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Abstract. We study estimates of the Green’s function in Rd with d ≥ 2,
for the linear second order elliptic equation in divergence form with variable

uniformly elliptic coefficients. In the case d ≥ 3, we obtain estimates on the

Green’s function, its gradient, and the second mixed derivatives which scale
optimally in space, in terms of the “minimal radius” r∗ introduced in [Glo-

ria, Neukamm, and Otto: A regularity theory for random elliptic operators;
ArXiv e-prints (2014)]. As an application, our result implies optimal stochastic

Gaussian bounds on the Green’s function and its derivatives in the realm of

homogenization of equations with random coefficient fields with finite range of
dependence. In two dimensions, where in general the Green’s function does not

exist, we construct its gradient and show the corresponding estimates on the

gradient and mixed second derivatives. Since we do not use any scalar methods
in the argument, the result holds in the case of uniformly elliptic systems as

well.

1. Introduction. This paper is a contribution to the recently very active area of
quantitative stochastic homogenization of second order uniformly elliptic operators,
the main goal of which is to quantify how close is the large scale behavior of the
heterogeneous operator (−∇ ·A(x)∇)−1 to the behavior of the constant-coefficient
solution operator (−∇ · Ahom∇)−1. Here A(x) stands for the non-constant (ran-
dom) coefficient field defined on Rd and Ahom is called the matrix of homogenized
coefficients.

As originally realized in the seminal papers by Papanicolaou and Varadhan [23]
and, independently, by Kozlov [20], the central object in the homogenization of

2010 Mathematics Subject Classification. Primary: 35J08, 35J15; Secondary: 74Q05.
Key words and phrases. Stochastic homogenization, large-scale regularity, Green’s function

estimates.
The first author was supported by the German Science Foundation DFG in the context of the

Emmy Noether junior research group BE 5922/1-1.

155

http://dx.doi.org/10.3934/nhm.2018007


156 PETER BELLA AND ARIANNA GIUNTI

elliptic operators with random coefficients is the corrector φξ, defined for each
direction ξ ∈ Rd as a solution of the following elliptic problem

−∇x · (A(x)∇x(x · ξ + φξ(A, x))) = 0

in the whole space Rd. The function φ is called corrector since it corrects the
linear function x · ξ, which is clearly solution to the constant-coefficient equation,
to be a solution of the equation with heterogeneous coefficients. Since φ serves
as a correction of a linear function, it should naturally be smaller, i.e., sublinear.
Assuming the distribution of random coefficient fields A is stationary (meaning
it is shift-invariant in the sense that A and A(· + x) have the same law for any
x ∈ Rd) and ergodic (meaning any shift-invariant random variable is almost surely
constant, a property encoding decorrelation of coefficient fields over large scales),
they showed that correctors are almost surely sublinear and can be used to define
the homogenized coefficient

Ahomei := 〈A(ei +∇φei)〉 .
Since the problem is linear, it clearly suffices to study the d correctors φi := φei for
i = 1, . . . , d. Secondly, borrowing notation from the statistical physics, 〈·〉 stands for
the ensemble average (expected value) with respect to a probability distribution on
the space of coefficient fields A. Here and also later, we will often drop the argument
A in random quantities like the corrector as well as the argument x related to the
spatial dependence of quantities like the coefficient field A or the corrector φ.

Both mentioned works [20, 23] were purely qualitative in the sense that they
showed the sublinearity of the corrector in the limit of large scales without any
rate. Assuming that the correlation of the coefficient fields decays with a specific
rate (either encoded by some functional inequality like the Spectral Gap estimate
or the Logarithmic Sobolev Inequality, or by some mixing conditions or even as-
suming finite range of dependence), one goal of quantitative theory is to quantify
the sublinearity (smallness) of the corrector and consequences thereof.

Though the present result is purely deterministic in the sense that it translates
the fact that the energy of any A-harmonic function satisfies a “mean value prop-
erty” from some scale on (a fact that follows from the sublinearity of the corrector)
into estimates on Green’s function and its derivatives, we will first mention some
recent results related to sublinearity of the corrector without going too much into
details.

A central assumption in our result involves a minimal radius, a notion introduced
by Gloria, Neukamm, and Otto [16]: for given fixed δ = δ(d, λ) > 0 (here λ denotes
the ellipticity contrast), the random variable r∗ = r∗(A) is defined as

r∗ := inf

{
r ≥ 1 : ∀R ≥ r :

1

R2

 
BR

∣∣∣∣(φ, σ)−
 
BR

(φ, σ)

∣∣∣∣2 ≤ δ}. (1)

Here (φ, σ) stands for the augmented corrector, where the new element σ (called
vector potential) can be used for obtaining good error estimates and was originally
introduced for the periodic homogenization (see, e.g., [5]). Here and in what follows
BR stands for a ball of radius R centered at the origin and

ffl
denotes the average

integral.
The introduction of the minimal radius r∗ allows to split the arguments nicely into

a deterministic and a stochastic part. For example, Gloria, Neukamm, and Otto [16]
showed that the sublinearity of the corrector, as encoded in the definition of the
random variable r∗, implies the mean value property (large-scale C1,0-regularity)
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for A-harmonic functions. This means that for R ≥ r ≥ r∗ and for any A-harmonic
function u on BR (i.e., a solution of −∇ ·A∇u = 0 in BR) one has 

Br

|∇u|2 ≤ C
 
BR

|∇u|2.

The idea that the (large-scale) regularity theory of A-harmonic functions is
closely related to the error estimates in stochastic homogenization was first realized
by Armstrong and Smart [4]. Building on the work of Avellaneda and Lin [5] in the
periodic setting, Armstrong and Smart studied homogenization of uniformly convex
integral functionals under an independence assumption. For a quantity similar to
r∗ (which they denoted Y), assuming finite range of dependence of the coefficient
fields they obtained almost Gaussian bounds of the form 〈exp(Y)s〉 < ∞ for any
s < d (see also [1, 2, 3] for further developments). While Y and r∗ are quite related,
the definition of r∗ is more intuitive and explicit, and as such it is easier to work
with.

Assuming that the ensemble on the coefficient fields satisfies a coarsened version
of the Logarithmic Sobolev Inequality, Gloria, Neukamm, and Otto [16] showed that
the minimal radius r∗ has stretched exponential moments〈

exp
(

1
C r

d(1−β)
∗

)〉
≤ C,

where 0 ≤ β < 1 appearing in the exponent is related to the coarsening rate in
the Logarithmic Sobolev Inequality. Observe that in the case β = 0, i.e., the case
when we consider the Logarithmic Sobolev Inequality without coarsening, this is
the optimal Gaussian bound.

Recently, reviving the parabolic approach used in the discrete setting [17], which
has the benefit of conveniently disintegrating contributions to the corrector from
different scales, Gloria and Otto [18] obtained a similar results assuming the coeffi-
cient fields have finite range of dependence. As a by-product, assuming finite range
of dependence Gloria and Otto got the estimates for the minimal radius r∗ with
optimal stochastic integrability of the form〈

exp
(

1
C r

d(1−ε)
∗

)〉
<∞, ∀ε > 0.

As already said, using completely different methods, such almost Gaussian bounds
for a related quantity Y in the case of scalar but possibly nonlinear equations were
obtained before by Armstrong and Smart [4].

Finally, on the other side of the spectrum, Fischer and Otto [14] combined
Meyer’s estimate together with sensitivity analysis to show that for strongly corre-
lated coefficient fields (more precisely, they consider coefficient fields which are 1-
Lipschitz images of a stationary Gaussian field with correlations bounded by |x|−β ,
where β > 0 has to be much smaller that 1, so that Meyer’s estimate holds for
p = 2 + 2β) it holds 〈

exp
(

1
C r

β
∗
)〉
≤ C.

