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Abstract. We study continuum limits of discrete models for (possibly hetero-
geneous) nanowires. The lattice energy includes at least nearest and next-to-
nearest neighbour interactions: the latter have the role of penalising changes
of orientation. In the heterogeneous case, we obtain an estimate on the min-
imal energy spent to match different equilibria. This gives insight into the
nucleation of dislocations in epitaxially grown heterostructured nanowires.

Introduction. In this paper we study an atomistic model for (possibly hetero-
geneous) nanowires. We consider a scaling of the energy that corresponds to a
reduction of the system from N dimensions to one dimension and, in addition,
accounts for transitions between different equilibria.
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Specifically, in the homogeneous case, we study the asymptotic behaviour of the
energy defined by

Eε(u) :=
∑

i,j∈Z
N

|i−j|≤R

( |u(εi)− u(εj)|
ε

− |i− j|
)p

, (0.1)

where p > 1 and u is a deformation of the portion of the lattice εZN modelling the
nanowire; the small parameter ε > 0 represents the atomic distance and R > 0 is
sufficiently large to include a certain number of interactions beyond nearest neigh-
bours. The above sum is taken over a “thin” domain, i.e., a domain consisting of
a few lines of atoms (for the precise formula see (1.4)); as the lattice distance con-
verges to zero, we perform a discrete to continuum limit and a dimension reduction
simultaneously.

This model was first studied in [14, 15] under the assumption that the admissible
deformations satisfy the non-interpenetration condition, namely, that the Jacobian
determinant of a suitably defined piecewise affine interpolation of u is positive. Here
we remove such assumption and we show that, by incorporating into the energy
the effect of interactions in a certain finite range, one can recover the results of
[14, 15] and get even further insight into the problem. More precisely, we obtain
an effective energy that accounts for the effects of changes of orientation in the
lattice. The latter are thus allowed, but energetically penalised. We remark that,
in dimension two, our analysis corresponds to the first-order Γ-limit of a functional
of the kind studied in [1, 18] without non-interpenetration assumptions. We also
point out that the effects of long range interactions in non-convex lattice systems
have already been analysed in [7, 5, 6] in the one-dimensional case.

For the scaling of (0.1), we obtain a complete description of the Γ-limit with
respect to two different topologies (Theorems 5.1 and 5.4). It turns out that the
Γ-limit with respect to the topology used in [14, 15] is trivial (see Remark 4), that
is, one can exhibit recovery sequences for which the gradient always lies in the same
energy well up to an asymptotically vanishing correction. In order to see the effects
of changes of orientation in the nanowire, we introduce a stronger topology which
is sensitive to them. In this case, for each change of orientation, the Γ-limit gives a
finite positive contribution which is characterised by a discrete optimal transition
problem. Moreover, one can prove that if we prescribe affine boundary conditions of
the type x 7→ Bx with dist(B;SO(N)) sufficiently small, then recovery sequences
for minimisers will always preserve orientation (Remark 6). In this respect our
model is consistent with the non-interpenetration condition. On the other hand, we
also show that minimisers may violate such condition if we add to the functionals
pathological loading terms which force the deformations to overcome the energetic
barrier between equilibria with opposite orientation (see Section 6 and Remark 7).

The Γ-limit is nontrivial, also in the weaker topology, when one considers hetero-
geneous nanowires, which consist of components with different equilibria, arranged
longitudinally; i.e., the interface between the components is a cross-section of the
rod. In this case, we prove an estimate on the minimal energy spent to match
the equilibria. Precisely, denoting by k ∈ N the number of atomic layers of the
nanowire, we show that the minimal cost grows faster than kN−1. The proof of
such result (Theorem 2.2) follows as an application of [2, Theorem 3.1]. Such lower
bound is to be compared with the estimate that one can prove in the case of a two-
or three-dimensional model accounting for dislocations. This is discussed in Section



DERIVATION OF A ROD THEORY 3

7 where we compare the minimal energy of heterogeneous defect-free systems and
the minimal energy of heterogeneous systems containing dislocations. It turns out
that for sufficiently large values of k, the latter are energetically preferred since their
energy may grow exactly like kN−1 (see Remark 8). In this respect our result is con-
sistent with the one proven in [14, 15] under the non-interpenetration assumption.
We recall that the first variational justification of dislocation nucleation in nanowire
heterostructures was obtained in [17] in the context of non-linear elasticity. This
result was later generalised to a discrete to continuum setting in [14, 15] under the
non-interpenetration condition, and is here validated without the latter assumption.
More recently, variational models for misfit dislocations at semi-coherent interfaces
and in elastic thin films have been proposed in [10] and [11] respectively.

The paper is organised as follows. In Section 1 we introduce the model. In Sec-
tion 2 we introduce the minimal costs to bridge different equilibria and study their
dependence on the thickness of the nanowire. In Sections 3–5, performing a discrete
to continuum limit and a dimension reduction simultaneously, we characterise the
Γ-limit of the energy functional for different choices of the topology (Theorems 5.1
and 5.4). All the results are stated in the general case of heterogeneous nanowires.
In Section 6 we discuss the effect of boundary conditions on the Γ-limit and briefly
study a model including external forces (only in the homogeneous case, for simplic-
ity). In the final part of the paper, Section 7, we compare the model for defect-free
nanowires with models including dislocations at the interface, showing that the
latter are energetically favoured.

Notation. We recall some basic notions of geometric measure theory for which we
refer to [3]. Given a bounded open set Ω ⊂ RN , N ≥ 2, and M ≥ 1, BV (Ω;RM )
denotes the space of functions of bounded variation; i.e., of functions u ∈ L1(Ω;RM )
whose distributional gradient Du is a Radon measure on Ω with |Du|(Ω) < +∞,
where |Du| is the total variation of Du. If u ∈ BV (Ω;RM ), the symbol ∇u stands
for the density of the absolutely continuous part of Du with respect to the N -
dimensional Lebesgue measure LN . We denote by Ju the jump set of u, by u+ and
u− the traces of u on Ju, and by νu(x) the measure theoretic inner normal to Ju at
x, which is defined for HN−1-a.e. x ∈ Ju, where HN−1 is the (N−1)-dimensional
Hausdorff measure. A function u ∈ BV (Ω;RM ) is said to be a special function of
bounded variation if Du − ∇uLN is concentrated on Ju; in this case one writes
u ∈ SBV (Ω;RM ). Given a set E ⊂ Ω, we denote by P (E,Ω) its relative perimeter
in Ω and by ∂∗E its reduced boundary. We recall that a partition {Ei}i∈N of Ω
is called a Caccioppoli partition if

∑
i∈N

P (Ei,Ω) < +∞. Given a rectifiable set
K ⊂ Ω, we say that a Caccioppoli partition {Ei}i∈N of Ω is subordinated to K
if for every i ∈ N the reduced boundary ∂∗Ei of Ei is contained in K, up to a
HN−1-negligible set.

ForN ≥ 2, MN×N is the set of realN×N matrices, GL+(N) is the set of matrices
with positive determinant, O(N) is the set of orthogonal matrices, and SO(N) is
the set of rotations. We denote by I the identity matrix and J the reflection matrix
such that Je1 = −e1 and Jei = ei for i = 2, . . . , N , where {ei : i = 2, . . . , N}
is the canonical basis in RN . The symbol co(X) stands for the convex hull of a
set X in MN×N . Moreover, given N+1 points x0, x1, . . . , xN ∈ RN , we denote by
[x0, x1, . . . , xN ] the simplex determined by all convex combinations of those points.

Finally, U is the class of subsets of (−L,L) that are disjoint union of a finite
number of open intervals.
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In the paper, the same letter C denotes various positive constants whose precise
value may change from place to place.

1. Setting of the problem. We study the dimension reduction of a discrete model
for heterogeneous nanowires. Let L > 0, k ∈ N, Ωkε := (−L,L) × (−kε, kε)N−1.
Up to an affine deformation H ∈ GL+(N), we can reduce to the case where the
lattice is ZN . Thus we consider the discrete thin domain Lε(k) ⊂ RN defined as

Lε(k) := εZN ∩ Ωkε , (1.1)

where Ωkε is the union of all hypercubes with vertices in εZN that have non-empty
intersection with Ωkε. In the physically relevant case of N = 3, the set Lε(k)
models the crystal structure of a nanowire of length 2L and thickness 2kε, where
k is the number of parallel atomic planes. We will nonetheless state all the results
for a general N , since their proof does not depend on the dimension. Notice that
in definition (1.1) the dependence on k is explicit; this parameter will indeed play
a major role in the subsequent analysis.

