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Abstract. This paper is devoted to a class of reaction-diffusion equations with
nonlinearities depending on time modeling a cancerous process with chemother-

apy. We begin by considering nonlinearities periodic in time. For these func-

tions, we investigate equilibrium states, and we deduce the large time behavior
of the solutions, spreading properties and the existence of pulsating fronts.

Next, we study nonlinearities asymptotically periodic in time with perturba-

tion. We show that the large time behavior and the spreading properties can
still be determined in this case.

1. Framework and main results. We investigate equations of the form

ut − uxx = fT (t, u), t ∈ R, x ∈ R, (1)

where fT : R× R→ R is of the type

fT (t, u) = g(u)−mT (t)u, (2)

and T is a positive parameter. We suppose that g is a KPP (for Kolmogorov, Petro-
vsky and Piskunov) function of class C1(R+) with R+ = [0,+∞). More precisely,
we have

g > 0 on (0, 1), g(0) = g(1) = 0, g′(0) > 0, g′(1) < 0, (3)

and

u 7→ g(u)

u
decreasing on (0,+∞). (4)

The previous hypotheses imply in particular that

g(u) ≤ g′(0)u, ∀u ∈ [0,+∞), (5)

and that

g < 0 on (1,+∞). (6)
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In Sections 2 and 4, the function mT is T -periodic, nonnegative and of class C1(R).
In this case, the function fT is a T -periodic in time function of class C1(R × R+)
such that fT (·, 0) = 0 on R. Furthermore, according to (6) and the nonnegativity
of mT , we have

fT (t, u) < 0, ∀(t, u) ∈ R× (1,+∞). (7)

In Section 3, the function mT is asymptotically periodic in time. We give more
details about this notion later in this introduction.

1.1. Biological interpretation. Equations of the type

ut − uxx = g(u)−mT (t)u, t ∈ R, x ∈ R, (8)

are proposed to model the spatial evolution over time of a cancerous tumor in the
presence of chemotherapy. The quantity u(t, x) represents the density of cancer
cells in the tumor at the position x and at the time t. We begin by considering,
for T > 1, a particular case of periodic function mT : R+ → R of class C1(R+) for
which there exists a nontrivial function ϕ : [0, 1] → [0,+∞) with ϕ(0) = ϕ(1) = 0
such that {

mT = ϕ on [0, 1),

mT = 0 on [1, T ).
(9)

In the absence of treatment, cancer cells reproduce and spread in space. This
reproduction is modeled by the reaction term of KPP type g(u), which takes into
account the fact that the resources of the environment of the tumor are not infinite
and so, that there is a maximal size beyond which the tumor cannot grow anymore.
To treat the patient, cycles of chemotherapy are given. Every cycle lasts a lapse
of time T and is composed of two subcycles. The duration of the first one is equal
to 1. During this time, the drug acts on the tumor. At every moment of the first
subcycle, the death rate of the cancer cells due to the drug is equal to ϕ(t). In this
case, the total reaction term is g(u) − ϕ(t)u. There is a competition between the
reproduction term and the death term. The chemotherapy has a toxic effect on the
body because it destroys white blood cells. It is thus essential to take a break in
the administration of the treatment. This break is the second subcycle of the cycle
of chemotherapy. It lasts during a time equal to T − 1. In this case, the reaction
term is just g(u), and thus, the tumor starts to grow again. To summarize, the term
mT (t) defined in (9) represents the concentration of drug in the body of the patient

at time t, and the integral
∫ T

0
mT (s)ds =

∫ 1

0
ϕ(t)dt represents the total quantity of

drug in the patient during a cycle of chemotherapy. Finally, we impose for this type
of functions mT that

g′(0)−
∫ 1

0

ϕ(t)dt < 0. (10)

This inequality is not really restricting. Indeed, we shall see after that this hypoth-
esis is in fact a condition so that the patient is cured in the case where there is no
rest period in the cycles of chemotherapy (that is T = 1).

We now refine the previous modelling. In fact, the concentration of drug in the
patient’s body is not a datum. We only know the concentration of drug injected to
the patient. We denote DT (t) this concentration at time t, and we assume that the
function DT : R+ → R+ is T -periodic and satisfies

DT (t) =

{
1, ∀t ∈ [0, 1],

0, ∀t ∈ (1, T ).
(11)
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The concentration of drug m is then the Lipschitz-continuous and piecewise C1

solution m : R+ → R of a Cauchy problem of the type{
m′(t) = DT (t)− m(t)

τ , ∀t ∈ R+,

m(0) = m0 ≥ 0.
(12)

The real number τ > 0 is called clearance. It characterizes the ability of the
patient’s body to eliminate the drug. It is also possible to take into account that
the patient does not necessarily take the treatment in an optimal way. It may
happen to him/her, for example, to forget his/her medicine, or being forced to
move a chemotherapy session if it is programmed on a holiday. So, we add to the
nonlinearity a perturbative term of the type εp(t, u), where ε ≥ 0 and p : R+×R→
R. It corresponds to study equations of the type

ut − uxx = g(u)−m(t)u+ εp(t, u), t ∈ R, x ∈ R,
where m solves (12).

1.2. Mathematical framework. The mathematical study of reaction-diffusion
equations began in the 1930’s. Fisher [12] and Kolmogorov, Petrovsky and Piskunov
[17] were interested in wave propagation in population genetics modeled by the
homogeneous equation

ut − uxx = f(u), t ∈ R, x ∈ R. (13)

In the 1970’s, their results were generalized by Aronson and Weinberger [1] and Fife
and McLeod [11]. In particular, if f is a KPP nonlinearity (that is, f satisfies (3)
and (5)), there exists a unique (up to translation) planar fronts Uc of speed c, for any

speed c ≥ c∗ := 2
√
f ′(0), that is, for any c ≥ c∗, there exists a function uc satisfying

(13) and which can be written uc(t, x) = Uc(x− ct), with 0 < Uc < 1, Uc(−∞) =
1 and Uc(+∞) = 0. Furthermore, if c < c∗, there is no such front connecting 0
and 1. Another property for this type of nonlinearities is that if we start from
a nonnegative compactly supported initial datum u0 such that u0 6≡ 0, then the
solution u of (13) satisfies u(t, x)→ 1 as t→ +∞. Aronson and Weinberger name
this phenomenon the “hair trigger effect”. Moreover the set where u(t, x) is close
to 1 expands at the speed c∗.

Freidlin and Gärtner in [13] were the first to study heterogeneous equations.
More precisely, they generalized spreading properties for KPP type equations with
periodic in space coefficients. Since this work, numerous papers have been devoted
to the study of heterogeneous equations with KPP or other reaction terms. We
can cite e.g. [2, 3, 4, 5, 6, 8, 10, 16, 19, 27, 28, 29] in the case of periodic in space
environment, [14, 18, 19, 24, 25] in the case of periodic in time environment and
[21, 22, 23] in the case of periodic in time and in space environment. The works
of Nadin [21, 22] and Liang and Zhao [19] are the closest of our paper. We will
compare later the contributions of our work with these references. We now give the
main results of the paper.

When the nonlinearity is not homogeneous, there are no planar front solutions
of (8) anymore. For equations with coefficients depending periodically on the space
variable, Shigesada, Kawasaki and Teramoto [26] defined in 1986 a notion more
general than the planar fronts, namely the pulsating fronts. This notion can be
extended for time dependent periodic equations as follows.

Definition 1.1. For equation (1), assume that fT is T -periodic and that (1) has
a T -periodic solution θ : R → (0,+∞), t 7→ θ(t). A pulsating front connecting 0
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and θ(t) for equation (1) is a solution u : R×R→ R+ such that there exists a real
number c and a function U : R× R→ R+ verifying

u(t, x) = U(t, x− ct), ∀t ∈ R, ∀x ∈ R,
U(·,−∞) = θ, U(·,+∞) = 0, uniformly on R,
U(t+ T, x) = U(t, x), ∀t ∈ R, ∀x ∈ R.

So, a pulsating front connecting 0 and θ for equation (1) is a couple (c, U(t, ξ))
solving the problem

Ut − cUξ − Uξξ − fT (t, U) = 0, ∀(t, ξ) ∈ R× R,
U(·,−∞) = θ, U(·,+∞) = 0, uniformly on R,
U(t+ T, ξ) = U(t, ξ), ∀(t, ξ) ∈ R× R.

In this definition, by standard parabolic estimates, the limiting state θ = U(·,−∞)
solves the system {

y′ = fT (t, y) on R,
y(0) = y(T ),

(14)

whose solutions are called equilibrium states of the equation (1).
If θ : R→ R is a solution of (14), let us now define λθ,fT and Φθ,fT : R→ R as

the unique real number and the unique function (up to multiplication by a constant)
which satisfy 

(Φθ,fT )′ =
(
fTu (t, θ) + λθ,fT

)
Φθ,fT on R,

Φθ,fT > 0 on R,
Φθ,fT is T − periodic.

(15)

These quantities are called respectively principal eigenvalue and principal eigen-
function associated with fT and the equilibrium state θ. Furthermore, if we divide
the previous equation by Φθ,fT , and if we integrate over (0, T ), we obtain an explicit
formulation of the principal eigenvalue, namely

λθ,fT = − 1

T

∫ T

0

fTu (s, θ(s))ds.

We now recall the definition of the Poincaré map PT associated with fT . For any
α ≥ 0, let yα : R+ → R+ be the solution of the Cauchy problem{

y′ = fT (t, y) on R,
y(0) = α.

(16)

Definition 1.2. The Poincaré map associated with fT is the function PT : R+ →
R+ defined by

PT (α) = yα(T ).

We conclude, with the fact that each nonnegative solution of (14) is associated
with a fixed point of PT , and conversely. Furthermore, if αT ≥ 0 is a fixed point of
PT we have the following equality

(PT )′(αT ) = e
−Tλy

αT
,fT . (17)

We can find these results concerning the notions of principal eigenvalue and Poincaré
map in [7], [9], [15] and [20].
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1.3. Nonlinearities periodic in time. Let T > 0. In Section 2, we study (1)
and (2) with functions mT which are T -periodic in time. For these functions we
assume there exists T ∗ > 0 such that

λ0,fT


> 0 if T < T ∗,

< 0 if T > T ∗,

= 0 if T = T ∗.

(18)

This is indeed the case if mT is of the type (9) because

λ0,fT = −g′(0) +
1

T

∫ T

0

mT (s)ds = −g′(0) +
1

T

∫ 1

0

ϕ(s)ds.

Furthermore, for this type of functions, hypothesis (10) implies that λ0,fT=1 > 0.
Hence, in this case T ∗ > 1. The existence and uniqueness of positive solutions of
(14) is summarized in the following result.

Proposition 1. We consider the real number T ∗ defined in (18).
(I) If T ≤ T ∗, there is no positive solution of (14).
(II) If T > T ∗, there is a unique positive solution wT of (14). Furthermore,

(i) For any t ∈ R we have wT (t) ∈ (0, 1], and

1

T

∫ T

0

fTu (s, wT (s))ds ≤ 0.

(ii) If T 7→ mT is continuous in L∞loc(R), then the function T ∈ (T ∗,+∞) 7→
wT (0) is continuous and, if mT is of type (9) with assumption (10), it is increas-
ing.

(iii) If T 7→ mT is continuous in L∞loc(R), then the function wT converges uni-
formly to 0 on R as T → (T ∗)+.

(iv) If mT is of type (9) with assumption (10), then wT converges on average to
1 as T tends to +∞:

lim
T→+∞

1

T

∫ T

0

wT (t)dt = 1.

The same result of existence and uniqueness (result of the type (II)) was proved
for KPP nonlinearities depending periodically on space by Berestycki, Hamel and
Roques in [5] and for KPP nonlinearities depending periodically on space and time
by Nadin in [22]. We give here a proof using the Poincaré map associated with
fT . The last two points of the proposition are quite intuitive. Indeed, the limit
as T → (T ∗)+ is explained by the fact that for T ≤ T ∗, the only nonnegative
equilibrium state is zero. The limit as T → +∞ is explained by the fact that in
this case, the nonlinearity fT is “almost” the KPP function g since the function
mT has an average close to 0 when T is large.

Let us now summarize a result in [22], which deals with the evolution of u(t, x)
as t→ +∞.

Proposition 2. [22] Let u0 : R → R be a bounded and continuous function on R
such that u0 ≥ 0 and u0 6≡ 0. Under assumption (18), we consider the function
u : R+ × R→ R satisfying{

ut − uxx = fT (t, u) on (0,+∞)× R,
u(0, ·) = u0 on R.

