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Abstract. In this paper we define an infinite-dimensional controlled piece-

wise deterministic Markov process (PDMP) and we study an optimal control
problem with finite time horizon and unbounded cost. This process is a cou-

pling between a continuous time Markov Chain and a set of semilinear para-
bolic partial differential equations, both processes depending on the control.

We apply dynamic programming to the embedded Markov decision process

to obtain existence of optimal relaxed controls and we give some sufficient
conditions ensuring the existence of an optimal ordinary control. This study,

which constitutes an extension of controlled PDMPs to infinite dimension, is

motivated by the control that provides Optogenetics on neuron models such
as the Hodgkin-Huxley model. We define an infinite-dimensional controlled

Hodgkin-Huxley model as an infinite-dimensional controlled piecewise deter-

ministic Markov process and apply the previous results to prove the existence
of optimal ordinary controls for a tracking problem.

1. Introduction. Optogenetics is a recent and innovative technique which allows
to induce or prevent electric shocks in living tissues, by means of light stimulation.
Successfully demonstrated in mammalian neurons in 2005 ([8]), the technique relies
on the genetic modification of cells to make them express particular ionic chan-
nels, called rhodopsins, whose opening and closing are directly triggered by light
stimulation. One of these rhodopsins comes from an unicellular flagellate algae,
Chlamydomonas reinhardtii, and has been baptized Channelrodhopsins-2 (ChR2).
It is a cation channel that opens when illuminated with blue light.

Since the field of Optogenetics is young, the mathematical modeling of the phe-
nomenon is quite scarce. Some models have been proposed, based on the study of
the photocycles initiated by the absorption of a photon. In 2009, Nikolic and al.
[33] proposed two models for the ChR2 that are able to reproduce the photocurrents
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generated by the light stimulation of the channel. Those models are constituted of
several states that can be either conductive (the channel is open) or non-conductive
(the channel is closed). Transitions between those states are spontaneous, depend
on the membrane potential or are triggered by the absorption of a photon. For
example, the four-states model of Nikolic and al. [33] has two open states (o1 and
o2) and two closed states (c1 and c2). Its transitions are represented on Figure 1.

o1 o2

c2c1

Kd1

e12

e21

Kd2 ε2u(t)

Kr

ε1u(t)

light light

Figure 1. Simplified four states ChR2 channel : ε1, ε2, e12, e21,
Kd1, Kd2 and Kr are positive constants.

The purpose of this paper is to extend to infinite dimension the optimal control
of Piecewise Deterministic Markov Processes (PDMPs) and to define an infinite-
dimensional controlled Hodgkin-Huxley model, containing ChR2 channels, as an
infinite-dimensional controlled PDMP and prove existence of optimal ordinary con-
trols. We now give the definition of the model.

We consider an axon, described as a 1-dimensional cable and we set I = [0, 1] (the
more physical case I = [−l, l] with 2l > 0 the length of the axon is included here by
a scaling argument). Let DChR2 := {o1, o2, c1, c2}. Individually, a ChR2 features
a stochastic evolution which can be properly described by a Markov Chain on the
finite space constituted of the different states that the ChR2 can occupy. In the four-
states model above, two of the transitions are triggered by light stimulation, in the
form of a parameter u that can evolve in time. Here u(t) is physically proportional
to the intensity of the light with which the protein is illuminated. For now, we will
consider that when the control is on (i.e., when the light is on), the entire axon is
uniformly illuminated. Hence for all t ≥ 0, u(t) features no spatial dependency.

The deterministic Hodgkin-Huxley model was introduced in [30]. A stochastic
infinite-dimensional model was studied in [4], [10], [27] and [39]. The Sodium (Na+)
channels and Potassium (K+) channels are described by two pure jump processes
with state spaces D1 := {n0, n1, n2, n3, n4} and
D2 := {m0h1,m1h1,m2h1,m3h1,m0h0,m1h0,m2h0,m3h0}.
For a given scale N ∈ N∗, we consider that the axon is populated by Nhh = N−1

channels of type Na+, K+ or ChR2, at positions 1
N (Z ∩ NI̊). In the sequel we

will use the notation IN := Z∩NI̊. We consider the Gelfand triple (V,H, V ∗) with
V := H1