In the present paper we will obtain deterministic estimates for the Green’s func-
tion based on the minimal radii r∗ at different points. More precisely, fixing two
points x0, y0 ∈ Rd, we take as the input the coefficient field A and the corresponding
minimal radii r∗(x0), r∗(y0) (here and in what follows r∗(x0) stays for the minimal
radius r∗ of the shifted coefficient field A(· − x0) ), and produce estimates on the
Green’s function G and its derivatives∇xG,∇yG,∇x∇yG, averaged over small scale
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around the points x0 and y0. This averaging is necessary since we do not assume
any smoothness of the coefficient fields.

An obvious advantage of the present approach is that it clearly separates the
random effects, described by r∗, from the average large-scale behavior of the Green’s
function. Indeed, our result is modular in the sense that it can be combined with
estimates on stochastic moments of r∗, as for example obtained under different
ergodicity assumptions on the ensemble in [16, 18], to yield estimates on the Green’s
function and its derivatives for different models of random coefficients.

Our only goal in this paper is to obtain bounds, and not to show existence (or
other properties) of the Green’s function. In fact, a well known counterexample
of De Giorgi [11] shows that there are uniformly elliptic coefficient fields for which
the Green’s function does not exist. Nevertheless, as recently shown in [10] by
Conlon, Otto, and the second author, this is not a generic behavior. More precisely,
in [10] they show that for any uniformly elliptic coefficient field A the Green’s
function G = G(A;x, y) exists at almost every point y ∈ Rd, provided the dimension
d ≥ 3. Therefore, in the case d ≥ 3, we will assume that the Green’s function
G(A; ·, y) ∈ L1

loc(Rd) exists, at least in the almost everywhere sense (i.e., for a.e.
y ∈ Rd), and focus solely on the estimates. Since in R2 the Green’s function does
not have to exist, but its “gradient” can possibly exists, using a reduction from 3D
(where the Green’s function exists) in Section 4 we construct and estimate ∇G.

There are several works studying estimates on the Green’s function in the context
of uniformly elliptic equations with random coefficients. Using De Giorgi-Nash-
Moser approach for a parabolic equation (which is naturally restricted to the scalar
case), Delmotte and Deuschel [12] obtained annealed estimates on the first and
second gradient of the Green’s function, in L2 and L1 in probability respectively,
under mere assumption of stationarity of the ensemble (see also [22] for a different
approach). Using different methods, Conlon, Otto, and the second author [10]
recently obtained similar estimates, together with other properties of the Green’s
function, but without the restriction to the scalar case. Compared to that work, our
more quantitative assumption in terms of r∗ implies local and quenched estimates,
and not only estimates in average. In the discrete setting, assuming that the spatial
correlation of the coefficient fields decays sufficiently fast to the effect that the
Logarithmic Sobolev Inequality is satisfied, Marahrens and Otto [21] upgraded the
Delmotte-Deuschel bounds to any stochastic moments. Recently, again only in the
scalar case this work was extended by Gloria and Marahrens [15] into the continuum
setting.

Both works [15, 21] used De Giorgi-Nash-Moser-type argument, and as such were
restricted to a single equation. In contrast, our result is not restricted to the scalar
case, a reason why we had to develop different techniques to obtain the estimates.

Before we state the main result, let us mention other works relating the small-
ness of the corrector and the properties of solutions to the heterogeneous equation.
Together with Otto [8], we compare the finite energy solution u of

−∇ ·A∇u = ∇ · g,
with g ∈ L2(Rd;Rd) being supported in a unit ball around the origin, with twice
corrected solution uhom of the homogenized equation

−∇ ·Ahom∇uhom = ∇ · g̃.
Here by twice corrected we mean that first the right-hand side g from the heteroge-
neous equation is replaced by g̃ = g(Id +∇φ) in the constant-coefficient equation,
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and second, we compare u with (Id + φi∂i)v at the level of gradients. Using du-
ality argument together with a compactness lemma, this gives an estimate of the
difference between ∇x∇yG(x, y) and ∂i∂jGhom(ei + ∇φi(x)) ⊗ (ej + ∇φj(y)) (av-
eraged over small balls both in x and y). In order to get such estimates, it is not
enough to assume that the corrector is at most linear with small slope (as in (1)),
but rather we need to assume that for some β ∈ (0, 1), it grows in the L2-sense
at most like |x|1−β :

1

R2

 
BR

∣∣∣∣(φ, σ)−
 
BR

(φ, σ)

∣∣∣∣2 ≤ CR−2β , ∀R ≥ r∗,β . (2)

Compared to the condition (1) which we use in the present paper, the above con-
dition (2) is obviously stronger. Indeed, while for example r∗ is almost surely finite
under pure assumptions of stationarity and ergodicity of the ensemble, this is not
true for r∗,β . Moreover, while one would believe that the stochastic estimates on r∗
(e.g. those in [16]) can be with some farther work modified to estimates on r∗,β , we
are not aware of any such results.

Hence, in comparison with the present work, in [8] we get a stronger state-
ment (since we estimate the difference between the heterogeneous Green’s function
and corrected constant-coefficient Green’s function while in the present paper we
only control the heterogeneous Green’s function alone), at the expense of stronger
assumptions on the smallness of the corrector and a more involved proof. More
precisely, here we show that the second mixed derivative of the Green’s function
∇x∇yG behaves like C|x − y|−d (clearly this estimate is sharp in scaling since it
agrees with the behavior of the constant-coefficient Green’s function), while in [8] we
show that the homogenization error, i.e., the difference between ∇x∇yG and twice
corrected mixed second derivative of the constant-coefficient Green’s function, is
estimated by C|x− y|−(d+β) - that means we gain a factor of |x− y|−β , where the
exponent β ∈ (0, 1) is the one appearing in (2).

Since we are dealing with linear equations, we make use of a duality argument,
first introduced by Avellaneda and Lin in [5]. This allows us to obtain estimates
on the L2-norm (in one variable) of the averages (in the other variable) for G, ∇G
and ∇x∇yG. In particular, the main pivotal estimate is the one on the L2-norm in
both space variables for the mixed derivatives ∇x∇yG. Since we do not assume any
smoothness on the coefficient field A, and therefore we may not appeal to Schauder
estimates, we obtain an off-diagonal L2-estimate in both variables out of estimates
on averaged quantities by what we call a compactness lemma for A-harmonic func-
tions. This ingredient was first introduced in [8] and later exploited and extended
also in [10]. In this work, we make use of the same result and provide a different
proof which is based on a refined iteration of Caccioppoli’s inequalities. In our opin-
ion, this new argument admits an easier extension outside of the L2-framework, as it
is required in the case of non-uniformly elliptic coefficients as considered in [6]. We
plan to investigate this question in the future. Besides, we remark that a simplified
version of the previous compactness argument appears already in the works by Otto
and the first author [9] and in [19]: There, the quantities involved are stationary (in
fact they are related to the gradient of the corrector) and, under this assumption,
the proof of such compactness result turns out to be much simpler. In our case, as
well as in [8] and [10], one deals with Green’s functions and it is no more possible
to appeal to stationarity in one space variable, since a translation in space for these
objects involves also a translation of the singularity.
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Last, let us mention the work of Otto and the authors [7], where we push far-
ther the results of [8] using higher order correctors. The second and higher order
correctors were introduced into the stochastic homogenization setup by Fischer and
Otto [13], in order to extend the C1,α regularity estimates on large scales [16] to
C2,α estimates and Ck,α estimates respectively. In [7], under the assumption of
smallness of the corrector, we obtain two results about A-harmonic function in ex-
terior domains: first, for any integer k we construct a finite dimensional space of
functions such that the distance between any A-harmonic function in the exterior
domain and this space is bounded by C|x − y|−(d+k) (this statement can be seen
as an analogue of Liouville statements for finite energy solutions in the exterior
domain). Second, assuming smallness of both the first and second order augmented
correctors (i.e., also including the second order vector potential, which we had to
introduce), compared with [8] we improve by 1 the exponent in the estimate be-
tween the solution of the heterogeneous equation in the exterior domain and some
corrected solution of the constant-coefficient equation.

