of M nonlinear algebraic equations involving traces Ui of the conserved
variables at node xo. We write them in the general form

φ(U1, U2, ..., UM ) = 0, φ : R2M → RM . (5)

In [12, 13, 35] general conditions are identified which guarantee a well–posed problem
for initial data with suitable small total variation. If at a node the conservation of
mass and equality of adjacent pressures is assumed, then existence, uniqueness and
continuous dependence on the initial data for the p–system was shown in [15].
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For pipes with a junction, a flow which is steady within each pipe, and fulfills
the coupling conditions at the junction is called a steady state [22]. The coupling
conditions are further detailed in Sections 2 and 3.

O U3(x)

U1(x)

U2(x)

U∗1
U∗3

U∗2

Uo1

Uo2

Uo3

Figure 1. Intersection of three pipes at junction O. Right-
Zoomed view of the junction with old traces Uoi and new traces
U∗i given in Section 2

2. Review of coupling conditions for the p–system. Our construction of well-
balanced schemes is based upon analytical results for the isothermal Euler equations
which have already been established (see e.g. [3, 15] and the references therein).
For completeness, and to fix the notation, we would like to give a brief summary.

When we study the coupling condition, we set the source terms S(Ui) to zero.
This is based on the heuristic assumption that wall friction can be neglected at
the instance of interaction at the node. It can also be justified rigorously for the
semi-discrete scheme (38). The eigenvalues for the homogeneous 2 × 2 system (1)
are λ1 = q

ρ − a and λ2 = q
ρ + a. We assume that all states are subsonic, i.e.,

λ1(Ui) < 0 < λ2(Ui) for i = 1 . . .M. (6)

This assumption is satisfied for typical gas flow conditions in high–pressure gas
transmission systems. We denote the set of all incoming (respectively outgoing)
pipes by I− (respectively I+). For i ∈ I−, we parametrize the incoming pipes by
x ∈ Ωi := (−∞, xo). Similarly, we parametrize outgoing pipes j ∈ I+ by x ∈ Ωj :=
(xo,∞). Let us fix a time to ≥ 0. It is important to note that there are 2M different
traces at the node (xo, to). We denote them by,

Uoi := lim
x↑xo

lim
t↓to

Ui(x, t) for i ∈ I−, (7)

U∗i := lim
t↓to

lim
x↑xo

Ui(x, t) for i ∈ I−, (8)

Uoj := lim
x↓xo

lim
t↓to

Uj(x, t) for j ∈ I+. (9)

U∗j := lim
t↓to

lim
x↓xo

Uj(x, t) for j ∈ I+, (10)



662 YOGIRAJ MANTRI, MICHAEL HERTY AND SEBASTIAN NOELLE

Note that the limits are exchanged in (8) and (7) (respectively (10) and (9)), so
Uoi and Uoj are limits along the x-axis. We call them the old traces. The states U∗i
and U∗j are limits along the t axis, and we call them the new traces (see Figure 1).

The construction of the coupling conditions starts by connecting, within each
pipe, the old with the new trace by a Lax curve entering the pipe. For an incom-
ing pipe, this will be a curve U i(σi) of the first family with left state Ul := Uoi .
According to [17], this curve for γ = 1 is given by

1−R : U i(σi) := ρl e
σi

[
1

ul − aσi

]
for σi ≤ 0,

1− S : U i(σi) := ρl(1 + σi)

[
1

ul − aσi√
1+σi

]
for σi > 0.

(11)

Analogously, for an outgoing pipe, we use curves of the second family with right
state Ur := Uoj , which are given by

2−R : U j(σj) := ρr e
σj

[
1

ur + aσj

]
for σj ≤ 0,

2− S : U j(σj) := ρr(1 + σj)

[
1

ur +
aσj√
1+σj

]
for σj > 0.

(12)

We refer to [17] for case γ > 1. The Lax curves 1-R and 1-S(respectively 2-R and
2-S) have C2 continuity at the point Ul(respectively Ur).

The parameters σi, i = 1 . . .M will be determined from the M coupling condi-
tions

φ(σ1, . . . , σM ) := φ(U1(σ1), . . . , UM (σM )) = 0. (13)

Now we set

U∗i := U i(σi). (14)

By construction, the new traces satisfy the coupling conditions (5). Note that
the number of unknowns in (13) are halved compared to (5) as each conservative
variable, Ui ∈ R2 can be written in terms of single parameter σi ∈ R.

