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Abstract. We show that there are no stable stationary nonconstant solutions
of the evolution problem (1) for fully autonomous reaction–diffusion–equations

on the edges of a finite metric graph G under continuity and Kirchhoff flow

transition conditions at the vertices.

(1)


u ∈ C(G× [0,∞)) ∩ C2,1K (G× (0,∞)),

∂tuj = ∂2
j uj + f(uj) on the edges kj ,

(K)

N∑
j=1

dijcij∂juj(vi, t) = 0 at the vertices vi.

1. Introduction. In a fundamental paper of 1979 H. Matano [18] showed that
autonomous reaction–diffusion equations involving the Laplacian under Neumann
boundary conditions in a convex C3–domain cannot possess stable (spatially) non-
constant stationary solutions. The present paper deals with the non existence of
stable nonconstant stationary solutions of reaction–diffusion–equations on the edges
of a metric graph and natural transition conditions at the vertices. The parabolic
problem in question reads{

u ∈ C(G× [0,∞)) ∩ C2,1
K (G× (0,∞)),

∂tuj = ∂2
j uj + f(uj) on kj for 1 ≤ j ≤ N,

(1)
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where {kj 1 ≤ j ≤ N} denotes the edge set of the metric graph G and where the
subscript K stands for the validity of the Kirchhoff condition

N∑
j=1

dijcij∂juj(vi, ·) = 0 for 1 ≤ i ≤ n (2)

at each vertex vi of the graph. Note that we do not require the coefficients in (2) to
be consistent with the diffusion coefficient, i.e. we do not impose cij = 1, but only
the dissipativity assuring condition that all cij > 0. At the ramification nodes we
impose the continuity condition

∀vi ∈ Vr : kj ∩ ks = {vi} =⇒ uj(vi) = us(vi), (3)

that clearly is contained in the condition u ∈ C(G). Throughout, the constant
coefficients and nonlinearities are assumed to satisfy

f ∈ C1(R), cij > 0. (4)

Now we can state the

Main Theorem 1. On any finite connected metric graph all stable stationary
solutions of Problem (1) are constant.

In 2001 E. Yanagida [21] published a list of five exceptional graphs that do
not allow stable nonconstant stationary solutions in the consistent case of (1), see
Section 5. Moreover, he established some fundamental instability tools, as the
instability criterion in the presence of two different critical points in one edge. In
2015 the authors [9] showed that the assertion of the Main Theorem holds for any
metric graph with sufficiently small edge lengths, as well as for any metric graph
for the cubic balanced case f(u) = u − u3, for f(u) = η sin(u) and for some
other nonlinearities. Other recent instability criteria, also for dynamical Kirchhoff
conditions, can be found in [11].

At first glance, the main result might seem to be surprising in view of the exis-
tence of stable nonconstant stationary solutions on non convex domains in higher
dimensions, see [13, 18] and the references therein. But, as it stands, with respect
to the autonomous semilinear parabolic flows defined by (1), finite metric graphs
behave like one–dimensional objects, i.e. like intervals of the real line. Clearly,
Problem (1) can be regarded as an abstract interaction problem on a suitable in-
terval in the sense of Gramsch and Ali Mehmeti, see e.g. [3, 7], where the node
transition conditions can be read as equivalent Cauchy conditions of order 0 and 1
and identifying conditions at interior points and on the boundary of the interval.
However, tame deviations from the autonomous character of the differential equa-
tions as different diffusion coefficients or edge dependent nonlinearities can lead to
the existence of nonconstant stable stationary solutions, see Section 8.

The present paper is organized as follows. After some stability prerequisites
and graph theoretical preliminaries in Section 2, Section 3 presents the exclusion
of stable nonconstant stationary solutions on paths and circuits. The basic cutting
technique that is a crucial tool in showing the main theorem, is established in
Section 4 for more general reaction–diffusion–problems and states, for short, that
if the metric graph G allows the stationary solution u and if it is cut at some
point p = πj(xj) with ∂juj(xj) = 0, then stability of the corresponding solution on

the resulting graph G̃ is equivalent with the one of u on G. As another extension
technique the edge doubling is presented at the end of this section. In Section 5 we
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present some elementary cases of graphs that exclude stable nonconstant stationary
solutions. In Section 6 the proof of the main theorem will be given, first for trees
and then for a general finite metric graph where the first case is a key tool of a
recurrence procedure using the corank of the graph. In Section 7 some energy and
localization results for stationary solutions in the consistent case are treated, based
on the Hamiltonian system associated to the edge differential equations. Finally,
Section 8 presents some examples of stable nonconstant stationary solutions of non
autonomous problems as edge dependent diffusion coefficients or edge dependent
nonlinearities, as well as under different node transition conditions.

2. Metric graphs and stability. For any graph Γ = (V,E,∈), the vertex set is
denoted by V = V (Γ), the edge set by E = E(Γ) and the incidence relation by
∈⊂ V × E. The valency of each vertex v is denoted by γ(v) = #{k ∈ E v ∈ k}
counting incident loops twice. Unless otherwise stated, all graphs considered in this
paper are assumed to be nonempty, connected and finite with

n = #V, N = #E.

The vertices will be numbered by v1, . . . , vn, the respective valencies by γ1, . . . , γn,
and the edges by k1, . . . , kN . The boundary vertices Vb = {vi ∈ V γi = 1} will be
distinguished from the ramification nodes Vr = {vi ∈ V γi ≥ 2} and the essential
ramification nodes Vess = {vi ∈ V γi ≥ 3}. By definition, a circuit is a connected
and regular graph of valency 2. A path is a connected graph with two distinct
vertices of valency 1 while the other vertices are all of valency 2. By definition, a
viaduct π in Γ is a path in Γ joining two distinct vertices v and ṽ such that there
is no other walk in Γ joining v and ṽ having a vertex in the set V (π)\{v, ṽ}. For
further graph theoretical terminology we refer to [12, 20].

Moreover, we consider each graph as a topological graph in Rm, i.e. V (Γ) ⊂ Rm
and the edge set consists in a collection of Jordan curves

E(Γ) = {πj : [0, `j ]→ Rm 1 ≤ j ≤ N}
with the following properties: Each support kj = πj ([0, `j ]) has its endpoints in the
set V (Γ), any two vertices in V (Γ) can be connected by a path with arcs in E(Γ),
and any two edges kj 6= kh satisfy kj∩kh ⊂ V (Γ) and #(kj∩kh) ≤ 2. The arc length
parameter of an edge kj is denoted by xj . Unless otherwise stated, we identify the
graph Γ = (V,E,∈) with its associated metric graph, network or quantum graph

G =

N⋃
j=1

πj ([0, `j ]) ,

especially each edge πj with its support kj . Throughout it will be assumed that all
πj ∈ C2([0, `j ],Rm). Thus, endowed with the induced topology G is a connected
and compact space in Rm. Throughout, we shall denote the total graph length by

L = L(Γ) =

N∑
j=1

`j .

The orientation of the graph Γ is given by the incidence matrix D(Γ) = (dik)n×N
with

dij =


1 if πj(`j) = vi,

−1 if πj(0) = vi,

0 otherwise.
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For a function u : G→ C we set uj := u ◦πj : [0, `j ]→ C and use the abbreviations

uj(vi) := uj(π
−1
j (vi)), ∂juj(vi) :=

∂

∂xj
uj(xj)

∣∣∣
π−1
j (vi)

etc. and

∫
G

u dx :=

N∑
j=1

∫ `j

0

uj(xj) dxj .

Endowed with a usual product norm we set

Lp(G) =

N∏
j=1

Lp(0, `j) and Hk(G) =

N∏
j=1

Hk(0, `j)

for p ∈ [1,∞] and k ∈ N, respectively. The validity of the Kirchhoff law (2) in a
function space will be indicated by the subscript K. In particular, for m ∈ N∗, r ∈ N
we set

CmK (G) = {u ∈ C(G) | ∀j ∈ {1, . . . , N} : uj ∈ Cm([0, `j ]), u satisfies (2)},

and for functions depending also on a time variable that ranges in an interval I,
Cm,rK (G × I) denotes the vector space of all the functions u ∈ C(G × I) satisfying
(2) and

∀j ∈ {1, . . . , N} : uj ∈ Cm,r([0, `j ]× I).

Closing this section we recall Lyapunov’s notion of stability associated to the
following reaction - diffusion - problem

u ∈ C(G× [0,∞)) ∩ C2,1
K (G× (0,∞)),

∂tuj = ∂j (aj(xj) ∂juj) + fj(uj) on kj for 1 ≤ j ≤ N,

(K)

N∑
j=1

dijcij∂juj(vi, ·) = 0 for 1 ≤ i ≤ n,
(5)

under the hypotheses

fj ∈ C1(R), aj ∈ C1 ([0, `j ]) , aj > 0, cij > 0. (6)

A stationary solution w of Problem (5) is called stable if for each ε > 0, there exists a
δ > 0 such that, for each initial data u0 ∈ C(G) with ‖u0 − w‖∞,G < δ the solution

u of (5) exists in [0,∞) and satisfies

∀t > 0 : ‖u(·, t)− w‖∞,G < ε.

