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Abstract. In recent years, opinion dynamics has received an increasing atten-

tion and various models have been introduced and evaluated mainly by simu-

lation. In this study, we introduce a model inspired by the so-called “bounded
confidence” approach where voters engaged in an electoral decision with two

options are influenced by individuals sharing an opinion similar to their own.

This model allows one to capture salient features of the evolution of opinions
and results in final clusters of voters. We provide a detailed study of the

model, including a complete taxonomy of the equilibrium points and an anal-

ysis of their stability. The model highlights that the final electoral outcome
depends on the level of interaction in the society, besides the initial opinion

of each individual, so that a strongly interconnected society can reverse the
electoral outcome as compared to a society with looser exchange.

1. Introduction. Studies on opinion dynamics aim to describe the processes by
which opinions develop and take form in social systems, and research in this field
goes back to the early fifties, [10, 12]. In opinion studies, the word “consensus”
refers to the agreement among individuals of a society towards a common view, a
concept relevant to diverse endeavors of societal, commercial and political interest.
Consensus in opinion dynamics has been the object of several contributions such as
[11, 23, 24, 28, 4, 5, 6, 14]. A commonplace of these studies is that public opinion
often evolves to a state in which one opinion predominates, but complete consensus
is seldom achieved. Some basic models for opinion dynamics are described in the
recent monographs [27] and [21].

Most models in opinion dynamics are linear. One of the first nonlinear models was
analyzed in [19, 18], where the notion of “bounded confidence” was also introduced.
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Bounded confidence concepts were further developed in [15, 8], while other nonlinear
models based on similar approaches were studied in [7, 30]. As we shall see, the
notion of bounded confidence is quite relevant to the present contribution. In 2002,
Hegselmann and Krause, [15], published an interesting study about an opinion
model with bounded confidence, later called the Hegselmann - Krause (HK) model,
and provided computer simulations to illustrate the behavior of this model. In the
same publication, they also noted that “rigorous analytical results are difficult to
obtain”. After that, the HK model, and its generalizations, attracted a significant
deal of attention, see e.g. [9, 26, 20, 1, 22, 3, 2, 17, 29, 31, 13]. In particular,
some theoretical results on sufficient conditions of convergence valid for a wide class
of models of continuous opinion dynamics based on averaging (including the HK
model and some models studied by Weisbuch and Deffuant) were obtained in [25].
Paper [16] extends the HK model by also including leaders and radical groups and
derives various interesting behaviors resulting from this extension.

In this paper, we are especially interested in the dynamics of voters that have
to choose between two alternatives. In this context, a natural assumption is that
voters are more influenced by individuals sharing a similar opinion, which, when
taken to its extreme, leads to models with bounded confidence. We shall discuss
more in detail this aspect below after introducing the model. We contend that this
situation leads to fixed points in the dynamics that correspond to the formation of
opinion clusters. We study analytically these fixed-points, and also analyze their
stability properties. Although the present study refers to a simplified model, it is
able to unveil and explain at a theoretical level fundamental features that have been
observed in practice.

While the model is described in detail in the next section, for explanation pur-
poses we feel advisable to introduce here certain salient features of it. A population
is formed by N individuals, also called “agents”. The agents’ opinion in regard
of an electoral question with two options (identified by the numbers −1 and 1) is
described by vk ∈ [−1, 1], k = 1, . . . , N , where a value close to −1 means that the
individual k carries an opinion more in favor of the option −1, while the opposite
holds with a value vk close to 1. Opinions vk evolve in discrete time through inter-
action. At any point in time, the new opinion of agent k is formed by taking into
account the opinions of agents whose value vl are not too distant from vk (bounded
confidence). More precisely, fix a number ε > 0 (not necessarily a small number)
and denote by J(vk) the set of indices l of agents with opinions ε-close to vk, i.e.

J(vk) = {l ∈ {1, . . . , N} : |vl − vk| ≤ ε}.