The bonds between the atoms are defined by means of the so-called Kuhn de-
composition, which is relevant for modelling some specific Bravais lattices. (See
[2, Remark 2.6] for details on the treatment of some lattices in dimension two and
three, such as the hexagonal or equilateral triangular, the face-centred cubic, and
the body-centred cubic.) First we define a partition T0 of the unit cube (0, 1)N into
N -simplices: we say that T ∈ T0 if the (N+1)-tuple of its vertices belongs to the
set {

{0, ei1, ei1 + ei2 , . . . , ei1 + ei2 + · · ·+ eiN } :
(
1 2 · · · N
i1 i2 · · · iN

)
∈ SN

}
,

where SN is the set of permutations of N elements; see Figure 1. Next, we define
T as the periodic extension of T0 to all of RN . We say that two nodes x, y ∈ ZN

are contiguous if there exists a simplex T ∈ T that has both x and y as its vertices.
We set

B1 := {ξ ∈ RN : x and x+ ξ are contiguous} . (1.2)

If both simplices [x0, x1, . . . , xN ] and [y0, x1, . . . , xN ] belong to T , then we say that
[x0, x1, . . . , xN ] and [y0, x1, . . . , xN ] are neighbouring simplices (i.e., they share a

Figure 1. The six tetrahedra in the Kuhn decomposition of a
three-dimensional cube.
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facet) and x0 and y0 are opposite vertices. We set

B2 := {ξ ∈ RN : x and x+ ξ are opposite vertices} , (1.3)

and remark that, by periodicity, B1 and B2 do not depend on x.
We assume that Lε(k) is composed of two species of atoms, occupying the points

contained in the subsets

L−
ε (k) := {x ∈ Lε(k) : x1 < 0} ,

L+
ε (k) := {x ∈ Lε(k) : x1 ≥ 0} ,

respectively, where x = (x1, . . . , xN ). The two species of atoms are characterised
by equilibrium distances given by ε and λε, respectively, where λ ∈ (0, 1] is fixed;
the case λ ∈ (0, 1) models a heterogeneous nanowire, while the case λ = 1 refers
to a homogeneous nanowire. Specifically, the total interaction energy relative to a
deformation u : Lε(k) → RN is defined as

E1,λ
ε (u, k) :=

∑

x∈L−

ε (k)
ξ∈B1∪B2

x+εξ∈Lε(k)

c(ξ)

∣∣∣∣
|u(x+ εξ)− u(x)|

ε
− |Hξ|

∣∣∣∣
p

+
∑

x∈L+
ε (k)

ξ∈B1∪B2

x+εξ∈Lε(k)

c(ξ)

∣∣∣∣
|u(x+ εξ)− u(x)|

ε
− λ|Hξ|

∣∣∣∣
p

,

(1.4)

where p > 1, H ∈ GL+(N), and the coefficient c(ξ) is equal to some c1 > 0 for
ξ ∈ B1 and to c2 > 0 for ξ ∈ B2.

To simplify the presentation, we restrict our attention to the case of p-harmonic
potentials, though our analysis applies, without any significant change, to more
general potentials satisfying polynomial growth conditions. More precisely, we may
replace E1,λ

ε (u, k) with

∑

x∈L−

ε (k)
ξ∈B1∪B2

x+εξ∈Lε(k)

φ1
(
ξ,

|u(x+εξ)−u(x)|
ε

− |Hξ|
)
+
∑

x∈L+
ε (k)

ξ∈B1∪B2

x+εξ∈Lε(k)

φλ
(
ξ,

|u(x+εξ)−u(x)|
ε

− λ|Hξ|
)
,

where φ : ZN × R → [0,+∞) is a positive potential such that

C1|z|p ≤ φµ(ξ, z) ≤ C2|z|p for µ = λ, 1 ,

for some positive constants C1, C2. One could consider the case of potentials de-
pending also on x and satisfying suitable periodicity assumptions: this would require
a more delicate analysis and would lead to a more complex formula for the Γ-limit.

In principle, all the results that we present in the sequel extend to the case when
the two components of the nanowire have equilibria of the form H− and H+, where
H−, H+ ∈ GL+(N). We have chosen to analyse the case when H+ = λH−, since
this is particularly meaningful in applications where one has misfit between two
crystalline materials with the same lattice structure but different lattice distance at
equilibrium (see e.g. [9, 13]).

We study the limit behaviour of E1,λ
ε (·, k) as ε → 0+, thus performing simultane-

ously a discrete to continuum limit and a dimension reduction to a one-dimensional
system. The limit functional was derived in [14, 15] by means of Γ-convergence, un-
der the assumption that the admissible deformations fulfil the non-interpenetration
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condition, namely, that the Jacobian determinant of (the piecewise affine inter-
polation of) any deformation is strictly positive almost everywhere. The non-
interpenetration assumption was used in several parts of the analysis; in particular,
it was needed to prove that the limit functional (dependent on k) scales like kN as
k → ∞.

The main novelty of the present paper is that we remove the non-interpenetration
assumption made in [14, 15], allowing for changes of orientations. Furthermore, in
the study of the Γ-limit we define a stronger topology that accounts for such changes.
In the proof of the new results, only those parts that differ from [14, 15] will be
shown in details.

In the sequel of the paper we will often consider the rescaled domain 1
εΩkε, which

converges, as ε → 0+, to the unbounded strip

Ωk,∞ := R× (−k, k)N−1 .

We define the associated lattice and subsets

L∞(k) := ZN ∩ Ωk,∞ ,

L−
∞(k) := {x ∈ L∞(k) : x1 < 0} ,

L+
∞(k) := {x ∈ L∞(k) : x1 ≥ 0} ,

where Ωk,∞ is the union of all hypercubes with vertices in ZN that have non-empty
intersection with Ωk,∞. For u : L∞(k) → RN we define

E1,λ
∞ (u, k) :=

∑

x∈L−

∞
(k)

ξ∈B1∪B2

x+ξ∈L∞(k)

c(ξ)
∣∣∣|u(x+ ξ)− u(x)| − |Hξ|

∣∣∣
p

+
∑

x∈L+
∞

(k)
ξ∈B1∪B2

x+ξ∈L∞(k)

c(ξ)
∣∣∣|u(x+ ξ)− u(x)| − λ|Hξ|

∣∣∣
p

.
(1.5)

We identify every deformation u of the lattice Lε(k) by its piecewise affine inter-
polation with respect to the triangulation εT . By a slight abuse of notation, such
extension is still denoted by u. We can then define the domain of the functional
(1.4) as

Aε(Ωkε) :=
{
u ∈ C0(Ωkε;R

N) : u piecewise affine,

∇u constant on Ωkε ∩ εT ∀T ∈ T
}
.

Similarly, for (1.5) we define

A∞(Ωk,∞) :=
{
u ∈ C0(Ωk,∞;RN ) : u piecewise affine,

∇u constant on Ωk,∞ ∩ T ∀T ∈ T
}
.

As customary in dimension reduction problems, we rescale the domain Ωkε to a
fixed domain Ωk, independent of ε, by introducing the change of variables z(x) :=
(x1, εx2, . . . , εxN ). Accordingly, for each u ∈ Aε(Ωkε) we define ũ(x) := u(z(x)).
Moreover we set Ωk := A−1

ε (Ωkε) = (−L,L) × (−k, k)N−1, where Aε ∈ MN×N is
the diagonal matrix

Aε := diag(1, ε, . . . , ε); (1.6)
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i.e., z(x) = Aεx. In this way we can recast the functionals (1.4) defined over varying
domains into functionals defined on deformations of the fixed domain Ωk. Precisely
we set

I1,λ
ε (ũ, k) := E1,λ

ε (u, k) for ũ ∈ Ãε(Ωk) , (1.7)

with

Ãε(Ωk) :=
{
ũ ∈ C0(A−1

ε (Ωkε);R
N ) : ũ piecewise affine,

∇ũ constant on Ωk ∩ (A−1
ε εT ) ∀T ∈ T

}
.

For later use it will be convenient to set the following notation:

Ω−
k := (−L, 0)×(−k, k)N−1 , Ω+

k := (0, L)×(−k, k)N−1 .

2. Definition and properties of minimal energies. We recall that, throughout
the paper, I is the identity matrix and J is the reflection matrix such that Je1 = −e1
and Jei = ei for i = 2, . . . , N .

We will study the Γ-limit of the sequence I1,λ
ε (·, k) as ε → 0+ for every fixed

k. For this purpose we introduce the quantity γ(P1, P2; k) for P1, P2 ∈ O(N) ∪
λO(N), which represents the minimum cost of a transition from a well to another.
Specifically, for each P1 ∈ O(N) and P2 ∈ λO(N) we define

γ(P1, P2; k) := inf
{
E1,λ
∞ (v, k) : M > 0 , v ∈ A∞(Ωk,∞) ,

∇v = P1H for x1 ∈ (−∞,−M) ,

∇v = P2H for x1 ∈ (M,+∞)
}
;

(2.1a)

for P1, P2 ∈ O(N)

γ(P1, P2; k) := inf
{
E1,1
∞ (v, k) : M > 0 , v ∈ A∞(Ωk,∞) ,

∇v = P1H for x1 ∈ (−∞,−M) ,

∇v = P2H for x1 ∈ (M,+∞)
}
,

(2.1b)

where

E1,1
∞ (v, k) :=

∑

x∈L∞(k)
ξ∈B1∪B2

x+ξ∈L∞(k)

c(ξ)
∣∣∣|v(x + ξ)− v(x)| − |Hξ|

∣∣∣
p

;

for P1, P2 ∈ λO(N)

γ(P1, P2; k) := inf
{
Eλ,λ
∞ (v, k) : M > 0 , v ∈ A∞(Ωk,∞) ,

∇v = P1H for x1 ∈ (−∞,−M) ,

∇v = P2H for x1 ∈ (M,+∞)
}
,

(2.1c)

where

Eλ,λ
∞ (v, k) :=

∑

x∈L∞(k)
ξ∈B1∪B2

x+ξ∈L∞(k)

c(ξ)
∣∣∣|v(x + ξ)− v(x)| − λ|Hξ|

∣∣∣
p

.

The next proposition shows that the relevant quantities defined through (2.1) are
in fact four: the minimal costs of the transition at the interface between the energy
wells O(N) and λO(N) are provided in (2.2b) and (2.2c); the minimal cost of the
transition between SO(N) and O(N)\SO(N) is provided in (2.2d); the one of the
transition between λSO(N) and λO(N)\SO(N) is given in (2.2e). Moreover, the
constants in (2.2d) and in (2.2e) are related by the proportionality rule (2.3).
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Proposition 1. For each k ∈ N, the function γ satisfies for every R,R′ ∈ SO(N)
and Q,Q′ ∈ O(N)\SO(N)

γ(R,R′; k) = γ(Q,Q′; k) = γ(λR, λR′; k) = γ(λQ, λQ′; k) = 0 , (2.2a)

γ(R, λR′; k) = γ(Q, λQ′; k) = γ(I, λI; k) , (2.2b)

γ(R, λQ; k) = γ(Q, λR; k) = γ(I, λJ ; k) , (2.2c)

γ(R,Q; k) = γ(Q,R; k) = γ(I, J ; k) , and (2.2d)

γ(λR, λQ; k) = γ(λQ, λR; k) = γ(λI, λJ ; k) . (2.2e)

Moreover,

γ(λP1, λP2; k) = λpγ(P1, P2; k) for every P1, P2 ∈ O(N) . (2.3)

Proof. First one notices that γ(P1, P2; k) = γ(JP1, JP2; k). Hence, the proof of
(2.2) relies on the construction of low energy transitions between two given rotations
or two given rotoreflections, see [14, Proposition 2.4]. Finally, standard comparison
arguments yield (2.3).