So far, we have reviewed the general framework which was established and applied
in [3, 15, 33]. In the following we focus on a particular coupling condition for which
we design a well-balanced scheme. Let Ai = π

4D
2
i be the area of the cross section

of pipe i. The default coupling condition requires that the total incoming mass flux
at each node xo equals the total outgoing mass flux,∑

i∈I−
Aiq
∗
i =

∑
j∈I+

Ajq
∗
j , (15)

since mass should not be accumulated or lost at the junction. Various approaches
have been studied in order to model the other (M − 1) coupling conditions. A
seemingly obvious choice would be conservation of momentum. However as mo-
mentum is a vector quantity it is difficult to describe the conservation of momen-
tum in a one-dimensional model as the junctions of the pipe are three-dimensional.
Multi-dimensional approaches considering a 2D node for a 1D flow have been dis-
cussed in [24, 5]. Coupling conditions based on enthalpy have also been studied in
[3, 27, 35, 34]. In general these coupling conditions can be represented in the form,

h(ρ∗i , q
∗
i ) = h∗(to) for all i ∈ I− ∪ I+. (16)
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In [35], Reigstad et al. showed that the coupling conditions are well-posed if the
function h is monotonic with respect to the parameter σ of the Lax curves,

d

dσ
h(ρ̄i(σ), q̄i(σ)) > 0 for all i ∈ I− ∪ I+. (17)

Our analytical results are obtained under the general coupling condition (16) (re-
spectively (31)), together with the monotonicity condition (17). In the numerical
experiments, we use the following pressure-coupling condition: we require that the
traces of the pressures should take one and the same value p∗ = p∗(to) at the t-axis,

p(ρ∗i ) = p∗(to) for all i ∈ I− ∪ I+. (18)

This condition is common in the engineering literature, and for a certain regime it
is indeed a suitable approximation of the two-dimensional situation [24].

Thus the coupling function (5) at a junction reads

φ(U1, . . . , UM ) =


∑
i∈I− Aiqi −

∑
j∈I+ Ajqj

p(ρ2)− p(ρ1)
...

p(ρM )− p(ρM−1)

 . (19)

We now turn to a junction which models a compressor between the incoming pipe
i = 1 and the outgoing pipe i = 2, both of the same diameter. The coupling
conditions for the new traces are

q∗1 = q∗2 , p(ρ∗2) = CRp(ρ∗1). (20)

Here CR ≥ 1 is the compression ratio. It is usually time–dependent, and we consider
it to be a given, external quantity. Thus the coupling function for the compressor
becomes

φ(U1, . . . , UM ) =

[
q2 − q1

p(ρ2)− CRp(ρ1)

]
. (21)

Summarizing, the analytical problem at the nodes is to connect the old traces
Uoi within each pipe to a new trace U∗i along the incoming Lax curve in such a way
that the new traces satisfy the coupling conditions across the node. It was proven
in [20, 12, 21] that this problem has a unique solution.

If the old traces are subsonic, and their variation is small enough, then the new
traces will be subsonic as well. The new traces serve as initial data in the Riemann
solver which determines the numerical flux.

In this paper, we show the analytical results of well-balancing for the case of
multiple pipes meeting at the junction. However the scheme is valid for the case of
compressor as well, as can be seen from the numerical results in Section 5.2.

3. Coupling conditions in terms of equilibrium variables. The difficulty in
preserving steady states is that the divergence of the conservative fluxes is approx-
imated by a flux-difference, while the source is usually integrated by a quadrature
over the cell. If this is not tuned carefully, the equilibrium state is not maintained,
and spurious oscillations may be created. Chertock, Herty and Özcan [11] resolved
this difficulty for one-dimensional balance laws by integrating the source term and
hence writing it in conservative form. They applied this approach to the Cauchy
problem for 2×2 balance laws. Here we extend their method to a node in a network.
Equation (1) can be stated as



664 YOGIRAJ MANTRI, MICHAEL HERTY AND SEBASTIAN NOELLE

(ρi)t + (Ki)x = 0, (qi)t + (Li)x = 0 (22)

where the flux variable,

Vi(Ui, Ri) =

[
Ki

Li

]
= F (Ui) +

[
0
Ri

]
(23)

and fluxes Ki, Li and an integrated source term Ri is given by

Ki := qi, Li :=
q2
i

ρi
+ p(ρi) +Ri(x), Ri(x) :=

∫ x

x̃i

fg,i
2Di

qi|qi|
ρi

dx. (24)

The point x̃i belongs to Ωi and is arbitrary but fixed. Later on, we choose x̃i = xo
for all i. We call (K,L) the equilibrium variables, since they are constant for steady
states. Let us consider the general pressure law (3). Given the integrated source
term Ri and the equilibrium variables Vi = (Ki, Li) we now solve equation (24)
for the conservative variables (ρi, qi). Omitting the subscripts of the pipes in the
following calculation, we rewrite (24) as

ρp− ρ(L−R) = −K2.

In other words, our task is to find the non-negative real roots of

ϕ(ρ) = c (25)

with

ϕ(ρ) := ργ+1 − bρ, b :=
L−R
κ

≥ 0, c := −K
2

κ
≤ 0. (26)

For ρ ≥ 0 the function ϕ is convex, has roots ρ0 = 0 and ρ1 = b1/γ and a critical
point in

ρ∗ =
( b

γ + 1

)1/γ

with corresponding minimum value

ϕ∗ = −γ
( b

γ + 1

)1+1/γ

.