Several instability criteria have been established in [9], among which we cite the
following.

Lemma 2.1. If a stationary solution u ∈ C2
K(G) of (5) under consistent Kirchhoff

conditions satisfies either∫
G

f ′(u)dx > 0 or

∫
G

f ′(u)u2dx >

∫
G

f(u)udx,

then u is unstable.

Moreover, let us cite the following elementary result from [9].
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Lemma 2.2. A stationary solution u ∈ C2
K(G) of (5) with consistent Kirchhoff

conditions satisfies ∫
G

f(u)dx = 0 and

∫
G

f(u)u2k+1 dx ≥ 0

for all k ∈ N. If, in addition, u is nonconstant, then the last inequality is strict.

On all finite metric graphs it can happen that there are no stationary solutions
at all. E.g. for f ≡ 1, there is no such solution u ∈ C2

K(G) of (1) with a consistent
Kirchhoff law, since such a solution would have to fulfill

∫
G
∂2u dx = 0 by the

Kirchhoff flow condition (2).

3. Paths and circuits. In this section we establish the exclusion of stable non-
constant stationary solutions on paths and circuits. Let u ∈ C2

K(G) be a stationary
solution of the autonomous and consistent problem

u ∈ C(G× [0,∞)) ∩ C2,1
K (G× (0,∞)),

∂tuj = ∂2
j uj + f(uj) on kj for 1 ≤ j ≤ N,

(K)

N∑
j=1

dij∂juj(vi, ·) = 0 for 1 ≤ i ≤ n.
(7)

Recall that the Rayleigh quotient of the linearized elliptic operator at u for (7) is
given by

R(ϕ;u) =

∫
G

(∂ϕ)
2 − f ′(u)ϕ2 dx∫
G

ϕ2 dx

,

and that its admissible functions ϕ are just given by the elements of C(G)∩H1(G).
Set ψj = ∂juj . On each edge kj , ψj satisfies the linearized equation

∂2
jψj + f ′(uj)ψj = 0 in [0, `j ] (8)

by standard regularity arguments. Now let Π be a path with N edges and vertices
numbered by 1, . . . , N + 1 such that vi and vi+1 are adjacent, and such that Vb =
{v1, vN+1} forms the set of boundary vertices. The incidence matrix is given by

dij =


−1 if i = j,

1 if i = j + 1,

0 otherwise.

(9)

Lemma 3.1. Suppose that u ∈ C2
K(Π) is a nonconstant stationary solution of (7)

on the path Π. Then u is unstable, more precisely

λ0(u) = min
{
R(ϕ;u) ϕ ∈ C(Π) ∩H1(Π)

}
< 0.

Proof. Here, in fact, ψ = (ψj)N×1 defines an admissible function for the Rayleigh

quotient since ψ constitutes a function belonging to C1 [0, L] by the consistent Kirch-
hoff condition in (7), by (3) and by the edge differential equations. Thus, denoting
the numerator of R(ϕ;u) by N (ϕ), we obtain by (8)

0 =

N∑
j=1

∫ `j

0

(
∂2
jψj + f ′(uj)ψj

)
ψjdxj
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= −
N∑
j=1

∫ `j

0

(∂jψj)
2 − f ′(uj)ψ2

j dxj +

N∑
j=1

[
∂jψj ψj

]`j
0

= −N (ψ),

since (3) and f(u(vi)) = −∂jψj(vi) imply

N∑
j=1

[
∂jψj ψj

]`j
0

= −
n∑
i=1

f(u(vi))

N∑
j=1

dijψj(vi) = 0. (10)

Thus, R(ψ;u) = 0 and, in turn, λ0(u) ≤ 0. If λ0(u) < 0, the instability follows from
[9, 21]. It remains to exclude the case λ0(u) = 0. But, in that case, ψ is not only
admissible, but an eigenfunction belonging to the simple eigenvalue λ0 = 0 and has
a sign, say ψj(xj) > 0 at every point of Π\ {v1, vN+1}. By a well–known property
of unrestricted minimizers of R in C(Π)∩H1(Π) = H1[0, L], see e.g. [1, 2, 7, 18, 19],
the function ψ satisfies the Kirchhoff condition in (7), in particular

ψ(v1) = ψ(vN+1) = ∂1ψ1(v1) = ∂Nψ(vN+1) = 0.

But as a solution of the second order linear ODE ∂2
jψj + f ′(uj)ψj = 0 on each

edge kj , ψ1 vanishes identically by uniqueness, as well as all the other ψj do by
connectedness of Π, by the Kirchhoff condition and by (3). Thus, by continuity, u
must be constant, which leads to a contradiction.

Now we consider the general Kirchhoff law (2) on the path. As on all trees due
to its homogeneous character, it can be written in the form

N∑
j=1

dij cj ∂juj(vi) = 0 for 1 ≤ i ≤ n (11)

with positive constants cj on each edge, that leads to a self–adjoint resolvent by
using a suitable scalar product and to the Rayleigh quotient

R(ϕ;u; c) =

N∑
j=1

cj

∫ `j

0

(∂ϕj)
2 − f ′(uj)ϕ2

j dxj

N∑
j=1

cj

∫ `j

0

ϕ2
j dxj

(12)

with c = (cj)N×1. Note that (11) is also the Kirchhoff law considered by Yanagida
[21], as well as in [8] in order to reduce the eigenvalue asymptotics on trees to a
consistent case. In fact, on the path Π, the form (11) is readily achieved by setting

c1 = 1, cj+1 =
cj+1,j+1cj
cj+1,j

for 2 ≤ j ≤ N − 1. (13)

The same technique applies on arbitrary trees and shows that for equilibria the
linearized stability under (2) and (11) are equivalent. Set

λ0(u; c) = min
{
R(ϕ;u; c) 0 6= ϕ ∈ H1(G) ∩ C(G)

}
.

As 0 is the minimal eigenvalue of the Laplacian−
(
∂2
j

)
N×1

, and as the only harmonic

functions on a finite metric graph are the constant ones, an equilibrium u0 of (1)
on a tree leads to

λ0(u0; c) = −f ′(u0)

for all positive coefficients c.
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Theorem 3.2. Let Π be a path. Then any stationary nonconstant solution u ∈
C2
K(Π) of the problem

u ∈ C(Π× [0,∞)) ∩ C2,1
K (Π× (0,∞)),

∂tuj = ∂2
j uj + f(uj) on kj for 1 ≤ j ≤ N,

(K) :

N∑
j=1

dijcij∂juj(vi, ·) = 0 for 1 ≤ i ≤ n,
(14)

is unstable.

Proof. The assertion is true on an interval by Matano’s result [18, 21]. Thus, we
can assume that N ≥ 2. Suppose that u ∈ C2

K(Π) is a stable nonconstant stationary
solution of (14) on Π. Distinguish the following three cases.

If ∂juj(xj) = 0 for some xj ∈ [0, `j ] with πj(xj) 6∈ Vb and kj ∩ Vb 6= ∅, then u
would be unstable by [9, Lemma 4.4] or Yanagida’s Two Points Lemma [21], which
is impossible.

If ∂juj(xj) = 0 for some xj ∈ [0, `j ] with kj ∩ Vb = ∅, then Π splits up at πj(xj)
into two paths having less than N edges and on which the restrictions of u would
be unstable by recurrence, which is impossible.

Thus, we are lead to the final case

∂juj(xj) = 0 ⇐⇒ πj(xj) ∈ Vb = {v1, vN+1} .

Write (K) in the form (11) and set ψj = cj∂juj on each edge, where it solves
∂2
jψj + f ′(uj)ψj = 0. By (11), the ψj define a function

ψ ∈ C1(Π) with ψ(v1) = ψ1(0) = ψN (`N ) = ψ(vN+1) = 0.

If ∂1ψ1(0) = 0, then ψ1 vanishes identically on k1, and u has to be constant on k1.
Omitting this edge, the restriction of u to the remaining edges has to be unstable
by recurrence, which is impossible. The same argument applies to ∂NψN (`N ) = 0.
Thus, we can assume that

∂1ψ1(0) 6= 0 and ∂NψN (`N ) 6= 0. (15)

Denoting the numerator of R
(
ψ;u;

(
cj
−1
))

by N
(
ψ;u;

(
cj
−1
))

we get

0 =

N∑
j=1

1

cj

∫ `j

0

(
∂2
jψj + f ′(uj)ψj

)
ψjdxj

= −
N∑
j=1

1

cj

∫ `j

0

(∂jψj)
2 − f ′(uj)ψ2

j dxj +

N∑
j=1

cj
−1
[
∂jψj ψj

]`j
0

= −N
(
ψ;u;

(
cj
−1
))
,

since (3) and cjf(u(vi)) = −∂jψj(vi) imply

N∑
j=1

cj
−1
[
∂jψj ψj

]`j
0

= −
n∑
i=1

f(u(vi))

N∑
j=1

dijψj(vi) = 0.

