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Abstract. The aim of this work is to provide further insight into the qualita-
tive behavior of mechanical systems that are well described by Lennard-Jones

type interactions on an atomistic scale. By means of Γ-convergence techniques,

we study the continuum limit of one-dimensional chains of atoms with finite
range interactions of Lennard-Jones type, including the classical Lennard-Jones

potentials. So far, explicit formula for the continuum limit were only available

for the case of nearest and next-to-nearest neighbour interactions. In this
work, we provide an explicit expression for the continuum limit in the case of

finite range interactions. The obtained homogenization formula is given by the

convexification of a Cauchy-Born energy density.
Furthermore, we study rescaled energies in which bulk and surface contri-

butions scale in the same way. The related discrete-to-continuum limit yields a

rigorous derivation of a one-dimensional version of Griffith’ fracture energy and
thus generalizes earlier derivations for nearest and next-to-nearest neighbors

to the case of finite range interactions.
A crucial ingredient to our proofs is a novel decomposition of the energy

that allows for refined estimates.

1. Introduction. Our article follows the general aim of deriving continuum theo-
ries for mechanical systems from underlying discrete systems, see e.g. [2]. Here, we
are interested in discrete systems with non-convex interaction potentials that allow
for fracture of mechanical systems. One of the first contributions in this direction
is due to Truskinovsky [24]. In that article a chain of atoms which interact by
Lennard-Jones potentials is considered and a model for fracture is derived. Later
this approach was extended by using the notion of Γ-convergence in [6, 7, 8]. In
order to capture surface effects, a refined analysis was performed based on calcu-
lating the first order Γ-limit, see [5, 19], or on studying suitably rescaled energies
[10, 12, 13, 14, 15, 16, 20].

The main scope of the present paper is to provide a rather explicit description
of limiting functionals for discrete systems with Lennard-Jones type interactions of
finite range. To make this more precise, we fix some notation. We consider a chain
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of n+1 lattice points with n ∈ N. The interaction of lattice points with distance j 1
n

in the reference lattice is described by a potential Jj , j ∈ {1, . . . ,K} with K ∈ N.
The mathematical assumptions on the potentials Jj , j = 1, . . . ,K, are phrased in
Section 2. In particular these are satisfied if Jj(z) = J(jz) for some Lennard-Jones

potential J(z) = k1
z12 −

k2
z6 , k1, k2 > 0 if z > 0, and +∞ otherwise. Therefore, we

call the potentials which satisfy our assumptions potentials of Lennard-Jones type.
The free energy of the system under consideration is the sum of all pair interactions
up to range K with the canonical bulk scaling. It reads

Hn(u) =

K∑
j=1

n−1∑
i=0

λnJj

(
ui+j − ui

jλn

)
,

where λn := 1
n and ui denotes the deformation of the ith lattice point satisfying

certain periodic boundary conditions on [0, 1)∩λnZ with u being its piecewise affine
interpolation.

We are interested in the asymptotic behavior of the system as n → ∞ and
therefor consider the Γ-limit of the sequence of functionals (Hn), see Section 3. The
Γ-limit of discrete functionals of the form of Hn was derived under very general
assumptions on the interaction potentials in [8]. The Γ-limit result of [8, Theorem
3.2] phrased for Lennard-Jones type potentials asserts that (Hn) Γ-converges to
an integral functional H, which is defined on the space of functions of bounded
variation and has the form

H(u) =

∫ 1

0

φ(u′(x))dx, (1)

where φ is defined via some homogenization process which involves minimization
of larger and larger ‘cells’, see Remark 4 below for details. In the special case of
Lennard-Jones potentials, φ reads

φ(z) := lim
N→∞

min

{
1

N

K∑
j=1

N−j∑
i=0

J
(
ui+j − ui

)
|

u : N0 → R, ui = zi if i /∈ {K + 1, . . . , N −K − 1}
}
,

(2)

cf. [9, Theorem 23].
If K = 1, φ = J∗∗1 , where J∗∗ denotes the lower semicontinuous and convex

envelope of J , see e.g. [7]. If K = 2 it was shown that φ = (J1 + J2)∗∗ for Lennard-
Jones systems, see e.g. [8]. In this article we extend this result to K > 2 and
prove

φ = J∗∗CB ,

with the Cauchy-Born energy density

JCB =

K∑
j=1

Jj .

Thus, the formula (2) for φ has a rather explicit expression for the large class of
Lennard-Jones type potentials. Our result also extends a corresponding formula
in the case of convex interaction potentials, see [11, 17], to a class of nonconvex
interaction potentials.

Let us recall the following major difference between K > 2 and the case of
nearest and next-to-nearest neighbor interactions, i.e. K = 2: In the latter case and
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for rather general interaction potentials Jj , the limiting energy density φ is given
by the ‘single cell formula’ φ ≡ J∗∗0 , where J0 is an effective potential given by the
following infimal convolution-type formula, which takes possible oscillations on the
lattice-level into account

J0(z) := J2(z) + 1
2 inf{J1(z1) + J1(z2), z1 + z2 = 2z},

see e.g. [8, Remark 3.3]. With this formula at hand it is not difficult to show that
in the case of Lennard-Jones type potentials there are essentially no oscillations on
the lattice-level and it holds φ(z) = (J1 + J2)∗∗(z) = J∗∗CB(z). However, up to our
knowledge, there has not been a result in the literature yet which asserts whether or
how the formula for the effective potential J0 extends to a larger interaction range,
i.e., to K > 2.

The key idea in our proof for general finite range interactions is to bypass the
absence of a ‘single cell formula’ for φ by carefully decomposing the energy into
sub-systems, which are then considered separately. For each of such sub-systems
an effective potential similar to J0, given above, is available. Appealing to the
special convex/concave shape of the Lennard-Jones type potentials it is then possible
to exclude oscillations on the lattice-level which justifies a posteriori the energy
splitting and enables us to show φ = J∗∗CB for Lennard-Jones type potentials. In
Section 2, we describe this novel energy decomposition in detail and show φ = J∗∗CB
for Lennard-Jones type potentials in Section 3.

As an aside, we mention that the pointwise limit of (Hn) in the spirit of [3] yields
a similar integral functional as above with JCB instead of J∗∗CB . Hence, roughly
speaking, the Γ–limit is the lower semicontinuous envelope of the pointwise limit in
this case.

The above Γ–limit result is of interest also in the analysis of computational
techniques as the so called quasicontinuum method, see e.g. [18, 23]. The main idea
of that method is to couple fully atomistic and continuum descriptions of solids.
Many formulations of those models rely on the assumption that the effective energy
of the continuum limit of discrete energies like Hn is given by JCB . The result
of Theorem 3.1 makes it possible to extend the Γ-convergence analysis of certain
quasicontinuum models for the case K = 2, see [21], also to the case of general finite
range interactions of Lennard-Jones type, see [22].

The limiting functional H in (1) captures the bulk contributions of the energy.
In order to capture also surface contributions due to the formation of cracks, it is a
well-known strategy to consider suitably rescaled functionals, cf., e.g., [12, 13, 20].
In Section 4 we thus consider rescaled functionals for which the contribution of
elastic deformations and surface contributions due to jumps are on the same order
of magnitude. We observe that a global minimizer of Hn is given by the linear
function x 7→ γx with {γ} = argmin JCB , see (12). We define a rescaled functional
by

En(v) :=

K∑
j=1

n−1∑
i=0

Jj

(
γ +

vi+j − vi

j
√
λn

)
− nJCB(γ) (3)

with certain periodic boundary conditions, see below, where vi is a scaled version
of the displacement of lattice point i from its equilibrium configuration γi, and v is
its piecewise affine interpolation. The above energy En is a variation of the energy
considered in [12, Theorem 4] for multibody potentials with finite range interaction,
and in [20, Theorem 6.1] for nearest and next to nearest neighbor interactions and
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Dirichlet type boundary conditions. Combining the decomposition of the energy
mentioned above with the line of arguments of [12, Theorem 4], we prove that (En)
Γ-converges to a one-dimensional version E of the Griffith energy for fracture:

E(v) = 1
2J
′′
CB(γ)

∫ 1

0

v′(x)2 dx+ β#Sv, [v](x) > 0 for x ∈ Sv,

where Sv is the jump set of v and β is some boundary layer energy given in (31),
cf. Theorem 4.2 for details. In Remark 6 we outline another proof which was
pointed out to us by an anonymous referee. That proof is based on an application
of [12, Theorem 4] to a clever choice of auxiliary multibody potentials. Notice that
in [12], it is only shown that [12, Theorem 4] is applicable for energies with pair
potentials such as e.g. the classical Lennard-Jones potentials in the cases of nearest
and next-to-nearest neighbor interactions (cf. [12, Remark 3]), and an extension to
general finite range interactions seems not immediate, see also [13, Section 4] for a
related discussion. In this contribution, we provide such an extension in the case of
Lennard-Jones type potentials based on the energy decomposition explained above.