0 (I) andH := L2(I). The process we study is defined as a controlled infinite-
dimensional Piecewise Deterministic Markov Process (PDMP). All constants and
auxiliary functions in the next definition will be defined further in the paper.
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Definition 1.1. Stochastic controlled infinite-dimensional Hodgkin-Huxley-

ChR2 model. Let N ∈ N∗. We call N th stochastic controlled infinite-dimensional
Hodgkin-Huxley-ChR2 model the controlled PDMP (v(t), d(t)) ∈ V ×DN defined
by the following characteristics:

• A state space V ×DN with DN = DIN and D = D1 ∪D2 ∪DChR2.
• A control space U = [0, umax], umax > 0.
• A set of uncontrolled PDEs: For every d ∈ DN ,

v′(t) =
1

Cm
∆v(t) + fd(v(t)),

v(0) = v0 ∈ V, v0(x) ∈ [V−, V+] ∀x ∈ I,
v(t, 0) = v(t, 1) = 0, ∀t > 0,

(1)

with

D(∆) = V,

fd(v) :=
1

N

∑
i∈IN

(
gK1{di=n4}(VK − v(

i

N
)) (2)

+ gNa1{di=m3h1}(VNa − v(
i

N
)) + gL(VL − v(

i

N
))

+ gChR2(1{di=O1} + ρ1{di=O2})(VChR2 − v(
i

N
))
)
δ i
N
,

with δz ∈ V ∗ the Dirac mass at z ∈ I, ρ > 0 a constant and Cm > 0 the
membrane capacitance. For x ∈ {K,Na,L,ChR2}, gx > 0 is the normalized
conductance of the channel of type x and Vx ∈ R is the driving potential of
the channel. See Section 5 for more details.

• A jump rate function λ : V × DN × U → R+ defined for all (v, d, u) ∈
H ×DN × U by

λd(v, u) =
∑
i∈IN

∑
x∈D

∑
y∈D,
y 6=x

σx,y(v(
i

N
), u)1{di=x}, (3)

with σx,y : R× U → R∗+ smooth functions for all (x, y) ∈ D2. See Table 1 in
Section 5.1 for the expression of those functions.

• A discrete transition measure Q : V × DN × U → P(DN ) defined for all
(v, d, u) ∈ E ×DN × U and y ∈ D by

Q({di:y}|v, d) =
σdi,y(v( iN ), u)1{di 6=y}

λd(v, u)
, (4)

where di:y is obtained from d by putting its ith component equal to y.

This model can be physically understood as follows. Between jumps of the
stochastic component, the membrane potential evolves according to the Hodgkin-
Huxley dynamics with fixed conductances given by the state of the piecewise con-
stant stochastic component (equation (2)). The propagation of the potential along
the membrane is governed by the Laplacian term 1

Cm
∆ and we obtain equation (1).

The piecewise stochastic component gives the configuration of the ion channels,
taking values in D, along the axon. A jump of this component represent a change
of the state of one ion channel along the axon (basically the opening or the closing
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of a channel). The intensity of this jumping process is given by the rate functions
defining the dynamics of the ion channel variables in the deterministic Hodgkin-
Huxley model (see Table 1 in Section 5.1 for the equations of the deterministic
finite-dimensional Hodgkin-Huxley model).

Remark 1. If the PDEs in Definition 1.1 do not depend on the control variable,
the theory developed in this papers addresses optimal control problems where the
function fd can be controlled (see Section 5.2).

The optimal control problem consists in mimicking an output signal that encodes
a given biological behavior, while minimizing the intensity of the light applied to
the neuron. For example, it can be a time-constant signal and in this case, we
want to change the resting potential of the neuron to study its role on its general
behavior. We can also think of pathological behaviors that would be fixed in this
way. The minimization of light intensity is crucial because the range of intensity
experimentally reachable is quite small and is always a matter of preoccupation for
experimenters. These considerations lead us to formulate the following mathemat-
ical optimal control problem.

Suppose we are given a reference signal Vref ∈ V . The control problem is then
to find α ∈ A that minimizes the following expected cost

Jz(α) = Eαz

[∫ T

0

(
κ||Xα

t (φ)− Vref ||2V + α(Xα
t )
)

dt

]
, z ∈ Υ, (5)

where A is the space of control strategies, Υ an auxiliary state space that comprises
V ×DN , Xα

· is the controlled PDMP and Xα
· (φ) its continuous component.

We will prove the following result.