The new opinion of agent k is obtained by adding to vk a value proportional to the
average of opinions vl over the set J(vk) and “cutting” the new value if it exceeds
the boundaries of the interval [−1, 1] (for a precise description, refer to the next
section). It turns out that, apart from special configurations that give unstable
equilibria, this dynamics leads to final configurations where the population splits
in two clusters, having values −1 and 1. When taking the average to compute the
value by which vk is updated, also the value of agent k is included in the calculation.
In the extreme case where an agent has no other ε-close agents, this implies that
this agent reinforces her/his belief: in absence of counter-arguments, one tends to
strengthen her/his own initial opinion; in general, one’s opinion is compared with
the opinion of others in a neighborhood to determine the evolution.
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In the proposed model, an agent is only influenced by agents who are having a
similar idea. This modeling assumption only holds in first approximation as agents
may also interact with others that think quite differently and get influenced by them.
Hence, this model only captures the predominant elements in a social interaction,
while it neglects various second-order aspects. We also note that assuming that
agents are “deaf” to others thinking differently is getting more realistic as the world
evolves towards interaction schemes based on social media and the web where the
contacts and sources of information are selected by the users.

The structure of the paper is as follows. In Section 2, the mathematical definition
of the model is given. Section 3 is devoted to study the dynamical behavior of the
solutions generated by the model: we describe fixed points, study their stability,
and show that any positive trajectory tends to a fixed point. Numerical examples
are finally presented in Section 4. These examples show interesting features, for
example that the level of interaction influences the opinions in the long run to the
point that the predominance of one option over the other can be reversed depending
on the interaction level in the society.

2. Definition of the opinion model. The opinion of N agents is described by
the finite array

V = (vk ∈ [−1, 1], k = 1, . . . , N),

where vk has to be interpreted as the level of appreciation of agent k for one among
two options: a value vk close to −1 means that agent k has a preference for option
−1, and the closer vk to −1, the stronger the preference; the opposite holds for
option 1. Denote by V = [−1, 1]N the set of such arrays.

We fix two numbers h, ε ∈ (0, 1). In addition, we fix two functions, a(v, w) and
i(v) (called affinity and influence function, respectively).

In this study, the function a(·, ·) is defined as follows:

a(v, w) = 1 if |v − w| ≤ ε and a(v, w) = 0 otherwise.

If a(vk, vl) = 1, we sometimes say that “vk is influenced by vl.”
The i(·) function is instead defined simply as:

i(v) = v. (1)

For k = 1, . . . , N , denote by J(vk) the set of indices l ∈ [1, N ] (here and below,
we denote by [a, b] the set of indices {a, . . . , b}) such that |vl− vk| ≤ ε and by I(vk)
the cardinality of the set J(vk).

We study the dynamics on V defined by the following operator Φ. First we fix a
V ∈ V and consider the auxiliary array

W (V ) = (w1(V ), . . . , wN (V ))

defined as follows

wk(V ) = vk + h

N∑
l=1

i(vl)a(vk, vl)

I(vk)
, k = 1, . . . , N.

Note that the second term in the equation also contains agent k itself, which reflects
the fact that an agent’s opinion has a tendency to reinforce and drift towards a
higher level of belief in the absence of opposite voices. In social sciences, this
behavior is in agreement with the so-called “reinforcement theory” according to
which people do not like to change their opinions and are keen on recognizing
cognitive support to their pre-existing beliefs.
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Sometimes, when this does not lead to confusion, we write W (V ) = (w1, . . . , wN )
instead of W (V ) = (w1(V ), . . . , wN (V )).

Due to (1),

wk(V ) = vk +
h

I(vk)

∑
l∈J(vk)

vl. (2)

After that, we define

Φ(V ) = (v′1, . . . , v
′
N )

by “cutting” the elements of W (V ) according to the rule

v′k = −1 if wk < −1, v′k = 1 if wk > 1,

and

v′k = wk if |wk| ≤ 1.

Obviously,

Φ(V) ⊆ V.
Note that if we replace in (2) vl by vl − vk and take h = 1, then we get the HK

model.
We want to study the fixed points of the operator Φ, and their stability.

3. Dynamics of the opinion model. We start with an initial array V = V 0 with
the following property:

v01 ≤ · · · ≤ v0N .
This choice is without loss of generality because we can always arrange initial

opinions in non-decreasing order and the dynamics described in the previous section
does not depend on the order, it only depends on the values. In our case, an ordering
reflecting the initial preferences of the voters seems to be the most convenient.

Let

V n = Φn(V 0) = (vn1 , . . . , v
n
N ).

First let us note some important properties of the operator Φ.
We need a simple technical statement (for its proof, see, for example, item (i) of

Lemma 2 in [18]).