2. Setting of the problem. We consider a one-dimensional lattice given by λnZ
with λn = 1

n . We denote by u : λnZ → R the deformation of the atoms from the

reference configuration and write u(iλn) = ui as shorthand. In the following, we
identify a discrete deformation u with its piecewise affine interpolation and consider
for simplicity only deformations with a 1-periodic derivative, i.e. u ∈ A#

n (0, 1),
where

A#
n (0, 1) :=

{
u ∈W 1,∞

loc (R) : u is affine on (i, i+ 1)λn ∀i ∈ Z, u′ is 1-periodic
}
.

For given K ∈ N, we define a discrete energy of a deformation u ∈ A#
n (0, 1) by

Hn(u) :=

K∑
j=1

n−1∑
i=0

λnJj

(
ui+j − ui

jλn

)
, (4)

where Jj , j = 1, . . . ,K are potentials of Lennard-Jones type which satisfy

(i) Jj is C2 on its domain and (0,+∞) ⊂ domJj ,
(ii) lim

z→−∞
|z|−1Jj(z) = +∞,

(iii) lim
z→+∞

Jj(z) = 0,

(iv) argminzJj(z) = {δj}, Jj(δj) < 0.

Let u ∈ A#
n (0, 1) and j ∈ {2, . . . ,K} be given. Appealing to the equality un+s −

un+s−1 = us−us−1 (a consequence of 1-periodicity of u′), we can rewrite the nearest
neighbour interactions in (4) as follows:

n−1∑
i=0

J1

(
ui+1 − ui

λn

)
=

n−1∑
i=0

1

j

i+j−1∑
s=i

J1

(
us+1 − us

λn

)
. (5)

Let c = (cj)
K
j=2 be such that

∑K
j=2 cj = 1. Using (5), we can rewrite the energy (4)

as

Hn(u) =

K∑
j=2

n−1∑
i=0

λn

{
Jj

(
ui+j − ui

jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

λn

)}
. (6)
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For given j ∈ {2, . . . ,K}, we define the following functions

J0,j(z) := Jj(z) +
cj
j

inf

{
j∑
s=1

J1(zs),

j∑
s=1

zs = jz

}
. (7)

Note that the definition of J0,j yields lower bounds for the terms in the curved
brackets in (6). Let us remark that in the case of nearest and next-to-nearest
neighbour interactions, i.e. K = 2, we have c2 = cK = 1 and

J0,2(z) = J2(z) +
1

2
inf{J1(z1) + J1(z2) : z1 + z2 = 2z},

which is exactly the effective energy density which shows up in [5, 19, 20], and
similarly in [13].
Next, we formulate further assumptions on the potentials Jj in terms of the func-
tions J0,j :

(v) There exists c = (cj)
K
j=2 ∈ RK−1+ such that

∑K
j=2 cj = 1, and J0,j defined in

(7) satisfies the hypotheses (vi), (vii), and (viii) for j ∈ {2, . . . ,K}.
(vi) There exists a unique γ > 0, independent of j, such that

{γ} = argminz∈RJ0,j(z). (8)

Furthermore, J ′′0,j(γ) > 0 and there exists ε > 0, independent of j, such that

{(z, . . . , z)} = argmin

{
j∑
s=1

J1(zs),

j∑
s=1

zs = jz

}
for all z ≤ γ + ε. (9)

(vii) There exists η > 0 and C > 0 such that

Jj(z) +
cj
j

j∑
s=1

J1(zs) ≥ Jj(z) + cjJ1(z) + C

j∑
s=1

(zs − z)2 (10)

whenever
∑j
s=1 zs = jz and

∑j
s=1 |zs − z|+ |z − γ| ≤ η.

(viii) lim inf
z→+∞

J0,j(z) > J0,j(γ).

Remark 1. Note that a direct consequence of hypothesis (vi) is

J0,j(z) = Jj(z) + cjJ1(z) =: ψj(z) for all z ≤ γ + ε and ψ′′j (γ) > 0 (11)

for all j ∈ {2, . . . ,K}.

Assumptions (v)–(vii) are tailor-made in order to rule out certain microscopic
relaxation effects which in general might occur for discrete systems with non-convex
interaction potentials, see Remark 4. We will show in Proposition 1 that the classical
Lennard-Jones potentials indeed satisfy assumptions (i)–(viii).

Note that (6) and the assumptions (v) and (vi) imply

Hn(u) ≥
K∑
j=2

n−1∑
i=0

λnJ0,j

(
ui+j − ui

jλn

)
≥

K∑
j=2

(Jj(γ) + cjJ1(γ)) =

K∑
j=1

Jj(γ). (12)

Hence, umin(x) = γx is a minimizer of Hn for all n ∈ N. Let us now consider
deformations u ∈ A#

n (0, 1) which are close to the equilibrium configuration umin.

To this end, set vi = ui−λnγi√
λn

and define

En(v) :=

K∑
j=1

n−1∑
i=0

Jj

(
γ +

vi+j − vi

j
√
λn

)
− nJCB(γ) =

Hn(umin +
√
λnv)− inf Hn

λn
,
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where JCB is defined by

JCB(z) :=

K∑
j=1

Jj(z). (13)

In Section 4, we derive a Γ–limit of En as n tends to infinity under additional
boundary conditions. We define the sequence of functionals (E`n) by

E`n(v) :=

{
En(v) if v ∈ A#,`

n (0, 1),

+∞ else,
(14)

where

A#,`
n (0, 1) := {v ∈ A#

n (0, 1) : x 7→ v(x)− `x is 1-periodic}. (15)

In Theorem 4.2, we derive the Γ–limit of the sequence (E`n) as n tends to infinity.
Next we show that the assumptions (i)–(viii) are reasonable in the sense that

they are satisfied by the classical Lennard-Jones potentials.

Proposition 1. For j ∈ {1, . . . ,K} let Jj be defined as

Jj(z) = J(jz) with J(z) =
k1
z12
− k2
z6
, for z > 0 and J(z) = +∞ for z ≤ 0

(16)
and k1, k2 > 0. Then there exists (cj)

K
j=2 such that hypotheses (i)–(viii) are satisfied.

Moreover, it holds that domJj = (0,+∞) for j ∈ {1, . . . ,K} and that for all z > 0
and j ∈ {2, . . . ,K}

J∗∗0,j(z) = ψ∗∗j (z) =

{
ψj(z) if z ≤ γ,

ψj(γ) if z > γ.
(17)

Proof. By the definition of Jj , j = 1, . . . ,K it is clear that they satisfy (i)–(iv) and
domJj = (0,+∞). Note that the unique minimizer δj of Jj is given by

δj =
1

j

(
2k1
k2

)1/6

, (18)

and J is strictly convex on (0, zc) with zc = ( 13
7 )

1
6 δ1 > δ1. Let us show (v)–(viii).

The function JCB is given by

JCB(z) =

K∑
j=1

J(jz) =
k1
z12

K∑
j=1

1

j12
− k2
z6

K∑
j=1

1

j6
.

Hence, JCB is also a Lennard-Jones potential with the unique minimizer

γ =

(
2k1
k2

)1/6
(∑K

j=1
1
j12∑K

j=1
1
j6

)1/6

< δ1. (19)

It can be checked that J ′(γ) < 0 and J ′(jγ) > 0 for j ≥ 2. We define (cj)
K
j=2 as

cj := −jJ
′(jγ)

J ′(γ)
> 0. (20)

Since γ is the minimizer of JCB , we have
∑K
j=2 jJ

′(jγ) = −J ′(γ) and thus
∑K
j=2 cj =

1.
Next, we show that Jj , j = 1, . . . ,K satisfy (vi)–(viii) with cj given by (20) and

γ given by (19). For this, we fix j ∈ {2, . . . ,K}.
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• Argument for (vi). Consider z ≤ δ1. Since J is decreasing on (0, δ1) and
increasing on (δ1,∞), the minimum problem in (9) admits a minimizer z̄ =
(z̄1, . . . , z̄j) satisfying z̄i ∈ (0, δ1] for all i = 1, . . . , j. In combination with
the strict convexity of J in (0, δ1], we obtain that z̄i = z for all i = 1, . . . , j.
Hence, (9) is true with ε = δ1 − γ > 0, see (19). Next, we show that γ is
the unique minimizer of J0,j . Since J0,j(z) ≥ J(jz) + cjJ(δ1) ≥ J0,j(δ1) for
z ≥ δ1 it suffices to consider z ≤ δ1 in order to find the minimum of J0,j . We
already showed J0,j(z) = J(jz) + cjJ(z) = ψj(z) for z ≤ δ1 and thus

J0,j(z) = ψj(z) =
k1
z12

(
1

j12
+ cj

)
− k2
z6

(
1

j6
+ cj

)
for z ≤ δ1.