An elementary calculation shows that if K,L and R belong to a sonic state (ρs, us),
then ρ∗ = ρs. Thus, if c = ϕ∗, then ρ∗ is a double root of (25). Else, if 0 ≥ c > ϕ∗,
we have two real roots ρ±, with

0 ≤ ρ− < ρ∗ < ρ+ < ρ1.

We find the supersonic root ρ− by a Newton iteration with initial value ρ0, and the
subsonic root ρ+ using the initial value ρ1. By convexity of ϕ, the convergence is
quadratic. In particular, if γ = 1, then the subsonic root in the ith pipe is given by

ρi(Vi, Ri) =
Li −Ri +

√
(Li −Ri)2 − 4K2

i a
2

2a2
, (27)

and hence

Pi(Vi, Ri) = a2ρi(Vi, Ri). (28)

Note that Ri appears as a parameter in (27). Similar to the discussion in the
previous section the conditions are stated for the traces of the equilibrium variables
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at xo. The dependence on xo is omitted for readability.∑
i∈I−

AiK
∗
i =

∑
j∈I+

AjK
∗
j , (29)

P (K∗i , L
∗
i ) = p∗ for all i ∈ I±, (30)

or more generally

H(K∗i , L
∗
i ) = h∗ for all i ∈ I± (31)

where H could be any any quantity such as momentum flux or Bernoulli invariant
as discussed in Section 2. Similarly, the coupling condition for a compressor in
terms of K and L reads

P (K∗2 , L
∗
2) = CR P (K∗1 , L

∗
1). (32)

For subsonic states, the coupling conditions (29),(30), (32) are equivalent to the
coupling conditions (15),(18), (20).

For steady states, Ki and Li are constant within each pipe, and the coupling
conditions are fulfilled at the junction. Evaluating the coupling conditions in terms
of the equilibrium variables V = (K,L) and the parameter R is an essential ingre-
dient of the well-balancing. Therefore, we rewrite the Lax-curves in terms of the
equilibrium variables:

1−R : V i(σi) := ρl e
σi

[
ul − aσi

(ul − aσi)2 + a2

]
+

[
0
Rl

]
for σi ≤ 0,

1− S : V i(σi) := ρl(1 + σi)

 ul − aσi√
1+σi(

ul − aσi√
1+σi

)2

+ a2

+

[
0
Rl

]
for σi > 0.

(33)

Similarly for the admissible boundary states on the pipes i ∈ I+ with given value
Rr and ur = qr/ρr, we obtain

2−R : V j(σj) := ρr e
σj

[
ur + aσj

(ur + aσj)
2 + a2

]
+

[
0
Rr

]
for σj ≤ 0,

2− S : V j(σj) := ρr(1 + σj)

 ur +
aσj√
1+σj(

ur +
aσj√
1+σj

)2

+ a2

+

[
0
Rr

]
for σj > 0.

(34)

The equilibrium variables satisfying the coupling condition (29) and (30) are
given by

K∗i := Ki(σi) and L∗i := Li(σi). (35)

Note that all variables defined along the Lax-curves also depend on the old traces
and the integrated source terms as parameters, e.g. V i(σi) = V i(σi;V

o
i , R

o
i ). For

given datum Ul, Ur we depict the parameterized wave curves for incoming and
outgoing pipes in the phase space of K and L, respectively, in Figure 2. From
the figure we observe that in the subsonic region, the 1–Lax curve is monotonically
decreasing and 2–Lax curves is monotonically increasing. The following theorem
proves that the coupling conditions stated in the variables K and L locally have a
unique solution.

Theorem 3.1. Consider a nodal point with |I−| ≥ 1 incoming and |I+| ≥ 1 outgo-

ing adjacent pipes. Suppose that the initial data Ûi = (ρ̂i, q̂i), i ∈ I± are subsonic on

each pipe and fulfill the coupling conditions (15) and (16). Let V̂i = (K̂i, L̂i), i ∈ I±

be the corresponding equilibrium variables, with integrated source terms R̂i.
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(a) Incoming pipes, i ∈ I− (b) Outgoing pipes, i ∈ I+

Figure 2. Phase plot in terms of equilibrium variables with initial
state V oi = (0.1, 0.4)T

Then there exists an open neighborhood V ⊂ R2M×M of (V̂ , R̂) := (V̂i, R̂i)i∈I±
such that for any old trace (V o, Ro) ∈ V there exists a unique new trace V ∗ such that
(V ∗, Ro) ∈ V fulfill the coupling conditions (29) and (30). Moreover, V ∗i is con-
nected to V oi by an incoming Lax curve along the respective pipe. The neighborhood
can be chosen sufficiently small, such that the corresponding states are subsonic.