We now prove estimates on the asymptotic behaviour of γ(I, λI) and γ(I, λJ) as
k → ∞, which have interesting consequences towards the comparison of this model
with those accounting for dislocations in nanowires, see Section 7 below. Indeed, in
Theorem 2.2 below we show that for λ 6= 1 (heterogeneous nanowire) these constants
grow faster than kN−1, while it is known that the corresponding minimum cost for
nanowires with dislocations scales like kN−1 (see discussion at the end of Section
7). In contrast, we remark that for λ = 1 one has γ(I, I) = 0 and γ(I, J) ≃ CkN−1.
An essential tool in the proof of Theorem 2.2 is the following result.

Theorem 2.1. [2, Theorem 3.1] Let uε ∈ Aε((0, 1)
N) be a sequence such that

εN−1
∑

ξ∈B1∪B2

∑

x, x+εξ∈
εZN∩(0,1)N

∣∣∣
|uε(x+εξ)−uε(x)|

ε
− |Hξ|

∣∣∣
p

< C . (2.4)

Then there are a subsequence (not relabelled) and a function u ∈ W 1,∞((0, 1)N ;RN )
such that ∇uε → ∇u in Lp((0, 1)N ;MN×N ) and

∇u ∈ SBV ((0, 1)N ;O(N)H) . (2.5)

Specifically, u is a collection of an at most countable family of rigid deformations,
i.e., there exists a Caccioppoli partition {Ei}i∈N subordinated to the reduced bound-
ary ∂∗{∇u ∈ SO(N)H}, such that

u(x) =
∑

i∈N

(RiHx+ bi)χEi
(x) , (2.6)

where Ri ∈ O(N) and bi ∈ RN . Moreover, if ∂∗Ei∩∂∗Ej 6= Ø, then detRi detRj =
−1 and ∂∗Ei∩∂∗Ej is flat, i.e., the measure theoretic normal vector to ∂∗Ei∩∂∗Ej

is constant (up to the sign).

We now prove the main result of this section.

Theorem 2.2. Let λ ∈ (0, 1) and (P1, P2) ∈ {(I, λI), (I, λJ)}. There exists C > 0
such that

γ(P1, P2; k) ≤ CkN . (2.7)

Moreover,

lim
k→∞

γ(P1, P2; k)

kN−1
= +∞. (2.8)
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Proof. The upper bound (2.7) is proven by comparing test functions for γ(P1, P2; k)
with those for γ(P1, P2; 1). Namely, let v ∈ A∞(Ω1,∞) be such that v(x) = P1Hx
for every x ∈ L−

∞(k) and v(x) = P2Hx for every x ∈ L+
∞(k); in particular,

∇v = P1H for x1 ∈ (−∞,−1) and ∇v = P2H for x1 ∈ (0,+∞). Then one
defines u ∈ A∞(Ωk,∞) by u(x) := kv(x/k), which yields γ(P1, P2; k) ≤ E1,λ

∞ (u, k) ≤
C E1,λ

∞ (v, 1) kN , and thus γ(P1, P2; k) ≤ C γ(P1, P2; 1) k
N . Note that in the previous

inequalities one uses the fact that ∇v ∈ L∞ and that the energy of the interactions
in B2 can be bounded, using the Mean Value Theorem, by the energy of the inter-
actions in B1.

For the proof of the lower bound (2.8) we will use Theorem 2.1 in each of the
subsets (−1, 0) × (−1, 1)N−1 and (0, 1) × (−1, 1)N−1. By contradiction, suppose
that there exist a sequence kj ր ∞ and a sequence {uj} ⊂ A∞(Ωkj ,∞) such that

1

kN−1
j

E1,λ
∞ (uj, kj) < C , (2.9)

for some positive C. Define vj : Ω1,∞ → RN as vj(x) := 1
kj
uj(kjx). Accordingly,

we consider the rescaled lattices

Lj :=
1

kj
ZN ∩ Ω1,∞ , L+

j := Lj ∩ {x1 > 0} , L−
j := Lj ∩ {x1 < 0} .

Expressing E1,λ
∞ (uj , kj) in terms of vj , one finds

E1,λ
∞ (uj , k) =

∑

x∈L−

j

ξ/kj∈B1∪B2

x+ξ/kj∈Lj

c(ξ)

∣∣∣∣∣
|vj(x+ ξ

kj
)− vj(x)|
1
kj

− |Hξ|
∣∣∣∣∣

p

+
∑

x∈L+

j

ξ/kj∈B1∪B2

x+ξ/kj∈Lj

c(ξ)

∣∣∣∣∣
|vj(x+ ξ

kj
)− vj(x)|
1
kj

− λ|Hξ|
∣∣∣∣∣

p

.

(2.10)

The above term controls the (piecewise constant) gradient of vj . From (2.9),
(2.10), and Theorem 2.1 we deduce that, up to subsequences, ∇vj → ∇v in
Lp((−1, 1)N ;MN×N ), for some v ∈ W 1,∞((−1, 1)N ;RN ), where ∇v ∈ O(N)H for
a.e. x ∈ (−1, 0)× (−1, 1)N−1 and ∇v ∈ λO(N)H for a.e. x ∈ (0, 1)× (−1, 1)N−1.
Precisely,

v(x) =
∑

i∈N

(RiHx+ ai)χEi
(x) +

∑

j∈N

(λQjHx+ bj)χE+

j
(x) ,

where Ri, Qj ∈ O(N), ai, bj ∈ RN , and {E−
i } (respectively {E+

j }) is a Cacciop-

poli partition of (−1, 0) × (−1, 1)N−1 (respectively of (0, 1) × (−1, 1)N−1). Then,
since {E−

i } ∪ {E+
j } is a Caccioppoli partition of (−1, 1)N , by the local structure

of Caccioppoli partitions (see e.g. [3, Theorem 4.17]), we find that, for HN−1-a.e.
x ∈ {0}×(−k, k)N−1, x ∈ ∂∗E−

i ∩ ∂∗E+
j for some i, j (where ∂∗E denotes the

reduced boundary of E). Therefore, using a blow-up argument and the fact that
v ∈ W 1,∞((−1, 1)N ;RN), we deduce that there exist rank-1 connections between
O(N)H and λO(N)H ; see [2, Lemma 3.2]. This implies in particular that λ = 1,
which is a contradiction to λ ∈ (0, 1). Hence (2.8) follows.
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Remark 1. An estimate similar to (2.8) was proven in [14, 15] (for a hexagonal
lattice in dimension two and a class of three-dimensional lattices) via a different
argument, based on the non-interpenetration condition. In fact, in [14, 15] a stronger
result is proven, namely, that γ(I, λI; k) scales like kN .

The non-interpenetration assumption turns out to be necessary if the energy
involves only nearest neighbour interactions; indeed, in such a case, one can exhibit
deformations that violate the non-interpenetration condition and for which (2.8)
does not hold, see [14, Section 4.2]. Such deformations, which consist of suitable
foldings of the lattice, would be energetically expensive (and, in particular, would
not provide a counterexample to (2.8)) in the present setting, exactly because of the
effect of the interactions across neighbouring cells. It is the latter ones that prevent
folding phenomena and allow one to prove (2.8), via Theorem 2.1.

3. Compactness and lower bound. Before characterising the Γ-convergence for
the rescaled functionals (1.7), we show a compactness theorem for sequences with
equibounded energy, as well as bounds from above and from below on those func-
tionals in terms of the changes of orientation in the wire. Such bounds will be used
in the proof of the Γ-convergence results, Theorems 5.1 and 5.4.

Essential tools for the compactness and the lower bound are provided by the
following rigidity estimates.

Theorem 3.1. [12, Theorem 3.1] Let N ≥ 2, and let 1 < p < ∞. Suppose that
U ⊂ RN is a bounded Lipschitz domain. Then there exists a constant C = C(U)
such that for each u ∈ W 1,p(U ;RN ) there exists a constant matrix R ∈ SO(N) such
that

‖∇u−R‖Lp(U ;MN×N) ≤ C(U)‖dist(∇u, SO(N))‖Lp(U) . (3.1)

The constant C(U) is invariant under dilation and translation of the domain.

It is convenient to define the energy of a single simplex T with vertices x0, . . . , xN ,

Ecell(uF ;T ) :=

N∑

i≤j=0

∣∣∣|F (xi − xj)| − |H(xi − xj)|
∣∣∣
p

for every F ∈ MN×N ,

where uF is the affine map uF (x) := Fx. The following lemma provides a lower
bound on Ecell(uF ;T ) in terms of the distance of F from O(N). It will be instru-
mental in using Theorem 3.1.