Hence, ψj is again a Lennard-Jones potential with a single critical point which
is a minimum. Since cj is defined such that jJ ′(jγ) + cjJ

′(γ) = 0, we deduce
that γ is the unique minimizer of ψj and since γ < δ1 also of J0,j .

• Argument for (vii). Let z and zs be such that jz =
∑j
s=1 zs. A Taylor

expansion yields

j∑
s=1

J(zs) =jJ(z) + J ′(z)

j∑
s=1

(zs − z) +

j∑
s=1

∫ 1

0

(1− t)J ′′(z + t(zs − z))(zs − z)2 dt.

The second term on the right-hand side vanishes since
∑j
s=1 zs = jz. For

η > 0 sufficiently small, e.g. η < |γ − δ1|, we have J ′′(z + t(zs − z)) ≥
infz≤δ1 J

′′(z) > 0 for all t ∈ [0, 1] and s = 1, . . . , j, which proves the assertion.
• Argument for (viii). Let (zn) be such that limn→∞ zn = +∞ and

lim inf
z→∞

J0,j(z) = lim
n→∞

J0,j(zn).

For every η > 0 and n ∈ N, we find zsn with s = 1, . . . , j such that

J0,j(zn) ≥ J(jzn) +
cj
j

j∑
s=1

J(zsn)− η with

j∑
s=1

zsn = jzn.

Since zn → ∞ and J1(z) = +∞ for z ≤ 0, there exists s ∈ {1, . . . , j} such
that, up to subsequences, zsn → +∞ as n→∞. Without loss of generality we
assume that s = 1 and from limz→∞ J(z) = 0, it follows

lim inf
n→∞

J0,j(zn) ≥ cj
j

lim inf
n→∞

j∑
s=2

J(zsn)− η ≥ cj
j − 1

j
J(δ1)− η.

Since J(jδ1) < 0 for j = 1, . . . ,K the assertion follows by choosing η =
− 1

2Jj(δ1) and

cj
j − 1

j
J(δ1)− η > cj

j − 1

j
J(δ1)− η +

1

2
J(jδ1) +

cj
j
J(δ1) = ψj(δ1) > ψj(γ),

and since ψj(γ) = J0,j(γ), the assertion is proven.

Finally, we comment on identity (17). We already observed that ψj are Lennard-
Jones potentials with minimizer γ, and thus the second equality in (17) follows.
The first equality is true since one can easily check that ψ∗∗j ≤ J0,j ≤ ψj .

Remark 2. The proof of Proposition 1 can be applied almost verbatim also to
slightly more general potentials of the form

Jj(z) = J(jz) with J(z) =
k1
zm
− k2
zn
, for z > 0 and J(z) = +∞ for z ≤ 0,
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k1, k2 > 0, and m > n > 1.

Remark 3. If Jj , j ∈ {1, . . . ,K} satisfy (i)–(viii) and (17), then it is easy to see
that {γ} = argminJCB and

J∗∗CB(z) =

K∑
j=2

J∗∗0,j(z) =

K∑
j=2

ψ∗∗j (z) =

{
JCB(z) if z ≤ γ
JCB(γ) if z ≥ γ.

(21)

3. Gamma-limit of Hn. In this section, we give an explicit expression for the
Γ-limit of discrete energies Hn, see (4), with periodic boundary conditions. More
precisely, for fixed ` > 0 we define H`

n : A#,`
n (0, 1)→ R ∪ {+∞} as

H`
n(u) :=

{
Hn(u) if u ∈ A#,`

n (0, 1),

+∞ else,

where A#,`
n (0, 1) is given in (15). Moreover, we set

BV `(0, 1) := {u ∈ BVloc(R) : x 7→ u(x)− `x is 1-periodic}.

Theorem 3.1. Let Jj : R→ (−∞,+∞] be Borel functions. Assume there exists a
convex function Ψ : R→ [0,+∞] such that

lim
z→−∞

Ψ(z)

|z|
= +∞ (22)

and there exist constants d1, d2 > 0 such that

d1(Ψ(z)− 1) ≤ Jj(z) ≤ d2 max{Ψ(z), |z|} for all z ∈ R. (23)

Moreover, assume that the Jj satisfy the assumptions (i)–(vi) and (17). Then, for
` > 0, the Γ-limit of the sequence (H`

n) with respect to the L1
loc-topology is given by

H`(u) :=


∫ 1

0

J∗∗CB(u′(x)) dx if u ∈ BV `(0, 1), Dsu ≥ 0,

+∞ else on L1
loc(R),

where Dsu denotes the singular part of the measure Du with respect to the Lebesgue
measure.

Remark 4. (a) As discussed in the introduction, the Γ-limit of discrete energies
as (Hn) with very general interaction potentials is provided in [8, Theorem 3.4].
Specialized to the situation of Theorem 3.1, the limiting energy density in [8, The-
orem 3.4] reads

φ(z) := inf{φ(z1) : z1 ≤ z} where φ = Γ- lim
N→∞

φ∗∗N ,

with

φN (z) = min

{
1

N

K∑
j=1

N−j∑
i=0

Jj

(
ui+j − ui

j

)
:

u : N0 → R, ui = zi if i ∈ {0, . . . ,K} ∪ {N −K, . . . , N}
}
.

For general non-convex interaction potentials, one cannot expect a simplification of
the asymptotic homogenization formulas φ and φ in general. In fact, the assump-
tions (v) and (vi) are essential in the simplification of φ and φ. These assumptions
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follow for instance from the specific convex-concave shape of the Lennard-Jones
potentials.

(b) Theorem 3.1 follows by showing that J∗∗CB = φ and adjusting the argument
of [8] to the present boundary conditions. Here, however, we give a direct proof
of Theorem 3.1 which, by appealing to assumptions (i)–(vi), significantly simplifies
compared to [8].

Proof of Theorem 3.1. Liminf inequality. Let (un) ⊂ W 1,∞
loc (R) be such that

supnH
`
n(un) <∞ and un → u in L1

loc for some u ∈ L1
loc(R). The growth condition

at −∞ of the potentials Jj , cf. (22) and (23), implies that (u′n)− := −(u′n ∧ 0),
where a ∧ b := min{a, b}, satisfies supn ‖(u′n)−‖L1(0,1) < ∞. Combining this with

the periodicity of the map x 7→ un(x) − `x and un → u in L1
loc(R), we obtain

supn ‖un‖W 1,1(I) <∞ for every bounded interval I ⊂ R. Since bounded sequences

in W 1,1(I) are weakly∗ compact in BV (I), we obtain, up to subsequences, un
∗
⇀ u

weakly∗ in BV (I) for every bounded interval I ⊂ R. In particular, this implies
u ∈ BVloc(R). Moreover, after extracting a further subsequence, we have that
un → u pointwise a.e. and in combination with the periodicity of x 7→ un(x) − `x
that u ∈ BV `(0, 1).

Let us now estimate the energy. By (12), we have

H`
n(un) ≥

K∑
j=2

n−1∑
i=0

λnJ
∗∗
0,j

(
ui+jn − uin

jλn

)

=

K∑
j=2

j−1∑
s=0

∑
i∈(s+jZ)∩[0,n)

λnJ
∗∗
0,j

(
ui+jn − uin

jλn

)
.