Thus,

R
(
ψ;u;

(
cj
−1
))

= 0.
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We conclude that the edge Schrödinger operators ∂2
j +f ′(uj) in H1(Π)∩C(Π) under

the Kirchhoff condition
N∑
j=1

dijcj
−1∂jϕj(vi) = 0. (16)

lead to a Rayleigh quotient satisfying

λ0

(
u;
(
cj
−1
))

= min
ϕ∈H1(Π)∩C(Π)

R
(
ϕ;u;

(
cj
−1
))
≤ 0. (17)

Clearly, ψ does not fulfill (16). But, if λ0 = 0, then ψ is a minimizer ofR
(
·;u;

(
cj
−1
))

and fulfills (16), in particular the Neumann condition at v1 and vN+1, which is im-
possible by (15). Thus, we can assume that there is η ∈ C2(Π) satisfying (16) such
that

R
(
η;u;

(
cj
−1
))

= λ0 < 0 and η > 0 in Π. (18)

This means that the zero solution is unstable for the edge operators ∂2
j + f ′(uj) in

H1(Π) ∩ C(Π) under (16). But all the norms

‖ϕ‖c,L∞(Π) =

N∑
j=1

cj ‖ϕj‖L∞[0,`j ]

are equivalent in C(Π), which implies that the zero solution is unstable for ∂2
j+f ′(uj)

in H1(Π) ∩ C(Π) under any dissipative Kirchhoff law too, in particular under (K).
Using the same argument as in [21, Lemma 2.3] in order to show that negative values
of the Rayleigh quotient lead to instability, we conclude that u is unstable.

On a circuit ζ the derivatives of a nonconstant stationary solution u ∈ C2
K(ζ)

have to vanish at least twice. By cutting ζ at one of these points, we are led to a
path to which the foregoing results can be applied. Thus we can state the

Corollary 1. Let ζ be a circuit and u ∈ C2
K(ζ) be a nonconstant stationary solution

of the problem

u ∈ C(ζ × [0,∞)) ∩ C2,1
K (ζ × (0,∞)),

∂tuj = ∂2
j uj + f(uj) on kj for 1 ≤ j ≤ N,

(K) :

N∑
j=1

dijcij∂juj(vi, ·) = 0 for 1 ≤ i ≤ n.
(19)

Then u is unstable.

Proof. Suppose that u is stable on ζ. By compactness, there is πj(xj) = p ∈ ζ such
that

∂juj(xj) = 0.

Cut the circuit at p into two boundary vertices ṽ1 and ṽN+1 and get a path Π̃
whose quantities stemming from ζ will be denoted by a tilde. In particular, ũ ∈
C2
K(Π̃) defines a nonconstant stationary solution of (19) on Π̃ with the distinguished

property

ũ ∈ F :=
{
w ∈ C(Π̃) w̃ (ṽ1) = w̃ (ṽN+1)

}
.
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Clearly, C(ζ) can be identified with F . By Theorem 3.2, ũ is unstable on Π̃. Thus,

there is some ε̃0 > 0 such that for each δ > 0 there is an initial data w̃0 ∈ C(Π̃)
with ‖w̃0 − ũ‖∞,Π̃ < δ and

‖w̃(·, t0)− ũ‖∞,Π̃ ≥ ε̃0

for some t0 > 0 where w̃ denotes the solution of (19) with initial condition w̃0 on

Π̃.
For each 0 < ε < ε̃0 there is some δ > 0 such that the solution z ∈ C(ζ× [0,∞))∩

C2,1
K (ζ × (0,∞)) of (19) with initial condition ‖z0 − u‖∞,ζ < δ satisfies

∀t > 0 : ‖z(·, t)− u‖∞,ζ < ε.

But for each t > 0, z̃(·, t) belongs to F , and z̃ is the solution of (19) on Γ̃ with

initial condition z̃0 = z̃(·, 0). This leads to the contradiction

∀t > 0 : ‖z̃(·, t)− ũ‖∞,Π̃ < ε < ε̃0.

4. Stability surgery. In this section we establish some basic facts and results
about stationary stable or unstable classical solutions of the more general reaction
- diffusion - problem

(5)


u ∈ C(G× [0,∞)) ∩ C2,1

K (G× (0,∞)),

∂tuj = ∂j (aj(xj) ∂juj) + fj(uj) on kj for 1 ≤ j ≤ N,

(K)

N∑
j=1

dijcij∂juj(vi, ·) = 0 for 1 ≤ i ≤ n,

under the hypotheses (6). In particular we compare the stability on a metric graph

Γ with the one on a modified graph Γ̃ obtained by cutting an edge at a zero of the
derivative of a stationary solution. In [6, 7], a general Osgood type L∞–estimate
for nonlinear parabolic problems on metric graphs has been shown. For the reader’s
convenience and for the proofs of Theorems 4.2 and 6.1, we cite it here in the setting
of the special case (5).

Theorem 4.1. [6, 7] Suppose T ≥ 0 and let u ∈ C(G× [0, T ] ∩ C2,1
K (G× (0, T ]) be

a solution of Problem (5) subject to the Osgood condition

∃b1, b2 ≥ 0∀j ∈ {1, ..., N} ∀z ∈ R : zfj(z) ≤ b1z2 + b2.

Then, the following estimate holds:

‖u‖∞,G×[0,T ] ≤ inf
λ>b1

(
eλT max

{
‖u(·, 0)‖∞,G ,

√
b2

λ− b1

})
.

The basic reduction tool for establishing instability is the following surgery tech-
nique.

Theorem 4.2. Suppose that u ∈ C2
K(G) is a stationary solution of (5) such that

∂juj(xj) vanishes at p = πj(xj) on some edge kj. Cut the graph Γ at p and get a

new possibly non connected graph Γ̃ on which u defines a stationary solution ũ of
(5) on Γ̃ that belongs to C2

K̃
(G̃). Here the Kirchhoff conditions K̃ extend the old one

(K) by adding the Neumann condition at the new vertex or at the two new vertices.

In the first case note that p = vi leads to d̃ij = 0.

Then ũ is stable on Γ̃ if and only if u is stable on Γ.
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 u’=0

 u’=0  u’=0

va

vava v
n+1

v
n+1

 u’=0

Figure 1. Cutting at p with ∂u(p) = 0. The original graph Γ is

drawn on the left, while the resulting graph Γ̃ is drawn on the right.

Proof. First, we consider the case where there is some constant b1 ≥ 0 such that

sup
j
f ′j ≤ b1. (20)

The cutting of the edge kj defines one or two new vertices in Γ̃ that will be denoted

by va ∈
(
Vb(Γ̃)\V (Γ)

)
∪̇
(
V (Γ̃) ∩ V (Γ)

)
and vn+1 ∈ Vb(Γ̃)\V (Γ). Note that

va ∈
(
Vb(Γ̃)\V (Γ)

)
corresponds to xj ∈ (0, `j) and to a new boundary vertex,

while va ∈
(
V (Γ̃) ∩ V (Γ)

)
means that p ∈ V (Γ). Set

F =
{
ϕ ∈ C1

K(G) ∂jϕj(p) = 0
}
,

C̃ =
{
ψ ∈ C(G̃) ψ(vn+1) = ψ(va)

}
,

and for ϕ ∈ C(G) and identifying G\{vn+1, va} with G̃\{vn+1, va},

ϕ̃(x) =

{
ϕ(x) if x ∈ G\{vn+1, va},
ϕ(p) if x ∈ {vn+1, va}.

Then

ι = (ϕ 7→ ϕ̃)

is an isometric isomorphism with respect to both L∞–norms between C(G) and C̃ =

ι (C(G)). Moreover, ι(F ) = ι (C(G)), since F = C(G) by the Stone–Weierstrass–
Theorem. This shows immediately that if u is unstable on Γ, then ũ is unstable on
Γ̃.

Now, suppose that ũ is unstable on G̃. Thus, there is some ε̃0 > 0 such that
for each δ > 0 there is an initial data w̃0 ∈ C(G̃) with ‖w̃0 − ũ‖∞,G̃ < δ and

‖w̃(·, t0)− ũ‖∞,G̃ ≥ ε̃0 for some t0 > 0 where w̃ denotes the solution of (5) with

initial condition w̃0 on G̃. Set ε0 = 1
2 ε̃0, and choose δ such that

0 < δ ≤ ε0

2
e−b1t0 .