Lemma 3.1. If

x1 ≤ · · · ≤ xn ≤ y1 ≤ · · · ≤ ym,
then

x1 + · · ·+ xn
n

≤ x1 + · · ·+ xn + y1 + · · ·+ ym
n+m

≤ y1 + · · ·+ ym
m

.

Take an array V = (v1, . . . , vN ) such that

v1 ≤ · · · ≤ vN
and consider the “increments”

∆k = wk(V )− vk.

Lemma 3.2. The following inequalities hold:

∆k+1 ≥ ∆k, k = 1, . . . , N − 1. (3)
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Proof. Let J(vk) = [a, a + l] with va ≤ · · · ≤ va+l and J(vk+1) = [b, b + m] with
vb ≤ · · · ≤ vb+m. By formula (2),

∆k = h
va + · · ·+ va+l

l + 1

and

∆k+1 = h
vb + · · ·+ vb+m

m+ 1
.

If J(vk) ∩ J(vk+1) = ∅ (which is equivalent to the inequality a+ l < b), then (3)
obviously holds.

Otherwise, let J(vk) ∩ J(vk+1) = [b, a+ l]; it follows from Lemma 3.1 that

va + · · ·+ va+l

l + 1
≤ vb + · · ·+ va+l

a+ l − b+ 1
≤ vb + · · ·+ vb+m

m+ 1
,

which completes the proof.

The following statements are more or less obvious but since we use them many
times, we formulate them separately.

Applying induction on n based on Lemma 3.2, the following properties of V n =
Φn(V 0) can be easily established.

Corollary 1. (a) Every array V n is non-decreasing;
(b) If vnk = 1, then vnl = 1 for l > k;
(c) If vnk = 1, then vmk = 1 for m > n.

We do not explicitly formulate obvious analogs of items (b) and (c) for vnk = −1.
Let us explain a step of the induction in proving item (a) when we pass from

n = 0 to n = 1 (the other steps are similar). Inequalities (3) for ∆k = wk(V 0)− v0k
and the non-decreasing property of V 0 imply that the W (V 0) is non-decreasing;
hence, V 1 is non-decreasing as well.

(b) follows from (a).
(c) If v0k = 1, then v0k is not influenced by negative v0l (since ε < 1); hence, w1

k ≥ 1
and v1k = 1.

We next move to consider fixed points of Φ. Recall that P ∈ V is a fixed point
of Φ if Φ(P ) = P .

First, we mention a class of fixed points which is important for us (as we show
below, almost all positive trajectories of Φ tend to such fixed points). Let P =
(−1,−1, . . . ,−1, 1, . . . , 1), where the first L entries equal −1 while the remaining
equal 1. We do not exclude the cases of P = (−1, . . . ,−1) (in which L = N) and
P = (1, . . . , 1) (in which we formally set L = 0). Any such P is a fixed point of Φ.
This follows from item (c) of Corollary 1 (and its analog for vnk = −1).

Let us call any such P = (−1,−1, . . . ,−1, 1, . . . , 1) a basic fixed point of Φ. We
are going to show that any basic fixed point is asymptotically stable for Φ (see
Theorem 3.4).

Let us start with a simple statement which we often use below.

Lemma 3.3. If v0k ≥ ε, then there exists an n0 ≥ 0 such that vnk = 1 for n ≥ n0.

Proof. Condition v0k ≥ ε gives that v0k is not influenced by negative v0l . On the other
hand, k ∈ J(vk) so that

wk(V 0) ≥ v0k +
h

N
v0k ≥ ε

(
1 +

h

N

)
.
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If wk(V 0) ≥ 1, then v1k = 1, and our statement follows from item (c) of Corollary
1. Otherwise,

wk(V 1) ≥ ε
(

1 +
h

N

)
+
hε

N

(
1 +

h

N

)
> ε

(
1 +

2h

N

)
,

and so on, which obviously implies our statement.

The same reasoning shows that if v0k ≤ −ε, then there exists an n0 ≥ 0 such that
vnk = −1 for n ≥ n0.

Introduce the following metric on V: if

V = (v1, . . . , vN ) and V ′ = (v′1, . . . , v
′
N ),

set
ρ(V, V ′) = max

1≤k≤N
|vk − v′k|.