Fix ρ ∈ (0, 14 ). For all n sufficiently large, we obtain from J0,j ≥ J0,j(γ) that∑
i∈(s+jZ)∩[0,n)

jλnJ
∗∗
0,j

(
ui+jn − uin

jλn

)
≥
∫ 1

ρ

J∗∗0,j(u
s
n,j
′(x)) dx+ 2ρ(J0,j(γ) ∧ 0),

where usn,j denotes the piecewise affine interpolation of un with respect to the lattice
λn(s+ jZ), i.e.

usn,j(t) := us+jin +
t− (s+ ji)λn

jλn
(us+j(i+1)
n − us+jin ) (24)

for t ∈ λns + λnj[i, i + 1) with i ∈ Z. Using un
∗
⇀ u weakly∗ in BV (−1, 2), a

straightforward calculation yields that usn,j converges weakly∗ in BV (0, 1) to u for
j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1}. Hence, a consequence of the superlinear

growth at −∞, sublinear growth at +∞, [1, Theorem 5.2] and
∑K
j=2 J

∗∗
0,j = J∗∗CB ,

see (21), is

lim inf
n→∞

K∑
j=2

1

j

j−1∑
s=0

∫ 1−ρ

ρ

J∗∗0,j(u
s
n,j
′(x)) dx ≥

K∑
j=2

1

j

j−1∑
s=0

∫ 1−ρ

ρ

J∗∗0,j(u
′(x)) dx

=

∫ 1−ρ

ρ

J∗∗CB(u′(x)) dx,

and the constraint Dsu ≥ 0 on (ρ, 1 − ρ). Clearly the liminf inequality follows by
letting ρ tend to zero.
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Limsup inequality. Step 1. We provide the limsup inequality for a modified
discrete energy which does not take the boundary conditions into account and is
given by

Ĥn(u) :=


K∑
j=1

n−j∑
i=0

Jj

(
ui+j − ui

jλn

)
if u ∈ An(0, 1),

+∞ else on L1(0, 1),

where

An(0, 1) :=
{
u ∈W 1,∞(0, 1) : u is affine on (i, i+ 1)λn for i ∈ {0, . . . , n}

}
.

We claim that for every u ∈ BV (0, 1) with Dsu ≥ 0, we find a sequence (un) ⊂
W 1,∞(0, 1) such that un → u in L1(0, 1) and

lim sup
n→∞

Ĥn(un) ≤
∫ 1

0

J∗∗CB(u′(x)) dx.

By density and relaxation arguments it suffices to provide the above inequality for
the simpler cases of u linear and of u with a single jump, see e.g. the proof of [7,
Theorem 3.5] for a detailed discussion.

First, we consider functions u with a single jump. Let u(x) = zx+aχ(x0, 1] with
z ≤ γ, a > 0, and x0 ∈ [0, 1]. Let hn ⊂ Z be such that x0 ∈ λn[hn, hn + 1) and
define un ∈ An(0, 1) by uin = iz for all i ≤ hn and uin = a + iz for i > hn. Using
(iii), (13) and JCB(z) = J∗∗CB(z), we obtain by a direct calculation

lim sup
n→∞

Ĥn(un) ≤
K∑
j=1

Jj(z) =

∫ 1

0

J∗∗CB(u′(x)) dx.

Let us now consider u(x) = zx with z > γ. We construct a sequence (un) converging
to u in L1(0, 1) such that u′n converges to γ in measure in (0, 1). Let (Nn) ⊂ N be
such that

lim
n→∞

Nn = +∞ and lim
n→∞

λnNn = 0.

Moreover, we define a sequence (rn) ⊂ N by

rn := sup{r ∈ N : rNn ≤ n}.

Set tin = iNn for i ∈ {0, . . . , rn − 1} and trnn = n. Define un ∈ An(0, 1) such that

un(x) =

{
u(λnt

i
n) + γ(x− λntin) for x ∈ λn[tin, t

i+1
n − 1] and i ∈ {0, . . . , rn − 2},

u(x) for x ∈ [λnt
rn−1
n , 1].

By the definition of un and u, we have ‖un − u‖L∞(0,1) ≤ λnNn|z − γ| and thus

un → u in L1(0, 1). By construction, we have u′n(x) = γ for all x ∈ (0, 1) \ In with
In = (∪rn−1i=1 λn[tin − 1, tin]) ∪ [λnt

rn−1
n , 1] and u′n ≥ γ on In. Using limn→∞ |In| = 0

and (0,+∞) ⊂ domJj (see assumption (i)), we obtain

lim sup
n→∞

Ĥn(un) ≤
K∑
j=1

Jj(γ) =

∫ 1

0

J∗∗CB(u′(x)) dx.

Step 2. We show that there exists for every u ∈ BV `(0, 1) a sequence (un) such
that un → u in L1(0, 1) and lim supn→∞H`

n(un) ≤ H`(u). We follow ideas from
[6, Theorem 4.2], where the case of nearest neighbor interactions and Dirichlet
boundary conditions is considered.
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Let us first consider functions with a jump at zero: Let u ∈ BV `(0, 1) be such
that H`(u) < ∞, and u(0−) < u(0+). By the previous step, we find a sequence
(un) such that un → u in L1(0, 1) and

lim sup
n→∞

Ĥn(un) = lim sup
n→∞

K∑
j=1

n−j∑
i=0

Jj

(
ui+jn − uin

jλn

)
≤
∫ 1

0

J∗∗CB(u′(x)) dx. (25)

Next, we introduce a suitable perturbation of (un) which takes the periodic bound-
ary condition into account. By passing to a subsequence, it is not restrictive to
assume that un → u pointwise a.e. in (0, 1). Hence, for every ε̂ > 0 there exists
ε ∈ (0, ε̂) such that ε, 1 − ε /∈ Su, un(ε) → u(ε), and un(1 − ε) → u(1 − ε). For
ε̂ > 0 sufficiently small, we deduce from u(0−) < u(0+), (22), (23), Dsu ≥ 0 and
the periodicity of x 7→ u(x)− `x that

1
2 (u(0−) + u(0+)) + 2εγ < u(ε), u(1− ε) + 2εγ < 1

2 (u(1−) + u(1+)).

Let (h1n), (h2n) ⊂ N be such that ε ∈ λn[h1n, h
1
n + 1) and 1− ε ∈ λn(h2n − 1, h2n]. We

define vn,ε ∈ A#,`
n (0, 1) as the unique function in A#,`

n (0, 1) satisfying

vin,ε =



1
2 (u(0−) + u(0+)) + iλnγ for 0 ≤ i < h1n
un(ε)− 1

2γε for i = h1n,

uin for h1n < i < h2n,

un(1− ε) + 1
2γε for i = h2n,

1
2 (u(1−) + u(1+))− γ + iλnγ for h2n < i < n.

We observe that (vn,ε) converges in L1
loc to uε ∈ BV `(0, 1), where

uε(x) =


1
2 (u(0−) + u(0+)) + γx if x ∈ (0, ε),

u(x) if x ∈ (ε, 1− ε),
1
2 (u(1−) + u(1+)) + γ(x− 1) if x ∈ (1− ε, 1).

The construction of vn,ε is such that

lim
n→∞

v
hin+s
n,ε − vh

i
n+s−1
n,ε

λn
= +∞ for i ∈ {1, 2} and s ∈ {0, 1}. (26)

Combining (25)–(26), γ > 0, and (0,+∞) ⊂ domJj for all j ∈ {1, . . . ,K} (see
assumption (i)), we obtain that

lim sup
n→∞

H`
n(vn) ≤ lim sup

n→∞

K∑
j=1

n−1∑
i=0

λnJj

(
vi+jn,ε − vin,ε

jλn

)

≤
∫ 1−ε

ε

J∗∗CB(u′(x)) dx+ 2εJCB(γ) = H`(uε). (27)

From (27) the existence of a recovery sequence for u follows by the lower semi-
continuity of the Γ-lim sup, see e.g. [4, Remark 1.29].

Finally, we consider u ∈ BV `(0, 1) such that H`(u) < ∞ and u(0) = u(0−) =
u(0+). As it is discussed in [6, p. 40], we find a suitable approximation of u by
functions with a positive jump in 0, i.e. a sequence (uj) satisfying uj → u in L1

loc(R)

such that
∫ 1

0
J∗∗CB(u′j(x)) dx →

∫ 1

0
J∗∗CB(u′(x)) dx and uj(0+) > uj(0−) = u(0). By

the previous considerations, we obtain a recovery sequence for every uj and the
existence of a recovery sequence for u follows again by the lower semi-continuity of
the Γ-lim sup.
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4. Gamma-limit of E`n. In this section, we derive the Γ–limit of the sequence
(E`n), defined in (14). For this, it is useful to rewrite the energy E`n(v). For every
vn ∈ A#,`

n (0, 1), we define for j ∈ {2, . . . ,K}

ζij,n := Jj

(
vi+jn − vin
j
√
λn

+ γ

)
+
cj
j

i+j−1∑
s=i

J1

(
vs+1
n − vsn√

λn
+ γ

)
− J0,j(γ). (28)

Using (5) and JCB(γ) =
∑K
j=2 J0,j(γ), we can write E`n(vn) for any vn ∈ A#,`

n (0, 1)
as

E`n(vn) =

K∑
j=2

n−1∑
i=0

ζij,n. (29)

By the definition of J0,j and γ, we have ζij,n ≥ J0,j(γ +
vi+jn −vin
j
√
λn

) − J0,j(γ) ≥ 0 for

j ∈ {2, . . . ,K} and i ∈ {0, . . . , n− j}. The following lemma yields a sharper lower
bound on ζin,j ; it is inspired by [12, Remark 4] and will be applied in the proof of
Theorem 4.2.