(19)
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If T < T ∗, then there exists M > 0 depending only on u0 and Φ0,fT such that

0 ≤ u(t, x) ≤MΦ0,fT (t)e−λ0,fT t, ∀(t, x) ∈ R+ × R. (20)

If T = T ∗, then

sup
x∈R
|u(t, x)| t→+∞−−−−→ 0.

If T > T ∗, then for every compact set K ⊂ R, we have

sup
x∈K
|u(t, x)− wT (t)| t→+∞−−−−→ 0.

A similar result was proved for KPP nonlinearities depending periodically on
space by Berestycki, Hamel and Roques in [5].

In the biological context with mT satisfying (9), the treatment is effective (in the
sense that u(t, x) → 0 uniformly on R as t → +∞) if and only if the duration of
cycles of chemotherapy is equal or less than T ∗. In particular, since hypothesis (10)
implies that T ∗ > 1, the treatment is effective if there is no rest period between
two injections of drug, that is as T = 1. The result is interesting because it implies
that T ∗−1 is the longest rest period for which the patient recovers. Inequality (20)
refines the criterion of cure of the patient because according to the fact that the
function T 7→ λ0,fT is decreasing and positive on (0, T ∗), the convergence rate of
the density u(t, x) to 0 as t → +∞ is all the faster as T is small. In other words,
in the case of effective treatment, shorter the period between two injections, more
quickly the patient will be cured. If the treatment is not effective, the equilibrium
state wT invades the whole space as t → +∞. In particular, the tumor can not
grow indefinitely. Finally, Proposition 2 also allows to clarify the result (ii) of
Proposition 1. The fact that T 7→ wT (0) is increasing on (T ∗,+∞) implies that
in the case where the treatment is not effective (that is wT > 0 invades the whole
space as t → +∞), the longer the rest period between two injections, the denser
the equilibrium state of the tumor.

We now study in more detail the case where the treatment is not effective, that
is, the case where T > T ∗. We know that then, the equilibrium state wT invades
the whole space as t → +∞. The purpose of this part is to give the invasion rate
of the zero state by wT . To answer this question, we quote two results. The first
one is about the existence of pulsating fronts connecting 0 and wT , in the sense of
Definition 1.1, and the second one concerns spreading properties. They are proved
in [18] and in [21].

Theorem 1.3. [18],[21] Let T > T ∗, where T ∗ is given in (18). (I) There exists a
positive real number c∗T such that pulsating fronts with speed c connecting 0 and wT

exist if and only if c ≥ c∗T .

(II) We denote u : R+ × R→ R the solution of the Cauchy problem{
ut − uxx = fT (t, u) on (0,+∞)× R,
u(0, ·) = u0 on R.

If u0 is a bounded continuous function such that u0 ≥ 0 and u0 6≡ 0, then

∀c ∈ (0, c∗T ), lim
t→+∞

sup
|x|<ct

∣∣u(t, x)− wT (t)
∣∣ = 0.
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If u0 is a continuous compactly supported function such that u0 ≥ 0, then

∀c > c∗T , lim
t→+∞

sup
|x|>ct

u(t, x) = 0.

In his paper [21], Nadin considers in the first assertion of the spreading properties
in Theorem 1.3 initial conditions which are more general. He assumes that u0 is not
necessarily compactly supported but that u0 is of the form O(e−β|x|) as |x| → +∞,
where β > 0. The previous theorem completes Proposition 2. Indeed, we know that
in the case where the treatment is not effective, the equilibrium state wT invades
the whole space as t → +∞. Theorem 1.3 states that this invasion takes place at
the speed c∗T .

We can now characterize the critical speed c∗T with the principal eigenvalue λ0,fT .
More precisely:

Proposition 3. For every T > T ∗, the critical speed c∗T is given by

c∗T = 2
√
−λ0,fT . (21)

Hence, if T 7→
∫ T

0
mT (s)ds is continuous, then the function T ∈ (T ∗,+∞) 7→ c∗T is

continuous and, if
∫ T

0
mT (s)ds does not depend on T , it is increasing. Furthermore,

we have the two following limit cases:

lim
T→(T∗)+

c∗T = 0,

and, if 1
T

∫ T
0
mT (s)ds

T→+∞−−−−−→ 0, then

lim
T→+∞

c∗T = 2
√
g′(0).

In the case where the treatment is not effective, the invasion of space by the
equilibrium state wT is all the faster as the rest time between injections is long.
The two limits cases T → (T ∗)+ and T → +∞ are explained in the same manner
as in Proposition 1. Let us note that in the case where mT is of the type (9), then

the previous properties concerning
∫ T

0
mT (s)ds are satisfied.

We end this section by stating the existence of pulsating fronts in the case of
nonlinearities which are not of KPP type (that is hypotheses (4) and (5) are not
necessarily verified, but we still assume (3), (6) and (18)). For these nonlinearities,
there is still a positive solution to problem (14), but it may not be unique. According
to Cauchy-Lipschitz theorem, solutions of (14) are ordered on [0, T ]. For T > T ∗,
we can thus define yT : R → R as the infimum of all positive solutions of (14).
After showing that yT > 0, we will prove there exists a critical speed c∗∗T > 0 such
that there is a pulsating front connecting 0 and yT for speed c ≥ c∗∗T and there is no
pulsating front connecting 0 and yT for c < c∗∗T . In this case, c∗∗T is not necessarily
equal to 2

√
−λ0,fT . For this type of nonlinearity, Nadin shows in [21] that there

exist two critical speeds c∗ and c∗ for which there is a pulsating front for c ≥ c∗

and there is no pulsating front for c ≤ c∗. Nevertheless the case c ∈ (c∗, c
∗) is not

treated in [21]. In [18], Liang and Zhao prove the result using a semiflow method.
We give here an alternative proof. We begin by proving the existence of pulsating
front U(t, ξ) for domains of the type R × [−a, a] which are bounded in ξ, then we
pass in the limit as a→ +∞. We state the result.
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Proposition 4. Let fT satisfy assumptions (2), (3), (6) and (18), and T > T ∗.
There exists a positive real number c∗∗T such that pulsating fronts U(t, ξ) monotone
in ξ connecting 0 and yT exist if and only if c ≥ c∗∗T .

1.4. Nonlinearities asymptotically periodic in time with perturbation.
We are interested in the case of nonlinearities which are no more periodic in time,
but which are the sum of a function which converges as t→ +∞ to a time periodic
nonlinearity and of a small perturbation. More precisely, for ε ≥ 0, we consider
equations of the type

ut − uxx = g(u)−m(t)u+ εp(t, u), t ∈ R, x ∈ R, (22)

where m solves (12) with T > 1 and DT defined in (11). We assume that p :
R+ × R→ R is a function of class C1 for which there exists C > 0 such that∣∣p(t, u)

u

∣∣ ≤ C, ∀(t, u) ∈ R+ × (0,+∞). (23)

The function m is not periodic, but it is asymptotically T -periodic in time. More
precisely, there exists a T -periodic positive function mT

∞ : R→ (0,+∞) such that

lim
t→+∞

|m(t)−mT
∞(t)| = 0. (24)

Indeed, an elementary calculation implies that for any n ∈ N, we have

m(t) =


τ
[
1 +

(
(e

1
τ −1)(e

nT
τ −1)

e
T
τ −1

+ m0

τ − e
nT
τ

)
e−

t
τ

]
, ∀t ∈ [nT, nT + 1),

τ
[

(e
1
τ −1)(e

(n+1)T
τ −1)

e
T
τ −1

+ m0

τ

]
e−

t
τ , ∀t ∈ [nT + 1, (n+ 1)T ).

Consequently, if we define the positive T -periodic function mT
∞ : R→ (0,+∞) by

mT
∞(t) =


τ
[
1 +

(
e

1
τ −1

e
T
τ −1
− 1
)
e−

t
τ

]
, ∀ t ∈ [0, 1],

τ e
1
τ −1

e
T
τ −1

e
T−t
τ , ∀ t ∈ [1, T ),

then the convergence result (24) holds. Furthermore, we have
∫ T

0
mT
∞(t)dt = τ.

Consequently the function fT : R+×R+ → R defined by fT (t, u) = g(u)−mT
∞(t)u

satisfies (18) because λ0,fT = −g′(0) + τ/T . We assume that τ > g′(0). We

notice that mT
∞ is independent of m0. It was predictable because mT

∞ is the unique
positive T -periodic solution of m′ = DT −m/τ on R. We define the nonlinearities
f : R+ × R+ → R and fε : R+ × R+ → R by

f(t, u) = g(u)−m(t)u, and fε(t, u) = f(t, u) + εp(t, u).

According to (24), we have

sup
u∈(0,+∞)

∣∣∣∣f(t, u)− fT (t, u)

u

∣∣∣∣ t→+∞−−−−→ 0. (25)

The function fT is T -periodic and satisfies the general assumptions given in Section
1.3. We still denote T ∗ the critical time (notice that T ∗ > 1 because τ > g′(0)), wT

the unique positive equilibrium state for T > T ∗ and c∗T the critical speed associated
with fT for T > T ∗.

The aim of this section is to show that Proposition 2 and the spreading results
of Theorem 1.3 hold true when we replace fT by fε in the statements, for ε small
enough. It is reasonable to hope so. Indeed, on the one hand, if ε is small, then the
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term εp is negligible compared to f , and on the other hand, these results deal with
the large time behavior of the solutions, and precisely, hypothesis (25) implies that
f “looks like” fT as t → +∞. The first result is the generalization of Proposition
2.

Theorem 1.4. Let u0 : R → R be a bounded and continuous function such that
u0 ≥ 0 and u0 6≡ 0. For all ε ≥ 0, we consider the function uε : R+ × R → R
satisfying {

ut − uxx = fε(t, u) on (0,+∞)× R,
u(0, ·) = u0 on R.

(26)

If T < T ∗, there exists εT > 0 such that for all ε ∈ (0, εT ) we have

lim
t→+∞

sup
x∈R
|uε(t, x)| = 0.

If T > T ∗ and if λwT ,fT > 0, then there exist ε̃T > 0 and MT > 0 such that for all
ε ∈ (0, ε̃T ) and for all compact K ⊂ R, we have

lim sup
t→+∞

sup
x∈K
|uε(t, x)− wT (t)| ≤MT ε.

We saw in Proposition 1 that λwT ,fT ≥ 0. In the previous theorem, in case
T > T ∗, we impose that λwT ,fT > 0. This property is not necessarily satisfied.

Indeed, if we consider the function h : R+ → R defined by h(u) = u(1 − u)3, then
we have h(0) = h(1) = 0, h > 0 on (0, 1), h < 0 sur (1,+∞), h(u)/u decreasing
on (0,+∞) and h′(1) = 0. In the case where the function fT (t, ·) is concave for all
t ∈ R+, the property λwT ,fT > 0 is verified for any T > T ∗. Indeed, if we define
F : [0, 1]→ R by

F (x) = − 1

T

∫ T

0

fT (s, xwT (s))

wT (s)
ds,

then we have F (0) = F (1) = 0 and F is convex on [0, 1]. Consequently, if F ′(1) = 0,
that is, if λwT ,fT = 0, then we have F ′ = 0 on [0, 1]. It is a contradiction because
F ′(0) = λ0,fT < 0.

Let us give a sketch of the proof. For T > 0 and ε > 0, we will frame fε by two
T -periodic functions fTε and fT−ε for which the results of Proposition 2 will apply.

In the case where T < T ∗, if fTε is the upper bound function, we will show that
for ε > 0 small enough, we have λ0,fTε

> 0. Hence, the solution of (26) with fTε
as nonlinearity is a supersolution of problem (26) and, according to Proposition 2,
it converges to 0 as t → +∞. In the case where T > T ∗, we will prove that for
ε > 0 small enough, we have λ0,fTε

< 0 and λ0,fT−ε
< 0. Consequently, there is

a unique positive solution wTε (resp. wT−ε) of system (14) with fTε (resp. fT−ε) as

nonlinearity (owing to Proposition 1). The solution of (26) with fTε as nonlinearity
is a supersolution of (26) and, according to Proposition 2, it converges to wTε as
t → +∞. In the same way, the solution of (26) with fT−ε as nonlinearity is a

subsolution of (26), and it converges to wT−ε as t → +∞. We will conclude using

the fact that wTε and wT−ε are close to wT as ε is small enough.
Note that the case T = T ∗ is not treated in Theorem 1.4. If ε = 0, the solution

of the Cauchy problem (26) converges uniformly to 0 as t→ +∞, whereas if ε > 0,
the convergence to 0 may not hold. We summarize these results in the following
proposition.
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Proposition 5. Let T = T ∗ and ε ≥ 0. We consider the function uε : R+×R→ R
satisfying the Cauchy problem (26).
(I) If ε = 0, then uε converges uniformly to 0 as t→ +∞.
(II) If ε > 0, we can conclude in two cases.