Theorem 1.2. Under the assumptions of Section 2.1, there exists an optimal con-
trol strategy α∗ ∈ A such that for all z ∈ Υ,

Jz(α
∗) = inf

α∈A
Eαz

[∫ T

0

(
κ||Xα

t (φ)− Vref ||2V + α(Xα
t )
)

dt

]
,

and the value function z → infα∈A Jz(α) is continuous on Υ.

Piecewise Deterministic Markov Processes constitute a large class of Markov pro-
cesses suited to describe a tremendous variety of phenomena such as the behavior
of excitable cells ([4],[10],[36]), the evolution of stocks in financial markets ([11])
or the congestion of communication networks ([22]), among many others. PDMPs
can basically describe any non diffusive Markovian system. The general theory of
PDMPs, and the tools to study them, were introduced by Davis ([18]) in 1984, at
a time when the theory of diffusion was already amply developed. Since then, they
have been widely investigated in terms of asymptotic behavior, control, limit theo-
rems and CLT, numerical methods, among others (see for instance [9], [14], [15], [17]
and references therein). PDMPs are jump processes coupled with a deterministic
evolution between the jumps. They are fully described by three local characteris-
tics: the deterministic flow φ, the jump rate λ, and the transition measure Q. In
[18], the temporal evolution of a PDMP between jumps (i.e., the flow φ) is governed
by an Ordinary Differential Equation (ODE). For that matter, this kind of PDMPs
will be referred to as finite-dimensional in the sequel.

Optimal control of such processes have been introduced by Vermes ([40]) in fi-
nite dimension. In [40], the class of piecewise open-loop controls is introduced as
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the proper class to consider to obtain strongly Markovian processes. A Hamilton-
Jabobi-Bellman equation is formulated and necessary and sufficient conditions are
given for the existence of optimal controls. The standard broader class of so-called
relaxed controls is considered and it plays a crucial role in getting the existence of
optimal controls when no convexity assumption is imposed. This class of controls
has been studied, in the finite-dimensional case, by Gamkrelidze ([26]), Warga ([42]
and [41]) and Young ([45]). Relaxed controls provide a compact class that is ade-
quate for studying optimization problems. Still in finite dimension, many control
problems have been formulated and studied such as optimal control ([25]), optimal
stopping ([16]) or controllability ([28]). In infinite dimension, relaxed controls were
introduced by Ahmed ([1], [2], [3]). They were also studied by Papageorgiou in [37]
where the author shows the strong continuity of relaxed trajectories with respect
to the relaxed control. This continuity result will be of great interest in this paper.

A formal infinite-dimensional PDMP was defined in [10] for the first time, the set
of ODEs being replaced by a special set of Partial Differential Equations (PDE). The
extended generator and its domain are provided and the model is used to define a
stochastic spatial Hodgkin-Huxley model of neuron dynamics. The optimal control
problem we have in mind here regards those Hodgkin-Huxley type models. Seminal
work on an uncontrolled infinite-dimensional Hodgkin-Huxley model was conducted
in [4] where the trajectory of the infinite-dimensional stochastic system is shown to
converge to the deterministic one, in probability. This type of model has then been
studied in [39] in terms of limit theorems and in [27] in terms of averaging. The
extension to infinite dimension heavily relies on the fact that semilinear parabolic
equations can be interpreted as ODEs in Hilbert spaces.

To give a sense to Definition 1.1 and to Theorem 1.2, we will define a controlled
infinite-dimensional PDMP for which the control acts on the three local characteris-
tics. We consider controlled semilinear parabolic PDEs, jump rates λ and transition
measures Q depending on the control. This kind of PDE takes the form

ẋ(t) = Lx(t) + f(x(t), u(t)),

where L is the infinitesimal generator of a strongly continuous semigroup and f
is some function (possibly nonlinear). The optimal control problem we address is
the finite-time minimization of an unbounded expected cost functional along the
trajectory of the form

min
u

E
∫ T

0

c(x(t), u(t))dt,

where x(·) is the continuous component of the PDMP, u(·) the control and T > 0
the finite time horizon, the cost function c(·, ·) being potentially unbounded.