Lemma 4.1. Suppose that Jj, j = 1, . . . ,K satisfy the assumptions (i)–(viii). For
η1 > 0 sufficiently small there exists a constant C1 > 0 such that for all j ∈
{2, . . . ,K}

Jj

(
j∑
s=1

zs
j

)
+
cj
j

j∑
s=1

J1(zs)− J0,j(γ) ≥ C1

j∑
s=1

(zs − γ)2 (30)

if
∑j
s=1 |zs − γ| ≤ η1

Proof. Fix j ∈ {2, . . . ,K}. If
∑j
s=1 zs = jγ, the claim follows from assumption

(vii). Let ε, η > 0 denote the same constants as in assumption (vi) and (vii).
By (11), we have J0,j = ψj = Jj + cjJ1 on (−∞, γ + ε]. Moreover, recall that
ψj ∈ C2(0,+∞), γ > 0 and ψ′′j (γ) > 0. Hence, we find η1 ∈ (0, ε) and δ > 0 such

that
∑j
s=1 |zs − γ| ≤ η1 implies

∑j
s=1 |zs − z| + |z − γ| ≤ η, where z = 1

j

∑j
s=1 zs

and ψ′′j ≥ δ on [γ − η1, γ + η1].

Let us now show (30) whenever
∑j
s=1 |zs − γ| ≤ η1. Assume by contradiction

that there exist ẑs, s = 1, . . . , j satisfying
∑j
s=1 |ẑs − γ| ≤ η1 and for all N > 2

Jj(ẑ) +
cj
j

j∑
s=1

J1(ẑs)− J0,j(γ) ≤ C

N

j∑
s=1

(ẑs − γ)2,

where C is the same constant as in (10), and ẑ := 1
j

∑j
s=1 ẑs. By the choice of η1,

we have
∑j
s=1 |ẑs − ẑ|+ |ẑ − γ| ≤ η and thus by (10) it holds

Jj(ẑ) +
cj
j

j∑
s=1

J1(ẑs)− J0,j(γ)

≤C
N

j∑
s=1

(ẑs − γ)2 ≤ 2C

N

j∑
s=1

(ẑs − ẑ)2 +
2Cj

N
(ẑ − γ)2

≤ 2

N

(
Jj(ẑ) +

cj
j

j∑
s=1

J1(ẑs)− ψj(ẑ)

)
+

2Cj

N
(ẑ − γ)2.
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Using ψj(ẑ) ≥ ψj(γ) and J0,j(ẑ) = ψj(ẑ) (since ẑ ≤ γ + ε and (11)), we obtain

ψj(ẑ)− ψj(γ) ≤ Jj(ẑ) +
cj
j

j∑
s=1

J1(ẑs)− ψj(γ) ≤ 2jC

N − 2
(ẑ − γ)2.

Clearly, this is, for N sufficiently large, a contradiction to

ψj(ẑ)− ψj(γ) =

∫ 1

0

ψ′′j (γ + s(ẑ − γ))(1− s)(ẑ − γ)2 ds ≥ 1

2
δ(ẑ − γ)2,

where we use ψ′j(γ) = 0.

We are now in the position to prove the main result of this section which is a
Γ-convergence result for the functionals (E`n).

Theorem 4.2. Suppose that Jj, j = 1, . . . ,K satisfy the assumptions (i)–(viii).
Then the sequence (E`n) Γ–converges with respect to the L1

loc–topology to the func-
tional E` defined, on piecewise-H1 functions v such that x 7→ v(x)−`x is 1-periodic,
by

E`(v) =

α
∫ 1

0

v′(x)2 dx+ β(#Sv ∩ [0, 1)) if [v](x) > 0 on Sv,

+∞ else,

where α := 1
2J
′′
CB(γ). Further, the boundary layer energy due to a jump of v is

given by

β := 2B(γ)−
K∑
j=1

jJj(γ) (31)

with

B(γ) := inf
N∈N0

min

{∑
i≥0

{ K∑
j=1

Jj

(
ui+j − ui

j

)
− JCB(γ)

}
:

u : N0 → R, u0 = 0, ui+1 − ui = γ if i ≥ N

}
. (32)

Moreover, if ` > 0 it holds

lim
n→∞

inf
v
E`n(v) = min

v
E`(v) = min{α`2, β}.

As already mentioned in the introduction, we present here a direct proof of
Theorem 4.2 which follows the line of arguments of [12, Theorem 4]. In Remark 6
below, we sketch an alternative proof of Theorem 4.2 based on an application of
[12, Theorem 4] to certain auxiliary multibody potentials.

The following equivalent formulation of the boundary layer energy will be con-
venient for the proof of Theorem 4.2:

Lemma 4.3. Let Jj satisfy the assumptions of Theorem 4.2. Then it holds

β = 2B̃(γ)−
K∑
j=2

jJ0,j(γ),
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where β is given in (31) and B̃(γ) is defined by

B̃(γ) := inf
k∈N0

min

{ K∑
j=2

cj

j−1∑
s=1

j − s
j

J1
(
us − us−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)

+
cj
j

i+j−1∑
s=i

J1
(
us+1 − us

)
− J0,j(γ)

}
:

u : N0 → R, u0 = 0, ui+1 − ui = γ if i ≥ k
}
. (33)

We postpone the calculations regarding Lemma 4.3 and directly turn to the proof
of Theorem 4.2.

Proof of Theorem 4.2. Coerciveness. Let (vn) ⊂ W 1,∞
loc (R) be a sequence with

equibounded energy, i.e. supnE
`
n(vn) < +∞. By assumption (vi) and Lemma 4.1,

there exist constants K1, K2 > 0 such that for all i ∈ Z it holds

ζin,j ≥

{
K1

i+j−1∑
s=i

(
vs+1
n − vsn√

λn

)2
}
∧K2, (34)

where a ∧ b := min{a, b} and ζin,j is given in (28). Hence, (29) and (34) yield

E`n(vn) ≥
K∑
j=2

n−1∑
i=0

{
λnK1

i+j−1∑
s=i

(
vs+1
n − vsn
λn

)2
}
∧K2

≥
n−1∑
i=0

(
λnK1

(
vi+1
n − vin
λn

)2

∧K2

)
.

(35)

The discrete energy on the right-hand side of (35) is well studied, see e.g. [12,
Remark 9]. In particular, we can conclude from (35) that if (vn) is bounded in
L1(0, 1) then (vn) is compact in L1(0, 1) and there exists a finite set S ⊂ [0, 1] such
that (vn) is locally weakly compact in H1((0, 1) \ S).

Let us remark that supnE
`
n(vn) < +∞ implies supn ‖v′n‖L1(0,1) < +∞. To show

this, we combine (35) with the growth conditions of Jj at −∞, see hypothesis (ii).
For every n ∈ N , we set

I−n :=
{
i ∈ {0, . . . , n− 1} : vi+1

n < vin
}
,

I−−n :=

{
i ∈ I−n : λnK1

(
vi+1
n − vin
λn

)2

≥ K2

}
.

The estimate (35) implies I−− := supn #I−−n < +∞. Moreover, the equibounded-
ness of the energy, assumption (ii), ζin,j ≥ 0, and the fact that Jj is bounded from
below for j ∈ {1, . . . ,K} imply that there exists a constant M ∈ R such that

γ +
vi+1
n − vin√

λn
≥M. (36)
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Hence, using Hölder’s inequality, #I−n ≤ n, (35) and (36), we have for (v′n)− :=
−(v′n ∧ 0) that

‖(v′n)−‖L1(0,1) ≤
∑

i∈I−n \I−−n

λn

∣∣∣∣vi+1
n − vin
λn

∣∣∣∣+
∑
i∈I−−n

√
λn

∣∣∣∣vi+1
n − vin√

λn

∣∣∣∣
≤
(

1

K1
E`n(vn)

) 1
2

+ 1 +
√
λn#I−−|M − γ|.