Lemma 3.2. [2, Lemma 2.2] There exists a constant C > 0 such that

distp(F, SO(N)H) ≤ C Ecell(uF ;T ) ∀F ∈ MN×N : detF ≥ 0 , (3.2a)

distp(F, (O(N)\SO(N))H) ≤ C Ecell(uF ;T ) ∀F ∈ MN×N : detF ≤ 0 . (3.2b)

The next lemma asserts that if in two neighbouring simplices the sign of det∇u
has different sign, then the energy of those two simplices is larger than a positive
constant. It will be convenient to define the energetic contribution of the interac-
tions within two neighbouring simplices T = [x0, x1, . . . , xN ], S = [y0, x1, . . . , xN ]
as

Ecell(u;S ∪ T ) :=

N∑

i≤j=0

∣∣∣|u(xi)− u(xj)| − |H(xi − xj)|
∣∣∣
p
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+

N∑

j=1

∣∣∣|u(y0)− u(xj)| − |H(y0 − xj)|
∣∣∣
p

+
∣∣∣|u(y0)− u(x0)| − |H(y0 − x0)|

∣∣∣
p

.

Lemma 3.3. [2, Lemma 2.3] There exists a positive constant C0 (depending on
H) with the following property: if two neighbouring N -simplices S, T have different
orientations in the deformed configuration, i.e.,

det (∇u|S) det (∇u|T ) ≤ 0 ,

then Ecell(u;S ∪ T ) ≥ C0.

Lemma 3.2 will allow us to apply Theorem 3.1. More precisely, in the part of the
wire with x1 ∈ (−L, 0) we use (3.1) or its “symmetric” version for O(N)\SO(N)
in subdomains that scale in such a way that the constant of the rigidity estimate
does not change; for x1 ∈ (0, L) we use corresponding estimates for λSO(N) or
λ(O(N)\SO(N)). Thus we approximate the deformation gradient with piecewise
constant matrices in O(N), respectively λO(N).

Due to the fact that a minimum energy has to be paid for each change of orien-
tation, see Lemma 3.3, the parts with positive determinant do not mix with those
with negative determinant. Hence, passing to the weak* limit we obtain func-
tions taking values in co(SO(N)) ∪ co(O(N)\SO(N)), respectively λ co(SO(N)) ∪
λ co(O(N)\SO(N)). Here, co(X) denotes the convex hull of a set X in MN×N .

Remark 2. It is well known that co(SO(N)) ∩ co(O(N)\SO(N)) 6= Ø: indeed,
the intersection always contains the zero matrix, here denoted by 0. In dimension
N = 2, one can see that

co(SO(2)) =

{(
α −β
β α

)
: α2 + β2 ≤ 1

}
,

co(O(2)\SO(2)) =

{(
α β
β −α

)
: α2 + β2 ≤ 1

}
.

In particular, co(SO(2)) ∩ co(O(2)\SO(2)) = {0}. For N > 2, the intersection is
nontrivial. For example, co(SO(3)) ∩ co(O(3)\SO(3)) contains the matrix − 1

3I.
Moreover, one can see that

co(SO(N)) ∪ co(O(N)\SO(N)) ( co(O(N))

for N ≥ 2.

Henceforth, the symbol U stands for the class of subsets of (−L,L) that are
disjoint union of a finite number of open intervals.

Proposition 2. Let ũε ∈ Ãε(Ωk) be a sequence such that

lim sup
ε→0+

I1,λ
ε (ũε, k) ≤ C . (3.3)

Then there exist functions ũ ∈ W 1,∞(Ωk;R
N ), d1, . . . , dN ∈ L∞(Ωk;R

N ), and a
subsequence (not relabelled) such that

ũε −
 

Ωk

ũε dx
∗
⇀ ũ weakly* in W 1,∞(Ωk;R

N ) ,

∇ũεA
−1
ε = (∇uε) ◦Aε

∗
⇀ (∂1ũ | d2 | · · · |dN ) weakly* in L∞(Ωk;M

N×N ) , (3.4)
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and ũ, d1, . . . , dN , are independent of x2, . . . , xN , i.e., ∂j ũ = ∂jdi = 0, for each
i = 2, . . . , N and j = 2, . . . , N . Moreover, there exists U ∈ U such that

(∂1ũ | d2 | · · · |dN ) ∈





co(SO(N))H a.e. in (−L, 0) ∩ U ,

co(O(N)\SO(N))H a.e. in (−L, 0) \ U ,

λ co(SO(N))H a.e. in (0, L) ∩ U ,

λ co(O(N)\SO(N))H a.e. in (0, L) \ U ,

(3.5)

and

lim inf
ε→0+

I1,λ
ε (ũε, k) ≥ γ(I, J ; k)H0(∂U ∩ (−L, 0)) + γ(λI, λJ ; k)H0(∂U ∩ (0, L))

+ γ(I, λI; k) [1− χ∂U (0)] + γ(I, λJ ; k)χ∂U (0) .

(3.6)

Remark 3. The right-hand side of (3.6) contains different contributions. The
first term corresponds to the minimal energy needed to bridge a rotation with a
rotoreflection, or viceversa, in the left part of the nanowire; the energy spent depends
on the number of changes of orientation, i.e., on the cardinality of ∂U . The second
term plays an analogous role for the right part of the nanowire. The remaining
terms describe the interfacial energy spent to bridge the two energy wells O(N)H
and λO(N)H : that contribution also depends on whether or not the orientation is
preserved across the interface, i.e., on whether 0 is an inner or external, or boundary
point for U .

Proof. (Compactness) The assumption (3.3) implies that {∇uε}, resp. {∇ũεA
−1
ε }, is

uniformly bounded in L∞(Ωkε;M
N×N ), respectively L∞(Ωk;M

N×N ). (Recall that
uε(x) = ũε(A

−1
ε x).) Therefore there exist a subsequence of {ũε} (not relabelled)

and functions ũ ∈ W 1,∞(Ωk;R
N ) and di ∈ L∞(Ωk;R

N ) for i = 2, . . . , N , such

that ∂1ũε
∗
⇀ ∂1ũ weakly* in L∞(Ωk;M

N×N ), where ũ is independent of xi for all

i = 2, . . . , N , and 1
ε∂iũε

∗
⇀ di for each i = 2, . . . , N .

In order to show ∂jdi = 0 and (3.5), we apply the rigidity estimate (3.1) to

the sequence uε. To this aim, we divide the domain Ωkε into subdomains that
are the Cartesian product of intervals (ai, ai + ε), ai ∈ εZ, and the cross-section
(−kε, kε)N−1. We first observe that, by Lemma 3.3 and assumption (3.3), the
number of changes of orientation of uε is uniformly bounded in ε. More precisely,
we can find a uniformly bounded number of subdomains (ai, ai+ε)× (−kε, kε)N−1,
i ∈ Iε, #Iε ≤ C, such that if i /∈ Iε then det∇uε has constant sign in (ai, ai +
ε)× (−kε, kε)N−1. In each of these subdomains, we use (3.2) to apply the rigidity
estimate (3.1), or its “symmetric” version for O(N)\SO(N).

Specifically, for each ai with ai < 0 and i /∈ Iε, there exists Pε(ai) ∈ O(N)H
such that

ˆ

(ai,ai+ε)×(−kε,kε)N−1

|∇uε − Pε(ai)|p dx ≤ C

ˆ

(ai,ai+ε)×(−kε,kε)N−1

distp(∇uε, O(N)H) dx ,

and for every ai > 0 with i /∈ Iε there exists Pε(ai) ∈ λO(N)H such that
ˆ

(ai,ai+ε)×(−kε,kε)N−1

|∇uε − Pε(ai)|p dx ≤ C

ˆ

(ai,ai+ε)×(−kε,kε)N−1

distp(∇uε, λO(N)H) dx .

Moreover for i ∈ Iε we set Pε(ai) = I if ai < 0 and Pε(ai) = λI if ai ≥ 0.
By interpolation one defines a piecewise constant matrix field Pε : (−L,L) →
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O(N)H ∪λO(N)H such that Pε(x1) = Pε(ai) if x1 ∈ (ai, ai+ε). Summing up over
i and rescaling the variables, one gets
ˆ

Ω−

k

|∇ũεA
−1
ε − Pε(x1)|p dx ≤ C

ˆ

A−1
ε (Ωkε)∩{x1<0}

distp(∇ũεA
−1
ε , O(N)H) dx ≤ Cε , (3.7a)

ˆ

Ω+

k

|∇ũεA
−1
ε − Pε(x1)|p dx ≤ C

ˆ

A−1
ε (Ωkε)∩{x1>0}

distp(∇ũεA
−1
ε , λO(N)H) dx ≤ Cε , (3.7b)

where the last inequality of each line follows by applying Lemma 3.2 to each sub-
domain with i /∈ Iε and by recalling that each subdomain has volume proportional
to ε after rescaling.

We now define the sets

Kε := {aεi ∈ (−L,L) : Pε(x1) ∈ SO(N)H ∪ λSO(N)H for x1 ∈ [aεi , a
ε
i + ε)} ,

Uε :=
⋃

aε
i
∈Kε

[aεi , a
ε
i + ε) ,

and remark that Lemma 3.2, Lemma 3.3, and assumption (3.3) imply that the
cardinality of ∂Uε is uniformly bounded. Therefore the sequence {χUε

} converges,
up to subsequences, to χU strongly in L1(−L,L), where

U =

n⋃

i=1

(αi, βi) , −L ≤ α1 < β1 < α2 < β2 < · · · < αn < βn ≤ L . (3.8)

Since we can write

Pε(x1) =Rε(x1)
(
χUε∩(−L,0)H + χUε∩(0,L)λH

)

+ JRε(x1)
(
(1− χUε∩(−L,0))H + (1− χUε∩(0,L))λH

)
,

where Rε : (−L,L) → SO(N) is piecewise constant, we deduce that Pε converges,
up to subsequences, to some P ∈ L∞((−L,L);MN×N) in the weak* topology of
L∞((−L,L);MN×N ). From (3.7) it follows that the weak* limit of ∇ũεA

−1
ε coin-

cides with P and therefore does not depend on xj for each j = 2, . . . , N . Moreover,
inclusion (3.5) follows from the fact that χUε

Pε converges weakly* to χUP .