(i) If f(t, u) = fT
∗
(t, u) and p(t, u) = u, then, for ε small enough, uε converges

to a positive solution of (14) with fε as nonlinearity as t→ +∞.
(ii) If p(t, u) ≤ 0, then, uε converges uniformly to 0 as t→ +∞.

Concerning the spreading results of Theorem 1.3, they remain true if we replace
fT by fε in the statement.

Theorem 1.5. Let T > T ∗. For any ε ≥ 0, we consider uε : R+×R→ R satisfying{
ut − uxx = fε(t, u) on (0,+∞)× R,
u(0, ·) = u0 on R.

If u0 is a continuous bounded function such that u0 ≥ 0 and u0 6≡ 0, and if λwT ,fT >
0, then for all c ∈ (0, c∗T ), there exists ε̂c,T > 0 such that for all ε ∈ (0, ε̂c,T ) we
have

lim sup
t→+∞

sup
|x|<ct

∣∣uε(t, x)− wT (t)
∣∣ ≤MT ε,

where MT is defined in Theorem 1.4.
If u0 is a continuous compactly supported function such that u0 ≥ 0, then, for

all c > c∗T , there exists εc,T > 0 such that for all ε ∈ (0, εc,T ) we have

lim
t→+∞

sup
|x|>ct

uε(t, x) = 0.

The proof of this theorem uses the same ideas as the proof of Theorem 1.4.
For T > T ∗ and ε > 0, we will frame fε by two T -periodic functions fTε and
fT−ε for which the results of Theorem 1.3 will apply. An important point of the
demonstration will be to notice that for ε small enough, the critical speeds c∗T,ε
and c∗T,−ε associated respectively with fTε and fT−ε are close to the critical speed c∗T
associated with fT .

1.5. Influence of the protocol of the treatment. As in Section 1.1, we consider
a C1 and T -periodic function mT (with T ≥ 1) of the type{

mT = ϕ on [0, 1),

mT = 0 on [1, T ),

where ϕ : [0, 1]→ [0,+∞) satisfies ϕ(0) = ϕ(1) = 0. In this part, we are interested
in equations of the type

ut − uxx = g(u)−mT
τ (t)u, t ∈ R, x ∈ R, (27)

where 0 < τ ≤ T . The function g satisfies hypotheses (3), (4) and (6). The function
mT
τ : R+ → R+ is T -periodic and defined by{

mT
τ (t) = 1

τ ϕ
(
t
τ

)
, ∀t ∈ [0, τ),

mT
τ (t) = 0, ∀t ∈ [τ, T ),

where the function ϕ is the same as in mT . In these equations, the duration of the
treatment is equal to τ . Furthermore, we have∫ T

0

mT
τ (t) dt =

1

τ

∫ τ

0

ϕ
( t
τ

)
dt =

∫ 1

0

ϕ(t)dt. (28)
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So, it is clear that the quantity of drug administered during a cycle of chemotherapy
is independent of the treatment duration τ . We will study the influence of the
parameter τ with respect to the results of previous sections. We define the functions
fTτ : R+ × R+ → R and fTτ : R+ × R+ → R by

fT (t, u) = g(u)−mT (t)u and fTτ (t, u) = g(u)−mT
τ (t)u.

The first proposition deals with the principal eigenvalue associated with fTτ and the
equilibrium state 0.

Proposition 6. Let T > 0 and τ ∈ (0, T ]. The real number λ0,fTτ
is independent

of τ . Actually, we have

λ0,fTτ
= λ0,fT = −g′(0) +

∫ 1

0
ϕ(s)ds

T
.

Consequently, if T ∗ > 0 denotes the critical time for the function fT , then, for
any τ ∈ (0, T ∗), fTτ satisfies (18) for T ∈ [τ,+∞), and the critical time T ∗ associated
with fTτ is the same as the one associated with fT . We are interested here in the
solutions of the system {

y′ = fTτ (t, y) on R,
y(0) = y(T ).

(29)

The same proof as in Proposition 1 implies that for any τ ∈ (0, T ∗) and T ∈ [τ, T ∗],
there is no positive solution of (29), while for any T > T ∗ and τ ∈ (0, T ], there is
a unique positive solution wTτ : R→ (0, 1] of (29). Furthermore, the same proof as
in Proposition 2 implies that if τ ∈ (0, T ∗) and T ∈ [τ, T ∗], then the treatment is
efficient, and if T > T ∗ and τ ∈ (0, T ], then the equilibrium state wTτ invades the
whole space as t→ +∞. More precisely, Proposition 2 remains true by replacing fT

by fTτ and wT by wTτ . To summarize, the optimal duration of a chemotherapy cycle
for which the treatment is efficient does not depend on how the drug is injected.

Let us now study the case where the treatment is not efficient, that is, T > T ∗

and τ ∈ (0, T ]. Theorem 1.3 remains valid if we replace fT by fTτ and wT by wTτ ,
but with a critical speed c∗T,τ depending a priori on τ . Nevertheless Propositions

3 and 6 imply that c∗T,τ = 2
√
−λ0,fTτ

= 2
√
−λ0,fT = c∗T , where c∗T is the critical

speed associated with fT . Consequently, the invasion rate does not depend on how
the drug is administered.

Finally, we are interested in the influence of the parameter τ on the equilibrium
state wTτ .

Proposition 7. Let T > T ∗. The function{
(0, T ) → (0,+∞)

τ 7→ wTτ (0)

is continuous and decreasing.

Consequently, in the case where the treatment is not efficient, the shorter the
duration of the chemotherapy cycle, the larger the value of the equilibrium state
wTτ (0). This means that it is better to administer the treatment over long periods.

Outline. Section 2 is devoted to the proof of Propositions 1, 3 and 4. Section 3
gathers the proof of Theorem 1.4, Proposition 5 and Theorem 1.5. Finally, we
prove in Section 4 Propositions 6 and 7.



130 BENJAMIN CONTRI

2. Nonlinearities periodic in time.

2.1. Proof of Proposition 1. We first investigate solutions of (14), showing
Proposition 1. We begin with the case where T ≤ T ∗. We argue by way of contra-
diction, supposing there is a positive solution w∗ of (14). Then

(w∗)′(t)

w∗(t)
=
g(w∗(t))

w∗(t)
−mT (t), ∀t ∈ [0, T ].

We integrate this equation between 0 and T . We obtain∫ T

0

(g(w∗(s))

w∗(s)
−mT (s)

)
ds = 0. (30)

Yet, as w∗ > 0 on [0, T ] and according to (4) and (18), we have

1

T

∫ T

0

(g(w∗(s))

w∗(s)
−mT (s)

)
ds < −λ0,fT ≤ 0,

which contradicts (30).
We now consider the case where T > T ∗. To prove the existence of a positive

solution of (14), we give two lemmas demonstrating the existence of a positive fixed
point of the Poincaré map PT defined in Definition 1.2.

Lemma 2.1. There exists α0 > 0 such that for all α ∈ (0, α0] we have PT (α) > α.

Proof. Indeed, according to the fact that fT (·, 0) = 0, we have PT (0) = 0, and
owing to (17) and the fact that λ0,fT < 0 we have (PT )′(0) > 1.

Lemma 2.2. For all α > 1, we have PT (α) < α.

Proof. Let α > 1. We consider yα solution of (16). Two cases can occur.
1st case. If yα(t) > 1 for all t ≥ 0, then, according to (7) , we have y′α(t) =
fT (t, yα(t)) < 0 for all t ≥ 0 . Consequently yα(T ) < yα(0), that is PT (α) < α.
2nd case. If there exists t0 ≥ 0 such that yα(t0) ≤ 1, then, owing to (7), we have
yα(t) ≤ 1 for all t ≥ t0. In particular, for n0 ∈ N such that n0T ≥ t0, we have
yα(n0T ) ≤ 1 < yα(0). Yet, the sequence (yα(nT ))n is constant or strictly monotone.
So it is decreasing. Consequently we have yα(T ) < yα(0), that is PT (α) < α.

Lemma 2.1 and Lemma 2.2 imply that there exists α∗ ∈ (α0, 1] such that
PT (α∗) = α∗. Consequently, the solution of (16) with α = α∗ is a positive so-
lution of (14). We prove now the uniqueness of such a solution. Let w1 : R → R
and w2 : R → R two positive solutions of (14). There exists ρ > 1 such that
w1 ≤ ρw2 on [0, T ]. We can define

ρ∗ = inf
{
ρ ≥ 1 | w1(t) ≤ ρw2(t), ∀t ∈ [0, T ]

}
.

We have
w1(t) ≤ ρ∗w2(t), ∀t ∈ [0, T ]. (31)

Moreover there exists t∗ ∈ [0, T ] such that

w1(t∗) = ρ∗w2(t∗). (32)

We are going to show that ρ∗ = 1. We argue by way of contradiction supposing
that ρ∗ > 1. So

w′1(t) = fT (t, w1(t)), ∀t ∈ [0, T ]. (33)

Furthermore
(ρ∗w2)′(t) > fT (t, ρ∗w2(t)), ∀t ∈ [0, T ]. (34)
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Indeed, for all t ∈ [0, T ],

(ρ∗w2)′(t) = ρ∗w′2(t)

= ρ∗w2(t)
( g(w2(t))

w2(t) −m
T (t)

)
> ρ∗w2(t)

( g(ρ∗w2(t))
ρ∗w2(t) −m

T (t)
)

(according to (4) since ρ∗ > 1)

= fT (t, ρ∗w2(t)).

According to (31), (32), (33), (34) and the T -periodicity of w1 and w2, we have

w1(t) = ρ∗w2(t), ∀t ∈ [0, T ].

It is a contradiction because w1 is a solution of y′ = fT (t, y) whereas ρ∗w2 is a
strict supersolution. So ρ∗ = 1. Consequently, by the symmetry of the roles played
by w1 and w2, we have w1 ≡ w2 on [0, T ], and then on R by periodicity.

We denote wT the positive solution of (14). We now show the properties of wT .
The previous proof implies that (PT )′(wT (0)) ≤ 1. Hence, according to (17), it
follows that λwT ,fT ≥ 0. We also saw that wT (0) ∈ (0, 1]. Consequently, owing to

(7) and the fact that fT (·, 0) = 0 on R, we have wT (t) ∈ (0, 1] for any t ∈ R.
We now study the function T ∈ (T ∗,+∞) 7→ wT (0). We show the monotonicity

of T 7→ wT (0) if mT is of type (9), with assumption (10) (in this case T ∗ > 1). We
consider two real numbers T1 and T2 such that T ∗ < T1 < T2. For i ∈ {1, 2}, the
Poincaré map PTi associated with fTi is defined on R+ by

PTi(α) = yTiα (Ti), ∀α ≥ 0,

where yTiα is the solution of the Cauchy problem{
y′ = fTi(t, y) on R,
y(0) = α.

(35)

We saw in (II) that the function PTi has a unique positive fixed point αTi . Fur-
thermore αTi ∈ (0, 1]. The unique equilibrium state wTi : R → (0, 1] associated
with fTi is the solution of the Cauchy problem (35) with α = αTi . Consequently,
if we prove that PT1 < PT2 on (0, 1], then we will deduce that αT1 < αT2 , that is
wT1(0) < wT2(0). Let α ∈ (0, 1]. The functions yT1

α and yT2
α are solutions on [0, T1]

of the equation

y′ = fT1(t, y).

Consequently, since yT1
α (0) = yT2

α (0) = α, we have

yT1
α ≡ yT2

α on [0, T1].

Furthermore, from (3), (7) and the fact that ϕ in (9) is nonnegative and nontrivial,
there holds

0 < yT1
α (T1) = yT2

α (T1) < 1.

On [T1, T2], yT2
α is a solution of y′ = g(y). Consequently, according to (3), we have

yT2
α (T1) < yT2

α (T2). Finally, it follows that

yT1
α (T1) = yT2

α (T1) < yT2
α (T2).

In other terms

PT1(α) < PT2(α).