Thus there exists C > 0 such that supn ‖(v′n)−‖L1(0,1) < C and, appealing to
vn(1) − vn(0) = ` by the 1-periodicity of x 7→ vn(x) − `x, we obtain that (v′n) is
equibounded in L1(0, 1).

Liminf inequality. Let (vn) ⊂ W 1,∞
loc (R) be such that supnE

`
n(vn) < +∞ and

vn → v in L1(0, 1). By the previous step, we can assume that v is a piecewise
H1-function satisfying x 7→ v(x) − `x is 1-periodic, and there exists a finite set
S = {x1, . . . , xN} such that vn ⇀ v locally weakly in H1((0, 1) \ S). For simplicity,
we assume that v has a single jump and without loss of generality we set Sv = { 12}.
Step 1. We estimate the elastic energy and show non-existence of negative jumps.

To this end, we adjust arguments given in [12, Proof of Theorem 4, Step 2] to
the present situation. In particular, we show that the maps z 7→ J0,j(z) − J0,j(γ)
can be estimated from below by certain truncated quadratic potentials, similar to
[12, eq. (111)]. This allows to apply Γ-convergence results for truncated quadratic
potentials, see [4, Section 8.3].

The assumptions (ii), (vi) and (viii) imply

lim inf
z→+∞

J0,j(z) > J0,j(γ), lim inf
z→−∞

J0,j(z) = +∞. (37)

Combining (37) and the fact that γ is the unique minimizer of J0,j , we find for each
j ∈ {2, . . . ,K} constants C1,j , C2,j , C3,j > 0 such that

J0,j(z)− J0,j(γ) ≥ Ψj(z − γ) :=

{
C1,j(z − γ)2 ∧ C2,j if z ≥ γ,

C1,j(z − γ)2 ∧ C3,j if z ≤ γ.
(38)

Since J0,j(z) = ψj(z) for z ≤ γ + ε, see hypothesis (vi), we obtain

sup {C1,j : (38) holds } =
1

2
ψ′′j (γ) for all j ∈ {2, . . . ,K}. (39)

Moreover, (37) implies

sup {C3,j : (38) holds for some C1,j and C2,j} = +∞ for all j ∈ {2, . . . ,K}.
(40)

Using (38), we have the following estimate

E`n(vn) =

K∑
j=2

n−1∑
i=0

ζij,n ≥
K∑
j=2

n−1∑
i=0

{
J0,j

(
γ +

vi+jn − vin
j
√
λn

)
− J0,j(γ)

}

≥
K∑
j=2

j−1∑
s=0

∑
i∈(s+jZ)∩[0,n)

Ψj

(
vi+jn − vin
j
√
λn

)
. (41)

As mentioned above, discrete energies with potentials of the type Ψj are well-
studied, see e.g. [4, Section 8.3] or [12, Remark 9]. In particular, we have for every
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j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1} that

lim inf
n→∞

∑
i∈(s+jZ)∩[0,n)

Ψj

(
vi+jn − vin
j
√
λn

)

≥ C1,j

j

∫ 1

0

v′(x)2 dx+ C2,j#{t ∈ Sv : [v](t) > 0}+ C3,j#{t ∈ Sv : [v](t) < 0}.

(42)

Here, we use that the piecewise affine interpolations vsn,j of vn with respect to the

lattice λn(s + jZ), cf. (24), satisfy vsn,j → v in L1
loc(R). Using (39)–(42), and

1
2

∑K
j=2 ψ

′′
j (γ) = 1

2J
′′
CB(γ) = α, we get existence of C2 ≥ 0 such that

lim inf
n→∞

E`n(vn) = lim inf
n→∞

K∑
j=2

n−1∑
i=0

ζij,n ≥ α
∫ 1

0

v′(x)2 dx+ C2#Sv (43)

with [v](t) > 0 on Sv, and +∞ else.
For later usage, we state an estimate involving only terms which contribute to

the elastic energy and are sufficiently far away from the jump. For given ρ > 0, let

(k̂1n), (k̂2n) ⊂ N be such that 1
2 − 2ρ ∈ λn[k̂1n, k̂

1
n + 1) and 1

2 + 2ρ ∈ λn[k̂2n, k̂
2
n + 1). A

similar calculations as for (43) yields

lim inf
n→∞

K∑
j=2


k̂1n∑
i=0

ζij,n +

n−1∑
i=k̂2n

ζij,n

 ≥ α
∫
(0,1)\( 1

2−3ρ,
1
2+3ρ)

v′(x)2 dx. (44)

Step 2. We estimate the jump energy.

Recall that Sv = { 12}. By the above consideration leading to (43) the jump has

to be positive. Let ρ ∈ (0, 18 ) be sufficiently small such that { 12} = ( 1
2−ρ,

1
2 +ρ)∩S.

We claim existence of (k1n), (k2n) ⊂ N such that 1
2 − ρ ≤ λn(k1n + s) ≤ 1

2 −
ρ
2 and

1
2 + ρ

2 ≤ λn(k2n + s) ≤ 1
2 + ρ for s = 1, . . . ,K with

lim
n→∞

v
k1n+s+1
n − vk

1
n+s
n√

λn
= 0, lim

n→∞

v
k2n+s+1
n − vk

2
n+s
n√

λn
= 0 for s = 1, . . . ,K − 1.

(45)
We argue by contradiction: suppose that there exists c > 0 such that for all i ∈ N
satisfying 1

2 − ρ ≤ λn(i + s) ≤ 1
2 −

ρ
2 with s ∈ {1, . . . ,K − 1} there exists an

ŝ ∈ {1, . . . ,K − 1} such that |v
i+ŝ+1
n −vi+ŝn√

λn
| ≥ c. Let iρn, j

ρ
n ⊂ N be such such that

1
2 − ρ ∈ (iρn − 1, iρn]λn and 1

2 −
ρ
2 ∈ (jρn, j

ρ
n + 1]λn. We have by (35)

E`n(vn) ≥
jρn−K∑
i=iρn+1

ζin,K ≥
jρn−K∑
i=iρn+1

K1c
2 ∧K2 ≥ K1c

2 ∧K2(jρn − iρn −K)→ +∞

as n → ∞, which contradicts supnE
`
n(vn) < +∞. This implies the existence of

(k1n) with the above properties, and the existence of (k2n) follows with the same
argument.

We claim that

lim inf
n→∞

K∑
j=2

k2n∑
i=k1n+1

ζij,n ≥ 2B̃(γ)−
K∑
j=2

jJ0,j(γ), (46)
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where B̃(γ) is given in (33). Notice, that (46) finishes the proof of the lim inf

inequality. Indeed, a combination of (44), where k̂1n < k1n and k2n < k̂2n for n
sufficiently large, with (46) and Lemma 4.3 implies

lim inf
n→∞

E`n(vn) = lim inf
n→∞

K∑
j=2

n−1∑
i=0

ζij,n ≥ α
∫
(0,1)\( 1

2−3ρ,
1
2+3ρ)

v′(x)2 dx+ β,

and the lim inf inequality follows by letting ρ tend to zero.
Let us prove (46). From vn → v in L1(0, 1) and 1

2 ∈ Sv, we deduce that there

exists (hn) ⊂ N with λnhn → 1
2 such that

lim
n→∞

vhn+1
n − vhnn√

λn
= +∞.

Indeed, otherwise v′n would be equibounded in L2 in a neighborhood of 1
2 .

Since limz→∞ Jj(z) = 0 for j = 1, . . . ,K, we conclude that some terms in ζhn−sj,n

for s = 0, . . . , j − 1 and j = 2, . . . ,K vanish as n tends to infinity. We collect them
in the function r1(n) defined by

r1(n) :=

K∑
j=1

hn∑
s=hn−j+1

Jj

(
γ +

vs+jn − vsn
j
√
λn

)
.

It will be useful to rewrite the terms which involve vhn+1
n − vhnn as follows:

K∑
j=2

hn∑
i=hn−j+1

ζij,n

=

K∑
j=2

cj

j∑
s=1

j − s
j

(
J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)
+ J1

(
γ +

vhn+s+1
n − vhn+sn√

λn

))

−
K∑
j=2

jJ0,j(γ) + r1(n).