(Lower bound) Inequality (3.6) is proven by a standard argument which can be
found, for example, in [14, 16, 17]. We will briefly sketch the main ideas and refer
the reader to [14, 16, 17] for full details. First recall that ∂U consists of a finite
number of points, cf. (3.8). Since χUε

→ χU and since the number of points of ∂Uε

is uniformly bounded, one can find σ > 0, αε
i → αi, β

ε
i → βi such that

(αε
i − 2σ, αε

i − σ) ⊂ (−L,L) \ Uε , (αε
i + σ, αε

i + 2σ) ⊂ Uε , (3.9a)

(βε
i − 2σ, βε

i − σ) ⊂ Uε , (βε
i + σ, βε

i + 2σ) ⊂ (−L,L) \ Uε . (3.9b)

Moreover, if σ is sufficiently small, all the intervals (αε
i − 2σ, αε

i + 2σ) and (βε
i −

2σ, βε
i +2σ) are mutually disjoint and therefore it suffices to prove the lower bound

for one of such intervals. Suppose that αε
i ∈ (0, L) and define

vε(x1, x2, . . . , xN ) := 1
ε ũε(εx1 + αε

i , x2, . . . , xN ) = 1
εuε(εx1 + αε

i , εx2, . . . , εxN ).

Then, ∇vε(x) = ∇ũε(εx1+αε
i , x2, . . . , xN )A−1

ε = ∇uε(εx1+αε
i , εx2, . . . , εxN ), and,

by (3.7), we have
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ˆ

(− 2σ
ε
,− σ

ε
)×(−k,k)N−1

distp(∇vε, λ(O(N)\SO(N))H) dx

+

ˆ

(σ
ε
, 2σ

ε
)×(−k,k)N−1

distp((∇vε, λ SO(N)H) dx ≤ C .

(3.10)

From (3.10), Theorem 3.1 and the Poincaré inequality, we deduce that there exists
a unit interval contained in (− 2σ

ε ,−σ
ε ) such that in the Cartesian product of such

interval with the cross-section (−k, k)N−1, the W 1,p-norm of the difference between
vε and an affine map of the form λQHx+ a, with Q ∈ O(N)\SO(N) and a ∈ RN ,
is bounded by Cε/σ. By the same argument one can find a unit interval contained
in (σε ,

2σ
ε ) such that in the Cartesian product of such interval with the cross-section

(−k, k)N−1, the W 1,p-norm of the difference between vε and an affine map of the
form λRHx + b, with R ∈ SO(N) and b ∈ RN , is bounded by Cε/σ. By gluing
the function vε with these maps on such intervals, one can define a function v̂ε ∈
A∞(Ωk,∞) that is a competitor for γ(λJ, λI; k) and such that (cf. (2.2))

I1,λ
ε (ũε, k)|(αε

i
−2σ,αε

i
+2σ)×(−k,k)N−1 ≥ Eλ,λ

∞ (v̂ε, k)− C
ε

σ
,

where I1,λ
ε (ũε, k)|(αε

i
−2σ,αε

i
+2σ)×(−k,k)N−1 only takes into account the interactions

between atoms lying in the subset (αε
i − 2σ, αε

i + 2σ) × (−k, k)N−1. Arguing in a
similar way for the other intervals in (3.9) yields (3.6).

4. Upper bound. We prove that the bound (3.6) is in fact optimal.

Proposition 3. Let F ∈ L∞((−L,L);MN×N) and U ∈ U satisfy

F ∈





co(SO(N))H a.e. in (−L, 0) ∩ U ,

co(O(N)\SO(N))H a.e. in (−L, 0) \ U ,

λ co(SO(N))H a.e. in (0, L) ∩ U ,

λ co(O(N)\SO(N))H a.e. in (0, L) \ U .

(4.1)

Then there exists a sequence {ũε} ⊂ Ãε(Ωk) such that

∇ũεA
−1
ε

∗
⇀ F weakly* in L∞(Ωk;M

N×N ) , (4.2)

and

lim sup
ε→0+

I1,λ
ε (ũε, k) ≤ γ(I, J ; k)H0(∂U ∩ (−L, 0)) + γ(λI, λJ ; k)H0(∂U ∩ (0, L))

+ γ(I, λI; k) [1− χ∂U (0)] + γ(I, λJ ; k)χ∂U (0) .

(4.3)

Proof. Using a standard approximation argument we may assume that x1 7→ F (x1)
is piecewise constant, with values in O(N)H for a.e. x1 ∈ (−L, 0) and values in
λO(N)H for a.e. x1 ∈ (0, L). We may also assume that this approximation process
does not modify the set U of (4.1). More precisely, there exist m,n ∈ Z, m < 0,
n ≥ 0, −L = am < am+1 < · · · < a−1 < a0 = 0 < a1 < · · · < an < an+1 = L, and
Ri ∈ O(N) for i = m, . . . ,−1, 0, . . . , n such that

F =

−1∑

i=m

χ(ai,ai+1)RiH +

n∑

i=0

χ(ai,ai+1)λRiH
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and

U = int
⋃{

[ai, ai+1] : Ri ∈ SO(N) , m ≤ i ≤ n− 1
}
.

The following construction is similar to that in [14, Proposition 3.2], so we will
show the details only for what concerns the changes of orientation. We introduce
a mesoscale {σε} such that ε ≪ σε ≪ 1 as ε → 0+. Next we define ũε in the sets
of the type (ai+σε, ai+1−σε) × (−k, k)N−1 in such a way that its gradient equals
RiHAε if ai+1 ≤ 0 and equals λRiHAε if ai ≥ 0. This determines ũε in those
regions, up to some additive constants that will have to be fixed at the end of the
construction in order to make ũε continuous.

We now complete the definition of ũε in the sets of the type (ai−σε, ai+σε) ×
(−k, k)N−1. Let us first assume i < 0, i.e., ai < 0. Since Ri−1 and Ri may be in
SO(N) or in O(N)\SO(N), one can have four cases. If both Ri−1 and Ri are in
SO(N), it is possible to define ũε by interpolating Ri−1 and Ri so that the cost of
the transition has order O(ε/σε), so it gives no contribution to (4.3); we refer to
[14] for details. The case Ri−1, Ri ∈ O(N)\SO(N) is completely analogous.

If Ri−1 ∈ SO(N) and Ri ∈ O(N)\SO(N) or viceversa, we define ũε in the
set (ai−σε, ai+σε)× (−k, k)N−1 as a rescaling of a quasiminimiser of (2.1b). More
precisely, we fix η > 0 and apply the definition of γ(Ri−1, Ri; k), thus finding M > 0
and v ∈ A∞(Ωk,∞) such that

∇v = Ri−1H for x1 ∈ (−∞,−M) , ∇v = RiH for x1 ∈ (M,+∞)

and

E1,1
∞ (v, k) ≤ γ(I, J ; k) + η ,

where we used also Proposition 1. With this at hand, we define ũε in the set
(ai−σε, ai+σε)× (−k, k)N−1 as

ũε(x) := εv(1εAεx) + b .

The constant vector b in the last equation is chosen in such a way that ũε is con-
tinuous. Since each point of ∂U gives the same contribution γ(I, J ; k) to the upper
bound, we obtain the first term of (4.3).

The case i > 0, i.e., ai > 0, is treated similarly to i < 0 and gives rise to the
second term of (4.3). Finally, for i = 0, i.e., ai = a0 = 0, we argue as above
and define ũε by using a rescaling of a quasiminimiser of (2.1a) and applying the
definition of γ(R−1, λR0; k). We then get an interfacial contribution in (4.3) that
differs in the two cases 0 ∈ ∂U and 0 /∈ ∂U .

5. Limit functionals with respect to different topologies. In the next theo-
rem we characterise the Γ-limit of the sequence {I1,λ

ε (·, k)} with respect to the weak*
convergence in W 1,∞(Ωk;R

N ); see [4, 8] for an introduction to Γ-convergence. As
it can be inferred from the compactness result in Proposition 2, the domain of the
Γ-limit turns out to be

A1,λ(k) :=
{
u ∈ W 1,∞(Ωk;R

N ) : ∂2u = · · · = ∂Nu = 0 a.e. in Ωk ,

|∂1u| ≤ 1 a.e. in Ω−
k , |∂1u| ≤ λ a.e. in Ω+

k

}
.

(5.1)

We show that on such domain the Γ-limit is constant. Hence, the macroscopic
description of the model is similar to that of [14, 15]; in particular, it does not have
memory of the changes of orientation in minimising sequences. In order to keep
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track of the orientation changes, we need to introduce a stronger topology for the
Γ-convergence, as we see in Theorem 5.4.

Theorem 5.1. The sequence of functionals {I1,λ
ε (·, k)} Γ-converges, as ε → 0+, to

the functional

I1,λ(u, k) =

{
γ(k) if u ∈ A1,λ(k) ,

+∞ otherwise,
(5.2)

with respect to the weak* convergence in W 1,∞(Ωk;R
N ), where

γ(k) := min
{
γ(I, λI; k), γ(I, λJ ; k)

}
. (5.3)

Proof. (Liminf inequality) Let ũε ∈ Ãε(Ωk) be a sequence of functions converging
to a function u weakly* in W 1,∞(Ωk;R

N). We have to show that

I1,λ(u, k) ≤ lim inf
ε→0+

I1,λ
ε (ũε, k) .