Finally, we have necessarily αT1 < αT2 , that is wT1(0) < wT2(0).
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We show now the continuity property. Let T̃ ∈ (T ∗,+∞) and (Tn)n be a sequence

of (T ∗,+∞) such that Tn
n→+∞−−−−−→ T̃ . We fixe T− ∈ (T ∗, T̃ ). There exists n− ∈ N

and T+ > T ∗ such that

T ∗ < T− < Tn < T+, ∀n ≥ n−. (36)

We will demonstrate that wTn(0)
n→+∞−−−−−→ wT̃ (0). Since 0 < wTn ≤ 1 and T 7→

mT is continuous in L∞loc(R), the sequence (wTn)n converges up to extraction of a
subsequence to a function w̃ in C0,δ([0, T+]) for any δ ∈ (0, 1). The equilibrium
state wTn satisfies{

wTn(t) = wTn(0) +
∫ t

0
fTn(s, wTn(s))ds, ∀t ∈ [0, T+],

wTn(0) = wTn(Tn).

Passing to the limit as n→ +∞, we obtain{
w̃(t) = w̃(0) +

∫ t
0
f T̃ (s, w̃(s))ds, ∀t ∈ [0, T̃ ] ⊂ [0, T+],

w̃(0) = w̃(T̃ ).

The function t 7→
∫ t

0
f T̃ (s, w̃(s))ds is of class C1([0, T̃ ]). Consequently w̃ is of class

C1([0, T̃ ]) and it satisfies {
w̃′ = f T̃ (t, w̃) on [0, T̃ ],

w̃(0) = w̃(T̃ ),

and 0 ≤ w̃ ≤ 1 in [0, T̃ ]. Owing to (II), it follows that w̃ ≡ 0, or w̃ ≡ wT̃ . If w̃ = 0,
then wTn → 0 as n→ +∞ uniformly on [0, T+]. For any n ∈ N, we have

(wTn)′(t)

wTn(t)
=
fTn(t, wTn(t))

wTn(t)
, ∀t ∈ [0, Tn].

We integrate the previous equation over [0, Tn], then we pass to the limit as n →
+∞. We obtain −T̃ λ0,f T̃ = 0. It is a contradiction because λ0,f T̃ < 0, as T̃ > T ∗.

Hence, we have necessarily w̃ ≡ wT̃ . The uniqueness of the accumulation point of
(wTn)n implies that the convergence holds for the whole sequence. In particular,

wTn(0)
n→+∞−−−−−→ wT̃ (0), and consequently, the function T 7→ wT (0) is continuous on

(T ∗,+∞).
We study now the behavior of the equilibrium state wT for the limit cases where

T → (T ∗)+ and T → +∞. We begin by showing that the function wT converges

uniformly to 0 on R as T → (T ∗)+. Let (Tn)n be a sequence such that Tn
n→+∞−−−−−→ T ∗

and Tn > T ∗ for any n ∈ N. Since (Tn)n is bounded, there exists T+ > T ∗ such that
for any n ∈ N we have Tn ∈ (T ∗, T+). Up to extraction of a subsequence, (wTn)n
converges to a function w∗ in C0,δ([0, T+]) for any δ ∈ (0, 1). The equilibrium state
wTn satisfies{

wTn(t) = wτn(0) +
∫ t

0
fTn(s, wTn(s))ds, ∀t ∈ [0, T+],

wTn(0) = wTn(Tn).

Passing to the limit as n→ +∞, we obtain{
w∗(t) = w∗(0) +

∫ t
0
fT
∗
(s, w∗(s))ds, ∀t ∈ [0, T ∗] ⊂ [0, T+],

w∗(0) = w∗(T ∗).
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The function t 7→
∫ t

0
fT
∗
(s, w∗(s))ds is of class C1([0, T ∗]). Consequently w∗ is of

class C1([0, T ∗]) and it satisfies{
(w∗)′ = fT

∗
(t, w∗) on [0, T ∗],

w∗(0) = w∗(T ∗),

and 0 ≤ w∗ ≤ 1 on [0, T ∗]. According to (II), w∗ ≡ 0. The uniqueness of accumu-
lation point of (wTn)n implies that the convergence holds for the whole sequence.
Furthermore since [0, Tn] ⊂ [0, T+] for any n ∈ N, by Tn-periodicity of wTn , it
occurs that

sup
R
|wTn | = sup

[0,Tn]

|wTn | ≤ sup
[0,T+]

|wTn |
n→+∞−−−−−→ 0,

which completes the proof of this point.
We study now the case where T → +∞ under assumptions (9) and (10). The

function wT converges on average to 1 as T tends to +∞. We give a technical
lemma.

Lemma 2.3. Under assumptions (9) and (10), the real number δ defined by

δ := inf
{
wT (1) | T ≥ T ∗ + 1

}
is positive. Furthermore, δ < 1.

Proof. We argue by way of contradiction. Let us suppose there exists a sequence

(Tn)n such that Tn
n→+∞−−−−−→ +∞ and wTn(1)

n→+∞−−−−−→ 0. We fix T+ > T ∗. There
exists n+ ∈ N such that for any n ≥ n+, we have Tn ∈ [T+,+∞). According to the
monotonicity of T 7→ wT (0), it follows that

0 < wT
+

(0) < wTn(0), ∀n ≥ n+.

Up to extraction of a subsequence, (wTn)n converges to a function w∗ in C0,β([0, 1])
for any β ∈ (0, 1). Passing to the limit as n → +∞ in the previous inequalities
implies that

0 < wT
+

(0) ≤ w∗(0). (37)

The same reasoning as previously implies that the function w∗ is of class C1([0, 1])
and satisfies the Cauchy problem{

(w∗)′ = g(w∗)− ϕ(t)w∗ on [0, 1],

w∗(1) = 0.

By uniqueness, we have necessarily w∗ ≡ 0, that is, wTn converges uniformly to
0 on [0, 1], which contradicts (37). Lastly, each function wT ranges in (0, 1] , and
due to (7) and the nontriviality of ϕ in (9), one has wT < 1 on R. Hence, we have
δ < 1.

We return to the proof of the last point of Proposition 1. We consider yδ the
solution of the Cauchy problem{

y′ = g(y) on (1,+∞),

y(1) = δ,

where δ ∈ (0, 1) is defined in Lemma 2.3. Let ε > 0 be such that δ < 1 − ε < 1.

Since yδ(t)
t→+∞−−−−→ 1, there exists lε > 1 such that yδ(lε) = 1 − ε/2. We define
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Tε = 4lε/ε (> lε), and we consider T ≥ Tε. The function wT is a solution of{
y′ = g(y) on (1, T ),

y(1) = wT (1).

Since wT (1) ≥ δ, we have wT ≥ yδ on [1, T ). In particular wT (lε) ≥ 1 − ε/2, and
since wT is increasing on (lε, T ), we have

1− ε

2
≤ wT (t) < 1, ∀t ∈ (lε, T ).

Furthermore

| 1
T

∫ T

0

wT (t)dt− 1| ≤ 1

T

(∫ lε

0

|wT (t)− 1|dt+

∫ T

lε

|wT (t)− 1|dt
)
.

Yet,

1

T

∫ lε

0

|wT (t)− 1|dt ≤ 2lε
T
≤ 2lε
Tε

=
ε

2
.

and
1

T

∫ T

lε

|wT (t)− 1|dt ≤ T − lε
T

ε

2
≤ ε

2
.

So | 1T
∫ T

0
wT (t)dt− 1| ≤ ε, and the proof of Proposition 1 is complete.

2.2. Proof of Proposition 3. We begin by showing the characterization of c∗T with
the principal eigenvalue λ0,fT . Let µ ∈ R. We denote λµ the principal eigenvalue
and Φµ the principal eigenfunction associated with the operator Lµ : C1(R)→ C0(R)
defined by LµΨ = Ψt −

(
µ2 + fTu (t, 0)

)
Ψ. Consequently, we have

(Φµ)t =
(
µ2 + fTu (t, 0) + λµ

)
Φµ on R.

We divide the previous equation by Φµ, then we integrate between 0 and T . Ac-
cording to the fact that Φµ is T -periodic, we obtain λµ = −µ2 + λ0,fT . In [21],
Nadin gives the following characterization of the critical speed c∗T :

c∗T = inf
{
c ∈ R | there exists µ > 0 such that λµ + µc = 0

}
.

Consequently, we have

c∗T = inf
{
c ∈ R | there exists µ > 0 such that µ2 − µc− λ0,fT = 0

}
.

We thus look for the smallest real number c for which the equation µ2−µc−λ0,fT = 0
of the variable µ admits a positive solution. An elementary calculation leads to
c∗T = 2

√
−λ0,fT . Consequently, we have

c∗T = 2

√
g′(0)− 1

T

∫ T

0

mT (t)dt.

Hence the function T ∈ (T ∗,+∞) 7→ c∗T is continuous, increasing if
∫ T

0
mT (t)dt

does not depend on T , and we have the two limits cases

lim
T→+∞

c∗T = 2
√
g′(0) if

1

T

∫ T

0

mT (t)dt
T→+∞−−−−−→ 0, and lim

T→(T∗)+
c∗T = 0,

which concludes the proof of Proposition 3.
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2.3. Proof of Proposition 4. Let α ∈ [0, 1]. We recall that if yα : R → R is the
solution of the Cauchy problem{

y′ = fT (t, y) on R,
y(0) = α,

then we denote PT : α ∈ [0, 1] 7→ PT (α) = yα(T ) the Poincaré map associated to
the function fT . According to the proof of Proposition 1, there exists a fixed point
of PT in (0, 1]. Nevertheless, since hypothesis (4) is not satisfied here, this fixed
point is not necessarily unique. We define

α0 = inf
{
α ∈ (0, 1] | PT (α) = α

}
.

To simplify the notations, we denote yT : R→ R the function yT = yα0 . We begin
by proving that this infimum is not equal to zero.

Lemma 2.4. We have α0 > 0.

Proof. We assume that α0 = 0. So, there exists a sequence (αn)n ⊂ (0, 1]N such

that PT (αn) = αn and αn
n→+∞−−−−−→ 0. We divide the equation y′αn = fT (t, yαn) by

yαn , then we intregrate between 0 and T . We obtain∫ T

0

fT (s, yαn(s))− fT (s, 0)

yαn(s)
ds = 0.

Passing to the limit as n→ +∞, since yαn → 0 uniformly on [0, T ] as n→ +∞ by
Cauchy-Lipschitz theorem, we have∫ T

0

fTu (s, 0)ds = 0,

which contradicts the fact that λ0,fT < 0. Consequently α0 > 0. Notice also

that, by continuity of PT , there holds PT (α0) = α0, and yT = yα0
solves (14).

Furthermore 0 < yT ≤ 1 on R.

Since fT is of class C1(R× [0, 1],R) and T -periodic, there exists ε0 ∈ (0, 1) such
that for all ε ∈ (0, ε0] and for all t ∈ R we have

|fT (t, εΦ0,fT (t))− εΦ0,fT (t)fTu (t, 0)| ≤
|λ0,fT |

2
εΦ0,fT (t), (38)

where Φ0,fT is the principal eigenfunction associated with fT and 0. Since λ0,fT < 0

and yT is the smallest positive solution of system (14), we can apply Theorem
2.3 of the Nadin’s paper [21]. Consequently, there exists a couple (c0, U0), where
U0 : R× R→ [0, 1], (t, ξ) 7→ U0(t, ξ) is of class C1,2(R2) and solves

(U0)t − (U0)ξξ − c0(U0)ξ = fT (t, U0) on R× R,
U0(·, ·) = U0(·+ T, ·) on R× R,
U0(·,−∞) = yT , U0(·,+∞) = 0 uniformly on R.

(39)

Necessarily c0 > 0 because Nadin shows in [21] that for c < 2
√
−λ0,fT , which is

a positive real number, there is no pulsating front of sped c connecting 0 and yT .
Furthermore, we have

∂ξU0(t, ξ) < 0, ∀(t, ξ) ∈ R× R.
Let c1 > 0 be a real number such that there exists a pulsating front U1 with speed
c1 such that ∂ξU1 < 0 on R×R, and let c2 > c1. We are going to prove the existence
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of a pulsating front U2 such that (c2, U2) solves (39) and ∂ξU2 < 0 on R2. Yet, by
[21], the set

C = {c ∈ R | there exists a pulsating front U of speed c such that ∂ξU < 0 on R×R}

is closed and included in [2
√
−λ0,fT ,+∞). This will conclude the proof of Propo-

sition 4 by denoting c∗∗T = inf C.
Given c1 < c2 as above, let a > 0 and r ∈ R. We define

εa,r = min
{

min
[0,T ]×[−a,a]

U1(·, ·+ r)

2Φ0,fT (·)
, ε0,

yT (0)

Φ0,fT (0)

}
.