The paper is organized as follows: In the next section we will state our assump-
tions together with the main result, Theorem 1, and its corollaries, Corollary 1,
Corollary 2, and Corollary 3. In Section 3 we prove Theorem 1 and in Section 4
we give the argument for Corollary 1, which is the only corollary which does not
immediately follow from the theorem.

Notation. Throughout the article, we denote by C a positive generic constant
which is allowed to depend on the dimension d and the ellipticity contrast λ, and
which may be different from line to line of the same estimate. By . we will mean
≤ C. Finally, the integrals without specified domain of integration are meant as
integrals over the whole space Rd.

2. The main result. We fix a coefficient fieldA ∈ L∞(Rd;Rd×d), which we assume
to be uniformly elliptic in the sense thatˆ

Rd
∇ϕ ·A(x)∇ϕdx ≥ λ

ˆ
Rd
|∇ϕ|2 , ∀ϕ ∈ C∞c (Rd),

|A(x)ξ| ≤ |ξ|, ∀a.e. x ∈ Rd,∀ξ ∈ Rd,
(3)

where λ ∈ (0, 1) is fixed throughout the paper. Then we have the following result:

Theorem 1. Let d ≥ 3, let A be a uniformly elliptic coefficient field on Rd in
the sense of (3), and let x0, y0 ∈ Rd with |x0 − y0| ≥ 10. For a point x ∈ Rd,
let r∗(x) = r∗(A, x) ≥ 1 denote a radius such that for R ≥ r ≥ r∗(x) and any
A-harmonic function u in BR(x) we have 

Br(x)

|∇u|2 ≤ C(d, λ)

 
BR(x)

|∇u|2 . (4)

Let G = G(A;x, y) be the Green’s function defined through

−∇x ·A∇xG(A; ·, y) = δ(· − y),

assuming it exists for a.e. y ∈ Rd. Then we have

ˆ
B1(x0)

ˆ
B1(y0)

|∇x∇yG(A;x, y)|2 dxdy ≤ C(d, λ)

(
r∗(x0)r′∗(y0)

|x0 − y0|2

)d
, (5)
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ˆ
B1(x0)

ˆ
B1(y0)

|∇yG(A;x, y)|2 dxdy ≤ C(d, λ)|x0 − y0|2
(
r∗(x0)r′∗(y0)

|x0 − y0|2

)d
, (6)

ˆ
B1(x0)

ˆ
B1(y0)

|∇xG(A;x, y)|2 dxdy ≤ C(d, λ)|x0 − y0|2
(
r′∗(x0)r∗(y0)

|x0 − y0|2

)d
, (7)

ˆ
B1(x0)

ˆ
B1(y0)

|G(A;x, y)|2 dxdy

≤ C(d, λ)|x0 − y0|4
(
r∗(x0)r′∗(y0) + r′∗(x0)r∗(y0)

|x0 − y0|2

)d
. (8)

where r′∗(y) = r∗(A
t, y) ≥ 1 denotes the minimal radius for the adjoint coefficient

field At at a point y.

Though the Green’s function does not have to exist in 2D, with the help of the
Green’s function in 3D we can at least define and estimate “its gradient & second
mixed derivatives”:

Corollary 1. Let d = 2. Let A be a uniformly elliptic coefficient field on R2 in the
sense of (3), such that for its extension into R3 of the form

Ā(x, x3) :=

(
A(x) 0

0 1

)
(9)

there exists two points X̄, Ȳ ∈ R3 so that the minimal radii for Āt and Ā at those
points are finite, respectively (i.e., r∗(Ā

t, X̄) <∞, r∗(Ā, Ȳ ) <∞).
Then for a.e. y ∈ R2 there exists a function on R2, which we denote ∇G(A; ·, y),

so that it satisfies in a weak sense

−∇x ·A∇G(A; ·, y) = δ(· − y).

Moreover, given x0, y0 ∈ R2 with |x0 − y0| ≥ 10, we have estimates for ∇G as well
as for ∇y∇G:
ˆ
B1(x0)

ˆ
B1(y0)

|∇y∇G(A;x, y)|2 dx dy ≤ C(λ)
(r∗(A, x0)r∗(A

t, y0))
2

|x0 − y0|4
, (10)

ˆ
B1(x0)

ˆ
B1(y0)

|∇G(A;x, y)|2 dx dy ≤ C(λ)

(
r∗(Ā

t, (x0, 0))r∗(Ā, (y0, 0))
)2

|x0 − y0|2
. (11)

Remark 1. Assuming that the coefficient field A in the statement of Corollary 1
is chosen at random with respect to a stationary and ergodic ensemble, by the
standard ergodic argument (see, e.g., [16]), applied in 3D to the ensemble obtained
as a push-forward of the 2D ensemble through (9), the assumption on the finiteness
of the minimal radii is almost surely satisfied (say with X̄ = Ȳ = (0, 0, 0)).

Remark 2. It is clear from the proof of Theorem 1 that all the above estimates,
i.e. (5)-(11), are true also if the domains of integration B1(x0) and B1(y0) are
replaced by larger balls with the corresponding radii r∗. Moreover, the radii of the
balls could be even larger than the minimal radii (as long as these new radii are not
larger than one third of a distance between centers of those balls), in which case we
need to replace the minimal radii on the right-hand sides of those estimates with
the actual radii of the balls.

Remark 3. The appearance of different minimal radii in (10) and (11) (in (10) the
minimal radii are related to the equation in 2D, while in (11) they are the minimal
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radii for the equation in 3D) is not a typo. The reason is that while (10) is proved
directly in 2D, the proof of (11) passes through 3D - hence the need to consider
the minimal radii in 3D. In view of the relation r∗(A, x) ≤ r∗(Ā, x̄), which easily
follows from the fact that any A-harmonic function in BR ⊂ R2 can be trivially
extended to an Ā-harmonic function in B̄R ⊂ R3, the estimate (11) seems to be less
optimal.

For notational convenience we state the result for a single equation. Since in the
proof of Theorem 1 we do not use any scalar methods (like for example De Giorgi-
Nash-Moser iteration), the result holds also in the case of elliptic systems - for
that one just considers that u has values in some finite-dimensional Hilbert space.
Naturally, in that case all the constants will depend on the dimension of this Hilbert
space.

Using the Gaussian bounds on r∗ for the case of coefficient fields with finite
range of dependence, which were obtained recently in [18], Theorem 1 implies the
following bounds:

Corollary 2. Suppose 〈·〉 is an ensemble of λ-uniformly elliptic coefficient fields
which is stationary and of unit range of dependence, and let d ≥ 2. Then there exist
C(d, λ) such that for every two points x0, y0 ∈ Rd, |x0 − y0| ≥ 10, and every ε > 0
we have〈

exp

((
C|x0 − y0|2d

ˆ
B1(x0)

ˆ
B1(y0)

|∇x∇yG(A;x, y)|2 dxdy

)d(1−ε))〉
<∞,〈

exp

((
C|x0 − y0|2d−2

ˆ
B1(x0)

ˆ
B1(y0)

|(∇x,∇y)G(A;x, y)|2 dxdy

)d(1−ε))〉
<∞,

and in d ≥ 3 also〈
exp

((
C|x0 − y0|2d−4

ˆ
B1(x0)

ˆ
B1(y0)

|G(A;x, y)|2 dx dy

)d(1−ε))〉
<∞.