If w̃0 ∈ ι(F ) = C̃, then, by uniqueness, w := ι−1(w̃) is the solution of (5) with
initial condition w0 on G that satisfies ‖w0 − u‖∞,G < δ and ‖w(·, t0)− u‖∞,G ≥
ε̃0 > ε0.
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Next, suppose that w̃0 6∈ ι(F ). As ũ belongs to ι(F ), and as ‖w̃0 − ũ‖∞,G̃ < δ,

we can nevertheless choose z̃0 ∈ C(G̃) ∩ ι(F ) with |supp(w̃0 − z̃0)| sufficiently small

such that ‖z̃0 − w̃0‖∞,G̃ < δ. Let z̃ denote the solution of (5) on G̃ with initial

condition z̃0 and z be the solution of (5) on G with initial condition z0 = ι−1(z̃0).
Again, by uniqueness, z = ι−1(z̃).

Now we claim

(∗) ‖z̃(·, t0)− w̃(·, t0)‖∞,G̃ = ‖z(·, t0)− w(·, t0)‖∞,G <
1

4
ε̃0.

Proof. (∗) The difference d = z − w ∈ C(G × [0, t0]) ∩ C2,1
K (G × (0, t0]) satisfies on

each edge kj the equation

∂tdj = aj ∂
2
j dj + fj(zj)− fj(wj) = aj ∂

2
j dj + f ′j (λzj + (1− λ)wj) dj

with a function λ : R→ [0, 1]. Since the coefficient of the linear term dj is bounded
from above by b1, the Osgood type a priori estimate in Theorem 4.1 with b2 = 0
yields

‖d(·, t0)‖∞,T̃ ≤ e
b1t0 max

T̃
|d(·, 0)| = eb1t0 ‖z0 − w0‖∞,G <

1

4
ε̃0.

This shows the claim (∗). Finally, we conclude

‖z(·, t0)− u‖∞,G = ‖z̃(·, t0)− ũ‖∞,G̃

≥ ‖ũ− w̃(·, t0)‖∞,G̃ − ‖w̃(·, t0)− z̃(·, t0)‖∞,G̃ ≥ ε̃0 −
1

4
ε̃0 > ε0.

Thus, u is unstable on G.
Finally, in order to get rid of (20), i.e. for arbitrary nonlinearities fj ∈ C1(R),

we modify them for the given stationary nonconstant solution u ∈ C2
K(G) of (5)

outside [−2M, 2M ] with M := ‖u‖∞,G as follows

f̃j(z) =


fj(z) for z ∈ [−2M, 2M ],

fj(2M) + (z − 2M)f ′j(2M) for z ≥ 2M,

fj(−2M) + (z + 2M)f ′j(−2M) for z ≤ −2M.

(21)

Thus, u would be a stable nonconstant solution of (28) with the nonlinearities f̃j
iff ũ would be a stable by the results shown first. This concludes the proof of the
theorem.

As a first application of the surgery theorem 4.2 we generalize Yanagida’s Two
Points Lemma [9, 21] known in the constant coefficients case under consistent Kirch-
hoff conditions to the more general problem (5).

Lemma 4.3. Suppose that u ∈ C2
K(G) is a stationary solution of (5) that is non-

constant on some edge kj. If there are two points on kj with 0 ≤ z1 < z2 ≤ `j such
that ∂juj(z1) = ∂juj(z2) = 0, then u is unstable. If, in addition, the nonlinearity
fj is an odd function, then the same conclusion holds, if there are two points on kj
with 0 ≤ z1 < z2 ≤ `j such that uj(z1)∂juj(z1) = 0 = uj(z2)∂juj(z2).

Proof. In the first case, we cut the edge kj twice and obtain instability on the
resulting sole edge as a stationary solution of a Neumann problem by a result by
Matano [18]. Then Theorem 4.2 permits to conclude. In the second case, the
assertion can be shown exactly in the same way as in the consistent and constant
coefficient case shown in [9, Lemma 4.5].
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As already pointed out in [9], the hereditary properties of the stability notion
with respect to subgraphs are very bad. However, the edge doubling is a simple
extension technique that permits to conclude for stability from a graph containing
the original one. Choose any edge kj incident to vi and vh in Γ and copy all
quantities and functions associated to kj on a new edge kN+1 incident to vi and vh
as well in the new graph Γ̃ with E(Γ̃) = E(Γ) ∪ {kN+1} and V (Γ̃) = V (Γ) except
for the conductivities that are defined by

c̃ms =

{
1
2cis if m ∈ {i, h} and s ∈ {j,N + 1} ,
cmj otherwise,

and lead to the Kirchhoff conditions denoted by (K̃). Then we can state the fol-
lowing

Lemma 4.4. Suppose that u ∈ C2
K(G) is a stationary solution of (5). Let Γ̃ be

the graph resulting from an edge doubling described above and ũ ∈ C2
K̃

(G̃) be the

corresponding extension of u to G̃ by setting ũN+1 = ũj = uj. Then ũ is stable on

Γ̃ if and only if u is stable on Γ.

Proof. Each w ∈ C1
K(G) defines uniquely w̃ ∈ C1

K̃
(G̃). This leads to the continuous

embedding
C1
K(G) ↪→ C1

K̃
(G̃).

Thus, identifying C(G) with F :=
{
w̃ ∈ C(G̃) w̃N+1 = w̃j

}
, the stability of ũ in

C(G̃) implies its stability in the closed subspace F and thereby, the stability of u in
C(G).

Conversely, suppose that ũ is unstable on Γ̃, but that u is stable in C(G). In fact,
we can proceed as in the proof of Corollary 1. Thus, there is some ε̃0 > 0 such that
for each δ > 0 there is an initial data w̃0 ∈ C(G̃) with ‖w̃0 − ũ‖∞,G̃ < δ and

‖w̃(·, t0)− ũ‖∞,G̃ ≥ ε̃0

for some t0 > 0 where w̃ denotes the solution of (5) with initial condition w̃0 on G̃.
For each 0 < ε < ε̃0 there is some δ > 0 such that the solution z of (5) with initial
condition ‖z0 − u‖∞,G < δ satisfies

∀t > 0 : ‖z(·, t)− u‖∞,G < ε.

But for each t > 0, z(·, t) belongs to F , and z̃ is the solution of (5) on Γ̃ with initial
condition z̃0 = z̃(·, 0). By construction, this leads to the contradiction

∀t > 0 : ‖z̃(·, t)− ũ‖∞,G̃ < ε < ε̃0.

A non trivial application of the edge doubling is given by the following example.

Example 4.1. Suppose that N = 2 = n, and that Γ consists in a loop ζ of length `
with ramification node {v1} = V (ζ) and in an edge k3 joining v1 and the boundary
vertex v2. Then there is no stable nonconstant stationary solution of (5) on Γ. This
will be shown as follows.

Suppose that u ∈ C2
K(G) is a stable nonconstant stationary solution of (5). If

u vanishes on the whole ζ or on the whole k3, then the problem is reduced to
an interval under Neumann boundary conditions that admits only constant stable
stationary solutions.
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If v1 is an extremum of u, then the problem on Γ splits into two interval problems.
Thus, by Lemma 4.3 and compactness, the derivative ∂juj vanishes exactly once
outside the ramification node v1 on ζ in Γ, say at p ∈ ζ, since it cannot vanish in
the interior of the edge k3. The point p cuts ζ into two edges, say k1 and k2, on
which u1 and u2 respectively are strictly monotone by Lemma 4.3. Moreover, u1

and u2 fulfill

∂1u1 (p) = ∂2u2 (p) = 0 and u1 (p) = u2 (p) .

By unique solvability of the corresponding Cauchy problems, u1 and u2 coincide for
0 ≤ xj ≤ min {`1, `2}, where we have chosen d11 = d12 = 1. But, by continuity at
v1

u1 (v1) = u2 (v1) .

Thus, if k1 and k2 were of different length, Rolle’s Theorem and Lemma 4.3 would
lead to instability of u. We conclude that k1 and k2 are of the same length

`1 = `2 =
`

2

and that

∂1u1 (v1) = ∂2u2 (v1) .

Choose d13 = −1 and denote the boundary vertex by v2. Note that the conduc-
tivities on the loop at v1 are identical, and the original Kirchhoff condition at v1

reads

2c11∂1u1 (v1)− c13∂3u3 (v1) = 0. (22)

Cutting ζ at p and omitting k2 leads to a path Π of two edges given by k1 and k3.
It turns out that Γ is just the graph Π̃ with k1 doubled with k2. Moreover, the
restriction of u to Π, say w ∈ C2

Kc
(Π) and u = w̃, constitutes a stable stationary

solution on Π and belongs to C2
Kc

(Π), where Kc stands for the validity of the incon-
sistent Kirchhoff law (22) at v1 and of the Neumann boundary condition at p and
v1. Thus, by Theorem 3.2, w and u have to be constant, which leads to the desired
contradiction.