Theorem 3.4. Let P be a basic fixed point. If

ρ(V 0, P ) ≤ 1− ε, (4)

then there exists an n0 such that

Φn(V 0) = P, for n ≥ n0.

Proof. Let V 0 = (v01 , . . . , v
0
N ) satisfy inequality (4). Then

|v0k| ≥ ε, k = 1, . . . , N,

and our theorem follows from Lemma 3.3 since the number of components of V 0 is
finite.

Remark 1. One can establish the convergence to basic fixed points under weaker
conditions than (4). Assume, for example, that

v01 ≤ · · · ≤ v0L < 0 < v0L+1 ≤ · · · ≤ v0N
and

v0L+1 − v0L > ε.

Then the same reasoning as in Lemma 3.3 shows that Φn(V 0) = P for some finite
n, where P is a basic point.

There exist fixed points that are not basic; we show below that they are unstable.
A simple example of such a fixed point is as follows. Let N = 3; clearly, P =
(p1, p2, p3) = (−1, 0, 1) is a fixed point of Φ. We first describe all possible nonbasic
fixed points of Φ.

Theorem 3.5. If P is a nonbasic fixed point of Φ, then either

P = (−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1) (5)

or
P = (−1, . . . ,−1, pa, . . . , pl, 0, . . . , 0, pb, . . . , pm, 1, . . . , 1), (6)

where
− ε < pk < 0, k ∈ [a, l], (7)

0 < pk < ε, k ∈ [b,m], (8)

J(pk) = [a,m], k ∈ [a,m], (9)

and
pa + · · ·+ pm = 0. (10)
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Proof. It is clear that if P is a nonbasic fixed point that does not have form (5),
then it has form (6) with pa, . . . , pl ∈ (−1, 0) and pb, . . . , pm ∈ (0, 1).

Inequalities (7) and (8) follow from Lemma 3.3.
Let us prove the remaining statements.
Since pa < 0 and P is a fixed point, pa is influenced by positive pi and it cannot

be influenced by pi = 1. Hence, there exists an index r(a) ∈ [b,m] such that either

J(pa) = [1, r(a)] (11)

or

J(pa) = [a, r(a)]. (12)

Note that these cases are different only if a > 1.
Since P is a fixed point,

− (a− 1) + pa + · · ·+ pr(a) = 0 (13)

in the first case and

pa + · · ·+ pr(a) = 0 (14)

in the second case.
It follows from (7) that any pk with k ∈ [a, l] is influenced by pa.
Thus, if pa+1 < 0, then there exists an index r(a+ 1) ∈ [b,m] such that either

J(pa+1) = [1, r(a+ 1)] (15)

or

J(pa+1) = [a, r(a+ 1)]. (16)

We claim that
• if a > 1, then (11) implies (15);
• (12) implies (16);
• in both cases (15) and (16), r(a+ 1) = r(a).
To prove the first claim, we note that if a > 1 and (11) holds, then

pa + · · ·+ pr(a) = a− 1 > 0,

while if (16) holds, then

pa + · · ·+ pr(a) = 0 if r(a) = r(a+ 1)

and

pa + · · ·+ pr(a) = −pr(a)+1 − · · · − pr(a+1) < 0 if r(a) 6= r(a+ 1).

The second claim follows from the fact that if pa is not influenced by pi = −1,
then pa+1 ≥ pa cannot be influenced by pi = −1 as well.

To prove the third claim, we compare the equality

−(a− 1) + pa + · · ·+ pr(a) + pr(a+1) = 0

with (13) in the first case and the equality

pa + · · ·+ pr(a) + pr(a+1) = 0

with (14) in the second case and note that pr(a+1) must be positive.
Continuing this process, we conclude that either J(pk) = [1, r(k)] for all k ∈ [a, l]

or J(pk) = [a, r(k)] for all k ∈ [a, l], and, in both cases,

r(a) = r(a+ 1) = · · · = r(l).

Clearly, this common value must be equal to m (since, otherwise, pm is not
influenced by negative pi, which is impossible for the fixed point P ).
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In the second case, the equality r(a) = m implies (9), and equality (14) implies
(10).

To complete the proof of the theorem, it remains to show that if a > 1, then the
first case is impossible.