We consider the problem
Ut − Uξξ − c2Uξ = fT (t, U) on (0, T )× (−a, a),

U(0, ·) = U(T, ·) on [−a, a].

U(·,−a) = U1(·,−a+ r) , U(·, a) = εa,rΦ0,fT on [0, T ].

(40)

We begin by showing that the previous problem has a solution.

Proposition 8. There exists a solution to problem (40).

Proof. We consider the problem
Ut − Uξξ − c2Uξ = fT (t, U) on (0,+∞)× (−a, a),

U(·,−a) = U1(·,−a+ r) , U(·, a) = εa,rΦ0,fT on [0,+∞),

U(0, ·) = ψ on [−a, a],

where ψ ∈ C0([−a, a], [0, 1]). This Cauchy problem admits a solution Uψ defined on

R+× [−a, a]. Furthermore, 0 ≤ Uψ ≤ 1 in R+× [−a, a] from the maximum principle
and the definition of εa,r. We define the closed convex set

C = {ψ ∈ C0([−a, a], [0, 1]) | εa,rΦ0,fT (0) ≤ ψ ≤ U1(0, ·+ r) on [−a, a]}.

Note that this set is not empty since Φ0,fT > 0, U1 ≤ 1 and εa,rΦ0,fT (0) ≤ U1(0, ·+
r) on [−a, a] according to the definition of εa,r. We start by proving that if ψ ∈ C,
then Uψ(T, ·) ∈ C using a comparison lemma.

Lemma 2.5. Let ψ ∈ C. Then we have

εa,rΦ0,fT (t) < Uψ(t, ξ) < U1(t, ξ + r) ∀ (t, ξ) ∈ (0,+∞)× (−a, a). (41)

Proof. Since ∂ξU1 < 0 on R × R and c1 < c2, the function U1(·, · + r) satisfies on
[0,+∞)× (−a, a),(
U1(·+r)

)
t
−
(
U1(·+r)

)
ξξ
−c2

(
U1(·+r)

)
ξ
−fT

(
t, U1(·+r)

)
= (c1−c2)

(
U1(·+r)

)
ξ
> 0.

Moreover, since ψ ∈ C, we have U1(0, · + r) ≥ ψ on [−a, a] and, according to the
definition of εa,r and the T -periodicity of U1 and Φ0,fT , we have U1(·, a + r) ≥
εa,rΦ0,fT on [0,+∞). Consequently, we can apply a comparison principle, and we
obtain

Uψ(t, ξ) ≤ U1(t, ξ + r) ∀(t, ξ) ∈ [0,+∞)× [−a, a].
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In the same way, since εa,r ≤ ε0, and according (38) and the negativity of λ0,fT ,
we have on [0,+∞)× (−a, a)

(εa,rΦ0,fT )t − (εa,rΦ0,fT )ξξ − c2(εa,rΦ0,fT )ξ − fT (t, εa,rΦ0,fT )

= εa,rΦ0,fT (λ0,fT + fTu (t, 0))− fT (t, εa,rΦ0,fT )

= εa,rλ0,fT Φ0,fT −
(
fT (t, εa,rΦ0,fT )− εa,rΦ0,fT f

T
u (t, 0)

)
≤ εa,rλ0,fT Φ0,fT − εa,r

λ0,fT

2
Φ0,fT < 0.

Furthermore since ψ ∈ C, we have εa,rΦ0,fT (0) ≤ ψ on [−a, a] and, according to
the definition of εa,r and the T -periodicity of U1 and Φ0,fT , we have εa,rΦ0,fT ≤
U1(·,−a + r) on [0,+∞). Consequently, we can apply a comparison principle and
we conclude that

εa,rΦ0,fT (t) ≤ Uψ(t, ξ) ∀ (t, ξ) ∈ [0, T ]× [−a, a],

The fact that the inequalities in (41) are strict is a consequence of the strong
maximum principle.

We return to the proof of Proposition 8. We consider

T : C → C
ψ 7→ Uψ(T, ·)

Owing to (41) and the T -periodicity of Φ0,fT and U1, T is well defined. We are
going to demonstrate using the Schauder’s fixed point theorem that the function T
has a fixed point in the closed convex set C. We show now that T is continuous.
In fact we show that T is a Lipschitz-continuous function. Let ψ and ϕ in C. We
have on (0, T ]× [−a, a]

(Uψ − Uϕ)t − (Uψ − Uϕ)ξξ − c2(Uψ − Uϕ)ξ = β(t, ξ)(Uψ − Uϕ),

where β : (0, T ]× [−a, a]→ R is defined by

β(t, ξ) =

 fT
(
t,Uψ(t,ξ)

)
−fT

(
t,Uϕ(t,ξ)

)
Uψ(t,ξ)−Uϕ(t,ξ) , if Uψ(t, ξ) 6= Uϕ(t, ξ),

fTu
(
t, Uψ(t, ξ)

)
, if Uψ(t, ξ) = Uϕ(t, ξ).

Since |β| ≤ ‖fTu ‖L∞([0,T ]×[0,1]) on (0, T ]×[−a, a], and Uψ−Uϕ = 0 on [0, T ]×{−a, a},
the maximum principle yields for any (t, ξ) ∈ [0, T ]× [−a, a]

|Uψ(t, ξ)− Uϕ(t, ξ)| ≤ ‖ψ − ϕ‖L∞([−a,a])e
‖fTu ‖L∞([0,T ]×[0,1])t.

If we take t = T , we obtain

‖Uψ(T, ·)− Uϕ(T, ·)‖L∞([−a,a]) ≤ e‖f
T
u ‖L∞([0,T ]×[0,1])T ‖ψ − ϕ‖L∞([−a,a]).

So T is a Lipschitz-continuous function.
We prove now that T (C) is compact. Let (ψn)n be a sequence of C. By standard

parabolic estimates, the sequence (Uψn(T, ·))n is bounded in C2,α([−a, a], [0, 1]) for
any α ∈ (0, 1). Since C2,α([−a, a], [0, 1]) embeds compactly into C0([−a, a], [0, 1]),
(Uψn(T, ·))n converges up to extraction of a subsequence in C.

So, according to Shauder’s fixed point theorem, there exists ψa,r ∈ C([−a, a], [0, 1])
such that T (ψa,r) = ψa,r, that is Uψa,r (T, ·) = Uψa,r (0, ·). Actually, the function

Uψa,r is solution of (40). By uniqueness and T -periodicity of fT , Uψa,r can be
extended as a T -periodic solution of (40) in R× [−a, a].
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To simplify the notations, we denote now Ua,r instead of Uψa,r . Owing to Lemma
2.5 and the T -periodicity of Ua,r, we have the following inequalities

εa,rΦ0,fT (t) < Ua,r(t, ξ) < U1(t, ξ + r) ∀ (t, ξ) ∈ [0, T ]× (−a, a). (42)

We are now going to use a sliding method and we first give a comparison lemma.

Lemma 2.6. Let U and V be two T -periodic functions solving problem (40). Let
h ∈ [0, 2a]. We define Vh(t, ξ) = V (t, ξ + h) for any (t, ξ) ∈ [0, T ] × [−a, a − h].
Then, we have

Vh ≤ U on [0, T ]× [−a, a− h].

Proof. We denote Ih = [−a, a − h]. For h = 2a, we have Ih = {−a}. Since
U(·,−a) = U1(·,−a+ r), V2a(·,−a) = V (·, a) = εa,rΦ0,fT and

εa,rΦ0,fT ≤ U1(·,−a+r)
2 < U1(·,−a+ r) on [0, T ],

it occurs that V2a < U on [0, T ] × I2a. Furthermore, Vh ≤ U on [0, T ] × Ih for all
h ∈ [0, 2a] sufficiently close to 2a, by continuity of U and V . Consequently, we can
define

h∗ = inf
{
h ≥ 0 | ∀h ∈ [h, 2a], Vh ≤ U on [0, T ]× Ih

}
.

We have 0 ≤ h∗ < 2a. We are going to show by way of contradiction that h∗ = 0.
Thus let us suppose that h∗ > 0. By continuity and T -periodicity of U and V ∗h , the
definition of h∗ implies that

Vh∗ ≤ U on R× Ih∗ . (43)

Furthermore, if we define the bounded function η : R× Ih∗ → R by

η(t, ξ) =

 fT
(
t,U(t,ξ)

)
−fT

(
t,Vh∗ (t,ξ)

)
U(t,ξ)−Vh∗ (t,ξ) , if U(t, ξ) 6= Vh∗(t, ξ),

fTu
(
t, U(t, ξ)

)
, if U(t, ξ) = Vh∗(t, ξ),

then, we have on R× Ih∗
(U − Vh∗)t − c2(U − Vh∗)ξ − (U − Vh∗)ξξ = η(t, ξ)(U − Vh∗). (44)

Consequently, according to (43) and (44), if there exists (t∗, ξ∗) ∈ R × (−a, a −
h∗) such that U(t∗, ξ∗) = Vh∗(t

∗, ξ∗), then, by the strong maximum principle, the
continuity and the T -periodicity of U and Vh∗ , we have

Vh∗ = U on R× Ih∗ . (45)

Yet, according to (42) (which is automatically fulfilled from the arguments used in
Lemma 2.5), and since ∂ξU1 < 0 on R× R, we have for any t ∈ R,

Vh∗(t,−a) = V (t,−a+ h∗) < U1(t,−a+ h∗ + r) < U1(t,−a+ r) = U(t,−a).

Consequently, Vh∗ < U on R × [−a, a − h∗). Furthermore, according to (42), for
any t ∈ R, we also have

Vh∗(t, a− h∗) = V (t, a) = εa,rΦ0,fT (t) < U(t, a− h∗).
So, it occurs that

Vh∗ < U on R× Ih∗ .
Since [0, T ] × Ih∗ is a compact set, and both U and V are continuous on [0, T ] ×
[−a, a], there exists h0 ∈ (0, h∗) such that for any η ∈ (0, h0), we have Vh∗−η < U on
[0, T ]× Ih∗−η. This contradicts the definition of h∗. Consequently we have h∗ = 0
and the proof of Lemma 2.6 is complete.

Corollary 1. There exists a unique function Ua,r solving (40).
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Proof. We apply the conclusion of Lemma 2.6 with h = 0 and reverse the roles of
U and V .

Corollary 2. The function r ∈ R 7→ Ua,r ∈ C0
(
[0, T ]× [−a, a], [0, 1]

)
is continuous.

Proof. Let r∗ ∈ R and (rn)n be a sequence of real numbers such that rn
n→∞−−−−→ r∗.

According to standard parabolic estimates and the T -periodicity of each function

Ua,rn , there exists U∗ such that, up to extraction of a subsequence, Ua,rn
n→∞−−−−→ U∗

in C1,α2 in t and in C2,α in ξ, for any α ∈ (0, 1). Consequently,
(U∗)t − (U∗)ξξ − c2(U∗)ξ = fT (t, U∗) on R× (−a, a),

U∗(0, ·) = U∗(T, ·) on [−a, a],

U∗(·,−a) = U1(·,−a+ r∗) , U∗(·, a) = εa,r∗Φ0,fT on [0, T ].

The uniqueness of the solution of the previous problem (Corollary 1) implies that
we have U∗ = Ua,r∗ , and that the whole sequence (Ua,rn) converges to U∗.

Corollary 3. For any t ∈ [0, T ] and ξ ∈ (−a, a), we have

∂ξUa,r(t, ξ) < 0.

Proof. We apply Lemma 2.6 with U = V = Ua,r. The strict inequality is a conse-
quence of the maximum principle applied to ∂ξUa,r.

Proposition 9. There exist εa ∈ (0, ε0] and ra ∈ R such that Ua,ra(0, 0) =
εaΦ0,fT (0)

2 .

Proof. There exists (ta,r, ξa,r) ∈ [0, T ]× [−a, a] such that

εa,r = min
{U1(ta,r, ξa,r + r)

2Φ0,fT (ta,r)
, ε0,

yT (0)

Φ0,fT (0)

}
Let (rn)n be a sequence of real numbers such that rn

n→+∞−−−−−→ −∞. There exists a

function Ua,−∞ such that up to extraction of a subsequence, Ua,rn
n→+∞−−−−−→ Ua,−∞

in C0,α
(
[0, T ] × [−a, a]

)
for any α ∈ (0, 1). Since (ta,rn)n is bounded, there exists

ta ∈ [0, T ] such that up to extraction of a subsequence, we have ta,rn
n→+∞−−−−−→ ta.