We assume that lim infε→0+ I1,λ
ε (ũε, k) ≤ C, the other case being trivial. By

applying Proposition 2 we find a set U ∈ U and functions ũ ∈ W 1,∞(Ωk;R
N ),

d2, . . . , dN ∈ L∞(Ωk;R
N ) independent of x2, . . . , xN , such that (3.4), (3.5), and

(3.6) hold. This implies that ∂1u = ∂1ũ a.e., the function u is independent of
x2, . . . , xN , and u ∈ A1,λ(k). Notice that the right-hand side of (3.6) is greater
than or equal to γ(k), since γ(·, ·; k) is positive.

(Limsup inequality) Given a function u ∈ W 1,∞(Ωk;R
N ) we have to find a se-

quence {ũε} ⊂ Ãε(Ωk) such that ũε
∗
⇀ u weakly* in W 1,∞(Ωk;R

N ) and

lim sup
ε→0+

I1,λ
ε (ũε, k) ≤ I1,λ(u, k) . (5.4)

We assume that u ∈ A1,λ(k), the other case being trivial.
The construction of the recovery sequence depends on the precise value of the

minimum in (5.3). Since we do not know such value, we explain how to proceed in
the case when γ(k) is any of the two quantities therein.

• If γ(k) = γ(I, λI; k), we set U := (−L,L) and, following e.g. [16, Theorem 4.1],
we construct measurable functions d2, . . . , dN ∈ L∞(Ωk;R

N ), independent of
x2, . . . , xN , such that

(∂1u | d2 | · · · | dN ) ∈
{
co(SO(N))H a.e. in Ω−

k ,

λ co(SO(N))H a.e. in Ω+
k .

• If γ(k) = γ(I, λJ ; k) we set U := (−L, 0) and construct d2, . . . , dN in such a
way that

(∂1u | d2 | · · · | dN ) ∈
{
co(SO(N))H a.e. in Ω−

k ,

λ co(O(N)\SO(N))H a.e. in Ω+
k .

Proposition 3 can be now applied to F := (∂1u | d2 | · · · | dN ), hence providing us

with a sequence {ũε} ⊂ Ãε(Ωk) satisfying (4.2)–(4.3). In particular we have ∇ũε
∗
⇀

∇u weakly* in L∞(Ωk;M
N×N ) and (5.4) holds because of the choice of U and the

definition of γ(k).
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Figure 2. Two possible recovery sequences for the profile at the
centre of the figure. Here we picture only a part of the wire contain-
ing just one species of atoms, therefore the transition at the inter-
face is not represented. A kink in the profile may be reconstructed
by folding the strip, i.e., mixing rotations and rotoreflections (left);
or by a gradual transition involving only rotations or only rotore-
flections (right). In the limit, the former recovery sequence gives a
positive cost, while the latter gives no contribution. If the stronger
topology is chosen, the appropriate recovery sequence will depend
on the value of the internal variable, which defines the orientation
of the wire.

Remark 4. As long as the Γ-convergence is taken with respect to the weak* topol-
ogy of W 1,∞(Ωk;R

N), (5.2) only accounts for the cost of transitions at the interface
between the two species of atoms. Indeed, away from the interface it is always pos-
sible to construct recovery sequences without mixing rotations and rotoreflections,
as done in the proof of the limsup inequality; such transitions have low interaction
energy, since γ(I, I) = γ(J, J) = 0, see also Proposition 1. In particular, for λ = 1
the limit functional is trivial, since I1,1(u, k) = 0 if u ∈ A1,1(k).

Below we show that, if a stronger topology is chosen, the value of the Γ-limit
changes. The resulting limit functional depends on an internal variable, D in (5.7),
that keeps track of the changes of orientation throughout the thin wire. In fact,
different transitions between the energy wells must now be employed according to
the value of D; two examples are provided in Figure 2.

We introduce the sequence of functionals defined for u ∈ W 1,∞(Ωk;R
N ) and

D ∈ L∞(Ωk;M
N×N ) by

Î1,λ
ε (ũ, D, k) :=

{
I1,λ
ε (ũ, k) if ũ ∈ Ãε(Ωk) and D = (∂1ũ | ε−1∂2ũ | · · · | ε−1∂N ũ) ,

+∞ otherwise.

In the next theorem we study the Γ-limit of the sequence {Î1,λ
ε (·, ·, k)} as ε → 0+

with respect to the weak* convergence in W 1,∞(Ωk;R
N ) × L∞(Ωk;M

N×N ). As a
consequence of Proposition 2, the domain of the Γ-limit turns out to be

Â1,λ(k) :=
{
(u,D) : u ∈ A1,λ(k) , D ∈ L∞(Ωk;M

N×N ) ,

De1 = ∂1u , ∂2D = · · · = ∂ND = 0 a.e. in Ωk ,

D ∈ co(SO(N))H ∪ co(O(N)\SO(N))H a.e. in Ω−
k ,

D ∈ λ co(SO(N))H ∪ λ co(O(N)\SO(N))H a.e. in Ω+
k

}
,

where A1,λ(k) is defined by (5.1). It is convenient to introduce the following def-
inition, where the functional J coincides with the right-hand sides of (3.6) and
(4.3).
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Definition 5.2. Given (u,D) ∈ Â1,λ(k), let U(u,D) be the collection of all subsets
U ∈ U such that

D ∈






co(SO(N))H for a.e. x1 ∈ (−L, 0) ∩ U ,

co(O(N)\SO(N))H for a.e. x1 ∈ (−L, 0) \ U ,

λ co(SO(N))H for a.e. x1 ∈ (0, L) ∩ U ,

λ co(O(N)\SO(N))H for a.e. x1 ∈ (0, L) \ U .

(5.5)

For U ∈ U(u,D) we set

J (U) := γ(I, J ; k)H0(∂U ∩ (−L, 0)) + γ(λI, λJ ; k)H0(∂U ∩ (0, L))

+ γ(I, λI; k) [1− χ∂U (0)] + γ(I, λJ ; k)χ∂U (0)

and

Jmin(u,D) := min
U∈U(u,D)

J (U) . (5.6)

The last definition will be used to apply Propositions 2 and 3 towards the char-
acterisation of the Γ-limit with respect to the stronger topology. To this end, each
pair (u,D) ∈ Â1,λ(k) is associated with a set U realising (5.5). Such U is in general
not unique, since co(SO(N)) ∩ co(O(N)\SO(N)) 6= Ø. Therefore, we choose it to
be “optimal”, i.e., minimising (5.6). Notice that the minimum in (5.6) is attained
since

{J (U) : U ∈ U(u,D)}
⊂{m1γ(I, J ; k) +m2γ(I, λI; k) +m3γ(I, λJ ; k) +m4γ(λI, λJ ; k) : mi ∈ N} .

A minimiser needs not be unique as shown in the following example.

Example 5.3. Fix a1 < a2 < 0 and assume that D(x1) ∈ (O(N)\SO(N))H for
x1 < a1, D(x1) = 0 for a1 < x1 < a2, D(x1) ∈ SO(N)H for a2 < x1 < 0, and
D(x1) ∈ λSO(N)H for x1 > 0. Then any interval of the type U = (a,+∞), with
a1 ≤ a ≤ a2, is a minimiser of (5.6).

Theorem 5.4. The sequence of functionals {Î1,λ
ε (·, ·, k)} Γ-converges, as ε → 0+,

to the functional

Î1,λ(u,D, k) :=

{
Jmin(u,D) if (u,D) ∈ Â1,λ(k) ,

+∞ otherwise,
(5.7)

with respect to the weak* convergence in W 1,∞(Ωk;R
N ) × L∞(Ωk;M

N×N ), where
Jmin(u,D) is defined by (5.6).

Proof. The liminf inequality is obtained by applying Proposition 2 and arguing
as in Theorem 5.1. Also the derivation of the limsup inequality is similar to the
one performed in Theorem 5.1; let us simply point out that, while in the proof of
Theorem 5.1 the matrix field F needed to be reconstructed, here we set F := D and
choose U as a minimiser of (5.6). The conclusion follows by applying Proposition
3.

Remark 5. We underline that Theorem 5.4 provides a nontrivial Γ-limit also in
the case when λ = 1. Indeed, one has Î1,1(u,D, k) = γ(I, J ; k)H0(∂U ∩ (−L,L)) if

(u,D) ∈ Â1,1(k) and U miminises (5.6), where γ(I, J ; k) > 0.
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6. Boundary conditions and external forces. In the present section we discuss
how the previous results extend to the case when the functional (1.4) is comple-
mented by boundary conditions or external forces. Although our considerations
apply to the case of general H ∈ GL+(N) and λ ∈ (0, 1], for simplicity we will
focus on the case H = I and λ = 1. We will also test the consistency of the
present model with the non-interpenetration condition by looking at minimisers of
the Γ-limit when boundary conditions or forces are prescribed. We will see that
the continuum limit that keeps track of such constraints is the one provided by the
stronger topology (5.7).

Boundary conditions. Let B−, B+ ∈ GL+(N) and suppose that the functional
(1.4) is now defined on deformations u ∈ Aε(Ωkε) that satisfy

{
∇u(x) = B−x if − L < x1 < −L+ ε ,

∇u(x) = B+x if L− ε < x1 < L .
(6.1)

It is easy to see that while the compactness result of Proposition 2 remains valid, the
Γ-limit (5.2) will now contain additional terms corresponding to the minimal energy
spent to fix the atoms in the vicinity of the lateral boundaries. However, such extra
terms do not depend on the limiting deformations, therefore they do not encode any
information about the behaviour of minimising sequences. As far as the stronger
topology is concerned, one can see that the limit functional (5.7) will contain the
additional quantities γ(B−, P ; k) and γ(P,B+; k) defined, for P ∈ {I, J}, by

γ(B−, P ; k) := inf
{
E1,1
M (v, k) : M > 0 , v ∈ A∞(Ωk,∞) ,

∇v = B− for x1 ∈ (−∞,−M) ,

∇v = P for x1 ∈ (M,+∞)
}
,

(6.2)

γ(P,B+; k) := inf
{
E1,1
M (v, k) : M > 0 , v ∈ A∞(Ωk,∞) ,

∇v = P for x1 ∈ (−∞,−M) ,

∇v = B+ for x1 ∈ (M,+∞)
}
,

(6.3)

where E1,1
M is as in (2.1b), except that the sum is taken over all atoms contained in

the bounded strip (−M,M)× (−k, k)N−1. The choice of P = I or P = J depends
on whether or not ±L ∈ ∂Ū , where Ū is a minimiser of (5.6). Precisely, if −L ∈ ∂Ū
(resp. L ∈ ∂Ū), then in (6.2) (resp. (6.3)) we take P = I, otherwise we take P = J .