To do this, let us start with pm and “move in the opposite direction”: find
t(m) ∈ [a, l] such that J(pm) = [t(m), N ] or J(pm) = [t(m),m], and so on.

Repeating the above reasoning, we get either the equality

pa + · · ·+ pm = m−N ≤ 0

or equality (10); both contradict the equality

pa + · · ·+ pm = a− 1 > 0

obtained above.

Now we are going to prove that if P is a nonbasic fixed point of Φ, then P is
unstable in a strong sense: P has a neighborhood U such that for any point V ∈ U
not belonging to a subset of U of positive codimension, the trajectory Φn(V ) leaves
U as n grows. The authors are grateful to A. Proskurnikov who have noticed this
fact and suggested the idea of the proof of the following theorem.

Theorem 3.6. If P is a nonbasic fixed point of Φ having form (5) or (6), then
there exists a d > 0 such that if

U = {V : ρ(V, P ) < d}

and

Π = {V : va + · · ·+ vm = 0},
then for any point V ∈ U \Π there exists an n > 0 such that Φn(V ) /∈ U .

Proof. We impose several conditions on d.
First, it follows from (7) and (8) that we can take d so small that if V ∈ U , then

− ε < va ≤ · · · ≤ vm < ε. (17)

Second, condition (9) implies that if a 6= 1 (i.e., P has components equal to −1),
then pa is not influenced by these components (i.e., pa +1 > ε). Similarly, pm is not
influenced by components +1 (if they exist). Hence, we can take d so small that if
V ∈ U , then

J(vk) ⊆ [a,m], k ∈ [a,m].

Finally, we take d so small that

h

N
(pm − d) > 2d and − h

N
(pa + d) > 2d (18)

(recall that pm > 0 and pa < 0).
Denote

s(V ) = va + · · ·+ vm.

First we claim that if V ∈ U and

J(vm) 6= [a,m], (19)

then Φ(V ) /∈ U .
Assume that s(V ) ≥ 0. It follows from (17) and (19) that J(vm) = [k,m], where

k ≤ b (since vm is influenced by all positive components of V with indices in [b,m]).
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If wm(V ) ≥ 1, then v1m equals 1, and our claim follows from (17). Otherwise,

v1m = wm(V ) = vm +
h

m− k + 1
(vk + · · ·+ vm).

Since
vk + · · ·+ vm = s(V )− (va + · · ·+ vk−1) ≥ −va

(we take into account that s(V ) ≥ 0 and va+1, . . . , vk−1 ≤ 0), it follows from the
inequalities m− k + 1 ≤ N , va < pa + d, and (18) that

v1m − vm ≥ −
h

m− k + 1
va > −

h

N
(pa + d) > 2d,

which is impossible if V ∈ U and Φ(V ) ∈ U .
If s(V ) < 0, we apply a similar reasoning taking into account that relation (19)

implies the relation J(va) 6= [a,m].
Now let us take a point V ∈ U and assume that Φn(V ) ∈ U for all n > 0. It

follows from our previous reasoning that in this case,

J(vnk ) = [a,m], k ∈ [a,m],

for all n. Then, with the notation s0 = s(v), we have

v1k = vk +
h

m− a+ 1
(va + · · ·+ vm) = vk +

hs0
m− a+ 1

, k ∈ [a,m],

which yields
s(Φ(V )) = s0(1 + h).

Similarly,

s(Φ2(V )) = s(Φ(V ))(1 + h) = s0(1 + h)2, . . . , s(Φn(V )) = s0(1 + h)n,

and so on.
If V /∈ Π, then s0 6= 0, and the above value is unbounded as n → ∞, which is

impossible since the values S(V ) for V ∈ U are bounded.
This completes the proof.

Now we prove that if
ε ≤ 1/2, (20)

then the trajectories of Φ tend to fixed points.

Theorem 3.7. If condition (20) is satisfied, then any trajectory Φn(V 0) tends to
a fixed point of Φ as n→∞.

Proof. Corollary 1 implies that if vnk = −1, then vml = −1 for m ≥ n and l ≤ k;
similarly, if vnk = 1, then vml = 1 for m ≥ n and l ≥ k.