Proof. Denote by M = |I−|+ |I+| the total number of connected pipes. For V :=
(Vi)i∈I± := (Ki, Li)i∈I± the coupling conditions (29) and (30) are given by the
function Ψ : R2M × R2M × RM → RM .

Ψ(V, (V o, Ro)) :=


∑
i∈I− AiKi −

∑
j∈I+ AjKj

H(V1)−H(V2)
...

H(VM−1)−H(VM )

 (36)

where H is a given coupling condition of the form (31). By assumption we have

Ψ(V̂ , (V̂ , R̂)) = 0. Now, we define

Ψ(σ, (V o, Ro)) := Ψ(V (σ), (V o, Ro)) : RM × R2M × RM → RM

where
V (σ) := (V i(σi))i∈I±

and the components of V i(σi) are given by equation (33) and equation (34), respec-
tively. Further, σ = (σi)i∈I± . Next, we compute the determinant of DσΨ(σ, (V o,
Ro)) at σ = 0. We have for i ∈ I− and j ∈ I+

DσΨ =



A1
dK1

dσ1
. . . A|I−|

dK|I−|
dσ|I−|

−A|I−|+j
dK|I−|+j
dσ|I−|+j

. . . j = 1, ...|I+|
dH1

dσ1
−dH2

dσ2
0 . . . . . . 0

0 dH2

dσ2
−dH3

dσ3
. . . . . . 0

. . .
. . .

. . .
. . .

0 . . . . . . 0 dHM−1

dσM−1
−dHMdσM


and therefore

det(DσΨ) = (−1)M−1
∑
i∈I−

(
Ai

dKi
dσi

∏
k∈I−,k 6=i

dHk
dσk

)
+(−1)M

∑
j∈I+

(
Aj

dKj
dσj

∏
k∈I−,k 6=j

dHk
dσk

)
,

(37)
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From equations (33) and (34), we obtain at σi = 0

dKi

dσi
(0) = qoi − aρoi < 0,

dLi
dσi

(0) =
(qoi − aρoi )2

ρoi
> 0,∀i ∈ I−,

dKi

dσi
(0) = qoi + aρoi > 0,

dLi
dσi

(0) =
(qoi + aρoi )

2

ρoi
> 0,∀i ∈ I+.

Hence,

sign(det(DσΨ)) = (−1)M
∑
i

sign
(dHi

dσi

)
.

Thus for any monotonic coupling condition, we see that det(DσΨ) 6= 0. The cou-
pling conditions such as pressure, momentum flux , Bernoulli invariant mentioned
in Section 2 are all monotonic at the point σi = 0.

For example, for the pressure coupling condition (using H(Ki, Li, Ri) = Pi in
(31)), we get

dHi

dσi
=

1

2

(
dLi
dσi

+
(Li −Ri)dLidσi

− 4a2Ki
dKi
dσi√

(Li −Ri)2 − 4a2K2
i

)
.

Hence, dHi
dσi

(σi = 0) = a2ρoi > 0 and therefore detDσΨ(0, (V o, Ro)) 6= 0.
Similarly for coupling condition given by continuity of momentum flux,

H(Ki, Li, Ri) = Li −Ri and hence

dHi

dσi
(0) =

dLi
dσi

(0) > 0.

Thus, by the implicit function theorem there exists an open neighborhood V of

V̂ such that for all initial data V o ∈ V there exists σ∗ such that V ∗ := V̄ (σ∗) fulfills
the coupling conditions, i.e.

Ψ(V ∗, (V o, Ro)) = Ψ(σ∗, (V o, Ro)) = 0.

Since the corresponding state of V̂ in conservative variables is strictly subsonic
we may assume, by possibility decreasing the size of V, that also the conservative
variables corresponding to (V ∗, Ro) are subsonic.

Using the same technique, we can also treat the compressor, because the pressure
changes monotonically along the Lax curves.

Corollary 1. Consider a nodal point with |I−| ≥ 1 incoming and |I+| ≥ 1 outgoing
pipes or a compressor connected to 1 incoming and 1 outgoing pipe. Suppose we

have an equilibrium state with subsonic initial data Ûi = (ρ̂i, q̂i), i ∈ I± in each
pipe and fulfilling the pressure coupling conditions (15) and (18) for a junction or

(20) for compressor. Let V̂i = (K̂i, L̂i), i ∈ I± be the corresponding equilibrium

variables, with integrated source terms R̂i. Then there exists an open neighborhood

V ⊂ R2M×M of (V̂ , R̂) := (V̂i, R̂i)i∈I± in the subsonic regime, such that for any old
trace (V o, Ro) ∈ V there exists a unique new trace V ∗ such that (V ∗, Ro) ∈ V fulfill
the coupling conditions (29) and (30) for a junction or (32) for a compressor.