Hence,

K∑
j=2

k2n∑
i=k1n+1

ζij,n =

K∑
j=2

{ hn−j∑
i=k1n+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)

+

k2n∑
i=hn+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+sn√

λn

)}

−
K∑
j=2

jJ0,j(γ) + r1(n). (47)

Thus it remains to prove that

K∑
j=2

{ hn−j∑
i=k1n+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)}
≥ B̃(γ)− r2(n)

(48)
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K∑
j=2

{ k2n∑
i=hn+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+sn√

λn

)}
≥ B̃(γ)− r3(n)

(49)

with r2(n), r3(n)→ 0 as n→∞. Let us prove inequality (48). Therefore, we define
for i ≥ 0

ṽin =

γi+
vhnn −v

hn−i
h√
λn

if 0 ≤ i ≤ hn − k1n − 1,

γi+
vhnn −v

k1n+1
n√
λn

if i ≥ hn − k1n − 1.
(50)

Now we rewrite the left-hand side in (48) in terms of ṽn:

K∑
j=2

{ hn−j∑
i=k1n+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)}

=

K∑
j=2

cj

j∑
s=1

j − s
j

J1(ṽsn − ṽs−1n ) +

K∑
j=2

∑
i≥0

{
Jj

(
ṽi+jn − ṽjn

j

)

+
cj
j

i+j−1∑
s=i

J1(ṽs+1
n − vsn)− J0,j(γ)

}
− r2(n)

where

r2(n) :=

K∑
j=2

hn−k1n−2∑
i=hn−k1n−j

{
Jj

(
ṽi+jn − ṽjn

j

)
+
cj
j

i+j−1∑
s=i

J1(ṽs+1
n − vsn)− J0,j(γ)

}
.

Indeed, the definition of ṽn yields ṽi+1
n − ṽin = γ for i ≥ hn − k1n − 1 and thus the

terms in the infinite sum over i ≥ hn − k1n − 1 are Jj(γ) + cjJ1(γ)− J0,j(γ) = 0, cf.
(vi). Furthermore, we have by the definition of (ṽn) and (45):

lim
n→∞

(
ṽ
hn−k1n−K+s
n − ṽhn−k

1
n−K+s−1

n

)
= γ + lim

n→∞

v
k1n+1+K−s
n − vk

1
n+K−s
n√

λn
= γ

for s ∈ {1, . . . ,K−1}. Hence, limn→∞ r2(n) = 0. Note that ṽ0n = 0 and ṽi+1
n − ṽin =

γ for i ≥ hn − k1n − 1. Thus ṽn is an admissible test function in the definition of

B̃(γ), see (33), and we obtain (48). The proof of (49) is similar. A combination of
(47)–(49) yields (46) and finishes the proof of the liminf inequality.

Limsup inequality. To complete the Γ-convergence proof it is left to show
that for every piecewise H1(0, 1)-function v there exists a sequence (vn) converging
to v in L1(0, 1) such that limnE

`
n(vn) = E`(v). We provide a recovery sequence

only for functions v which have a single jump, are constant close to the jump,
and are sufficiently smooth away from the jump. It is straightforward to extend
the construction to functions with finitely many jumps, and the claim follows by
standard density and relaxation arguments.

Let v be such that Sv = {t} for some t ∈ (0, 1), v ∈ C2([0, 1]\{t}) and v ≡ v(t−)
on (t−ρ, t) and v ≡ v(t+) on (t, t+ρ) for some ρ > 0 with ρ < min{t, 1− t}. Hence,
there exists ṽ ∈ C2(0, 1) such that v = ṽ+χ(t,1](v(t+)− v(t−)). Since E`(v) = +∞
if v(t+) < v(t−), we can assume v(t+) > v(t−). As in [12, eq. (130)] and [20, p. 680],
a recovery sequence for v is given by its piecewise affine interpolation with a small
perturbation close to the jump which account for the boundary layer energy.
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Fix η > 0. The definition of B̃(γ) ensures the existence of a function w : N0 → R
and of an N ∈ N such that w0 = 0, wi+1 − wi = γ if i ≥ N and

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1
(
ws − ws−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
wi+j − wi

j

)

+
cj
j

i+j−1∑
s=i

J1
(
ws+1 − ws

)
− J0,j(γ)

}
≤ B̃(γ) + η.

Since the term in the infinite sum vanishes identically for i ≥ N we can replace the
sum by any sum from i = 0 to Ñ with Ñ ≥ N without changing the estimate. Let
(k1n), (k2n), (hn) ⊂ N be such that t − ρ

2 ∈ [k1n, k
1
n + 1)λn, t ∈ [hn, hn + 1)λn and

t+ ρ
2 ∈ [k2n, k

2
n + 1)λn. Furthermore, let n be large enough such that

N ≤ min{hn − k1n −K, k2n − hn −K} (51)

is satisfied. We define a sequence (vn) such that vn ∈ A#,`
n (0, 1) with help of w and

ṽ by

vin =


ṽ(iλn) if 0 ≤ i ≤ k1n
v(t−)−

√
λn(whn−i − wN + γ(i− hn +N)) if k1n ≤ i ≤ hn,

v(t+) +
√
λn(wi−(hn+1) − wN − γ(i− hn − 1−N)) if hn + 1 ≤ i ≤ k2n,

v(t+) + ṽ(iλn) if k2n ≤ i ≤ n.

By the definition of w, we have wi+1 − wi = γ if i ≥ N , which implies that the
terms with prefactor

√
λn vanish for i ≤ hn−N−1 respectively i ≥ hn+N+2. It is

not hard to check that vn → v in L1(0, 1) (see [20, p. 680] for related calculations).
Next we show limn→∞E`n(vn) = E`(v). The definition of vn implies that

vhn+j−sn − vhn−sn√
λn

=
v(t+)− v(t−)√

λn
+O(1)→ +∞ as n→∞,

for all j ∈ {1, . . . ,K} and s ∈ {0, . . . , j − 1}. Similar to (47), we obtain

K∑
j=2

k2n∑
i=k1n

ζij,n =

K∑
j=2

{ hn−j∑
i=k1n

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)

+

k2n∑
i=hn+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+sn√

λn

)}

−
K∑
j=2

jJ0,j(γ) + r(n),

where

r(n) :=

K∑
j=1

0∑
s=−j+1

Jj

(
γ +

vhn+j+sn − vhn+sn

j
√
λn

)
→ 0 as n→∞.
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By the definition of vn and w it follows for n sufficiently large such that (51) holds
that

K∑
j=2

{ hn−j∑
i=k1n

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)}

=

K∑
j=2

hn−k1n−j∑
i=0

{
Jj

(
wi+j − wi

j

)
+
cj
j

i+j−1∑
s=i

J1(ws+1 − ws)− J0,j(γ)

}

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(ws+1 − ws) ≤ B̃(γ) + η, (52)

where we used hn − k1n −K ≥ N . In the same way, we obtain

K∑
j=2


k2n∑

i=hn+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+sn√

λn

) ≤ B̃(γ) + η. (53)

Let us now recover the integral term. A Taylor expansion of Jj at γ yields:

Jj(γ + z) = Jj(γ) + J ′j(γ)z +
1

2
J ′′j (γ)z2 + ηj(z),

where
ηj(z)
|z|2 → 0 as z → 0 for j ∈ {1, . . . ,K}. Hence, using the definition of

ψj(z) = Jj(z) + cjJ1(z), ψ′j(γ) = 0 and αj = 1
2ψ
′′
j (γ), we obtain for z = 1

j

∑j
s=1 zs

and ω(z) := sup|t|≤z |ηj(t)|+ j sup|t|≤z |η1(t)|

Jj(γ + z) +
cj
j

j∑
s=1

J1(γ + zs)− J0,j(γ) (54)

≤ 1

2
J ′′j (γ)

(
1

j

j∑
s=1

zs

)2

+
cj
2j
J ′′1 (γ)

j∑
s=1

z2s + ω( max
1≤s≤j

|zs|)

=
αj
j

j∑
s=1

z2s −
J ′′j (γ)

2j2

j−1∑
s=1

j∑
m=s+1

(zs − zm)2 + ω( max
1≤s≤j

|zs|), (55)

where we use in the last step:(
j∑
s=1

as

)2

=

j∑
s=1

a2s + 2

j−1∑
s=1

j∑
m=s+1

asam = j

j∑
s=1

a2s −
j−1∑
s=1

j∑
m=s+1

(as − am)2.