Since the number of components of V n = Φn(V 0) is finite, we conclude that
there exist integers 1 ≤ a < b ≤ N and n1 ≥ 0 such that if n ≥ n1, then

V n = (−1, . . . ,−1, vna , . . . , v
n
b , 1, . . . , 1),

where
|vnk | < 1, k ∈ [a, b];

in words, the number of components equal to ±1 “stabilizes.”
If the “middle” part (vn1

a , . . . , vn1

b ) is absent, Φn1(V ) is a fixed point, and our
statement is proved.

To simplify further the notation, assume that n1 = 0. Clearly, our problem is to
describe the behavior of (vna , . . . , v

n
b ) as n grows.
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It was shown in Lemma 3.3 that if |v0k| ≥ ε for some k ∈ [a, b], then |vnk | = 1 for
large n, which is impossible. Hence,

− ε < vna ≤ · · · ≤ vnb < ε, n ≥ 0. (21)

These inequalities and condition (20) imply that

J(vnk ) ⊂ [a, b], k ∈ [a, b], n ≥ 0.

It follows that the behavior of (vna , . . . , v
n
b ) is determined by components of V n

with indices from a to b. Thus, without loss of generality, we may assume that we
study the behavior of V n with |vnk | < ε, 1 ≤ k ≤ N, n ≥ 0.

Let

N (V ) = {(k, l) ∈ [1, N ]× [1, N ] : |vk − vl| > ε}
be the set of pairs (k, l) of indices such that vk is not influenced by vl et vice versa.

We prove the following simple but relevant statement separately.

Lemma 3.8.

N (V n) ⊆ N (V n+1), n ≥ 0. (22)

Proof. Inclusion (22) means that if |vnk − vnl | > ε, then

|vn+1
k − vn+1

l | > ε

as well.
Assume, for the sake of clarity, that vnk − vnl > ε (the symmetric case is treated

similarly). Then k > l, and if we write

wk(V n) = vnk + ∆k, wl(V
n) = vnl + ∆l,

our statement follows from the inequality ∆k ≥ ∆l (see Lemma 3.2) and from the
equalities vn+1

k = wk(V n) and vn+1
l = wl(V

n) (see inequalities (21)).
Thus, we get a nondecreasing sequence of subsets of [1, N ]× [1, N ]:

N (V 0) ⊆ N (V 1) ⊆ · · · ⊆ N (V n) ⊆ · · ·

Since the set [1, N ] × [1, N ] is finite, there exists an n2 and a subset N (V )∗ of
[1, N ]× [1, N ] such that

N (V n) = N (V )∗, n ≥ n2.

We again assume that n2 = 0 and consider the set

M = [1, N ]× [1, N ] \ N (V )∗.

By construction, this set has the following property: for any n ≥ 0, vnk and vnl
influence each other if and only if

(k, l) ∈M.

Hence,

J(vnk ) = {l ∈ [1, N ] : (k, l) ∈M}, k ∈ [1, N ], n ≥ 0. (23)

Note that the set J(vnk ) does not depend on n; denote it J(k) and let I(k) be
the cardinality of J(k).

It is clear that, for any k ∈ [1, N ], the set J(k) has the form [k− µ(k), k+ ν(k)],
where µ(k), ν(k) ≥ 0 and ν(k) + µ(k) + 1 = I(k).

Introduce an N ×N matrix T as follows: tk,l = 1/I(k) if (k, l) ∈M and tk,l = 0
otherwise.



OPINION FORMATION IN VOTING PROCESSES 627

It follows from (23) that (note that we are studying the evolution of an array
such that condition (21) holds, so that the truncation operator that defines Φ(V )
from W (V ) does not apply and Φ(V ) = W (V ))

Φ(V ) = (EN + hT )V,

where EN is the unit N ×N matrix.
Hence,

V n = (EN + hT )nV 0, n ≥ 0. (24)

Let us show that the spectrum of the matrix T is real.
Represent T = SU , where S is a diagonal matrix with positive diagonal elements,

S = diag

(
1

I(1)
, . . . ,

1

I(N)

)
,

and entries uk,l of U are as follows: uk,l = 1 if (k, l) ∈ M and uk,l = 0 otherwise.
Clearly, U is symmetric.

Then, T is conjugate to

S−1/2TS1/2 = S−1/2SUS1/2 = S1/2US1/2,

but the last matrix is symmetric:

(S1/2US1/2)∗ = (S1/2)∗U∗(S1/2)∗ = S1/2US1/2.