Remark 6. By Proposition 2 and the properties of Γ-convergence, minimisers
of (1.4) subjected to (6.1) converge, up to subsequences, to minimisers of (5.7)
complemented with the above extra terms. Moreover, if dist(B±;SO(N)) is suffi-
ciently small, then such minimisers will not have transitions between co

(
SO(N)

)

and co
(
O(N)\SO(N)

)
. This follows from the fact that

γ(I, B±; k) → 0 as dist(B±;SO(N)) → 0

and therefore, as long as γ(I, B+; k) + γ(B−, I; k) < γ(I, J ; k), the optimal tran-
sitions will fulfil the non-interpenetration condition. In this respect the quantity
γ(I, J ; k) can be regarded as an energetic barrier that must be overcome in order
to have folding effects.
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External forces. We study a class of tangential/radial forces acting along the rod.
Let F1 ∈ RN , F2, . . . , FN ∈ C0(RN ;RN) be a collection of vector fields such that
Fi = Fi(x1) for every 2 = 1, . . . , N . We denote by F the matrix field whose columns
are F1, . . . , FN . For each u : Lε(k) → RN , consider the functional

Fε(u, k) :=
∑

(±Lε,x2,...,xN)∈Lε(k)

F1·
(
u(Lε, x2, . . . , xN )− u(−Lε, x2, . . . , xN )

)

+
∑

(x1,±εk,...,xN )∈Lε(k)

F2(x1) ·
(
u(x1, εk, x3, . . . , xN )− u(x1,−εk, x3, . . . , xN )

)
+ · · ·

· · ·+
∑

(x1,...,xN−1,±εk)∈Lε(k)

FN (x1) ·
(
u(x1, . . . , xN−1, εk)− u(x1, . . . , xN−1,−εk)

)
,

(6.4)

where Lε := L if L is an integer multiple of ε, and Lε := ([L/ε] + 1)ε otherwise.
The functional Fε consists of several terms: the first sum represents a tangential
force, while the other terms define a radial force acting on the external atoms of
the lattice and enforcing the average displacements along the coordinate directions
e2, . . . , eN to be aligned with the given vector fields F2, . . . , FN . Note that Fε(u, k)
can be written as

Fε(u, k) =

Lε−ε∑

x1=−Lε

∑

(x1,...,xN )∈Lε(k)

F1·
(
u(x1 + ε, . . . , xN )− u(x1, . . . , xN )

)

+

ε(k−1)∑

x2=−εk

∑

(x1,...,xN)∈Lε(k)

F2(x1) ·
(
u(x1, x2 + ε, . . . , xN )− u(x1, x2, . . . , xN )

)
+ · · ·

· · ·+
ε(k−1)∑

xN=−εk

∑

(x1,...,xN)∈Lε(k)

FN (x1) ·
(
u(x1, . . . , xN + ε)− u(x1, . . . , xN )

)
,

hence we have that Fε(u, k) ≃ 1
εN−1

´

Ωkε
F : ∇u dx.

Introducing the new variables z(x) := Aεx defined by (1.6), and adopting the
notation used in Section 1, (6.4) can be equivalently expressed in terms of ũ(x) :=
u(z(x)), namely

F̃ε(ũ, k) :=
∑

(±Lε,x2,...,xN )∈A−1
ε Lε(k)

F1·
(
ũ(Lε, x2, . . . , xN )− ũ(−Lε, x2, . . . , xN )

)

+
∑

(x1,±k,...,xN )∈A−1
ε Lε(k)

F2(x1)·
(
ũ(x1, k, x3, . . . , xN )− ũ(x1,−k, x3, . . . , xN )

)
+ . . .

· · ·+
∑

(x1,...,xN−1,±k)∈A−1
ε Lε(k)

FN (x1)·
(
ũ(x1, . . . , xN−1, k)− ũ(x1, . . . , xN−1,−k)

)

= Fε(u, k) ,

so that F̃ε(ũ, k) ≃
´

Ωk
F : (∇ũ A−1

ε ) dx. We can then address the study of the

asymptotic behaviour of the sequence
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Gε(ũ, D, k) := Î1,1
ε (ũ, D, k)− F̃ε(ũ, k) , ũ ∈ Ãε(Ωk), D ∈ L∞(Ωk;M

N×N ) . (6.5)

Note that in this context we cannot use the weak* convergence in W 1,∞(Ωk;R
N ),

since this does not control F̃ε(ũ), which is in fact a term depending on D = ∇ũ A−1
ε .

This justifies the choice of Î1,1
ε rather than I1,1

ε in the definition of Gε: in order
to control both terms in the right hand side of (6.5), we use the stronger topology
provided by the weak* convergence in W 1,∞(Ωk;R

N )×L∞(Ωk;M
N×N ). The force

term is indeed a continuous perturbation of Î1,1
ε with respect to such topology. We

observe that
C

ε

ˆ

Ωk

(|∇ũ A−1
ε |p − 1) dx ≤ C

ε

ˆ

Ωk

distp(∇ũ A−1
ε , O(N)) dx ≤ Î1,1

ε (ũ, k)

and

F̃ε(ũ, k) ≤ C
( ˆ

Ωk

|F |p′

dx+

ˆ

Ωk

|∇ũ A−1
ε |p dx

)
.

Let now {(ũε, Dε)} ∈ Ãε(Ωk)× L∞(Ωk;M
N×N ) be a sequence such that

lim sup
ε→0+

Gε(ũε, Dε, k) ≤ C .

The previous inequalities imply that ||∇ũ A−1
ε ||Lp(Ωk;MN×N) is equibounded, which

in turn implies that lim supε→0+ Î1,1
ε (ũε, k) ≤ C and thus the conclusions of Propo-

sition 2 are still valid. (See also [16, Remark 4.2] for similar results.) Taking also
into account Theorem 5.4, we derive the following result.

Theorem 6.1. The following results hold:

(Compactness) Let {(ũε, Dε)} ∈ Ãε(Ωk) × L∞(Ωk;M
N×N ) be a sequence such

that
lim sup
ε→0+

Gε(ũε, Dε, k) ≤ C .

Then there exists (ũ, D) ∈ Â1,1(k) and a subsequence (not relabelled) such that

ũε −
 

Ωk

ũε dx
∗
⇀ ũ weakly* in W 1,∞(Ωk;R

N) ,

∇ũεA
−1
ε = (∇uε) ◦Aε

∗
⇀ D weakly* in L∞(Ωk;M

N×N ) .

(Γ-limit) The sequence of functionals {Gε} Γ-converges, as ε → 0+, to the func-
tional

G(u,D, k) := Î1,1(u,D, k)− F̃(D, k) , (6.6)

with respect to the weak* convergence in W 1,∞(Ωk;R
N )× L∞(Ωk;M

N×N ), where

F̃(D, k) := (2k)N−1

ˆ L

−L

(
F1 · d1 + · · ·+ FN · dN

)
dx1

for D=(d1| · · · |dN ).

As a consequence of the previous theorem and the standard properties of Γ-
convergence we infer the following result about convergence of minima and min-
imisers.

Corollary 1. We have that

lim
ε→0

min{Gε(u,D) : (u,D) ∈ Ãε(Ωk)× L∞(Ωk;M
N×N )}

=min{G(u,D, k) : (u,D) ∈ Â1,1(k)} .
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Moreover if (uε, Dε) ∈ Ãε(Ωk)× L∞(Ωk;M
N×N ) is such that

lim
ε→0

Gε(uε, Dε) = lim
ε→0

min{Gε(u,D) : (u,D) ∈ Ãε(Ωk)× L∞(Ωk;M
N×N )} ,

then any cluster point (u,D) of (uε, Dε) with respect to the weak* convergence in
W 1,∞(Ωk;R

N ) × L∞(Ωk;M
N×N ) is a minimiser for min{G(u,D, k) : (u,D) ∈

Â1,1(k)}.
We now come back to the question of the consistency of the model with the

non-interpenetration condition. In this context we cannot expect that minimisers
of (6.5) preserve orientation for the whole class of loads defined above. This is
clarified in the following remark.

Remark 7. Minimisers of the functional defined by (6.6) may have transition
points between the two wells SO(N) and O(N)\SO(N). Suppose for instance that
F1, . . . , FN satisfy the following properties: there exist n1, . . . , nN ∈ SN−1, a ∈
(−L,L), such that (n1| · · · |nN ) ∈ SO(N), Fi(x1) = fi(x1)ni for each i = 1, . . . , N ,
f1 ∈ R, fi > 0 in (−L,L) for each i = 1, . . . , N − 1, fN > 0 in (−L, a), fN < 0 in
(a, L).

Define D := (n1| · · · |nN) if x1 ∈ (−L, a), and D := (n1| · · · |nN−1| − nN ) if

x1 ∈ (a, L). Note that (x1n1, D) ∈ Â1,1(k), and D has a transition point at x1 = a.