5. Yanagida graphs. Recall the following result by E. Yanagida from 2001.

Theorem 5.1. ([21]) If Γ is one of the five graphs in Figure 5, then the reaction–
diffusion problem 

u ∈ C2(G× [0,∞))

∂tuj = ∂2
j uj + f(uj) 1 ≤ j ≤ N,

N∑
j=1

dij dj ∂juj(vi, ·) = 0 for 1 ≤ i ≤ n,
(23)

has no stable stationary nonconstant solution on G. This includes paths and circuits
of arbitrary lengths of the same width dj > 0 on all their edges.

An important ingredient of Yanagida’s proof was the self–adjoint character of
the associated eigenvalue problem of the linearized problem. Note that Example
4.1 restricted to Problem (23), but without restriction on the dj , yields another
exceptional graph on which no stable stationary nonconstant solution can exist. In
this argument only Theorem 3.2, Example 4.1 and the classical Two Points Lemma
[9, 21] interfere. As for paths and circuits in Section 3, we can add the following
exceptional graphs.
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Type 1 Type 2 Type 3 Type 5

d1

d2

d1

d2

d1

d2

d3

d1 : d2 = 2 : 1

Type 4

d1 : d2 : d3 = 1 : 2 : 1d1 : d2 = 1 : 1

Figure 2. Yanagida’s exceptional graphs.

Theorem 5.2. The reaction–diffusion problem
u ∈ C2,1(G× [0,∞))

∂tuj = ∂2
j uj + f(uj) 1 ≤ j ≤ N,

N∑
j=1

dij ∂juj(vi, ·) = 0 for 1 ≤ i ≤ n,
(24)

does not admit any stable stationary nonconstant solution, if the graph Γ is a gen-
eralized Yanagida graph with arbitrary edge lengths of Type 3, 4, or 5, i.e.

(3) either Γ contains exactly one boundary vertex and exactly one essential ram-
ification node, the latter being of valency 3,

(4) or Vb = ∅ and Vess = {v1} and γ1 = 4,
(5) or Vb = ∅ and Γ contains exactly two essential ramification nodes, the latter

being both of valency 3 and being joined by an edge or a viaduct.

Proof. Throughout, let us suppose that u ∈ C2
K(G) is a stable nonconstant station-

ary solution of (24). If u is constant on some edge kj with dij 6= 0 6= dhj , then we
can identify vi and vh and omit kj . Thus, we can assume that u is nonconstant on
each edge of Γ.

Case (3)

By hypothesis, Γ is unicyclic. If some ∂juj vanishes at v1, the graph reduces to a
sole path or splits into a circuit and a path. Working with C1–solutions, in particular
at nodes of valency 2, we can assume w.l.o.g. that the circuit ζ is a loop of length
` and that the path joining v1 and the boundary vertex v2 is just an edge, say k3.

Exactly as in Example 4.1 and using the notations given there, cut ζ at p ∈
ζ\ {v1} into two edges k1 and k2 with

∂1u1 (p) = ∂2u2 (p) = 0, u1 (p) = u2 (p) ,

u1 (v1) = u2 (v1) , ∂1u1 (v1) = ∂2u2 (v1) ,
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and `1 = `2 = `
2 . Then the Kirchhoff law (22) at v1 reads

2∂1u1 (v1)− ∂3u3 (v1) = 0. (25)

Cutting ζ at p and omitting k2 leads to a path Π of two edges given by k1 and k3.
Then the restriction ũ of u to Π is a stationary solution of the differential equations
on the edges of Π and belonging to C2

Kc
(Π), where Kc stands for the validity of the

inconsistent Kirchhoff law (25) at v1 and of the Neumann boundary condition at
p and v1. Denoting by Σ the star formed by k1, k2 and k3, respective identifying
leads to the embeddings

ι : C1
Kc

(Π) ↪→
{
w ∈ C1

K(Σ) w1 (p) = w2 (p)
}
↪→ C1

K(G), (26)

since each ϕ ∈ C1
Kc

(Π) extends uniquely to C1
K(Σ) and C1

K(Γ) by even extension with
respect to π1 (0) = p = π2 (0) onto the remaining edge k2. This leads to stability

of the restriction ũ of u to Π as follows. First, note that if w ∈ C2,1
Kc

(Π× [0,∞)) is

the solution on Π with initial condition w0 ∈ C(Π), and if w̄ ∈ C2,1
K (Γ × [0,∞)) is

the solution on Γ with initial condition w̄0 ∈ C(G) such that w̄0 = ι(w0), then these
solutions coincide by uniqueness of the corresponding flow, i.e.

w = w̄
Π

and w̄ = ι(w).

Secondly, for ε > 0 and δ > 0 such that ‖u− z0‖∞,Γ < δ implies ‖u− z(·, t)‖∞,Γ < ε

for all t > 0, we conclude for an initial condition w0 ∈ C(Π) with ‖ũ− w0‖∞,Π < δ
that

‖ũ− w(·, t)‖∞,Π = ‖u− w̄(·, t)‖∞,Γ < ε.

Thus, the restriction of u to Π is stable there, which is impossible by Theorem 3.2.
This achieves the proof in Case (3).

Case (4)

By Lemma 4.3, on each loop or circuit in Γ the derivative ∂juj vanishes exactly
once outside the ramification node v1. As in Case (3), this allows the reduction to
two pairs of edges of identical lengths that, in turn, lead to a restriction to a path
of two edges even under a consistent Kirchhoff condition at the ramification node.
As above, the two evolution flows are compatible with the extension–restriction
procedure and permit to conclude with Lemma 3.1, or even with Matano’s classical
result on an interval.

Case (5)

Again, dealing with C1–solutions, we can assume w.l.o.g. that the two circuits ζ1
and ζ2 are loops of length `1 and `2, respectively, and that the viaduct between the
nodes v1 and v2 of Γ is just an edge denoted by k3. Assume that vi ∈ V (ζi).

If ∂juj vanishes at some point on k3, then we are led to two graphs of Case 3,
or one of this type and a loop. Thus, it remains to consider the case where the
derivative ∂juj vanishes exactly once on each ζi outside vi. As in Case (3), this
allows the reduction to two pairs of edges of identical lengths that, in turn, lead to
a restriction to a path of 3 edges under an inconsistent Kirchhoff condition at v1

and v2 as in (25). As above, the two evolution flows are compatible and permit to
conclude with Theorem 3.2.
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Figure 5 presents some graphs fulfilling the conditions of Theorem 5.2, that
are not in Yanagida’s list. Note that the embedding (26) yields compatibility of
solutions for the extension–reduction–procedure related to appropriate subgraphs.
However, in general graphs, such embeddings compatible with the different involved
flows do not seem to be available. They would strongly simplify subgraph reduction
techniques in showing instability. Therefore, the surgery techniques from Section 4
will be applied for the general case, rather than the ones above.

Figure 3. More “exceptional” graphs by Theorem 5.2.

6. Proof of the main result. In this section we shall use the notation

∆ij = dij∂juj(vi) (27)

for the outer normal derivative of a function u on the edge kj at the vertex vi ∈ kj .
First, we consider Problem (1) on a tree T , i.e.

u ∈ C(T × [0,∞)) ∩ C2,1
K (T × (0,∞)),

∂tuj = ∂2
j uj + f(uj) on kj for 1 ≤ j ≤ N,

(K) :

N∑
j=1

dijcij∂juj(vi, ·) = 0 for 1 ≤ i ≤ n,
(28)

under Condition (4). Theorem 3.2 settles the case of a tree without essential rami-
fication nodes and forms part of the following

Theorem 6.1. On any finite metric tree T there is no stable stationary nonconstant
solution of Problem (28).

Proof. Let u ∈ C2
K(T ) be a stable stationary nonconstant solution of (28). For a

sole edge or a path this is impossible due to Theorem 3.2. Thus we can suppose
that N > 2 and that #Vess ≥ 1, and reason by recurrence on N . Modifying f for
the given solution u ∈ C2

K(T ) of (28) outside [−2M, 2M ] with M := ‖u‖∞,T as in

(21) for the proof of Theorem 4.2, we can assume w.l.o.g. that

f ′ ≤ b1 (29)
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with some constant b1 ≥ 0. Moreover, recall that under a dissipative Kirchhoff
condition, i.e. all cij > 0, as the third condition in (28), differentiable functions at
an extremum in a vertex behave like at an interior point, and all incident derivatives
have to vanish there.