In the case of coefficient fields with stronger correlations we can use the result
from [16]:

Corollary 3. Suppose d ≥ 2, and that the ensemble 〈·〉 is stationary and satisfies
a logarithmic Sobolev inequality of the following type: There exists a partition {D}
of Rd not too coarse in the sense that for some 0 ≤ β < 1 it satisfies

diam(D) ≤ (dist(D) + 1)β ≤ C(d)diam(D).

Moreover, let us assume that there is 0 < ρ ≤ 1 such that for all random variables
F 〈

F 2 logF 2
〉
−
〈
F 2
〉

log
〈
F 2
〉
≤ 1

ρ

〈∥∥∥∥∂F∂A
∥∥∥∥2〉

,

where the carré-du-champ of the Malliavin derivative is defined as∥∥∥∥∂F∂A
∥∥∥∥2

:=
∑
D

(ˆ
D

∣∣∣∣∂F∂A
∣∣∣∣2).
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Then there exists a constant 0 < C <∞, depending only on d, λ, ρ, β, such that〈
exp

((
C|x0 − y0|2d

ˆ
B1(x0)

ˆ
B1(y0)

|∇x∇yG(A;x, y)|2 dx dy

)d(1−β))〉
<∞,〈

exp

((
C|x0 − y0|2d−2

ˆ
B1(x0)

ˆ
B1(y0)

|(∇x,∇y)G(A;x, y)|2 dx dy

)d(1−β))〉
<∞,

and in d ≥ 3 also〈
exp

((
C|x0 − y0|2d−4

ˆ
B1(x0)

ˆ
B1(y0)

|G(A;x, y)|2 dxdy

)d(1−β))〉
<∞.

3. Proof of Theorem 1. The proof is inspired by a duality argument of Avel-
laneda and Lin [5, Theorem 13], which they used to obtain Green’s function es-
timates in the periodic homogenization. After stating and proving two auxiliary
lemmas, we first prove the estimate on the second mixed derivative (5). Then, (6)
will follow from (5) using Poincaré inequality and one additional estimate. Next we
observe that (7) can be obtained from (6) by replacing the role of x and y, which
can be done by considering the adjoint At instead of A. Finally, (8) will follow from
(7) in a similar way as (6) follows from (5).

We thus start with the following two auxiliary lemmas. The first one is very
standard:

Lemma 1 (Caccioppoli inequality). Let ρ > 0, δ > 0, and let u be a solution of a
uniformly elliptic equation −∇ ·A∇u = 0 in B(1+δ)ρ. Thenˆ

Bρ

|∇u|2 ≤ C(d)

λρ2δ2

ˆ
B(1+δ)ρ

|u− c|2 (12)

for any c ∈ R.

Proof. By considering u − c instead of u, it is enough to show estimate (12) with
c = 0. We test the equation for u with η2u, where η is a smooth cut-off function
for Bρ in B(1+δ)ρ with |∇η| . (δρ)−1, use (3) and Young’s inequality to getˆ

Rd
|∇(ηu)|2 ≤ C(d)

λ

ˆ
|∇η|2 u2.

Since |∇η| ≤ C
ρδ , (12) immediately follows.

Lemma 2. Let R0 ≥ r∗(0), and let u be an A-harmonic function in BR0
. Then we

have  
Br∗(0)

|u|2 ≤ C(d, λ)

 
BR0

|u|2 . (13)

Proof. Throughout the proof we write r∗ instead of r∗(0). We assume that 2r∗ < R0,
since otherwise (13) is trivial. For r ∈ [r∗, R0] we denote ur :=

ffl
Br
u. We have

 
Br∗

|u− ur∗ |
2

Poincaré

. r2
∗

 
Br∗

|∇u|2
(4)

. r2
∗

 
BR0/2

|∇u|2

(12)

.

(
r∗
R0

)2  
BR0

|u|2 ≤
 
BR0

|u|2 .
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Hence, to prove (4) it is enough to show

|ur∗ |
2

=

∣∣∣∣∣
 
Br∗

u

∣∣∣∣∣
2

.
 
BR0

|u|2 . (14)

To prove it, we use the following estimate∣∣∣∣ur − u2r

∣∣∣∣ . r

( 
B2r

|∇u|2
) 1

2
, (15)

which in fact holds for any function u ∈W 1,2(B2r).
We first argue how to obtain (14) thanks to estimate (15): Let n ≥ 0 be the

largest integer that satisfies 2nr∗ ≤ R0/2; using (15) multiple times we get

|ur∗ − u2nr∗ | ≤
n−1∑
k=0

|u2kr∗ − u2k+1r∗ |
(15)

.
n−1∑
k=0

2kr∗

( 
B

2k+1r∗

|∇u|2
) 1

2

(4)

.

( 
BR0/2

|∇u|2
) 1

2
n−1∑
k=0

2kr∗
(12)

. R0

(
1

R2
0

 
BR0

|u|2
) 1

2

=

( 
BR0

|u|2
) 1

2
.

Using Jensen’s inequality and the fact that R0 ≤ 2n+2r∗ we get

|u2nr∗ | =
∣∣∣∣ 
B2nr∗

u

∣∣∣∣ ≤ ( 
B2nr∗

|u|2
) 1

2
.

( 
BR0

|u|2
) 1

2
.

Combination of the two previous estimates then gives (14).
It remains to prove (15). Using Jensen’s and Poincaré’s inequalities we get

|ur − u2r| =
∣∣∣∣ 
Br

(u− ur)− (u− u2r)

∣∣∣∣ .  
Br

|u− ur|+
 
B2r

|u− u2r|

.

( 
Br

|u− ur|2
) 1

2
+

( 
B2r

|u− u2r|2
) 1

2
. r

( 
B2r

|∇u|2
) 1

2
.

3.1. Proof of (5). We denote R0 := |x0 − y0|/3. We split the proof of (5) into 4
steps. In the first step we show thatˆ

B1(y0)

|Fρ (∇x∇yG(·, y))|2 dy .

(
r∗(x0)r′∗(y0)

R2
0

)d
(16)

for any ρ ∈ [1, 2] and any functional Fρ on L2(Bρ(x0)) which satisfies

|Fρ(∇v)|2 ≤
ˆ
Bρ(x0)

|∇v|2 , (17)

for any v ∈ W 1,2(Bρ(x0)). In the second step, using Neumann eigenfunctions on a
ball, we define a family of functionals Fk satisfying (17), which will play the role

of Fourier coefficients. Using these Fk we then estimate
´
|v|2 with a sum of N

terms |Fk(v)|2 plus a residuum in the form 1
λN

´
|∇v|2. Here, λN denotes the Nth

Neumann eigenvalue of Laplacian on a ball. Using (17) together with the second
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step we get an estimate on
´
|∇x∇yG|2 in terms of a (good) term and a small

prefactor times
´
|∇x∇yG|2, integrated over a slightly larger ball. In the last step,

we apply iteratively this estimate.

Step 1. Proof of (16) (inspired by the duality argument of Avellaneda and Lin
[5]).

Let f ∈ L2(BR0
(y0);Rd), and let u be the finite energy solution of

−∇ ·A∇u = −∇ · f
in Rd, for which holds the energy estimateˆ

Rd
|∇u|2 .

ˆ
Rd
|f |2 . (18)

Then on the one hand, the Green’s function representation formula yields

∇u(x) =

ˆ
BR0

(y0)

∇x∇yG(x, y)f(y) dy. (19)

If r∗(x0) ≤ R0 (w. l. o. g. we assume r∗(x0) ≥ ρ), we use this in (4) to get

|Fρ(∇u)|2 ≤
ˆ
Bρ(x0)

|∇u|2 dx ≤
ˆ
Br∗(x0)(x0)

|∇u|2 .

(
r∗(x0)

R0

)d ˆ
BR0

(x0)

|∇u|2

(18)

.

(
r∗(x0)

R0

)d ˆ
Rd
|f |2 .