Denote by Â1,1
0 (k) the subset of Â1,1(k) of deformations with no transitions; i.e.,

Â1,1
0 (k) := {(u,D) ∈ Â1,1(k) : Î1,1(u,D, k) = 0}. It is easy to see that

C := min
(u,D)∈Â1,1

0
(k)
−F̃ (D, k) > −F̃ (D, k)

=− (2k)N−1

(
N−1∑

i=1

ˆ L

−L

fi dx1 +

ˆ a

−L

fN dx1 −
ˆ L

a

fN dx1

)
.

Therefore, if f1, . . . , fN are such that

−F̃ (D, k) + γ(I, J ; k) < C,

then it is energetically preferred to have a transition at a, namely, all minimisers of
G are given by (x1n1 + b,D), with b any vector in RN . In contrast, if fN is always
positive, then minimisers will not display any transition.

7. Comparison with models including dislocations. The lattice mismatch
in heterostructured materials, corresponding to λ 6= 1 in the model described in
this section, can be relieved by creation of dislocations; i.e., line defects of the
crystal structure. We refer to [9, 13, 19] for an account of the literature on disloca-
tions in nanowires. A model for discrete heterostructured nanowires accounting for
dislocations was studied in [14, 15] under the assumption that deformations fulfil
the non-interpenetration condition. In this paper we have chosen to consider only
defect-free configurations in order to both simplify the exposition and to pose em-
phasis on the difficulties to overcome when the non-interpenetration assumption is
removed. In the final part of the paper, we outline the results that can be obtained
when dislocations are accounted for.

Following the ideas of [14], in dimension N = 2 we introduce other possible mod-
els where the reference configuration represents a lattice with dislocations. More
precisely, we fix ρ ∈ [λ, 1] and set

Lε(ρ, k) := L−
ε (1, k) ∪ L+

ε (ρ, k) ,
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H−1

εε ρερε

Figure 3. Lattices with dislocations: choice of the interfacial
nearest neighbours in Lε(ρ, k) and HLε(ρ, k) for a Delaunay trian-
gulation.

where

L−
ε (1, k) := εZ2 ∩Ωkε ∩ {x1 < 0} ,

L+
ε (ρ, k) := ρεZ2 ∩Ωkε ∩ {x1 ≥ 0} ,

and Ωε is as in (1.1). For ρ 6= 1, the number of atomic layers parallel to e1 is
different in the two sublattices (for sufficiently large k); this can be regarded as a
system containing dislocations at the interface.

In presence of dislocations, the choice of the interactions and of the equilibria
strongly depends on the lattice that one intends to model. Therefore, in this section
we focus on the simplest situation of hexagonal (or equilateral triangular) Bravais
lattices in dimension two and we fix

H :=

(
1 − 1

2

0
√
3
2

)
.

The lattice HLε(ρ, k) consists of two Bravais hexagonal sublattices with different
lattice constants ε and ρε, respectively; see Figure 3.

The bonds between nearest and next-to-nearest neighbours are defined first in the
lattice HLε(ρ, k). To this end, one chooses a Delaunay triangulation of HLε(ρ, k)
as defined in [14, Section 1]. Two points x, y of the lattice are said to be nearest
neighbours if there is a lattice point z such that the triangle [x, y, z] is an element of
the triangulation. Two points x, y are next-to-nearest neighbours if there are z1, z2
such that [x, z1, z2] and [y, z1, z2] are elements of the triangulation. These definitions
coincide with the usual notions of nearest and next-to-nearest neighbours away from
the interface. We underline that other choices of interfacial bonds are possible to
derive our main results. Indeed, one may start from any triangulation of the lattice
satisfying the following properties: the number of nearest neighbours of each point
has to be uniformly bounded by a constant independent of ε, while the length of
the bonds in HLε(ρ, k) has to be uniformly bounded by a constant Cε = Cε.

Once the bonds in the lattice HLε(ρ, k) are defined, we define the bonds of a
point x ∈ Lε(ρ, k) as follows:

B1(x) := {ξ ∈ RN : Hx, H(x+ξ) ∈ HLε(ρ, k) are nearest neighbours} ,
B2(x) := {ξ ∈ RN : Hx, H(x+ξ) ∈ HLε(ρ, k) are next-to-nearest neighbours} .

We remark that if x1 ≤ −2ε, then B1(x) = B1 and B2(x) = B2, while if x1 ≥ ρε,
then B1(x) = ρB1 and B2(x) = ρB2, where B1, B2 are as in (1.2)–(1.3). The total
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interaction energy is

E1,λ
ε (u, ρ, k) :=

∑

x∈L−

ε (ρ,k)
ξ∈B1(x)

c1

∣∣∣∣
|u(x+ ξ)− u(x)|

ε
− 1

∣∣∣∣
p

+
∑

x∈L+
ε (ρ,k)

ξ∈B1(x)

c1

∣∣∣∣
|u(x+ ξ)− u(x)|

ε
− λ

∣∣∣∣
p

+
∑

x∈L−

ε (ρ,k)
ξ∈B2(x)

c2

∣∣∣∣
|u(x+ ξ)− u(x)|

ε
−
√
3

∣∣∣∣
p

+
∑

x∈L+
ε (ρ,k)

ξ∈B2(x)

c2

∣∣∣∣
|u(x+ ξ)− u(x)|

ε
−
√
3λ

∣∣∣∣
p

.

Notice that away from the interface all bonds in the reference configuration are
in equilibrium if ρ = λ; instead, interfacial bonds are never in equilibrium. The
equilibrium distance of two atoms at the interface is in fact an average of the
equilibrium distances of the two sublattices. Generalisations of this energy can be
considered as described in [14, Section 4].

The results shown in detail in this paper for the defect-free case (corresponding
to ρ = 1) can be extended to models with dislocations (ρ 6= 1) without significant
changes in the proof. Thus we obtain a Γ-convergence result for the rescaled func-
tionals I1,λ

ε (·, ρ, k) defined as in (1.7). (Notice that the definition of the admissible
functions is given as in the dislocation-free case, with the only variant that the
gradients are constant on the elements of the triangulation introduced to define the
interfacial bonds.) Before stating the theorem we introduce the lattices

L∞(ρ, k) := L−
∞(1, k) ∪ L+

∞(ρ, k) ,

L−
∞(1, k) := Z2 ∩Ωk,∞ ∩ {x1 < 0} ,

L+
∞(ρ, k) := ρZ2 ∩Ωk,∞ ∩ {x1 ≥ 0} ,

where the triangulation is chosen in analogy with the one for Lε(ρ, k). We also set

γ(P1, λP2; ρ, k) := inf
{
E1,λ
∞ (v, ρ, k) : M > 0 , v ∈ A∞(Ωk,∞) ,

∇v = P1H for x1 ∈ (−∞,−M) ,

∇v = λ
ρP2H for x1 ∈ (M,+∞)

}
,

with

E1,λ
∞ (u, ρ, k) :=
∑

x∈L−

∞
(ρ,k)

ξ∈B1(x)

c1

∣∣∣|u(x+ ξ)− u(x)| − 1
∣∣∣
p

+
∑

x∈L+
∞

(ρ,k)
ξ∈B1(x)

c1

∣∣∣|u(x+ ξ)− u(x)| − λ
∣∣∣
p

+
∑

x∈L−

∞
(ρ,k)

ξ∈B2(x)

c2

∣∣∣|u(x+ ξ)− u(x)| −
√
3
∣∣∣
p

+
∑

x∈L+
∞

(ρ,k)
ξ∈B2(x)

c2

∣∣∣|u(x+ ξ)− u(x)| −
√
3λ
∣∣∣
p

.

Theorem 7.1. The sequence of functionals {I1,λ
ε (·, ρ, k)} Γ-converges, as ε → 0+,

to the functional

I1,λ(u, ρ, k) =

{
γ(ρ, k) if u ∈ A1,λ(ρ, k) ,

+∞ otherwise,
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with respect to the weak* convergence in W 1,∞(Ωk;R
N ), where

A1,λ(ρ, k) :=
{
u ∈ W 1,∞(Ωk;R

N ) : ∂2u = 0 a.e. in Ωk ,

|∂1u| ≤ 1 a.e. in Ω−
k , |∂1u| ≤ λ

ρ a.e. in Ω+
k

}

and
γ(ρ, k) := min

{
γ(I, λI; ρ, k), γ(I, λJ ; ρ, k)

}
.

The stronger topology introduced in Theorem 5.4 allows us to take into account
the cost of “folding” the lattice using rotoreflections, giving deeper insight into
deformations that bridge different equilibria. Indeed, it is possible to combine The-
orems 5.4 and 7.1 giving the Γ-convergence in the stronger topology for models with
dislocations; we omit the full statement for brevity.

Remark 8. It is easy to see that for ρ = λ

C1k ≤ γ(λ, k) ≤ C2k

for some constants C1, C2 > 0. To obtain the estimate from above it is sufficient
to consider the identical deformation and recall that the maximal length of a bond
and the maximal number of bonds per atom in the lattice L∞(ρ, k) are uniformly
bounded. This configuration corresponds to the case when dislocations are uni-
formly distributed along the interface between the two sublattices. (Recall that
here N = 2 and that the length of the interface is 2k.) In contrast, the cost of a
defect-free configuration (ρ = 1) is superlinear as already shown in Theorem 2.2.
In fact, following the same proof it is possible to conclude that whenever ρ 6= λ one
has

γ(ρ, k) ≤ Cρ k
2 and lim

k→∞

γ(ρ, k)

k
= +∞ .

This gives a mathematical proof of the experimentally observed fact that disloca-
tions are preferred in order to relieve the lattice mismatch when the thickness of the
specimen is sufficiently large. We recall that a similar result was proven in [14, 15]
(under the non-interpenetration assumption), see also Remark 1.

The results sketched here for hexagonal lattices can be obtained also for other
lattices by adapting the technique to each specific case. In particular, we refer to
[15] for details on the rigidity of face-centred and body-centred cubic lattices in
dimension three.
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