If ∂juj(xj) = 0 for some xj ∈ [0, `j ] with πj(xj) 6∈ Vb and kj ∩ Vb 6= ∅, then u is
unstable by Lemma 4.3.

If ∂juj(xj) = 0 for some xj ∈ [0, `j ] with kj ∩ Vb = ∅, then T splits up at πj(xj)
into two trees having less than N edges and on which the restrictions of u are stable.
This is impossible by recurrence.

Thus, we conclude that ∂juj(xj) 6= 0 except at the boundary vertices Vb at
which clearly ∂juj(vi) = 0. It follows that on each edge kj , the function uj is
strictly monotone.

Choose any essential ramification node vi. Then there are at least two incident
edges, say k1 and k2, satisfying

∆i1∆i2 = di1∂1u1(vi) di2∂2u2(vi) > 0.

Remove k1 from T and get two disjoint subtrees of T . Let T̃ denote the one
containing vi and set

c̃mj =

{
ci2 + ci1

∆i1

∆i2
if m = i and j = 2,

cmj otherwise.

Then the restriction of u to T̃ belongs to C2
K̃

(T̃ ) with the dissipative Kirchhoff law

(K̃)
∑
j

dij c̃ij∂juj(vi) = 0 (1 ≤ i ≤ n(T̃ ))

and constitutes a stationary nonconstant solution of (28) on T̃ that has to be
unstable by recurrence. Thus, there is some ε0 > 0 such that for each δ > 0 there
is an initial data w̃0 ∈ C(T̃ ) with ‖w̃0 − u‖∞,T̃ < δ and ‖w̃(·, t0)− u‖∞,T̃ ≥ ε0 for

some t0 > 0 where w̃ denotes the solution of (28) with initial condition w̃0 on T̃ .
Next, we modify and extend w̃0 to a function w0 on T as follows. Choose δ0

sufficiently small such that for all 0 < δ ≤ δ0 ≤ ε0
4 e
−b1t0 , there exists w0 ∈ C(T̃ )

that coincides with u in a small neighborhood of vi and fulfills the constraints

‖w0 − u‖∞,T̃ < δ, ‖w0 − w̃0‖∞,T̃ <
ε0

2
e−b1t0 .

Then define w0 outside T̃ on T simply by u. Evidently,

‖w0 − u‖∞,T = ‖w0 − u‖∞,T̃ < δ.

Moreover, for the solution w of (28) with the initial data w0 on T we claim

(∗) ‖w(·, t0)− w̃(·, t0)‖∞,T̃ <
ε0

2
.

Proof. (∗) The difference z = w − w̃ ∈ C(T̃ × [0, t0]) ∩ C2,1

K̃
(T̃ × (0, t0]) satisfies on

each edge kj the equation

∂tzj = ∂2
j zj + fj(wj)− fj(w̃j) = ∂2

j zj + f ′j (λwj + (1− λ)w̃j) zj

with a function λ : R→ [0, 1]. Since the coefficient of the linear term zj is bounded
from above by b1, the Osgood type a priori estimate in Theorem 4.1 with b2 = 0
yields

‖z(·, t0)‖∞,T̃ ≤ e
b1t0 max

T̃
|z(·, 0)| = eb1t0 ‖w0 − w̃0‖∞,T̃ <

ε0

2
.
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This shows the claim (∗).
By stability of u on T , there is a δ ∈ (0, δ0] such that the initial data w0 from

above with ‖w0 − u‖∞,T̃ = ‖w0 − u‖∞,T < δ leads to the solution satisfying

‖w(·, t)− u‖∞,T <
ε0

2

for all t > 0. On T̃ evaluated at t0 > 0, this leads to

ε0 ≤ ‖w̃(·, t0)− u‖∞,T̃ ≤ ‖w̃(·, t0)− w(·, t0)‖∞,T̃ + ‖w(·, t0)− u‖∞,T̃
≤ ‖w̃(·, t0)− w(·, t0)‖∞,T̃ + ‖w(·, t0)− u‖∞,T < ε0,

which is absurd.

In order to achieve the proof of the general case we need a technical combinatorial
lemma for graphs with circuits.

Lemma 6.2. Let Γ be a finite graph that contains circuits of lengths at least 2. Let
the set of real numbers {∆ij 1 ≤ i ≤ n, 1 ≤ j ≤ N} satisfy the following properties:

(a) ∀vi ∈ Vr ∀j ∈ {1, . . . , N} : (dij 6= 0 ⇐⇒ ∆ij 6= 0).

(b) ∀vi ∈ Vr :
∑N
j=1 ∆ij = 0.

(c) ∀j ∈ {1, . . . , N} ∀vi, vh ∈ Vr : (vi, vh ∈ kj =⇒ ∆ij∆hj < 0) .
(d) Each circuit ζ in Γ contains a pair of edges kj , ks incident to vi ∈ V (ζ) such

that

∆ij∆is > 0.

Then there exists an edge kj with ramification nodes vi, vh ∈ kj or a viaduct π with
endpoints vi, vh such that there are two edges kr and ks with

∆ij∆is > 0 and ∆hj∆hr > 0.

Proof. Note first that, by (c) and (d), each circuit ζ in Γ contains a pair of edges
kj , ks incident to vi ∈ V (ζ) such that ∆ij > 0 and ∆is > 0 or a pair of edges kl, kt
incident to vm ∈ V (ζ) such that ∆ml < 0 and ∆mt < 0.

Let ζ be a circuit of length m with V (ζ) = {v1, . . . , vm} ordered by the relations
dii = −1 and di+1,i = 1 with indices to be taken mod m. Suppose that

∆11∆1m > 0.

W.l.o.g. assume that ∆11 > 0 and ∆1m > 0 and that each viaduct is replaced by
an edge of corresponding length. Then each

γ(vi; Γ) ≥ 3.

By (c), ∆21 < 0. If ∆22 < 0 or ∆2j < 0 for some incident edge outside ζ, then the
assertion is shown. Thus, we can assume

∆22 > 0, ∆2j > 0, and ∆32 < 0.

It follows recursively, that for ∆i,i−1 < 0, if ∆ii < 0 or ∆ij < 0 for some incident
edge outside ζ, then the assertion is shown with vi and vi−1. Thus, we can assume

∆ii > 0, ∆ij > 0, and ∆i+1,i < 0

with some incident edge kj outside ζ. If no pair vi and vi−1 for i ≤ m− 1 has been
found yet as asserted, then, finally, vm−1 and vm (as well as vm and v1) will fulfill
the requirements since then

∆m−1,m−1 > 0, ∆m−1,j > 0, ∆m−1,m < 0 and ∆m,m < 0
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Figure 4. Proof of Lemma 6.2. The indicated signs are those of
the ∆ij . The two thin arrows indicate the nodes vm and v1 fulfilling
the assertion.

with some incident edge kj outside ζ. This permits to conclude.

Note that the assertion of Lemma 6.2 does not hold on trees as simple examples
readily display. Now, we can show the exclusion result in the general case.

Theorem 6.3. There are no stable nonconstant stationary solutions of Problem
(1) on any finite connected metric graph G.

Proof. W.l.o.g. by introducing artificial nodes with Kirchhoff conditions leading to
continuous differentiability, we can assume that Γ is simple, i.e. Γ has neither loops,
nor multiple edges. We shall reason by recurrence on d := corank(Γ). Recall that
the circuit space Π(Γ) of the graph Γ is defined by

Π(Γ) =
〈
c ∈ kerD(Γ) supp(c) is a circuit in Γ

〉
and satisfies Π(Γ) = kerD(Γ), see e.g. [12]. Moreover

d = corank(Γ) = dim kerD(Γ) = dim Π(Γ), (30)

that amounts to N − n + 1 for connected graphs. For d = 0, the assertion is true
by Theorem 6.1. Thus, we can suppose

d ≥ 1.

Let u ∈ C2
K(G) be a stable stationary nonconstant solution of (1). Let kj be an

edge such that ∂juj(xj) = 0 for some xj ∈ [0, `j ] and set p = πj(xj). First, consider
the case that
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p 6∈ Vb.

1. If kj is incident to a boundary vertex, then Lemma 4.3 permits to conclude.
2. If kj is a bridge that is not incident to Vb, then cutting at p leads to two

disjoint metric subgraphs Γ̃1 and Γ̃2 of G. If one of them, say Γ̃1, were a tree,
then u would have to be unstable by Theorem 4.2 and Theorem 6.1. If both
of them contain circuits, then clearly

d(Γ̃1) < d and d(Γ̃2) < d.

By recurrence, the restrictions of u to Γ̃1 and Γ̃2 are unstable, and so is u by
Theorem 4.2.