So, according to the fact that (ξa,rn) is also bounded (because a is fixed here), it
follows that

εa,rn
n→+∞−−−−−→ εa := min

{ yT (ta)

2Φ0,fT (ta)
, ε0, ,

yT (0)

Φ0,fT (0)

}
We thus have Ua,−∞(·, a) = εaΦ0,fT on [0, T ]. Consequently, since ∂ξUa,−∞ ≤ 0
on [0, T ]× [−a, a], it occurs that Ua,−∞(0, 0) ≥ εaΦ0,fT (0). So there exists n0 ∈ N
such that rn0

< 0 and

Ua,rn0
(0, 0) ≥ 3

4
εaΦ0,fT (0).

Let now (r̃n)n be a sequence of real numbers such that r̃n
n→+∞−−−−−→ +∞.There exists

a function Ua,+∞ such that up to extraction of a subsequence Ua,r̃n
n→+∞−−−−−→ Ua,+∞

in C0,α([0, T ]× [−a, a]) for any α ∈ (0, 1). Furthermore, for any t ∈ [0, T ], we have

Ua,r̃n(t,−a) = U1(t,−a + r̃n)
n→+∞−−−−−→ 0. Consequently, since ∂ξUa,+∞ ≤ 0 and

Ua,+∞ ≥ 0 on [0, T ] × [−a, a], it occurs that Ua,+∞ ≡ 0. So, there exists n1 ∈ N
such that r̃n1

> 0 and

Ua,r̃n1
(0, 0) ≤ 1

4
εaΦ0,fT (0).
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According to Corollary 2, there exists ra ∈ (rn0 , r̃n1) such that

Ua,ra(0, 0) =
1

2
εaΦ0,fT (0),

which completes the proof.

Proposition 10. There exists a sequence an
n→+∞−−−−−→ +∞ such that Uan,ran con-

verges on any compact set in C1,α2 in t and in C2,α in ξ, for any α ∈ (0, 1), to a
function U2 solving (39) with c = c2, and such that (U2)ξ < 0 on R2.

Proof. Since ta is bounded, there exist t∗ ∈ [0, T ] and a sequence an
n→+∞−−−−−→ +∞

such that tan
n→+∞−−−−−→ t∗. Consequently,

εan
n→+∞−−−−−→ ε∗ := min

{ yT (t∗)

2Φ0,fT (t∗)
, ε0, ,

yT (0)

Φ0,fT (0)

}
> 0.

According the standard parabolic estimates, up to extraction of a subsequence,
Uan,ran converges on any compact set to a function U2 in C1,α2 in t and in C2,α in
ξ, for any α ∈ (0, 1). The function U2 satisfies

(U2)t − (U2)ξξ − c2(U2)ξ = fT (t, U2) on [0, T ]× R,
U2(0, ·) = U2(T, ·) on R,
U2(0, 0) = 1

2ε
∗Φ0,fT (0),

(U2)ξ ≤ 0 on [0, T ]× R.

Since (ε∗Φ0,fT )′ ≤ fT (t, ε∗Φ0,fT ) and (yT )′ = fT (t, yT ) on [0, T ] and since we have

ε∗Φ0,fT (0) ≤ yT (0), it occurs that ε∗Φ0,fT ≤ yT on [0, T ]. Consequently

U2(0, 0) ∈
(

0,
yT (0)

2

]
.

The functions U2(·,−∞) and U2(·,+∞) solve the equation y′ = f(t, y) on [0, T ].
Furthermore, U2(t, ξ) ≤ yT (t) for all t ∈ [0, T ] and all ξ ∈ R, since this inequality
holds for U1 and since each function Ua,r satisfies (42). Consequently, since (U2)ξ ≤
0 on [0, T ]×R, we have necessarily U2(·,−∞) = yT and U2(·,+∞) = 0. Finally we
apply the strong maximum principle to the equation satisfied by (U2)ξ and obtain

(U2)ξ < 0 on R2 (otherwise (U2)ξ would be identically equal to zero, which is
impossible since U2(·,−∞) = yT and U2(·,+∞) = 0).

3. Nonlinearities asymptotically periodic in time with perturbation.

3.1. Proof of Theorem 1.4. Let T > 0 with T 6= T ∗ (that is λ0,fT 6= 0). We
define

εT =
1

C + 1
min

{
|λ0,fT |,−

g(2)

2

}
> 0,

where C is defined in (23). Let ε ∈ (0, εT ). According to (23) and (25), there exists
nε ∈ N∗ such that for all t ≥ nεT and for all u ≥ 0 we have

fT (t, u)− (C + 1)εu ≤ fε(t, u) ≤ fT (t, u) + (C + 1)εu. (46)

We define the T−periodic functions fT−ε : R× R+ → R and fTε : R× R+ → R by

fT−ε(t, u) = fT (t, u)− (C + 1)εu, and fTε (t, u) = fT (t, u) + (C + 1)εu. (47)
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According to (7), it occurs that{
fT−ε(t, u) ≤ 0, ∀(t, u) ∈ R× [2,+∞),

fT (t, u) ≤ 0, ∀(t, u) ∈ R× [2,+∞).
(48)

Furthermore, according to (4) and (6), for any u ∈ [2,+∞), we have g(u)/u ≤ g(2)/

2 < 0. Consequently, since ε ∈ (0,− 1
C+1

g(2)
2 ), the following inequality is true

fTε (t, u) ≤ 0, ∀(t, u) ∈ R× [2,+∞), (49)

Concerning the principal eigenvalues associated with the equilibrium 0 and functions
fT , fT−ε and fTε , the following relations hold{

λ0,fTε
= λ0,fT − (C + 1)ε,

λ0,fT−ε
= λ0,fT + (C + 1)ε.

(50)

We begin by handling the case where T < T ∗. Owing to (50), the fact that λ0,fT > 0

and since ε ∈ (0,
λ0,fT

C+1 ), we have

λ0,fTε
> 0. (51)

We consider vε : R+ × R→ R the solution of the Cauchy problem{
(vε)t − (vε)xx = fTε (t, vε) on (0,+∞)× R,
vε(0, ·) = uε(nεT, ·) on R.

Owing to (46) and the T−periodicity of fTε , the function uε(·+ nεT, ·) satisfies on
(0,+∞)× R(
uε(·+nεT, ·)

)
t
−
(
uε(·+nεT, ·)

)
xx

= fε
(
t+nεT, uε(·+nεT, ·)

)
≤ fTε

(
t, uε(·+nεT, ·)

)
.

So, applying a comparison principle, we obtain

0 ≤ uε(t+ nεT, x) ≤ vε(t, x), ∀(t, x) ∈ R+ × R. (52)

According to (51), Proposition 2 applied with the T -periodic nonlinearity fTε implies
that

lim
t→+∞

sup
x∈R

vε(t, x) = 0.

Hence, owing to (52),

lim
t→+∞

sup
x∈R

uε(t, x) = 0,

which concludes the proof of the first part of Theorem 1.4.
We now consider the case where T > T ∗. Since λwT ,fT > 0, there exists µT > 0

such that for all µ ∈ (0, µT ) and for all (t, u, v) ∈ R× [0, 2]2, we have

|u− v| ≤ µ⇒ |fT (t, v)− fT (t, u)− fTu (t, u)(v − u)| ≤
λwT ,fT

2
|v − u|. (53)

We define the two positive real numbers M̃T and ε̃T by

M̃T =
8(C + 1)

λwT ,fT

sup
[0,T ]

wT

inf
[0,T ]

ΦwT ,fT
> 0,
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and

ε̃T = min
{
εT ,

λwT ,fT

4(C + 1)
,

inf
[0,T ]

wT

2M̃T sup
[0,T ]

ΦwT ,fT
,

min{µT , 1}
M̃T sup

[0,T ]

ΦwT ,fT

}
> 0, (54)

where ΦwT ,fT is the principal eigenfunction associated with fT and the equilibrium

state wT . Let ε ∈ (0, ε̃T ). According to (50), the fact that λ0,fT < 0 and since

ε ∈ (0,−λ0,fT

C+1 ), we have

λ0,fT−ε
< 0, λ0,fT < 0, and λ0,fTε

< 0. (55)

Owing to (48), (49) and (55), the same proof as in Proposition 1 implies that there
exists a unique T -periodic positive equilibrium state wTε (resp. wT−ε) associated

with fTε (resp. fT−ε). Furthermore, for any t ∈ R, we have wTε (t) ∈ (0, 2] (resp.

wT−ε(t) ∈ (0, 2]).

Lemma 3.1. There exists MT > 0 independent of ε such that{
supt∈[0,T ] |wTε (t)− wT (t)| ≤MT ε,

supt∈[0,T ] |wT−ε(t)− wT (t)| ≤MT ε.
(56)

Proof. We begin by proving the first inequality. We define the function vε : R→ R
by

vε(t) = wT (t) + M̃T εΦwT ,fT (t).

We are interested in the problem{
y′ = fTε (t, y) on R,
y(0) = y(T ).

(57)

We will show that vε is a strict supersolution and wT is a strict subsolution of (57).
Let t ∈ R. We have

(vε)
′(t)− fT (t, vε(t))− (C + 1)εvε(t)

= fT (t, wT (t)) + M̃T εΦwT ,fT (t)fTu (t, wT (t))− fT (t, vε(t))

+ M̃T εΦwT ,fT (t)λwT ,fT − (C + 1)εvε(t).

Since ε ∈ (0, µT
M̃T sup

[0,T ]

ΦwT ,fT
), we have |vε(t) − wT (t)| ≤ µT . Furthermore, wT (t) ∈

[0, 1], and since ε ∈ (0, 1
M̃T sup

[0,T ]

ΦwT ,fT
), the definition of vε implies that vε(t) ∈ [0, 2].

Consequently, it follows from (53) that

fT (t, wT (t)) + M̃T εΦwT ,fT (t)fTu (t, wT (t))− fT (t, vε(t)) ≥ −
λwT ,fT

2
M̃T εΦwT ,fT (t).

Consequently,

(vε)
′(t)− fT (t, vε(t))− (C + 1)εvε(t)

≥
λwT ,fT

2
M̃T εΦwT ,fT (t)− (C + 1)εvε(t)

=M̃T εΦwT ,fT (t)
(λwT ,fT

2
− (C + 1)ε

)
− (C + 1)εwT (t).
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Yet ε ∈ (0,
λwT ,fT

4(C+1) ). So

λwT ,fT

2
− (C + 1)ε ≥

λwT ,fT

4
.

Hence

(vε)
′(t)− fT (t, vε(t))− (C + 1)εvε(t) ≥ M̃T εΦwT ,fT (t)

λwT ,fT

4
− (C + 1)εwT (t)

= ε
(λwT ,fT

4
M̃TΦwT ,fT (t)− (C + 1)wT (t)

)
.

Consequently, according to the definition of M̃T , it follows that

λwT ,fT

4
M̃TΦwT ,fT (t)− (C+ 1)wT (t) =

(
2

ΦwT ,fT (t)

inf
[0,T ]

ΦwT ,fT
sup
[0,T ]

wT −wT (t)
)
(C+ 1) > 0.

Finally, vε is a strict supersolution of (57).
We now show that wT is a strict subsolution of this problem. Let t ∈ R. We

have
(wT )′(t)− fT (t, wT (t))− (C + 1)εwT (t) = −(C + 1)εwT (t) < 0.

According to Lemma 3.1 of [22], there exists a solution w̃ε of (57), and one has

wT (t) < w̃ε(t) < wT (t) + M̃T εΦwT ,fT (t), ∀t ∈ R. (58)

In particular, w̃ε is a positive solution of (57). So, by uniqueness, we have w̃ε = wTε .
Finally, inequalities (58) rewrite

sup
t∈[0,T ]

|wT (t)− wTε (t)| ≤ εMT ,

where MT is defined by MT = M̃T sup[0,T ] ΦwT ,fT .
We now give a sketch of the proof of the second inequality of Lemma 3.1. We

define the function vε : R→ R by

vε(t) = wT (t)− M̃T εΦwT ,fT .

We are interested in the problem{
y′ = fT−ε(t, y) on R,
y(0) = y(T ).

(59)

We can show in the same way as previously that vε is a strict subsolution and that
wT is a strict supersolution of (59). According to Lemma 3.1 of [22], there exists a
solution ŵε of (59), and one has

wT (t)− M̃T εΦwT ,fT (t) < ŵε(t) < wT (t), ∀t ∈ R. (60)

Yet ε ∈ (0,
inf

[0,T ]
wT

2M̃T sup
[0,T ]

ΦwT ,fT
). So for any t ∈ R

wT (t)− M̃T εΦwT ,fT (t) ≥ wT (t)− 1

2

ΦwT ,fT

sup
[0,T ]

ΦwT ,fT
inf
[0,T ]

wT > 0.