Proof. The corollary follows from the proof of Theorem 3.1. One can also check
that the pressure for a general Gamma law is also monotonic, i.e.,

dPi
dσi

(σi = 0) =
γPi

dLi
dσi
− 2γKi

dKi
dσi

(
Pi
κ

)−1
γ

Pi

(γ + 1)Pi − (Li −Ri)
> 0.
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In case of a compressor the pressure of the gas is multiplied by the compression ratio
CR > 0 and hence it does not affect the monotonicity of the coupling condition.

Remark 1. Note that we have omitted the source term when computing the solu-
tion along the Lax curves. This is justified by the semi-discrete formulation of the
finite volume scheme in the next section, which implies that we are evaluating the
coupling condition at a set of measure zero in space-time. Since the source term is
bounded, it does not contribute to the integral over the cells.

Remark 2. Another possibility is to reformulate system (22) as a system of three
equations in (Ki, Li, Ri) with the equation for Ri given by

∂tRi = 0.

Therefore, the corresponding hyperbolic field has a zero eigenvalue in an indepen-
dent subspace. This yields a characteristic boundary at each adjacent pipe. Hence
in phase space, at each pipe i any value R̃i can be connected along a wave curve to
Ri. The central wave leads to a contact discontinuity of zero velocity at the nodal
point. Hence, the trace of Ri at x = xo is independent of R̃i.

4. A well-balanced central-upwind scheme for nodal dynamics. We com-
pute the evolution of the conservative variables using the second–order central
upwind scheme [26, 25]. The computational domain Ωi is discretized in cells
[xj− 1

2
, xj+ 1

2
] of size ∆x and centered at xj = x̄ + (j − 1

2 )∆x for j = 1, . . . , N .

We choose x̄ such that xN = xo for i ∈ I− and x0 = xo for i ∈ I+. For simplicity
the same number of cells N for all adjacent pipes will be used. The approximated
cell averages at fixed time t are computed as

U ji (t) =
1

∆x

∫ x
j+1

2

x
j− 1

2

Ui(x, t)dx, , i ∈ I±, j = 1, . . . , N.

The evolution of conservative variables, density and momentum using central up-
wind scheme [25, 26] reads

dU ji
dt

= −V
j+1/2
i − Vj−1/2

i

∆x
(38)

where Vj−1/2
i ,Vj+1/2

i are the fluxes across the left and right interface of cell j,
respectively. At the junction, the flux is the new trace of the equilibrium variable,

VN+1/2
i = V ∗i , i ∈ I−, (39)

V1/2
i = V ∗i , i ∈ I+. (40)

The new traces V ∗i are constructed with the help of Theorem 3.1 based on the old

traces V N,Ei , i ∈ I− and V 1,W
i , i ∈ I+. The point values of K and L at the cell

interfaces, i.e., Kj,E
i ,Kj,W

i , Lj,Ei , Lj,Wi , are computed using piecewise linear recon-

struction of Kj
i and Lji calculated using the cell averages (ρji , q

j
i ) using equation

(24). The values Ri are computed using a second–order quadrature rule applied to
the integral starting for example at x̃ = xo with Ri = 0 at each pipe according to
the following equations

R
1/2
i = R

N+1/2
k = 0 ∀i ∈ I+, k ∈ I−,

R
j+1/2
i = R

j−1/2
i +∆x

fg,i
2Di

qji |q
j
i |

ρji
, R

j−1/2
k = R

j+1/2
k + ∆x

fg,k
2Dk

qjk|q
j
k|

ρjk
.
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The equilibrium variables W ∈ {K,L} at the right and left boundaries of cell j can
be calculated as,

W j,E
i = W j

i +
∆x

2
(Wx)ji , W

j,W
i = W j

i −
∆x

2
(Wx)ji (41)

with numerical derivatives

(Wx)ji =


W j+1
i −W j

i

∆x , j = 1

W j
i −W

j−1
i

∆x , j = N

minmod
(
θ
W j+1
i −W j

i

∆x ,
W j+1
i −W j−1

i

2∆x , θ
W j
i −W

j−1
i

∆x

)
, otherwise,

(42)

θ ∈ [1, 2] and minmod limiter

minmod(w1, w2, . . . , wn) =


min(w1, w2, . . . , wn) if wi > 0, ∀i
max(w1, w2, . . . , wn) if wi < 0, ∀i
0 otherwise

(43)

For interior interfaces, we may use any conservative numerical flux functions whose
numerical diffusion vanishes at equilibrium states. Here we choose the central up-
wind flux,

Vj+1/2
i =

a
j+1/2
i,+ V j,Ei − aj+1/2

i,− V j+1,W
i

a
j+1/2
i,+ − aj+1/2

i,−

+ α
j+1/2
i (U j+1,W

i − U j,Ei ), (44)

where a
j+1/2
i,± are the maximum and minimum eigenvalues of the Jacobian, i.e.,

a
j+1/2
i,+ = max

(
λ(U j,Ei ), λ(U j+1,W

i ), 0
)
, a

j+1/2
i,− = min

(
λ(U j,Ei ), λ(U j+1,W

i ), 0
)

(45)

and α
j+1/2
i is the local diffusion computed as α

j+1/2
i =

a
j+1/2
i,+ a

j+1/2
i,−

a
j+1/2
i,+ −aj+1/2

i,−
. The conser-

vative variables U j+1,W
i , U j,Ei can be computed from the corresponding equilibrium

variables V j+1,W
i , V j,Ei and the integral term R

j+1/2
i using equation (27).