If r∗(x0) ≥ R0, we simply have

|Fρ(∇u)|2 ≤
ˆ
Bρ(x0)

|∇u|2 dx
(18)

.
ˆ
Rd
|f |2 dx ≤

(
r∗(x0)

R0

)d ˆ
Rd
|f |2 .

Since Fρ is linear, using (19) we have

Fρ(∇u) =

ˆ
BR0

(y0)

Fρ (∇x∇yG(·, y)) f(y) dy,

where the dot means that Fρ acts on the first variable. The previous relations then
give ∣∣∣∣ˆ

BR0
(y0)

Fρ (∇x∇yG(·, y)) f(y) dy

∣∣∣∣2 .

(
r∗(x0)

R0

)d ˆ
BR0

(x0)

|f |2 .

Using definition of the norm L2(BR0
(y0)) by duality we get

ˆ
BR0

(y0)

|Fρ (∇x∇yG(·, y))|2 dy .

(
r∗(x0)

R0

)d
. (20)

Let r′∗(y0) play the same role as r∗(x0) but for the adjoint equation. In the
case r′∗(y0) ≤ R0, since the mapping y 7→ Fρ(∇xG(·, y)) solves the adjoint equation
−∇ ·At∇Fρ(∇xG(·, y)) = 0 in BR0

(y0), arguing similarly as we did after (19), an
analogue of (4) solutions of the adjoint equation implies

ˆ
B1(y0)

|Fρ(∇x∇yG(·, y))|2 dy ≤
ˆ
Br′∗(y0)(y0)

|Fρ(∇x∇yG(·, y))|2 dy

.

(
r′∗(y0)

R0

)d ˆ
BR0

(y0)

|Fρ(∇x∇yG(·, y))|2 dy
(20)

.

(
r∗(x0)r′∗(y0)

R2
0

)d
. (21)
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If r′∗(y0) ≥ R0, we get the same conclusion for free:ˆ
B1(y0)

|Fρ(∇x∇yG(·, y))|2 dy ≤
ˆ
BR0

(y0)

|Fρ(∇x∇yG(·, y))|2 dy

(20)

.

(
r∗(x0)

R0

)d
≤
(
r∗(x0)r′∗(y0)

R2
0

)d
.

Step 2. Let ρ ∈ [1, 2) and δ > 0 be fixed such that (1 + δ)ρ ≤ 2. For n ≥
0, let Fn denote the functional on L2(B(1+δ)ρ), defined as an inner product of
the nth eigenfunction of Neumann Laplacian with v, and let λn be the associated
eigenvalue. By writing any v ∈W 1,2(B(1+δ)ρ) with zero mean in terms of Neumann

eigenfunctions (which can be done since they form an orthonormal basis in L2) we
see that for any N ≥ 1ˆ
B(1+δ)ρ

|v|2 =

∞∑
k=1

|Fk(v)|2 and

ˆ
B(1+δ)ρ

|∇v|2 =

∞∑
k=1

λk |Fk(v)|2 ≥ λN
∞∑
k=N

|Fk(v)|2 ,

where the last inequality follows from the monotonicity of λk. Hence we see
ˆ
B(1+δ)ρ

|v|2 =

N−1∑
k=1

|Fk(v)|2 +

∞∑
k=N

|Fk(v)|2 ≤
N−1∑
k=1

|Fk(∇v)|2 +
1

λN

ˆ
B(1+δ)ρ

|∇v|2 ,

(22)
where we used that λk ≥ 1.

Step 3. Combination of Step 1 and Step 2 (applied to ∇yG(·, y)) and use of (21)
yieldsˆ
B1(y0)

ˆ
Bρ(x0)

|∇x∇yG(x, y)|2 dxdy

(12)

.
1

δ2

ˆ
B1(y0)

ˆ
B(1+δ)ρ(x0)

|∇yG(x, y)− Gavg(y)|2 dxdy

(22)

.
1

δ2

(N−1∑
k=0

ˆ
B1(y0)

|Fk(∇x∇yG(·, y))|2+
1

λN

ˆ
B1(y0)

ˆ
B(1+δ)ρ(x0)

|∇x∇yG(x, y)|2dx dy

)
(21)

.
1

δ2

(
N

(
r∗(x0)r′∗(y0)

R2
0

)d
+

1

λN

ˆ
B1(y0)

ˆ
B(1+δ)ρ(x0)

|∇x∇yG(x, y)|2 dxdy

)
,

(23)
where we defined Gavg(y) =

ffl
B(1+δ)ρ(x0)

∇yG(x, y) dx.

Step 4. For a given sequence δk > 0 such that ρΠ∞k=1(1 + δk) ≤ 2 we consider the
following iteration procedure. Let ρ0 := 1, and for k ≥ 1 set ρk := (1 + δk)ρk−1.
We denote

Mk :=

(
r∗(x0)r′∗(y0)

R2
0

)−d ˆ
B1(y0)

ˆ
Bρk (x0)

|∇x∇yG(x, y))|2 dxdy.

For any Nk ≥ 1, estimate (23) in Step 3 yields

Mk ≤
C

δ2
k

Nk +
C

δ2
k

1

λN
Mk+1, (24)

where the values of δk and Nk are at our disposal. We choose δk := (2k)−2 and
Nk := αk2d2d. Since Π∞k=1(1 + 1

4k2 ) ∼ 1.46 ≤ 2, for this choice of δk for all k ≥ 1
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we have ρk ∈ [1, 2]. Using lower bound on the Neumann eigenvalues for the ball in

the form λk ≥ Ck
2
d (in the case of a cube one can use trigonometric functions to

explicitly write down the formula for eigenfunctions and eigenvalues; for the ball, one
uses the monotonicity of the eigenvalues with respect to the domain, which follows
from the variational formulation of the eigenvalues), we can find large enough α
such that the prefactor in front of Mk+1 above satisfies

C

δ2
k

1

λN
≤ C ′k4(αk2d2d)−

2
d =

C ′

α
2
d

1

4
≤ 1

4
.

For this choice (24) turns into

Mk ≤ Cαk4k2d2d +
1

4
Mk+1.

Iterating this we get

M1 ≤ Cα
K∑
k=1

4−kk4k2d2d +

(
1

4

)K
MK+1.

Assuming we have supkMk <∞, we send K →∞ to get

M1 ≤ Cα2d
∞∑
k=1

4−kk4+2d.

Since the sum on the right-hand side is summable, we get that M1 . 1.
It remains to justify the assumption supkMk < ∞. For any Λ ≥ 1, let χΛ(y)

be the characteristic function of the set
{
y ∈ B1(y0) :

´
B2(x0)

|∇x∇yG(x, y)|2 ≤ Λ
}

.

Using the previous arguments, applied to ∇x∇yG(x, y)χΛ(y), we get that(
r∗(x0)r′∗(y0)

R2
0

)−d ˆ
B1(y0)

(ˆ
B1(x0)

|∇x∇yG(x, y))|2 dx

)
χΛ(y) dy ≤ C,

where the right-hand side does not depend on Λ. Now we send Λ→∞, and get

M1 =

(
r∗(x0)r′∗(y0)

R2
0

)−d ˆ
B1(y0)

ˆ
B1(x0)

|∇x∇yG(x, y))|2 dxdy ≤ C

by the Monotone Convergence Theorem. This completes the proof of (5).

3.2. Proof of (6). We first observe that using Poincaré’s inequality we can control
the difference between∇yG and its averages over B1(x0) by the L2-norm of∇x∇yG,
which we already control by (5). Hence, to obtain (6) it is enough to estimate
averages

ffl
B1(x0)

∇yG(x, y) dx. Such estimate will follow from an analogue of (16)

applied to one particular functional F . Since in this setting we need to work with´
|u|2 and not with previously used

´
|∇u|2, we will need to use Lemma 2.