Consequently ŵε is a positive solution of (59). So, by uniqueness, we have ŵε = wT−ε.
Finally, inequalities (60) rewrite

sup
t∈[0,T ]

|wT (t)− wT−ε(t)| ≤ εMT ,
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which completes the proof of Lemma 3.1.

Let us now complete the proof of Theorem 1.4. We recall that ε ∈ (0, ε̃T ), where
ε̃T is defined in (54). Let K ⊂ R be a compact set and let η > 0. We consider
ũε : R+ × R→ R and ũ−ε : R+ × R→ R solving respectively{

(ũε)t − (ũε)xx = fTε (t, ũε) on (0,+∞)× R,
ũε(0, ·) = uε(nεT, ·) on R,

and {
(ũ−ε)t − (ũ−ε)xx = fT−ε(t, ũ−ε) on (0,+∞)× R,
ũ−ε(0, ·) = uε(nεT, ·) on R,

where nε ∈ N is such that (46) holds for all (t, u) ∈ [nεT,+∞)×R+, and uε solves
(26). The function vε : R+ × R→ R, (t, x) 7→ uε(t+ nεT, x) satisfies{

(vε)t − (vε)xx = fε(t+ nεT, vε) on R+ × R,
vε(0, ·) = uε(nεT, ·) on R.

Owing to (46) and the T -periodicity of fTε , it occurs that on R+ × R

(vε)t − (vε)xx = fε(t+ nεT, vε) ≤ fTε (t+ nεT, vε) = fTε (t, vε)

Consequently, since vε(0, ·) = uε(nεT, ·) = ũε(0, ·) on R, applying a comparison
principle, we obtain

vε(t, x) ≤ ũε(t, x), ∀(t, x) ∈ R+ × R.

In other words

uε(t+ nεT, x) ≤ ũε(t, x), ∀(t, x) ∈ R+ × R.
Actually, we can show in the same way that

ũ−ε(t, x) ≤ uε(t+ nεT, x) ≤ ũε(t, x), ∀(t, x) ∈ R+ × R.

According to the T -periodicity of wT , we have wT = wT (·+ nεT ) on R. Hence, for
any (t, x) ∈ R+ × R

ũ−ε(t, x)− wT (t) ≤ uε(t+ nεT, x)− wT (t+ nεT ) ≤ ũε(t, x)− wT (t). (61)

Therefore, for any (t, x) ∈ R+ ×K,
ũ−ε(t, x)− wT (t) ≥ − sup

x∈K
|ũ−ε(t, x)− wT−ε(t)| − sup

t∈[0,T ]

|wT−ε(t)− wT (t)|,

ũε(t, x)− wT (t) ≤ sup
x∈K
|ũε(t, x)− wTε (t)|+ sup

t∈[0,T ]

|wTε (t)− wT (t)|.

On the other hand, owing to Proposition 2, there exists tε,K,η > 0 such that for any
t ≥ tε,K,η

sup
x∈K
|ũ−ε(t, x)− wT−ε(t)|+ sup

x∈K
|ũε(t, x)− wTε (t)| ≤ η. (62)

According to Lemma 3.1, (61) and (62), we thus have, for any (t, x) ∈ [tε,K,η,+∞)×
K

|uε(t+ nεT, x)− wT (t+ nεT )| ≤ η +MT ε.

In other words, for any t ≥ tε,K,η + nεT we obtain

sup
x∈K
|uε(t, x)− wT (t)| ≤ η +MT ε,
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That is

lim sup
t→+∞

sup
x∈K
|uε(t, x)− wT (t)| ≤MT ε,

which completes the proof of Theorem 1.4.

3.2. Proof of Proposition 5. We begin by proving (I). According to (25), there
exists t0 ≥ 0 such that

f(t, u) ≤ fT
∗
(t, u)− g(2)

2
u, ∀t ∈ [t0,+∞),∀u ∈ [0,+∞), (63)

where we recall that g(2) < 0. According to (4) and (6), for any u ∈ [2,+∞), we
have g(u)/u ≤ g(2)/2 < 0. Consequently, (63) implies that

f(t, u) ≤ 0, ∀t ∈ [t0,+∞),∀u ∈ [2,+∞), (64)

We define

M = max{2, sup
R
u0}.

The real number M is a supersolution of (26). Furthermore, 0 is solution of (26)
and 0 ≤ u(0, ·) ≤ M on R. Consequently, according to the maximum principle we
have

0 ≤ u(t, x) ≤M, ∀t ∈ R, ∀x ∈ R. (65)

We denote v : R+ → R the function satisfying{
v′ = f(t, v) on R+,

v(0) = M.

Owing to (65), we have 0 ≤ u(t0, ·) ≤ M on R. It follows from the comparison
principle that

0 ≤ u(t+ t0, x) ≤ v(t), ∀t ≥ 0, ∀x ∈ R.
Furthemore, since 2 ≤M , it follows from (64) that

v(t) ≤M, ∀t ≥ 0.

To summarize

0 ≤ u(t,+t0, x) ≤ v(t) ≤M, ∀t ≥ 0, ∀x ∈ R. (66)

We will show that v(t)
t→+∞−−−−→ 0. We argue by way of contradiction assuming there

exists a real number δ0 > 0 and a sequence tn
n→+∞−−−−−→ +∞ such that

v(tn) > δ0, ∀n ∈ N.

For any n ∈ N, we write tn = t̃n + knT
∗, where t̃n ∈ [0, T ∗) and kn ∈ N, and we

define the function vn : [−knT ∗,+∞) → R by vn(t) = v(t + knT
∗). The function

vn satisfies {
v′n(t) = f

(
t+ knT

∗, vn(t)
)
∀t ∈ [−knT ∗,+∞),

vn(t̃n) = v(tn) > δ0.

Up to extraction of a subsequence, t̃n
n→+∞−−−−−→ t∗ ∈ [0, T ∗]. Consequently, according

to (25) and the Arzela-Ascoli theorem, there exists v∗ : R→ R such that vn
n→+∞−−−−−→

v∗ locally uniformly on R and which satisfies{
(v∗)′ = fT

∗
(t, v∗) on R,

v∗(t∗) ≥ δ0.
(67)
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Furthermore, owing to (66), we have

0 ≤ v∗(t) ≤M, ∀t ∈ R. (68)

We consider σ : R+ → R such that{
σ′ = fT

∗
(t, σ) on R+,

σ(0) = M.

Owing to (7) and the fact that M ≥ 1, we have σ(0) ≥ σ(T ∗). Consequently,
the sequence (σ(nT ∗))n is nonincreasing. Furthermore, it is bounded below by 0.
Hence, it converges up to extraction of a subsequence to a real number l ≥ 0. For
any n ∈ N, we define the function σn : R+ → R by σn(t) = σ(t+nT ∗). The sequence
(σn)n converges up to extraction of a subsequence in C1([0, T ∗]) to a function σ∗

satisfying {
(σ∗)′ = fT

∗
(t, σ∗) on [0, T ∗],

σ∗(0) = σ∗(T ∗) = l.

According to Proposition 1, we have necessarily σ∗ = 0, and thus, the convergence
holds for all the sequence. Owing to (68), for any n ∈ N, we have v∗(−nT ∗) ≤ M .
Consequently, since fT

∗
is T ∗−periodic, we can apply a comparison principle and

we obtain
v∗(−nT ∗ + t) ≤ σ(t), ∀t ∈ R+, ∀n ∈ N.

In particular
v∗(t∗) ≤ σn(t∗), ∀n ∈ N.

Passing to the limit as n→ +∞, we obtain

v∗(t∗) ≤ σ∗(t∗) = 0,

which is a contradiction with (67). Consequently v(t)
t→+∞−−−−→ 0 and thus, we con-

clude the proof of (I) using (66).
We now prove (II). We begin by considering the case where f(t, u) = fT

∗
(t, u)

and p(t, u) = u for any (t, u) ∈ R+ × R+. In this case, we have

fε(t, u) = fT
∗
(t, u) + εu, ∀(t, u) ∈ R× R+.

Let ε ∈ (0,−g(2)/2). The function fε is T ∗-periodic, and we have

fε(t, u) ≤ 0, ∀t ∈ R, ∀u ∈ [2,+∞).

Furthermore λ0,fε = λ0,fT∗ − ε = −ε < 0. Consequently, owing to Theorem 1,

there exists wTε : R → (0,+∞) solving (14) with fε as nonlinearity. According to
Proposition 2, for all compact set K ⊂ R, we have

sup
x∈K
|uε(t, x)− wTε (t)| t→+∞−−−−→ 0.

We now consider the case where p(t, u) ≤ 0 for any (t, u) ∈ R× R+. In this case

fε(t, u) ≤ fT
∗
(t, u), ∀(t, u) ∈ R+ × R+.

We denote u the solution of the Cauchy problem{
ut − uxx = fT

∗
(t, u) on (0,+∞)× R,

u(0, ·) = u0 on R.

From the comparison principle, it occurs that

0 ≤ uε(t, x) ≤ u(t, x) ∀(t, x) ∈ R+ × R. (69)
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According to (I), we have sup
x∈R

u(t, x) = 0. Consequently sup
x∈R

uε(t, x) = 0, which

concludes the proof.

3.3. Proof of Theorem 1.5.

Proof. Let T > T ∗ and c ∈ (0, c∗T ), where c∗T is the critical speed associated with
fT defined in Proposition 1.3. We recall that for ε ∈ (0, ε̃T ), where ε̃T is defined
in (54), inequalities (46), (48), (49) and (55) are satisfied. Furthermore, the critical
speeds associated with nonlinearities fTε and fT−ε are respectively defined by

c∗T,ε = 2
√
|λ0,fTε

| = 2
√
−λ0,fT + (C + 1)ε,

and

c∗T,−ε = 2
√
|λ0,fT−ε

| = 2
√
−λ0,fT − (C + 1)ε.

In particular, since c∗T = 2
√
|λ0,fT | = 2

√
−λ0,fT , there exists εc,T > 0 such that

for all ε ∈ (0, εc,T ) we have

c ∈ (0, c∗T,−ε) ∩ (0, c∗T,ε). (70)

We define
ε̂c,T = min{ε̃T , εc,T } > 0. (71)

We consider ε ∈ (0, ε̂c,T ). According to the strong maximum principle, we have
uε(nεT, ·) > 0 on R, where nε ∈ N is such that (46) holds for all (t, u) ∈ [nεT,+∞)×
R+. Consequently, there exists a nonnegative and nontrivial compactly supported
function ũε,0 : R→ R such that

uε(nεT, x) ≥ ũε,0, ∀x ∈ R. (72)

Let ũε : R+ × R→ R be the solution of the Cauchy problem{
(ũε)t − (ũε)xx = fT−ε(t, ũε) on (0,+∞)× R,
ũε(0, ·) = ũ0,ε on R.

Owing to (46), (72) and the fact that fT−ε is T -periodic, we can apply a comparison
principle and get that

ũε(t, x) ≤ uε(t+ nεT, x), ∀(t, x) ∈ R+ × R. (73)

According to (49), we have fε ≤ 0 on R+ × [2,+∞). Hence, since u0 is bounded, if
we define

C̃ = max{2, sup
R
u0},

then according to the maximum principle, we have uε ≤ C̃ on R+×R. In particular

uε(nεT, x) ≤ C̃, ∀x ∈ R. (74)

Let vε : R+ → R be the solution of{
(vε)t = fTε (t, vε) on R+,

vε(0) = C̃.
(75)

Owing to (46) and (74), we can still apply a comparison principle to get that

uε(t+ nεT, x) ≤ vε(t), ∀(t, x) ∈ R+ × R. (76)

According to (49) and the fact that C̃ ≥ 2, it occurs that vε(T ) ≤ vε(0). So the
sequence (vε(nT ))n is nonincreasing. Furthermore, this sequence is bounded below
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by 0. Consequently, it converges to a real number l ≥ 0. For any n ∈ N, we
define vε,n : R+ → R by vε,n(t) = vε(t+ nT ). The sequence (vε,n)n converges up to
extraction of a subsequence to v∗ε ≥ 0 in C1([0, T ]) satisfying{

(v∗ε )′ = fTε (t, v∗ε ) on [0, T ],

v∗ε (0) = v∗ε (T ) = l.