Remark 3. Note that in [11] an additional limiter was introduced to suppress the
numerical viscosity in (44) at equilibrium and assure well-balancing:in particular,

the numerical viscosity α
j+1/2
i was multiplied with a factor

H(φ) =
(Cφ)m

1 + (Cφ)m
(46)

where φ was given by
|Kj+1−Kj |

∆x
|Ω|

max{Kj ,Kj+1} for the mass equation and analogously

with K replaced by L for the momentum equation.

The following theorem shows that well-balancing is already assured by the con-

tinuity of the integrated source terms R
j+1/2
i at equilibrium.

Theorem 4.1. The numerical scheme given by (38) and flux defined by (44) pre-
serves the steady state across a node of M adjacent pipes and coupling conditions
given by (29) and (31).
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Proof. Consider steady state (V̂ , R̂) := (V̂i, R̂i)i∈I± . Then all numerical derivatives
defined in (42) vanish at equilibrium.

Since the equilibrium variables V j+1,W
i = V j,Ei = V̂i and the integral term R

j+1/2
i

are constant across the cell interface, we see that the conservative variables at the

cell interfaces are also continuous at equilibrium i.e. U j+1,W
i = U j,Ei . Thus the

numerical fluxes are given by Vj+1/2
i = V̂i for all j = 2, . . . , N − 1.

At the nodal point the flux variables satisfy the coupling conditions (29) and
(30). Then, the boundary data K∗i and L∗i are obtained according to Theorem 3.1.

Since the states are unique we obtain Kj
i = K∗i = K̂i and Lji = L∗i = L̂i and hence

the boundary fluxes for each pipe at the junction are VN+1/2
i = VN−1/2

i = (K̂i, L̂i)
T

for incoming pipes i ∈ I− and V1/2
j = V3/2

j = (K̂j , L̂j)
T for outgoing pipes j ∈ I+.

Hence, the scheme is well-balanced across the node.

Data: Given discretized initial conditions U ji (0) = Ui(x, 0)
while terminal time not reached do

Compute equilibrium variables (Kj
i , L

j
i , R

j
i ) by (24) ;

Reconstruct the values of K and L at the cell interface by (41) ;
Solve the coupling conditions,(29),(30) to find K∗i , L

∗
i Calculate

conservative variables (ρ, q) at the cell interface by equations (27) ;
Calculate fluxes (44) for interior cell boundaries and use K∗i , L

∗
i at

junction ;

Compute the time step ∆t = CFL∆x

maxi,j |λji |
where λji is the maximal

eigenvalue of the Jacobian in cell j and pipe i;
Evolve the conservative cell averages (38).

end

Some remarks are in order. The algorithm uses the same time step for all ad-
jacent pipes. This is not necessary but simplifies the computation of the coupling
condition. Also, the algorithm is second–order in the pipe but it may reduce to first
order at the coupling condition. The algorithm can be extended to second–order
across the nodal point using techniques presented in [2]. However, note that the
steady state is constant and therefore the scheme preserves the steady state to any
order across the nodal point.

5. Numerical tests. In this section, we test the well-balanced(WB) scheme with
numerical examples for steady state and near steady state flows. The results
of this WB method have been compared with a second order non well-balanced
method(NWB). The NWB scheme is given by,

dU ji
dt

= −F
j+1/2
i −F j−1/2

i

∆x
+ Sji (47)

where F is the HLL flux given by,

F j+1/2
i =

a
j+1/2
i,+ F (U j,Ei )− aj+1/2

i,− F (U j+1,W
i )

a
j+1/2
i,+ − aj+1/2

i,−

+ α
j+1/2
i (U j+1,W

i − U j,Ei )

where the flux terms are as defined in (2) and Sji is the source term given in (2) at

the point U ji . The coupling conditions (15), (18) are used to calculate the density
and momentum at a node. The coupling conditions at the node are solved with
Newton’s method for both WB and NWB schemes with initial guess for Newton’s
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iteration given by the solution in the pipe at the node, V N,Ei /UN,Ei ∀i ∈ I− and

V 1,W
i /U1,W

i ∀i ∈ I+ for WB/ NWB schemes respectively.
We run the tests at CFL number=0.4 and minmod parameter, θ = 1. All the

pipes in the examples have been considered to be of same diameter and friction

factor,
fg
2D = 1 and the speed of sound for the gas, a = 1. We test the scheme for

several well-balanced flows at junctions and compressors, as well as perturbations
of such steady states.