Step 1. By Poincaré inequality in the x-variable we haveˆ
B1(y0)

(ˆ
B1(x0)

∣∣∣∣∇yG(x, y)−
( 

B1(x0)

∇yG(x′, y) dx′
)∣∣∣∣2 dx

)
dy (25)

.
ˆ
B1(y0)

ˆ
B1(x0)

|∇x∇yG(x, y)|2 dx dy

(5)

.

(
r∗(x0)r′∗(y0)

R2
0

)d
.
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By the triangle inequality we haveˆ
B1(y0)

ˆ
B1(x0)

|∇yG(x, y)|2 dxdy

.
ˆ
B1(y0)

(ˆ
B1(x0)

∣∣∣∣∇yG(x, y)−
( 

B1(x0)

∇yG(x′, y) dx′
)∣∣∣∣2 dx

)
dy

+ |B1|
ˆ
B1(y0)

( 
B1(x0)

∇yG(x, y) dx

)2

dy,

and so (6) follows from (25) provided we show

ˆ
B1(y0)

( 
B1(x0)

∇yG(x, y) dx

)2

dy .
(r∗(x0)r′∗(y0))

d

R2d−2
0

. (26)

Step 2. Proof of (26). Similarly as for (5), consider arbitrary f ∈ L2(BR0
(y0);Rd)

and the finite energy solution u of

−∇ ·A∇u = −∇ · f

in Rd, which satisfies the energy estimateˆ
Rd
|∇u|2 .

ˆ
Rd
|f |2 . (27)

Let F be a linear functional on L2(B1(x0)) such that |F (v)|2 ≤
´
B1(x0)

|v|2 for any

v ∈ L2(B1(x0)). Then, if r∗(x0) ≤ R0

|F (u)|2 ≤
ˆ
B1(x0)

|u|2 ≤
ˆ
Br∗(x0)(x0)

|u|2
Lemma 2

. rd∗(x0)

 
BR0

(x0)

|u|2

Jensen
≤ rd∗(x0)

( 
BR0

(x0)

|u|
2d
d−2

) d−2
d

.
rd∗(x0)

Rd−2
0

(ˆ
Rd
|u|

2d
d−2

) d−2
d

Sobolev

.
rd∗(x0)

Rd−2
0

ˆ
Rd
|∇u|2

(27)

.
rd∗(x0)

Rd−2
0

ˆ
Rd
|f |2 .

If otherwise r∗(x0) > R0, we do not need anymore to appeal to Lemma 2 and may
directly bound

|F (u)|2 ≤
ˆ
B1(x0)

|u|2 ≤
ˆ
BR0

(x0)

|u|2 . rd∗(x0)

 
BR0

(x0)

|u|2

and proceed as in the previous inequality. As before, we use linearity of F and write

|F (u)| =
∣∣∣∣ˆ
BR0

(y0)

F (∇yG(·, y))f(y) dy

∣∣∣∣.
Since f ∈ L2(BR0

(y0);Rd) was arbitrary, combination of the two previous estimates
yields ˆ

BR0
(y0)

|F (∇yG(·, y))|2 dy .
rd∗(x0)

Rd−2
0

. (28)

As before, it remains to argue that by going from
´
BR0

(y0)
to

´
B1(y0)

we gain a factor

R−d0 . We define v(y) := F (G(·, y)), and observe that −∇ · At∇v = 0 in BR0(y0),
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where At denotes the adjoint coefficient field. Then by definition of v estimate (28)
impliesˆ

B1(y0)

|F (∇yG(·, y))|2 dy =

ˆ
B1(y0)

|∇v|2 dy ≤
ˆ
Br′∗(y0)(y0)

|∇v|2 dy

.

(
r′∗(y0)

R0

)d ˆ
BR0

(y0)

|∇v|2 .
(r∗(x0)r′∗(y0))

d

R2d−2
0

.

(29)

For the choice F (v) =
ffl
B1(x0)

v (29) is exactly (26).

3.3. Proof of (8). Similarly to the proof of (6), we use Poincaré’s inequality
(Step 1) to show that (8) follows from (7) provided we control averages of G (Step 2).

Step 1. By Poincaré’s inequality in the x-variable we have
ˆ
B1(y0)

(ˆ
B1(x0)

∣∣∣∣G(x, y)−
( 

B1(x0)

G(x′, y) dx′
)∣∣∣∣2 dx

)
dy

.
ˆ
B1(y0)

ˆ
B1(x0)

|∇xG(x, y)|2 dx dy

(7)

. R2
0

(
r′∗(x0)r∗(y0)

R2
0

)d
.

Then by the triangle inequality we haveˆ
B1(y0)

ˆ
B1(x0)

|G(x, y)|2 dxdy

.
ˆ
B1(y0)

(ˆ
B1(x0)

∣∣∣∣G(x, y)−
( 

B1(x0)

G(x′, y) dx′
)∣∣∣∣2 dx

)
6 dy

+ |B1|
ˆ
B1(y0)

( 
B1(x0)

G(x, y) dx

)2

dy,

and so (8) follows provided we show
ˆ
B1(y0)

( 
B1(x0)

G(x, y) dx

)2

dy .
(r∗(x0)r′∗(y0))

d

R2d−4
0

. (30)

Step 2. Proof of (30). Similarly as for (6), consider arbitrary f ∈ L2(BR0(y0)),
but this time u being a finite energy solution of

−∇ ·A∇u = f

in Rd. In order to get the energy estimate, we test the equation with u to obtain:

λ

ˆ
Rd
|∇u|2 ≤

ˆ
BR0

(y0)

fu ≤ R
d
2
0

(ˆ
BR0

(y0)

|f |2
) 1

2
( 

BR0
(y0)

|u|2
) 1

2

Jensen,d≥3

≤ R
d
2
0

(ˆ
BR0

(y0)

|f |2
) 1

2
( 

BR0
(y0)

|u|
2d
d−2

) d−2
2d

= R0

(ˆ
BR0

(y0)

|f |2
) 1

2
(ˆ

BR0
(y0)

|u|
2d
d−2

) d−2
2d
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Sobolev

. R0

(ˆ
BR0

(y0)

|f |2
) 1

2
(ˆ

Rd
|∇u|2

) 1
2
,

and so ˆ
Rd
|∇u|2 . R2

0

ˆ
BR0

(y0)

|f |2 . (31)

We point out that compared to the proof of (5) or (6), we got additional R2
0 due to

the right-hand side of the equation being f and not ∇ · f .
Let F be a linear functional on L2(B1(x0)) such that |F (v)|2 ≤

´
B1(x0)

|v|2. If

r∗(x0) ≤ R0, then

|F (u)|2 ≤
ˆ
B1(x0)

|u|2 ≤
ˆ
Br∗(x0)(x0)

|u|2
Lemma 2

. rd∗(x0)

 
BR0

(x0)

|u|2

Jensen,d≥3

≤ rd∗(x0)

( 
BR0

(x0)

|u|
2d
d−2

) d−2
d

.
rd∗(x0)

Rd−2
0

(ˆ
Rd
|u|

2d
d−2

) d−2
d

Sobolev

.
rd∗(x0)

Rd−2
0

ˆ
Rd
|∇u|2

(31)

.
rd∗(x0)

Rd−4
0

ˆ
Rd
|f |2 .

If otherwise r∗(x0) > R0, then we directly bound

|F (u)|2 ≤
ˆ
B1(x0)

|u|2 ≤
ˆ
BR0

(x0)

|u|2 . rd∗(x0)

 
BR0

(x0)

|u|2

and proceed analogously to the other case. Using the Green’s function represen-
tation formula we have u(x) =

´
BR0

(y0)
G(x, y)f(y) dy, and thus the linearity of F

yields

|F (u)| =
∣∣∣∣ˆ
BR0

(y0)

F (G(·, y))f(y) dy

∣∣∣∣.
Since f ∈ L2(BR0

(y0)) was arbitrary, we may combine the two previous estimates
and conclude ˆ

BR0
(y0)

|F (G(·, y))|2 dy .
rd∗(x0)

Rd−4
0

. (32)

As before, it remains to argue that by going from
´
BR0

(y0)
to

´
B1(y0)

we gain a factor

R−d0 . We define v(y) := F (G(·, y)), and observe that −∇At∇v = 0 in BR0
(y0).