3. If kj belongs to a circuit, then cutting at p leads to a graph Γ̃ of corank d− 1.

By recurrence the restriction of u to Γ̃ must be unstable, and so does u by
Theorem 4.2.

Thus, it remains to show the assertion in the case

∂juj(xj) = 0 ⇐⇒ πj(xj) ∈ Vb.

Use notation (27). At the endpoints vi, vh 6∈ Vb of an edge kj or of a viaduct with
dijdhl 6= 0 we have

∆ij∆hj < 0

or ∆ij∆hl < 0, respectively. Thus, w.l.o.g. we can consider any viaduct as an edge
in the remaining reasoning. The set of ∆ij clearly satisfies the hypotheses (a)–(c)
of Lemma 6.2, while Condition (d) is fulfilled by (6), by the continuity requirement
at the nodes and by the strictly monotone character of each uj . Thus, Lemma 6.2
guarantees the existence of an edge k1 with ramification nodes vi, vh ∈ k1 such that
there are two edges kr and ks with

∆i1∆ir > 0 and ∆h1∆hs > 0, (31)

respectively. Then introduce the modified conductivities by

c̃mj =

{
cmj + cm1

∆m1

∆mj
if (m, j) = (i, r) or (m, j) = (h, s) ,

cmj otherwise.

Finally, omit the edge k1 in Γ and proceed on the resulting and possibly non con-
nected graph Γ̃ as in the proof of Theorem 6.1. This is possible by the local character
of the modifications applied there in the vicinity of k1.

7. Common Hamiltonian edge system. The stationary case of the fully au-
tonomous consistent parabolic problem

u ∈ C(G× [0,∞)) ∩ C2,1
K (G× (0,∞)),

∂tuj = ∂2
j uj + f(uj) on kj for 1 ≤ j ≤ N,

(K)

N∑
j=1

dij∂juj(vi, ·) = 0 for 1 ≤ i ≤ n.
(32)

leads to the same first order system (33) defined by f and ′ = ∂j on each edge, i.e.{
u′j = vj ,

v′j = −f(uj).
(33)
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On each edge (33) is Hamiltonian with respect to the function

H(u, v) =
v2

2
+

∫ u

0

f(η)dη.

Thus, a stationary solution of (32) corresponds to N parts of trajectories in the
phase plane of (33) related to each other by the continuity condition (3) and by the
Kirchhoff law (K). Let us recall from [9] some properties of stationary solutions of
(32).

Proposition 1. Let u ∈ C2
K(G) be a stationary solution of (32). Then

‖u‖2H1
0 (G) =

∫
G

f(u)u dx. (34)

Moreover, if Hj denotes the Hamiltonian constant of the trajectory belonging to the
edge kj, then for incident edges kj , ks at vi it holds

2 (Hj −Hs) = (∂juj)
2

(vi)− (∂sus)
2

(vi).

Formula (34) applies e.g. in order to exclude stationary nonconstant solutions
between −1 and 1 for nonlinearities of the form f(u) = u2k+1−u2m−1 with 1 ≤ m ≤
k or of the form f(u) = − sin(πu). Again, by Lemma 2.2,

∫
G
f(u) dx = 0. Thus, f

must have zeros and must change sign in u(G). Set zmin = min {z f(z) = 0} and
zmax = max {z f(z) = 0}.

Lemma 7.1. Let u ∈ C2
K(G) be a stationary solution of (32) and suppose that

f(z) > 0 for z < zmin and f(z) < 0 for z > zmax. (35)

Then

zmin ≤ u ≤ zmax.

If, in addition, u is nonconstant, then

zmin < u < zmax.

In particular, ‖u‖L∞(G) ≥ max {|zmin| , |zmax|} implies that u is one of the equilibria
zmin or zmax.

Proof. At a point xj ∈ [0, `j ] where ±‖u‖L∞(G) is attained, we conclude vj(xj) = 0.

But, if u is nonconstant in a neighborhood of xj , for u > zmax or u < zmin, and
v = 0, it holds v′ > 0 and v′ < 0 respectively, i.e. there can never be a maximum or
a minimum at (u, 0) respectively. Moreover, if u attains zmax on some edge, then
zmax = maxG u. But, by flow uniqueness, there cannot be a nonconstant trajectory
arriving at the equilibrium (zmax, 0) on a finite interval in the phase plane. By
connectedness, u has to be the constant zmax on G, which is absurd. In the case
that u attains zmin on some edge, zmin = minG u which shows that u has to be the
constant zmin on G with an analogous argument as above.

The lemma applies in particular to the case of the balanced cubic f(u) = u− u3

treated in [9].

Remark 7.1. Without (35) the assertion of the lemma is no longer true. Clearly,
for f(z) > 0 in (−∞, zmin) we have zmin ≤ u, while in the case f(z) < 0 in (zmax,∞),
we have u ≤ zmax. But in the general case, both conclusions are invalid. E.g. for
f(u) = u3 − u, there are nonconstant stationary solutions u defined on a suitable
interval corresponding to periodic solutions surrounding the equilibria (−1, 0) and
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(1, 0) that satisfy ‖u‖L∞(G) > 1. But in all the cases, by Lemma 2.2, a nonconstant

stationary solution u satisfies

u(G) ∩ [zmin, zmax] 6= ∅.

For a Lyapunov–energy–calculus we introduce

E(u) =

∫
G

v2

2
− F (u) dx with F (s) =

∫ s

0

f(η) dη,

H(u) =

N∑
j=1

∫ `j

0

H (uj , ∂juj) dx.

Lemma 7.2. Let u ∈ C(G× [0,∞)) ∩ C2,1
K (G× (0,∞)) be a solution of (1).

(a) Along u the energy decreases:

Ė(u) :=
d

dt
E(u) = −

∫
G

(∂tu)
2
dx.

(b) If u ∈ C2
K(G) is a stationary solution of (1), then E(u) + H(u) = ‖u‖2H1

0 (G)

and

E(u) =

∫
G

1

2
f(u)u dx−

N∑
j=1

`jHj .

In particular, if u is an equilibrium A, then E(u) = −LH(u, 0).

Proof. As for (a), we can follow a standard density argument using the Kirchhoff
and the continuity condition:

Ė(u) =

∫
G

∂xtu∂xu− f(u)∂tu dx

=
∑
j

[∂tu∂xu]
`j
0︸ ︷︷ ︸

=0

−
∫
G

∂tu
(
∂2
xu− f(u)

)︸ ︷︷ ︸
∂tu

dx = −
∫
G

(∂tu)
2
dx.

As for (b), both assertions follow readily with the definitions and from Proposition
1.

In order to apply Lasalle’s principle, we have to impose an additional condition
to f . E.g. under the hypothesis

{z ∈ R F (z) ≥ 0} bounded, (36)

we obtain with M := maxR F
+ <∞ that

E(u) =

∫
G

v2

2
− F (u) dx ≥ −

∫
G

F (u) dx ≥ −ML.

This enables the application of Lasalle’s Principle [4] in order to conclude the fol-
lowing

Corollary 2. Under Condition (36) the solutions u ∈ C(G × [0,∞)) ∩ C2,1
K (G ×

(0,∞)) of (32) tend to stationary solutions as t → ∞ with respect to ‖·‖L∞(G),

since their ω–limits belong to the set of functions satisfying Ė(u) = 0.
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We apply the preceding results to the attractivity properties of the equilibria for
a nonlinearity f subject to the following conditions.

f ∈ C1(R), −∞ < A < B < C <∞, f(A) = f(B) = f(C) = 0,

f ′(A) < 0, f ′(C) < 0, f ′(B) > 0,

f > 0 in (−∞, A) ∪ (B,C), f < 0 in (A,B) ∪ (C,∞).

(37)

They clearly include the case of a cubic f(x) = α(A−x)(B−x)(C−x) with α > 0.
Moreover, Condition (36) is satisfied with

M := max
R

F+ = max {F (A), F (C)} ,

and Corollary 2 applies. Now we can state the following results about the flow
defined by Problem (32) subject to Condition (37).

Theorem 7.3. (a) The equilibrium A is a local attractor, whose domain of at-
traction satisfies

D(A) =

{
u0 ∈ C(G) lim

t→∞

∫
G

u(·, t)dx = LA

}
⊃ C (G; (−∞, B]) \ {B} .

(b) The equilibrium C is a local attractor, whose domain of attraction satisfies

D(C) =

{
u0 ∈ C(G) lim

t→∞

∫
G

u(·, t)dx = LC

}
⊃ C (G; [B,∞)) \ {B} .

(c) Any nonconstant stationary solution w ∈ C2
K(G) satisfies A < w < C and

E(w) ≥ −ML and takes values in (A,B) and values in (B,C).
(d) A stationary solution w ∈ C2

K(G) satisfies E(w) = −LM iff w is an equilibrium
of minimal energy.