So v∗ε is equal to 0 or wTε . Yet, there exists κε > 0 such that 0 < κεΦ0,fTε
(0) ≤ C̃

and∣∣fTε (t, κεΦ0,fTε
(t)
)
− (fTε )u(t, 0)κεΦ0,fTε

(t)
∣∣ ≤ −λ0,fTε

2
κεΦ0,fTε

(t), ∀t ∈ [0, T ].

Consequently, we have on R+

(κεΦ0,fTε
)′ − fTε (t, κεΦ0,fTε

) ≤ κεΦ0,fTε

(
λ0,fTε

+ (fTε )u(t, 0)
)

−
(
κεΦ0,fTε

(fTε )u(t, 0) +
λ0,fTε

2
κεΦ0,fTε

)
≤
λ0,fTε

2
κεΦ0,fTε

≤ 0.

Hence, the function κεΦ0,fTε
is a subsolution of the problem (75) on R+. Therefore

0 < κεΦ0,fTε
(t) ≤ vε(t), ∀t ∈ R+.

Using the T -periodicity of Φ0,fTε
and passing to the limit as n→ +∞, we obtain

0 < κεΦ0,fTε
(t) ≤ v∗ε (t), ∀t ∈ R+.

Consequently, we have necessarily v∗ε ≡ wTε on [0, T ]. In particular, the uniqueness
of accumulation point of the sequence (vε,n)n implies that the convergence to wTε
holds for the whole sequence. Let η > 0. There exists nη,ε ∈ N such that

n ≥ nη,ε ⇒ sup
t∈[0,T ]

|vε(t+ nT )− wTε (t)| ≤ η. (77)

On the other hand, according to (70), the spreading properties in periodic case
(Proposition 1.3) give the existence of tc,η,ε ≥ 0 such that

t ≥ tc,η,ε ⇒ sup
|x|<ct

|wT−ε(t)− ũε(t, x)| ≤ η. (78)

Let (t, x) ∈ R+ × R such that t ≥ max{tc,η,ε, nη,εT} and |x| < ct. According to
(73) and (76), it occurs that

ũε(t, x) ≤ uε(t+ nεT, x) ≤ vε(t)
The fact that t ≥ nη,εT implies that we can write t = ntT + t̃, where t̃ ∈ [0, T ) and
nt ∈ N such that nt ≥ nη,ε. Consequently, as the function wT is T -periodic, we
have

ũε(t, x)− wT (t) ≤ uε(t+ nεT, x)− wT (t+ nεT ) ≤ vε(ntT + t̃)− wT (t̃)

Hence, according to (77) and Lemma 3.1

uε(t+ nεT, x)−wT (t+ nεT ) ≤ |vε(ntT + t̃)−wTε (t̃)|+ |wTε (t̃)−wT (t̃)| ≤ η+MT ε,

and on the other hand, owing to (78) and Lemma 3.1, it occurs that

uε(t+ nεT, x)− wT (t+ nεT ) ≥ − sup
|y|<ct

|wT−ε(t)− ũε(t, y)| − sup
[0,T ]

|wT−ε − wT |

≥ −η −MT ε.
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To conclude, for any t ≥ max{tc,η,ε, nη,εT}+ nεT , we have

sup
|x|<ct

|uε(t, x)− wT (t)| ≤ η +MT ε,

which concludes the proof of the first assertion of Theorem 1.5.
We now show the second part of the theorem. We consider c > c∗T and c′ such

that c∗T < c′ < c. There exists ε′c,T > 0 such that for all ε ∈ (0, ε′c,T ) we have

c′ > min{c∗T,−ε, c∗T,ε}. (79)

Furthermore, according to (4), (23) and (25), there exists D > 0 such that for all
ε ∈ [0, 1), we have

fε(t, u) ≤ Du, ∀t ∈ R+, ∀u ∈ R+. (80)

We define εc,T = min{1, ε̂c,T , ε′c,T } > 0, where ε̂c,T is defined in (71). Let ε ∈
(0, εc,T ). We consider H : R+ × R→ R solving the heat equation{

Ht −Hxx = 0 on (0,+∞)× R,
H(0, ·) = u0 on R.

The function H is given by

H(t, x) =
1

2
√
πt

∫
Supp(u0)

e−
(x−y)2

4t u0(y)dy, ∀t ∈ (0,+∞),∀x ∈ R, (81)

where Supp(u0) is the support of u0, which is here assumed to be compact. We
define the function HD : R+ ×R→ R by HD(t, x) = H(t, x)eDt. We have (HD)t −
(HD)xx = DHD on (0,+∞) × R. Furthermore, owing to (80), we have (uε)t −
(uε)xx = fε(t, uε) ≤ Duε on (0,+∞)×R. Consequently, since HD(0, ·) = uε(0, ·) =
u0 on R, the comparison principle yields

uε(t, x) ≤ H(t, x)eDt, ∀t ∈ R+,∀x ∈ R.
In particular, owing to (81), it occurs that

uε(nεT, x) ≤ eDnεT

2
√
πnεT

∫
Supp(u0)

e−
(x−y)2
4nεT u0(y)dy, ∀x ∈ R. (82)

We define the real number

γc′,ε =
c′ +

√
(c′)2 + 4λ0,fTε

2
.

Let us note that (c′)2 + 4λ0,fTε
> 0 because c′ > c∗T,ε = 2

√
−λ0,fTε

. According to

(82), uε(nεT, ·) has a Gaussian decay as |x| → +∞ and in particular, there exists a
real number Mc′,ε > 0 such that

uε(nεT, x) ≤Mc′,εΦ0,fTε
(0)e−γc′,εx, ∀x ∈ R. (83)

We also define the function vc′,ε : R+ × R→ R by

vc′,ε(t, x) = Mc′,εΦ0,fTε
(t)e−γc′,ε(x−c

′t),

We have on R+ × R
(vc′,ε)t−(vc′,ε)xx = (−γ2

c′,ε+γc′,εc
′+λ0,fTε

)Mc′,εΦ0,fTε
e−γc′,ε(x−c

′t)+(fTε )u(t, 0)vc′,ε.

Hence according to (5) and the fact that −γ2
c′,ε + γc′,εc

′ + λ0,fTε
= 0, we obtain on

R+ × R
(vc′,ε)t − (vc′,ε) ≥ fTε (t, vc′,ε)
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Furthermore, owing to (46), (47) and the T -periodicity of fTε , it occurs that on
R+ × R

(uε)t − (uε)xx = fε(t+ nεT, uε) ≤ fTε (t+ nεT, uε) = fTε (t, uε)

Consequently, since (83) implies that uε(nεT, ·) ≤ vc′,ε(0, ·) on R, the comparison
principle implies that

0 ≤ uε(t+ nεT, x) ≤ vc′,ε(t, x), ∀(t, x) ∈ R+ × R.
For all t ≥ 0, since vc′,ε(t, ·) is decreasing on R, we have

0 ≤ sup
x>ct

uε(t, x) ≤ sup
x>ct

vc′,ε(t, x) ≤ vc′,ε(t, ct)

= Mc′,εΦ0,fTε
(t)e−γc′,ε(c−c

′)t t→+∞−−−−→ 0.

In the same way, we can show that

0 ≤ sup
x<−ct

uε(t+ nεT, x)
t→+∞−−−−→ 0.

To summarize

lim
t→+∞

sup
|x|>ct

uε(t, x) = 0,

which concludes the proof of the second assertion of Theorem 1.5.

4. Influence of the protocol of the treatment. We begin by proving Proposi-
tion 6.

Proof. Owing to (28), the principal eigenvalue associated with 0 and fTτ is given by

λ0,fTτ
= −g′(0) +

∫ T

0

mT
τ (t) dt = −g′(0) +

∫ 1

0

ϕ(t)dt = λ0,fT .

We now demonstrate Proposition 7.

Proof. Let T > T ∗. We denote PTτ the Poincaré map associated with fTτ . We recall
that PTτ is defined on R+ by

PTτ (α) = yτ,α(T ),

where yτ,α is the solution of the Cauchy problem{
(yτ,α)′ = fTτ (t, yτ,α) on R+,

yτ,α(0) = α.
(84)

In the same way as in the proof of Proposition 1, we show that the function PTτ has
a unique positive fixed point αTτ . Furthermore αTτ ∈ (0, 1]. Consequently there is a
unique equilibrium state wTτ : R → (0, 1] associated with fTτ . It is the solution of
the Cauchy problem (84) with α = αTτ .

We begin by showing the continuity property. Let τ∗ ∈ (0, T ) and (τn)n be a

sequence of (0, T ) such that τn
n→+∞−−−−−→ τ∗. We will demonstrate that wTτn(0)

n→+∞−−−−−→
wTτ∗(0). The sequence (wTτn)n converges up to extraction of a subsequence to a

function w∗ in C0,δ([0, T ]) for any δ ∈ (0, 1). The equilibrium state wTτn satisfies{
wTτn(t) = wTτn(0) +

∫ t
0
fTτn(s, wTτn(s))ds, ∀t ∈ [0, T ],

wTτn(0) = wTτn(T ).
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Passing to the limit as n→ +∞, we obtain{
w∗(t) = w∗(0) +

∫ t
0
fTτ∗(s, w

∗(s))ds, ∀t ∈ [0, T ],

w∗(0) = w∗(T ).

The function t 7→
∫ t

0
fTτ∗(s, w

∗(s))ds is of class C1([0, T ]). Consequently w∗ is of

class C1([0, T ]) and it satisfies{
(w∗)′ = fTτ (t, w∗) on [0, T ],

w∗(0) = w∗(T ).

Owing to Proposition 1, it follows that w∗ ≡ 0, or w∗ ≡ wTτ∗ . If w∗ = 0, then
wTτn → 0 as n→ +∞ uniformly on [0, T ]. For any n ∈ N, we have

(wTτn)′(t)

wTτn(t)
=
fT (t, wTτn(t))

wTτn(t)
, ∀t ∈ [0, T ].

We integrate the previous equation over [0, T ], then we pass to the limit as n →
+∞. We obtain −Tλ0,fT

τ∗
= 0. It is a contradiction because since T > T ∗, we

have λ0,fT
τ∗

= λ0,fT < 0. Hence, we have necessarily w∗ ≡ wTτ∗ . So the function

τ 7→ wTτ (0) is continuous on (0, T ).
We now study the monotonicity of this function. We consider two real numbers

τ1 and τ2 such that 0 < τ1 < τ2 < T . The Poincaré map PTτi associated with fTτi is

defined on R+ by

PTτi (α) = yτi,α(T ),

where yτi,α is the solution of (84), with τ = τi. We recall that the equilibrium

state wTτi is the solution on R+ of (84) with α = αTτi . Consequently, if we prove that

PTτ1 > PTτ2 on (0,+∞), then we will deduce that αTτ1 > αTτ2 , that is, wTτ1(0) > wTτ2(0).

Fix α > 0. We define the function zτi,α : R+ → R by

zτi,α(t) = yτi,α(t)e
∫ t
0
mTτi

(s)ds. (85)

This function solves on R+ the equation

(zτi,α)′ =
g
(
zτi,αe

−
∫ t
0
mTτi

(s)ds
)

e−
∫ t
0
mTτi

(s)ds

For any t ∈ [0, T ], we have

e−
∫ t
0
mTτ1

(s)ds ≤ e−
∫ t
0
mTτ2

(s)ds. (86)

According to (4) and the fact that zτ1,α > 0, it follows that for any t ∈ [0, T ]

g
(
zτ1,αe

−
∫ t
0
mTτ1

(s)ds
)

zτ1,αe
−

∫ t
0
mTτ1

(s)ds
≥
g
(
zτ1,αe

−
∫ t
0
mTτ2

(s)ds
)

zτ1,αe
−

∫ t
0
mTτ2

(s)ds
. (87)

In other terms, zτ1,α is a subsolution of the equation satisfied by zτ2,α. Since
zτ1,α(0) = zτ2,α(0) = α, we can apply a comparison principle and we obtain

zτ1,α(t) ≥ zτ2,α(t), ∀t ∈ [0, T ].

Actually, the previous inequality is strict with t = T because (86) and (87) are
strict on (0, τ2). Owing to (85), we have

yτ1,α(T )e
∫ T
0
mTτ1

(s)ds > yτ2,α(T )e
∫ T
0
mTτ2

(s)ds
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According to (28), it occurs that∫ T

0

mT
τ1(s)ds =

∫ T

0

mT
τ2(s)ds =

∫ 1

0

ϕ(s)ds.

Consequently

yτ1,α(T ) > yτ2,α(T ).

In other words, PTτ1(α) > PTτ2(α), which concludes the proof.
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