5.1. Steady state at a node. In the first example, we study the WB scheme for
steady state at a node with three types of pipe combinations–1 incoming and 1
outgoing pipes; 1 incoming and 2 outgoing pipe; and 2 incoming and 1 outgoing
pipe. The initial conditions are selected in such a way that the node is at steady
state with the equilibrium variables constant in each pipe and satisfying the coupling
conditions at the node.

The initial condition for first case with 1 incoming and 1 outgoing pipe are
K1 = K2 = 0.15 and p∗ = 0.332 corresponding to L1 = L2 = 0.4. Similarly for
the second case, of 1 incoming and 2 outgoing pipe, K1 = 0.15,K2 = K3 = 0.075
and p∗ = 0.332 or L1 = 0.4, L2 = L3 = 0.3492; and for 2 incoming and 1 outgoing
pipes, K3 = 0.15,K1 = K2 = 0.075 and p∗ = 0.332 or L3 = 0.4, L1 = L2 = 0.3492.

The L-1 error for the three cases are given in Table 1,

1 Incoming, 1 Outgoing 1 Incoming, 2 Outgoing 2 Incoming, 1 Outgoing

No. of cells
in each pipe

L1-error
for variable WB NWB WB NWB WB NWB

50 K 2.83x10−17 6.19x10−7 6.91x10−17 3.78x10−7 9.02x10−17 3.45x10−7

L 3.44x10−17 9.48x10−7 5.16x10−17 3.57x10−7 9.21x10−17 7.38x10−7

100 K 3.95x10−17 1.56x10−7 8.12x10−17 9.63x10−8 8.60x10−17 8.67x10−8

L 4.86x10−17 2.43x10−7 7.38x10−17 8.94x10−8 8.24x10−17 1.87x10−7

200 K 5.11x10−17 3.88x10−8 8.69x10−17 2.62x10−8 1.04x10−16 2.69x10−8

L 5.85x10−17 6.13x10−8 7.06x10−17 2.32x10−8 9.49x10−17 5.03x10−8

Table 1. Comparison of L-1 errors between well-balanced(WB)
and non well-balanced(NWB) scheme at steady state for a junction
at time T=1

As can be seen from the results in Table 1, the L-1 error ||K−K̂|| and ||L−L̂|| is
accurate up to machine precision using the WB scheme,whereas it is of the order of
10−7 to 10−8 with the NWB scheme. We can also note that the coupling conditions
in terms of (K,L) converge quickly using Newton’s method and do not affect the
well-balancing property of the scheme at the node.

5.2. Steady state with a compressor. In the second example, we study the
well-balancing at steady state for compressor connecting two pipes with compres-
sion ratios CR = 1.5, 2, 2.5. The initial conditions are selected in a way that the
compressor is at steady state for time,T=0. The momentum in the two pipes is
given by K1 = K2 = 0.15 and pressure is given by p∗1 = 0.332 and p∗2 = CRp∗1. The
L1 errors using the WB and NWB scheme are given in Table 2.

Similar to the first example, we see that the L1 errors using the WB scheme are
accurate up to machine precision. Also the coupling conditions for the compressor
do not affect the well-balancing of the scheme.
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CR=1.5 CR=2.0 CR=2.5

No. of cells
in each pipe

L1-error
for variable WB NWB WB NWB WB NWB

50 K 1.11x10−17 4.16x10−7 5.30x10−17 3.78x10−7 1.97x10−17 3.77x10−7

L 2.66x10−17 4.00x10−7 5.38x10−17 3.57x10−7 1.39x10−17 3.54x10−7

100 K 2.90x10−17 1.05x10−7 7.28x10−17 9.63x10−8 4.22x10−17 9.68x10−8

L 4.08x10−17 1.01x10−7 7.24x10−17 8.94x10−8 4.66x10−17 8.89x10−7

200 K 4.26x10−17 2.64x10−8 8.15x10−17 2.62x10−8 5.02x10−17 2.84x10−8

L 4.69x10−17 2.53x10−8 7.45x10−17 2.32x10−8 5.76x10−17 2.59x10−8

Table 2. Comparison of L-1 errors between well-balanced(WB)
and non well-balanced(NWB) scheme at steady state with a com-
pressor at different compression ratios at time T=1

5.3. Perturbations to steady state for a node. From the first two examples,
we can see that the WB scheme preserves steady state. We now compare the WB
and NWB scheme for initial conditions given by perturbations to momentum at
steady state. The initial conditions for the perturbed state are given by,

Ki(x) = K̂i + ηie
−100(x−x0)2 , Li = L̂i ∀i = 1, 2 . . .M (48)

where K̂i and L̂i are constant steady state equilibrium variables in the two pipes
and ηi is the magnitude of perturbation at the node.