Now we use Lemma 2 with v to get

ˆ
B1(x0)

|v|2 ≤
ˆ
Br′∗(y0)

|v|2
Lemma 2

.

(
r′∗(y0)

R0

)d ˆ
BR0

(y0)

|v|2
(32)

.
(r∗(x0)r′∗(y0))

d

R2d−4
0

.

(33)
For the choice F (v) =

ffl
B1(x0)

v, relation (33) is exactly (30).

4. Proof of Corollary 1. We provide a generalization of (6)-(7) in the two-
dimensional case. When d = 2, the Green’s function for the whole space R2 does
not have to exist; nevertheless, we may give a definition for ∇G via the Green’s
function on R3. To this purpose we introduce the following notation: If x̄ ∈ R3, we
write x̄ = (x, x3) ∈ R2×R and denote by B̄r ⊂ R3 and Br ⊂ R2 the balls of radius r
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and centered at the origin. For a given bounded and uniformly elliptic coefficient
field A in R2, recall that its trivial extension Ā to R3 was defined in (9) by

Ā(x, x3) :=

(
A(x) 0

0 1

)
,

and the three-dimensional Green’s function Ḡ = Ḡ(Ā; x̄, ȳ) is defined as a solution
of

−∇x̄ · Ā∇x̄Ḡ(Ā; ·, ȳ) = δ(· − ȳ).

It will become clear below that the argument for the representation formula for ∇G
through ∇xḠ calls for the notion of pointwise existence in ȳ ∈ R3 of the Green’s
function Ḡ(Ā; ·, ȳ). As mentioned in Section 1, in the case of systems we may
only rely on a definition of the Green’s function for almost every singularity point
ȳ. Therefore, differently from the previous sections, we need to bear in mind this
weaker notion of existence of Ḡ.

Step 1. We argue that for almost every y ∈ R2 the function ∇G (since G does not
exist, ∇G should be understood as a symbol for a function and not as a gradient of
some function G), defined through

∇G(A; ·, y) :=

ˆ
R
∇xḠ(Ā; (·, x3), (y, y3)) dx3, (34)

satisfies for every ζ ∈ C∞0 (R2)ˆ
∇xζ(x) ·A(x)∇G(A;x, y) dx = ζ(y), (35)

i.e., in a weak sense it solves −∇x ·A∇G(A; ·, y) = δ(· − y).
By definition of Ḡ(Ā; ·, ·), we have for almost every ȳ ∈ R3 and every ζ̄ ∈ C∞0 (R3)ˆ

∇x̄ζ̄(x̄) · Ā∇x̄Ḡ(Ā; x̄, ȳ) dx̄ = ζ̄(ȳ).

Thus, for any ρ̄ ∈ C∞0 (R3) this yieldsˆ
ρ̄(ȳ)

ˆ
∇x̄ζ̄(x̄) · Ā∇x̄Ḡ(A; x̄, ȳ) dx̄ dȳ =

ˆ
ρ̄(y)ζ̄(ȳ) dȳ.

We now choose a sequence {ζ̄n}n∈N of test functions ζ̄n = ηnζ, with ζ = ζ(x) ∈
C∞0 (R2) and ηn = ηn(x3) smooth cut-off function for {|x3| < n} in {|x3| < n+ 1}:
From the previous identity and definition (9) it followsˆ

ρ̄(ȳ)

ˆ
ζ(x)η′n(x3)∂x3

Ḡ(Ā; x̄, ȳ) dx̄dȳ

+

ˆ
ρ̄(ȳ)

ˆ
ηn(x3)∇ζ(x) ·A∇Ḡ(Ā; x̄, ȳ) dx̄dȳ =

ˆ
ρ̄(y)ζ(y) dȳ.

We now want to send n→ +∞ in the previous identity : By our assumptions on ρ̄
and ζ̄n, if we show thatˆ

supp(ρ̄)

ˆ
supp(ζ)×R

|∇x̄Ḡ(Ā; x̄, ȳ)|dx̄ dȳ < +∞, (36)

then by the Dominated Convergence Theorem we may conclude thatˆ
ρ̄(ȳ)

ˆ
∇ζ(x) ·A

(ˆ
R
∇Ḡ(Ā; x̄, ȳ) dx3

)
dx dȳ =

ˆ
ρ̄(ȳ)ζ(y) dȳ,
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and thus (35) by the arbitrariness of the test function ρ̄ and the separability of
C∞0 (R2).

To argue inequality (36) we proceed as follows: We define a finite radius M such
that

M ≥ max(r∗(Ā
t, X̄), r∗(A, Ȳ )) and supp(ρ̄) ⊂ B̄M (Ȳ ), supp(ζ) ⊂ BM/2(X),

and observe that inequality (36) is implied byˆ
B̄M (Ȳ )

ˆ
BM/2(X)×R

|∇x̄Ḡ|dx̄dȳ < +∞. (37)

Since Ā is translational invariant in x3, the minimal radius r∗(Ā
t, ·) is independent

of x3. Then, by the definition of M and Remark 2 we haveˆ
B̄M (Ȳ )

ˆ
B̄M ((X,X3))

|∇̄xḠ(Ā; x̄, ȳ)|2 dx̄dȳ .
M6

|Y − (X,X3)|4
≤ M6

|Y3 −X3|4
(38)

provided |X3 − Y3| ≥ 3M .
We now cover the cylinder BM/2(X)×R with countably many balls of radius M

centered at the points (X,±Mn) ∈ R3. By translational invariance we can w. l. o.
g. assume that Y3 = 0. We thus bound the integral in (37) by

ˆ
B̄M (Ȳ )

ˆ
BM/2(X)×R

|∇x̄Ḡ|dx̄ dȳ ≤
+∞∑
n=0

ˆ
B̄M (Ȳ )

ˆ
B̄M (X,±Mn)

|∇x̄Ḡ|dx̄dȳ

.
ˆ
B̄M (Ȳ )

ˆ
B̄4M ((X,0))

|∇x̄Ḡ|dx̄dȳ +
∑
n>4

ˆ
B̄M (Ȳ )

ˆ
B̄M (X,±Mn)

|∇x̄Ḡ|dx̄dȳ.

(39)

We claim that ∇x̄Ḡ(Ā; ·, ·) ∈ L1
loc(R3 × R3), and so the first integral on the r. h. s.

of the previous identity is finite.
Here we only sketch the idea why ∇̄x̄Ḡ ∈ L1

loc(R3 × R3); for the proof with all
the details we refer to the proof of [10, Theorem 1]. To show that ∇̄x̄Ḡ ∈ L1

loc it
suffices to show that

´
B̄R(0)

´
B̄R(0)

|∇̄x̄Ḡ| <∞. In order to do that we observe that

for given two distinct points x̄, ȳ ∈ R3, the proof of Theorem 1 (without the use of
r∗ to go to smaller scales; see also Remark 2) implies in 3D(ˆ

B̄r(x̄)

ˆ
B̄r(ȳ)

|∇̄x̄Ḡ|2
) 1

2

.
|B̄r|
r2

,

where r = |x̄− ȳ|/3, which by Hölder’s inequality turns intoˆ
B̄r(x̄)

ˆ
B̄r(ȳ)

|∇̄x̄Ḡ| .
|B̄r|2

r2
.