Proof. The claimed inclusions in (a) and (b) follow with [9, Theorem 4.1]. By conti-

nuity, Corollary 2 ensures that the solutions u ∈ C(G× [0,∞))∩C2,1
K (G× (0,∞)) of

(32) with initial data u0 belonging to D(A) or to D(C) satisfy limt→∞
∫
G
u(·, t)dx =

A
∫
G
dx = LA and limt→∞

∫
G
u(·, t)dx = LC, respectively. It follows that D(A) and

D(C) belong to the sets in the middle. But according to Lemma 7.1, a nonconstant
stationary solution w satisfies

−LA <

∫
G

wdx < LC.

Thus, for u0 belonging to one of the sets in the middle, its solution has to be
attracted by the equilibrium A or C, respectively.

The assertion (c) follows readily by Lemma 7.1 and (a) and (b). As for (d),

E(w) = −LM implies that ‖w‖2H1
0 (G) ≤

∫
G

(F (w)−M) dx ≤ 0, which permits to

conclude.

For the balanced cubic f(u) = u3 − u the equilibrium 0 is a global attractor, see
[9, p.180], while for f(u) = u − u3 it is not a repeller, since its basin of attraction
is given by the set of continuous initial conditions u0, whose solutions satisfy

lim
t→∞

E(u(·, t)) = 0,

see [9, Prop. 6.9]. Theorem 7.3 applies in particular to the balanced cubic f(u) =
αu(A−u)(u−A) that defines the nonlinearity of the Schlögl system. For the latter
one it has been shown in [15] that the equilibrium 0 for the Schlögl system on a
sufficiently small interval can by L2–stabilized exponentially fast by a suitable Robin
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boundary feedback condition. The open question arises whether an analogous result
holds on general metric graphs too.

8. The non autonomous case and other transition conditions. The smallest
example of the existence of a stable nonconstant stationary solution in presence of
reaction terms depending on the edges is the following one.

Example 8.1. Let Γ be the path of length 2 with `1 = `2 = 1 and the orientation
and labeling given by (9). Define w ∈ C2

K(G) by

w1(x) =
1

2
− x2

2
, w2(x) =

x2

2
− x.

Then ∂2
1w1 +1 = 0 and ∂2

2w2−1 = 0 in [0, 1], and u is stable with respect to the flow
generated by the edge evolution equations ∂tuj = ∂2

j uj−(−1)j in C0(G) (or L2(G)).

This follows from the fact that for any solution u ∈ C(G× [0,∞))∩C2,1
K (G×(0,∞)),

the difference δ = u−w solves the heat equation ∂tδj = ∂2
j δj on each edge kj . But

the minimal eigenvalue of the Laplacian −
(
∂2
j

)
N×1

under (2) and (3) is 0. Thus,

eigenfunction expansion and Dirichlet’s Theorem yield

‖u(·, t)− w‖∞,G ≤ const. ‖u(·, 0)− w‖∞,G .

Example 8.2. If we admit homogeneous Dirichlet boundary conditions at some
vertices, stable nonconstant stationary solution occur already on an interval. On
[0, `] consider the parabolic problem

u ∈ C([0, `]× [0,∞)) ∩ C2,1([0, `]× (0,∞))

∂tu = u′′ + 1 on [0, `]

u(0, ·) = 0 = u′(`, ·)
(38)

Then

w(x) = `x− x2

2

defines a global attractor for the solutions of (38) in C0[0, `] (or L2(0, `)), since for
any solution u ∈ C([0, `] × [0,∞)) ∩ C2,1([0, `] × (0,∞)), the difference δ = u − w
solves again the heat equation on [0, `]. But the minimal eigenvalue of the Laplacian
on [0, `] under u(0) = 0 = u′(`) amounts to

λ1 =
π2

4`2

and leads via eigenfunction expansion and Dirichlet’s Theorem to the conclusion

‖u(·, t)− w‖∞,G ≤ const. e−λ1t ‖u(·, 0)− w‖∞,G .

Example 8.3. If the nonlinearity depends on the edges and on xj , but not on u,
then either there is no stationary solution or there is a unique stable one, that can
be nonconstant. In detail and generalizing Example 8.1, for given fj ∈ C[0, `j ] we
consider the inhomogeneous heat flow problem

u ∈ C(G× [0,∞)) ∩ C2,1
K (G× (0,∞)),

∂tuj = ∂2
j uj + fj(xj) on kj for 1 ≤ j ≤ N,

(K)

N∑
j=1

dij∂juj(vi, t) = 0 for 1 ≤ i ≤ n.
(39)
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If
∫
G
f(x) dx 6= 0, then there is no stationary solution w ∈ C2

K(G) of (39), since
this would lead to

0 =

N∑
j=1

∫ `j

0

∂2
jwj(xj) dxj = −

N∑
j=1

∫ `j

0

fj(xj) dxj =

∫
G

f(x) dx.

But if f fulfills
∫
G
f(x) dx = 0, then a unique stationary solution w ∈ C2

K(G) of
(39) can be obtained as follows. Introduce

Fj(xj) =

∫ xj

0

fj(ξ) dξ

Using (3) and (K), it readily follows as in [5, 7, 10, 16, 17], that there exist unique
coefficients bj and cj for 1 ≤ j ≤ N such that w ∈ C2

K(G) defined by

wj(xj) = cj + bjxj −
∫ xj

0

Fj(sj) dsj

is the unique stationary solution of (39). As in Example 8.1, w is seen to be stable,
since for every solution u of (39), the difference u − w solves the heat equation in

C(G× [0,∞)) ∩ C2,1
K (G× (0,∞)).

Example 8.4. If the diffusion coefficients are allowed to be different, then again
stable nonconstant stationary solutions can occur. The example follows a refinement
of Matano’s type of counterexamples for non convex domains established by Cònsul
and Solà–Morales [13]. Consider the path Π with 3 edges using the numbering (9)
and choosing the edge lengths and diffusion coefficients aj to be

`1 = `3 = 1, `2 = δ > 0, a1 = a3 = 1, a2 = ε > 0

with δ and ε sufficiently small to be determined later. As common nonlinearity we
choose f(u) = u − u3. Using the double well potential G(u) = 1

4 (1 − u2)2 and the
modified energy

E(u) =

3∑
j=1

∫ `j

0

aj
2

(∂juj)
2

+G(u)dxj ,

it can be shown that for ε = δ2, there exists a minimizer w of E in{
u ∈ C(Π) ∩H1(Π)

∫ `1

0

u1 dx1 ≤ 0,

∫ `3

0

u3 dx3 ≥ 0, −1 ≤ u ≤ 1

}
that is close to −1 on k1 and close to 1 on k3. Moreover, w is stable.

Remark 8.1. The anti–Kirchhoff condition: If we replace the transition condi-
tions (2) and (3) by their orthogonal condition, the famous anti–Kirchhoff condition∑

vi∈kj

uj(vi, t) = 0 for 1 ≤ i ≤ n, (40)

kj ∩ ks = {vi} =⇒ dij∂juj(vi, t) = dis∂sus(vi, t) for 1 ≤ i ≤ n, (41)

then the stability results change dramatically. E.g., there are no exceptional graphs,
since for any finite metric graph, there is a suitable nonlinearity f such that there
is a stable nonconstant stationary solution (uj)N×1 governed by the edge equations

∂2
j uj + f(uj) = 0. We refer to [10] for the details.
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Remark 8.2. As already pointed out above, node transition conditions different
from the ones given by (2) and (3) can allow stable nonconstant stationary solutions.
In particular, consider the limit problem of a parabolic problem on Γ depending on
a parameter and allowing only constant stable stationary solutions. If the limit
problem changes the type of its transition conditions or even the type of its edge
differential equations, then stable nonconstant stationary solutions can occur in the
limit. An example is given by Problem (1) with (2) replaced by the dynamical
Kirchhoff condition ∑

j

dijcij∂juj(vi, ·) + σ∂tu(vi, ·) = 0,

see [11]. Letting σ tend to ∞ leads to a parabolic problem with a certain Dirichlet
condition at the nodes, that can allow stable nonconstant stationary solutions using
a similar argument as in 8.2.

As the stationary solutions of the parabolic and the corresponding hyperbolic
problem are the same when keeping the same node transition conditions, the in-
teresting question arises, whether stability properties can be carried over from one
case to the other. More generally, if the hyperbolic problem is approximated by
parabolic ones with established stability criteria, e.g. by relaxation, is it possible to
conclude stability criteria for the hyperbolic case from those in the parabolic case?
A precise answer to this question is certainly of big interest and could apply e.g.
to gas networks considered in [14], where the existence of nonconstant stationary
solutions has been established for certain metric graphs.
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