Hence, the spectrum of T = SU (and so the spectrum of EN + hT ) is real.
The kth row of the matrix T has the form(

0, . . . , 0,
1

I(k)
, . . . ,

1

I(k)
, 0, . . . , 0

)
,

where the number of nozero entries is precisely I(k).
This means that T is stochastic. A classical result states that T has an eigenvalue

1 and all other eigenvalues λ satisfy the inequality |λ| ≤ 1.
Hence, the eigenvalues of T are real and belong to [−1, 1], which, since h ∈ (0, 1),

implies that the eigenvalues of EN + hT are positive.
In this case, any bounded sequence V n that satisfies (24) tends to a vector W

such that W = (EN +hT )W . To show this, consider a Jordan form J of the matrix
EN + hT :

J = diag(J1, . . . , Jl),

where J1, . . . , Jl are Jordan blocks.
Let us assume that J1 is a d×d block corresponding to an eigenvalue λ and d > 1

(the case d = 1 is trivial), i.e.,

J1 =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . λ

 .

Let
(
k
j

)
be the binomial coefficients,(

k

j

)
=

k!

j!(k − j)!
.
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If k ≥ d− 1, then

Jk
1 =


λk kλk−1 k(k−1)

2 λk−2 . . .
(

k
d−1
)
λk−d+1

0 λk kλk−1 . . .
(

k
d−2
)
λk−d+2

...
...

. . .
...

...
0 0 0 . . . λk

 .

Hence,

vk1 = λkv01 + kλk−1v02 + . . . ,

vk2 = λkv02 + . . . , . . . , vkd = λkv0d

(where we have taken the liberty of using the same symbol v0i to denote the compo-
nents in the Jordan representation). It follows that if the sequence V n is bounded
and λ > 1, then v01 = · · · = v0d = 0.

If λ = 1, then v02 = · · · = v0d = 0, and if we denote u = (v01 , 0, . . . , 0), then
Jn
1 u = u for all n ≥ 0.

Finally, if λ < 1, then vn1 , . . . , v
n
d → 0 as n→∞.

Of course, similar statements hold for all Jordan blocks.
This implies that if the sequence V n is bounded, then we can represent V 0 in the

form W1+W2 such that (EN +hT )W1 = W1 is a fixed point and (EN +hT )nW2 → 0
as n→∞. This completes the proof.
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eps = 0.3, iteration nr. 0

Figure 1. Initial distribution of opinions for the first example.

4. Numerical examples. The first simulation illustrates a typical evolution of the
opinions. Figure 1 gives the initial distribution and Figure 2 illustrates the evolution
at steps 10, 20, 30 and 34, when the equilibrium is reached. Interestingly enough,
for higher values of ε than the value 0.3 used in this simulation, the same initial
condition gives an evolution where the opinions’ distribution transits through a state
where the majority of the population has positive opinion before finally achieving
an equilibrium where −1 is dominating.

The second example shows that the final outcome of an election process may
change depending on the level of interaction of the society. This has the interesting
interpretation that a society is a complex entity which cannot be reduced to the
simple union of many individuals: beliefs in the society evolve differently depending
on the quality and level of mutual influence, which in turn is highly dependent
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(a) step 10.
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(b) step 20.
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(c) step 30.

10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
eps = 0.3, iteration nr. 34

(d) step 34.

Figure 2. Opinions’ evolution for first example at steps 10, 20,
30 and 34, when the equilibrium is reached; ε = 0.3, h = 0.1.
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Figure 3. Initial distribution of opinions for the second example.

on technology and on the possible existence of rules that limit the circulation of
information.

Figure 3 shows the initial distribution of opinions that was used in this test.
When ε = 0.45 (high level of interaction), Figure 4 shows the evolution at steps
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(a) step 5.
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(b) step 10.
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(c) step 20.
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(d) step 27.

Figure 4. Opinions’ evolution for second example at steps 5, 10,
20 and 27, when the equilibrium is reached; ε = 0.45, h = 0.1.

5, 10, 20 and 27. At step 27 a clustering equilibrium is reached where option 1
achieves majority. Suppose now that the level of interaction is drastically reduced
to the level ε = 0.05. Figure 5 shows the evolution starting from the same initial
distribution as before: the decreased level of interaction leads to an opposite result
that option −1 now turns out to win the election.
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