To address this optimal control problem, we use the fairly widespread approach
that consists in studying the imbedded discrete-time Markov chain composed of
the times and the locations of the jumps. Since the evolution between jumps is
deterministic, there exists a one-to-one correspondence between the PDMP and a
pure jump process that enable to define the imbedded Markov chain. The discrete-
time Markov chain belongs to the class of Markov Decision Processes (MDPs).
This kind of approach has been used in [25] and [12] (see also the book [31] for a
self-contained presentation of MDPs). In these articles, the authors apply dynamic
programming to the MDP derived from a PDMP, to prove the existence of optimal
relaxed strategies. Some sufficient conditions are also given to get non-relaxed,
also called ordinary, optimal strategies. However, in both articles, the PDMP is
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finite dimensional. To the best of our knowledge, the optimal control of infinite-
dimensional PDMPs has not yet been treated and this is one of our main objectives
here, along with its motivation, derived from the Optogenetics, to formulate and
study infinite-dimensional controlled neuron models.

The paper is structured as follows. In Section 2 we adapt the definition of
a standard infinite-dimensional PDMP given in [10] in order to address control
problems of such processes. To obtain a strongly Markovian process, we enlarge
the state space and we prove an extension to controlled PDMPs of [10, Theorem
4]. We also define in this section the MDP associated to our controlled PDMP and
that we study later on. In Section 3 we use the results of [37] to define relaxed
controlled PDMPs and relaxed MDPs in infinite dimension. Section 4 gathers the
main results of the paper. We show that the optimal control problems of PDMPs
and of MDPs are equivalent. We build up a general framework in which the MDP
is contracting. The value function is then shown to be continuous and existence of
optimal relaxed control strategies is proved. We finally give in this section, some
convexity assumptions under which an ordinary optimal control strategy can be
retrieved.

The final Section 5 is devoted to showing that the previous theoretical results
apply to the model of Optogenetics previously introduced. Several variants of the
model are discussed, the scope of the theoretical results being much larger than the
model of Definition 1.1.

2. Theoretical framework for the control of infinite-dimensional PDMPs.

2.1. The enlarged process and assumptions. In the present section we define
the infinite-dimensional controlled PDMPs that we consider in this paper in a way
that enables us to formulate control problems in which the three characteristics of
the PDMP depend on an additional variable that we call the control parameter. In
particular we introduce the enlarged process which enable us to address optimization
problems in the subsequent sections.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual condi-
tions. We consider a Gelfand triple (V ⊂ H ⊂ V ∗) such that H is a separable
Hilbert space and V a separable, reflexive Banach space continuously and densely
embedded in H. The pivot space H is identified with its dual H∗, V ∗ is the topo-
logical dual of V . H is then continuously and densely embedded in V ∗. We will
denote by || · ||V , || · ||H , and || · ||V ∗ the norms on V , H, and V ∗, by (·, ·) the inner
product in H and by 〈·, ·〉 the duality pairing of (V, V ∗). Note that for v ∈ V and
h ∈ H, 〈h, v〉 = (h, v).

Let D be a finite set, the state space of the discrete variable and Z a compact
Polish space, the control space. Let T > 0 be the finite time horizon. Intuitively a
controlled PDMP (vt, dt)t∈[0,T ] should be constructed on H ×D from the space of
ordinary control rules defined as

A := {a : (0, T )→ U measurable},

where U , the action space, is a closed subset of Z. Elements of A are defined up to
a set in [0, T ] of Lebesgue measure 0. The control rules introduced above are called
ordinary in contrast with the relaxed ones that we will introduce and use in order
to prove existence of optimal strategies. When endowed with the coarsest σ-algebra
such that
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a→
∫ T

0

e−tw(t, a(t))dt

is measurable for all bounded and measurable functions w : R+ × U → R, the
set of control rules A becomes a Borel space (see [46, Lemma 1]). This will be
crucial for the discrete-time control problem that we consider later. Conditionally
to the continuous component vt and the control a(t), the discrete component dt is a
continuous-time Markov chain given by a jump rate function λ : H ×D×U → R+

and a transition measure Q : H ×D × U → P(D).
Between two consecutive jumps of the discrete component, the continuous com-

ponent vt solves a controlled semilinear parabolic PDE{
v̇t = −Lvt + fd(vt, a(t)),

v0 = v, v ∈ V. (6)

For (v, d, a) ∈ H ×D ×A we will denote by φa(v, d) the flow of (6). Let Tn, n ∈ N
be the jump times of the PDMP. Their distribution is then given by

P[Tn+1 − Tn > ∆t|Tn, vTn , dTn ] = exp

(
−
∫ Tn+∆t

Tn

λ
(
φas(vTn , dTn), ds, a(s)

)
ds

)
.