At first, we consider a node connecting two pipes. The equilibrium variables for

this case are given by, K̂i = 0.15 and L̂i = 0.4. At first we consider perturbation of
ηi = 10−3 at the junction. The momentum at time T=0.2 are as shown in Figure
3,

(a) First Pipe (b) Second Pipe

Figure 3. Momentum for perturbation of order 10−3 for a node
connected to two pipes

We can see from the results that both the WB and NWB schemes provide similar
solutions for the perturbation of order 10−3 at the node. We now reduce this
perturbation to ηi = 10−6.

From Figure 4 we can see that the NWB scheme develops oscillations for N=100
when the perturbation is of order 10−6. The perturbation is resolved better for a
finer grid with N=500 per pipe. However in the case of WB method, the scheme is
able to capture the perturbations well even for a coarser grid of N=100 per pipe.

We now do a similar test for a node connected to 1 incoming and 2 outgoing

pipes. The equilibrium states are given by, K̂1 = 0.15, K̂2 = K̂3 = 0.075 and L̂1 =

0.4, L̂2 = L̂3 = 0.3492. We also run this simulation for two perturbations of order
10−3 and 10−6 up to a time T=0.2. Figure 5 shows the result for momentum with
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(a) First Pipe (b) Second pipe

Figure 4. Momentum for perturbation of order 10−6 for a node
connected to two pipes

η∗1 = 10−3, η∗2 = η∗3 = 0.5x10−3 and Figure 6 for η∗1 = 10−6, η∗2 = η∗3 = 0.5x10−6

respectively.

(a) First pipe (b) Second pipe

(c) Third pipe

Figure 5. Momentum for perturbation of order 10−3 for a node
connected to one incoming and two outgoing pipes

We see from the results that even for the perturbations of order 10−3, the results
from NWB scheme are unstable when there is a sharp increase in momentum. The
results of NWB scheme are even more oscillatory when the perturbations are of
order 10−6. Further even with a finer resolution, we can see a spike in the region
where there is a jump in momentum. However, these issues are resolved with the
WB scheme. The results of WB scheme with coarser grid are a bit more diffusive
than the finer grid, but there are no instabilities arising in the solution.

5.4. Shock at the node. So far we have tested the scheme for smooth near-
equilibrium solutions. Now we consider a discontinuity at a junction of 1 incoming
and 2 outgoing pipes, i.e. ρ1 = 5, ρ2 = 4, ρ3 = 3 and q1 = q2 = q3 = 1. This results
in a rarefaction and two shocks moving into the pipes, so the solution is far from
equilibrium. The boundary condition is given by momentum at the inlet, qin = 1
and density at outlet, ρ2,out = 4, ρ3,out = 3. The solution at time T = 0.1, 0.25 with
WB and NWB scheme are shown in Figure 7 and Figure 8 respectively.
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(a) First pipe (b) Second pipe

(c) Third pipe

Figure 6. Momentum for perturbation of order 10−6 for a node
connected to one incoming and two outgoing pipes

(a) Density (b) Momentum

Figure 7. Conservative variables, ρ, q at T=0.1 in pipes 1, 2, 3
with WB and NWB scheme

(a) Density (b) Momentum

Figure 8. Conservative variables, ρ, q at T=0.25 in pipes 1, 2, 3
with WB and NWB scheme

From the above test, we can see that the scheme is able to capture shocks. The
solution shows a 1-wave moving towards left into the first pipe from the junction
and a 2-wave towards right into the second and third pipes. Similar solutions were
obtained by Egger[19] using a conservative mixed finite element method with a
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stagnation enthalpy coupling condition. In Figures 7 and 8, we use the classical,
non-well -balanced scheme (using U -variables) as reference and observe that the
solutions are nearly identical. We can also note that the solution satisfies the
coupling conditions at the node i.e. the pressure is constant at the node and sum of
momentum of second and third pipe is equal to the momentum of first pipe. Note
that the Newton iteration failed for this example when using the H-limiter (46).

6. Conclusion. In this paper we have extended the recent, equilibrium variable
based approach to well-balancing, developed by Chertock, Herty and Özcan[11] for
one-dimensional systems, to a network of gas pipelines with friction. In particular we
studied intersections of pipes at a node and compressors within a pipeline network.
We prove well-posedness and well-balancing of the new scheme. For compressors
and for junctions of three pipes, numerical experiments demonstrate that equilibria
are resolved up to machine accuracy. Most interestingly, near equilibrium flows
are resolved robustly and accurately, even in cases where a standard non-balanced
scheme fails. For flows away from equilibrium, including shocks emanating from a
junction, the scheme is as good as a standard scheme using conservative instead of
equilibrium variables.
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