Using a simple covering argument, the above estimate holds also in the case when
the balls are replaced by cubes. Since B̄R(0) × B̄R(0) can be written as a null-set
plus a countable union of pairs of open cubes Q̄rn(x̄n) × Q̄rn(ȳn), each with size
rn := |x̄n − ȳn|/3 and such that each pair of points (x̄, ȳ) ∈ B̄R(0)× B̄R(0) belongs
to at most one such pair of cubes, we concludeˆ

B̄R(0)

ˆ
B̄R(0)

|∇̄x̄Ḡ| .
ˆ
B̄2R(0)

ˆ
B̄2R(0)

|x̄− ȳ|−2 dx̄dȳ <∞,

where we used that for (x̄, ȳ) ∈ Q̄rn(x̄n)× Q̄rn(ȳn) we have |x̄− ȳ| ∼ rn.
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Going back to the second term on the right-hand side of (39), an application of
Hölder’s inequality in both variables x̄ and ȳ yields for the the sum over n∑

n>4

ˆ
B̄M (Ȳ )

ˆ
B̄M (X,±Mn)

|∇x̄Ḡ| .M3
∑
n>4

(ˆ
B̄M (Ȳ )

ˆ
B̄M (X,±Mn)

|∇̄x̄Ḡ|2
) 1

2

.

We now may apply to the r.h.s. the bound (38) and thus obtain∑
n>4

ˆ
B̄M (Ȳ )

ˆ
B̄M (X,±Mn)

|∇x̄Ḡ| .M6
∑
n>4

(Mn)−2 .M4 <∞.

We have established (36).
Before concluding Step 1, we show that the representation formula (34) does not

depend on the choice of the coordinate y3 ∈ R, namely that for almost every two
values y0,3, y1,3 ∈ R, for almost every y0, x0 ∈ R2

ˆ
R
∇xḠ(Ā; (x0, x3), (y0, y0,3)) dx3 =

ˆ
R
∇xḠ(Ā; (x0, x3), (y0, y1,3)) dx3.

Without loss of generality we assume y0,3 = 0: Since by the uniqueness of Ḡ(Ā; ·, ·),
for every z̄ ∈ R3 and almost every x̄, ȳ ∈ R3

Ḡ(Ā; x̄+ z̄, ȳ + z̄) = Ḡ(Ā(·+ z̄); x̄, ȳ),

by choosing z̄ = (0, z3) and using definition (9) for Ā, we get

Ḡ(Ā; x̄+ z̄, ȳ + z̄) = Ḡ(Ā; x̄, ȳ). (40)

Let x0, y0 ∈ R2 and y1,3 ∈ R3 be fixed: For every δ > 0 we may write 
Bδ(x0)

 
B̄δ((y0,y1,3))

ˆ
R
∇xḠ(Ā; x̄, ȳ) dx̄dȳ

=

 
Bδ(x0)

 
B̄δ((y0,y1,3))

ˆ
R
∇xḠ(Ā; (x, x3 − y1,3 + y1,3), (y, y3 − y1,3 + y1,3)) dx̄dȳ,

and use (40) with z̄ = (0, y1,3) to get 
Bδ(x0)

 
B̄δ((y0,y1,3))

ˆ
R
∇xḠ(Ā; x̄, ȳ) dx̄dȳ=

 
Bδ(x0)

 
B̄δ((y0,0))

ˆ
R
∇xḠ(Ā; x̄, ȳ) dx̄dȳ.

We now appeal to Lebesgue’s theorem and conclude (38).

Step 2. Proof of (11). For this part we denote rx := r∗(Ā
t, (x0, 0)) and ry :=

r∗(Ā, (y0, 0)). By translational invariance of Ā and Āt we have rx = r∗(Ā
t, (x0, x3))

and ry = r∗(Ā, (y0, y3)) for any x3, y3 ∈ R. Denoting B := B1(y0)× (−ry/2, ry/2),
the independence of (34) from y3 yields

ˆ
B

ˆ
B1(x0)

∣∣∣∣ˆ
R
∇x̄Ḡ(x̄, ȳ) dx3

∣∣∣∣2 dx dȳ

= ry

ˆ
B1(y0)

ˆ
B1(x0)

∣∣∣∣ˆ
R
∇x̄Ḡ(x̄, (y, 0)) dx3

∣∣∣∣2 dx dy

(34)
= ry

ˆ
B1(y0)

ˆ
B1(x0)

|∇G(A;x, y)|2 dx dy.
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Since B ⊂ B̄ry ((y0, 0)), the previous identity implies

ry

ˆ
B1(x0)

ˆ
B1(y0)

|∇xG(A;x, y)|2 dxdy =

ˆ
B

ˆ
B1(x0)

∣∣∣∣ˆ
R
∇xḠ(Ā; x̄, ȳ) dx3

∣∣∣∣2 dxdȳ

.
ˆ
B̄ry ((y0,0))

ˆ
B1(x0)

∣∣∣∣ˆ
R
∇xḠ(Ā; x̄, ȳ) dx3

∣∣∣∣2 dxdȳ

≤
ˆ
B̄ry ((y0,0))

ˆ
B1(x0)

( ∞∑
n=−∞

ˆ (n+1)rx

nrx

|∇xḠ(Ā; x̄, ȳ)|dx3

)2

dx dȳ.

We define a sequence

an :=
(rxry)

3
4

(|x0 − y0|2 + n2(rx)2)
1
2

and observe that( ∞∑
n=−∞

ˆ (n+1)rx

nrx

|∇xḠ(Ā; x̄, ȳ)|dx3

)2

=

( ∞∑
n=−∞

an
rx
an

 (n+1)rx

nrx

|∇xḠ(Ā; x̄, ȳ)|dx3

)2

Hölder
≤

( ∞∑
n=−∞

a2
n

)( ∞∑
n=−∞

(rx)2

a2
n

( (n+1)rx

nrx

|∇xḠ(Ā; x̄, ȳ)|dx3

)2)
Jensen
≤

( ∞∑
n=−∞

a2
n

)( ∞∑
n=−∞

rx
a2
n

ˆ (n+1)rx

nrx

|∇xḠ(Ā; x̄, ȳ)|2 dx3

)
.

Since
∞∑

n=−∞
a2
n .

(rxry)
3
2

|x0 − y0|rx
, (41)

where for simplicity we assumed |x0−y0| ≥ rx, we combine the three above relations
to infer

ry

ˆ
B1(x0)

ˆ
B1(y0)

|∇xG(A;x, y)|2 dxdy

.
(rxry)

3
2

|x0 − y0|rx

∑
n

rx
a2
n

×
ˆ
B̄ry ((y0,0))

ˆ
B̄rx (x0,(n+1/2)rx)

|∇xḠ(Ā; x̄, ȳ)|2 dx̄ dȳ

(7),d=3

.
(rxry)

3
2

|x0 − y0|rx)

∑
n

rx
a2
n

a4
n

(41)

.
(rxry)3

|x0 − y0|2rx
,

which is exactly (11).
Concerning (10), there are two possible ways how to proceed. For the first we

observe that (35) implies for every test function φ ∈ C∞c (R2)
ˆ
∇φ(x) ·A(x)

(ˆ
∇y∇G(x, y) · f(y) dy

)
dx =

ˆ
∇φ · f =

ˆ
∇φ ·A∇u,
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where f ∈ L2(R2;R2) and u is a solution of −∇·A∇u = −∇· f . Therefore we have
that

∇u(x) =

ˆ
∇y∇G(x, y) · f(y) dy,

and the proof of (5) applies verbatim. A different way would be to mimic the
argument for (11), i.e., to define ∇y∇G as an integral of the second mixed derivative
of the Green’s function in three dimension. Unfortunately, this way we would obtain
the estimate where the minimal radii in 2D appearing on the right-hand side of (10)
would need to be replaced (with possibly larger) minimal radii for 3D.
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