Combining (54) with vin = v(iλn) for all i ∈ {0, . . . , hn−N−1}∪{hn+N+2, . . . , n}
and the C2-regularity of v away from the jump, we find r2(n) satisfying r2(n)→ 0
as n→∞ such that:

ζij,n ≤ λn

{
αj
j

i+j−1∑
s=i

(
vs+1
n − vsn
λn

)2

+ r2(n)

}
,



ON LENNARD-JONES SYSTEMS WITH FINITE RANGE INTERACTIONS 115

for i ∈ {0, . . . , k1n − 1} ∪ {k2n + 1, . . . , n − 1} =: Qn. Hence, we have for n large
enough

K∑
j=2

∑
i∈Qn

ζij,n ≤
K∑
j=2

αj
j
λn
∑
i∈Qn

i+j−1∑
s=i

(
vs+1
n − vsn
λn

)2

+ r2(n)

=

K∑
j=2

αjλn
∑
i∈Qn

(
vi+1
n − vin
λn

)2

+ r2(n)

= α

∫
(0,1)\(t− ρ4 ,t+

ρ
4 )

v′n(x)2 dx+ r2(n), (56)

where we use in the second step the periodicity of vin and vi+1
n − vin = 0 for i ∈

{k1n, . . . , k1n+K}∪{k2n−K, . . . , k2n} for n sufficiently large. Since vn is the piecewise
affine interpolation of ṽ on (0, t − ρ

4 ) and v(t+) + ṽ on (t + ρ
4 , 1) and ṽ′ = 0 on

(t− ρ, t+ ρ), a combination of (52), (53), and (56) yields

lim sup
n→∞

E`n(vn) = lim sup
n→∞

K∑
j=2

n−1∑
i=0

ζij,n ≤ α
∫ 1

0

ṽ′(x)2 dx+ 2B̃(γ)−
K∑
j=2

jψj(γ) + 2η

and the claim follows from ‖ṽ′‖L2((0,1)) = ‖v′‖L2((0,1)) and by the arbitrariness of
η > 0, where we note that v′ denotes the absolutely continuous part of the derivative
of v only.

Convergence of minimization problems. The convergence of minimal ener-
gies follows from the coerciveness of En and the Γ-convergence result. Regarding
the coerciveness, we recall that supnE

`
n(vn) < ∞ yields supn ‖v′n‖L1(0,1) < ∞ and

thus there exists a sequence of constants cn such that vn − cn is equibounded in
L1(0, 1) and by the discussion below (35) we obtain compactness of vn − cn in
L1(0, 1). Moreover minv E

`(v) = min{α`2, β}.

Proof of Lemma 4.3. We prove that

B(γ)− 1

2
J1(γ) = B̃(γ)− 1

2

K∑
j=2

jcjJ1(γ), (57)

where B(γ) and B̃(γ) are given in (32) and (33). This equality implies the assertion
since

β = 2B(γ)−
K∑
j=1

jJj(γ) = 2B̃(γ)−
K∑
j=2

j(Jj(γ) + cjJ1(γ)) = 2B̃(γ)−
K∑
j=2

jψj(γ).

Let u : N0 → R be a candidate for the minimum problems defining B(γ) and B̃(γ),
i.e. u0 = 0 and ui+1 − ui = γ for i ≥ N for some N ∈ N0. Then it holds for the
infinite sum in the definition of B(γ) that

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

J1
(
us+1 − us

)
− J0,j(γ)

}

=

N−1∑
i=0

{ K∑
j=2

Jj

(
ui+j − ui

j

)
−

K∑
j=2

J0,j(γ)

}
+

K∑
j=2

cj
j

N−1∑
i=0

i+j−1∑
s=i

J1
(
us+1 − us

)
.
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For given j ∈ {2, . . . ,K}, the nearest neighbor terms on the right-hand side above
can be rewritten as

1

j

N−1∑
i=0

i+j−1∑
s=i

J1
(
us+1 − us

)
=

N−1∑
i=0

J1
(
ui+1 − ui

)
−
j−1∑
s=1

j − s
j

J1
(
us − us−1

)
+

1

j

N−1∑
i=N−j+1

i+j−1∑
s=N

J1
(
us+1 − us

)
,

where the third term on the right-hand side above simplifies since ui+1−ui = γ for
i ≥ N to

1

j

N−1∑
i=N−j+1

i+j−1∑
s=N

J1
(
us+1 − us

)
=

1

2
(j − 1)J1(γ).

Combining the previous identities, we obtain that

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1
(
us − us−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)

+
cj
j

i+j−1∑
s=i

J1
(
us+1 − us

)
− J0,j(γ)

}
− 1

2

K∑
j=2

jcjJ1(γ)

=

N−1∑
i=0

{ K∑
j=2

Jj

(
ui+j − ui

j

)
−

K∑
j=2

J0,j(γ)

}
+

K∑
j=2

cj

N−1∑
i=0

J1
(
ui+1 − ui

)
− 1

2
J1(γ)

=

N−1∑
i=0

{ K∑
j=1

Jj

(
ui+j − ui

j

)
− JCB(γ)

}
− 1

2
J1(γ)

=
∑
i≥0

{ K∑
j=1

Jj

(
ui+j − ui

j

)
− JCB(γ)

}
− 1

2
J1(γ).

By the arbitrariness of u : N0 → R and N ∈ N0 with u0 = 0 and ui+1 − ui = γ for

i ≥ N and the definition of B(γ) and B̃(γ), see (32) and (33), the equality (57) and
thus the lemma is proven.

Remark 5. In the case of nearest and next-to-nearest neighbour interactions,
i.e. K = 2, we have c2 = cK = 1. Thus it holds ψj(z) = J2(z) + J1(z) = JCB(z)

and the boundary layer energy B̃(γ) is given by

B̃(γ) = inf
k∈N0

min

{
1

2
J1
(
u1 − u0

)
+
∑
i≥0

{
J2

(
ui+2 − ui

2

)
+

1

2

i+1∑
s=i

J1(us+1 − us)

− JCB(γ)

}
: u : N0 → R, u0 = 0, ui+1 − ui = γ if i ≥ k

}
.

This coincides with the definition of the (free) boundary layer energy B and B(γ)
defined in [12] and [5, 19] respectively. The jump energy β then reads

β = 2B̃(γ)− 2JCB(γ),

and coincides with the corresponding jump energies defined in [5, 12, 19].
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Remark 6. The above proof of Theorem 4.2 follows closely the arguments of the
proof of [12, Theorem 4]. Next, we briefly discuss another proof, which was pointed
out to us by an anonymous referee; it is rather based on an application of [12,
Theorem 4] than on the methods of its proof. Firstly, we notice that for every
u ∈ A#

n (0, 1) the energy Hn(u) can be expressed with the help of certain auxiliary
potentials as

K∑
j=1

n−1∑
i=1

Jj

(
ui+j − ui

jλn

)
=

K∑
j=1

n−1∑
i=0

φj

(
ui+1 − ui

λn
, . . . ,

ui+j − ui+j−1

λn

)
,

where

φ1(z) :=
cK
2
J1(z),

φj(z1, . . . , zj) :=Jj

(
1

j

j∑
s=1

zs

)
+
cj
j

j∑
s=1

J1(zs), for j = 2, . . . ,K − 1,

φK(z1, . . . , zK) :=JK

(
1

K

K∑
s=1

zs

)
+
cK
2K

K∑
s=1

J1(zs).

It is straightforward to check that if J1, . . . , JK satisfy assumptions (i)–(iv), the
auxiliary potentials φ1, . . . , φK satisfy the corresponding assumptions (i)–(iv) of [12,
pp. 155]. An important object in the analysis of [12] is the following lower-bound
comparison potential

Φ−(z) := inf


K∑
j=1

K−j+1∑
i=1

1

K − j + 1
φj(zi, . . . , zi+j−1) :

K∑
s=1

zs = Kz

 ,

cf. [12, eq. (8)]. It is assumed that Φ− has a unique minimizer zmin, the infimum
in the definition of Φ−(zmin) is attained for zs = zmin for s = 1, . . . ,K and Φ−
satisfies certain non-degeneracy assumptions at the minimizer and at +∞, cf. [12,
assumptions (v)–(viii) on pp.157]. These assumptions are satisfied by φ1, . . . , φK ,
provided the potentials J1, . . . , JK satisfy the assumptions (i)–(viii) of the present
paper. This can be seen after rewriting Φ− as

Φ−(z)

= inf


K∑
j=2

K−j+1∑
i=1

1

K − j + 1

{
Jj

(
1

j

j∑
s=1

zs

)
+
cj
j

j∑
s=1

J1(zs)

}
:

K∑
s=1

zs = Kz

 ,

and using the assumptions on J0,j and the related objects.
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