(7)
for t ∈ [Tn;Tn+1). When a jump occurs, the distribution of the post jump state is
given by

P[dt = d|dt− 6= dt] = Q({d}|dt− , vt− , a(t)). (8)

The triple (λ,Q, φ) fully describes the process and is referred to as the local
characteristics of the PDMP.

We will make the following assumptions on the local characteristics of the PDMP.

(H(λ)): For every d ∈ D, λd : H × Z → R+ is a function such that:
1. There exist Mλ, δ > 0 such that:

δ ≤ λd(x, z) ≤Mλ, ∀(x, z) ∈ H × Z.
2. z → λd(x, z) is continuous on Z, for all x ∈ H.
3. x → λd(x, z) is locally Lipschitz continuous, uniformly in Z, that is, for

every compact set K ⊂ H, there exists lλ(K) > 0 such that

|λd(x, z)− λd(y, z)| ≤ lλ(K)||x− y||H ∀(x, y, z) ∈ K2 × Z.
(H(Q)): The function Q : H ×D × Z × B(D) → [0, 1] is a transition probability

such that: (x, z) → Q({p}|x, d, z) is continuous for all (d, p) ∈ D2 (weak
continuity) and Q({d}|x, d, z) = 0 for all (x, z) ∈ H × Z.

(H(L)): L : V → V ∗ is such that:
1. L is linear, monotone;
2. ||Lx||V ∗ ≤ c+ c1||x||V with c > 0 and c1 ≥ 0;
3. 〈Lx, x〉 ≥ c2||x||2V , c2 > 0;
4. −L generates a strongly continuous semigroup (S(t))t≥0 on H such that
S(t) : H → H is compact for every t > 0. We will denote by MS a bound,
for the operator norm, of the semigroup on [0, T ].

(H(f)): For every d ∈ D, fd : H × Z → H is a function such that:
1. x→ fd(x, z) is Lipschitz continuous, uniformly in Z, that is,

||fd(x, z)− fd(y, z)||H ≤ lf ||x− y||H ∀(x, z) ∈ H × Z, lf > 0.

2. (x, z)→ fd(x, z) is continuous from H ×Z to Hw, where Hw denotes the
space H endowed with the topology of weak convergence.
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Let us make some comments on the assumptions above. Assumption (H(λ))1.
will ensure that the process is regular, i.e. the number of jumps of dt is almost surely
finite in every finite time interval. Assumption (H(λ))2. will enable us to construct
relaxed trajectories. Assumptions (H(λ))3. and (H(Q)) will be necessary to obtain
the existence of optimal relaxed controls for the associated MDP. Assumptions
(H(L))1.2.3. (H(f)) will ensure the existence and uniqueness of the solution of
(6). Note that all the results of this paper are unchanged if assumption (H(f))1 is
replaced by

(H(f))’: For every d ∈ D, fd : H × Z → H is a function such that:
1. x→ −fd(x, z) is continuous monotone, for all z ∈ Z.
2. ||fd(x, z)||H ≤ b1 + b2||x||H , b1 ≥ 0, b2 > 0, for all z ∈ Z.

In particular, assumption (H(f)) implies (H(f))’2. and we will use the constants
b1 and b2 further in this paper. Note that they can be chosen uniformly in D since
it is a finite set. To see this, note that z → fd(0, z) is a weakly continuous on the
compact space Z and thus weakly bounded. It is then strongly bounded by the
Uniform Boundedness Principle.

Finally, assumptions (H(f))3. and (H(L))4. will respectively ensure the existence
of relaxed solutions of (6) and the strong continuity of these solutions with regards
to the relaxed control. For that last matter, the compactness of Z is also required.
The following theorem is a reminder that the assumption on the semigroup does not
make the problem trivial since it implies that L is unbounded when H is infinite-
dimensional.

Theorem 2.1. (see [24, Theorem 4.29])

1. For a strongly continuous semigroup (T (t))t≥0 the following properties are
equivalent
(a) (T (t))t≥0 is immediately compact.
(b) (T (t))t≥0 is immediately norm continuous, and its generator has compact

resolvent.
2. Let X be a Banach space. A bounded operator A ∈ L(X) has compact resolvent

if and only if X is finite-dimensional.

We define Uad((0, T ), U) := {a ∈ L1((0, T ), Z)|a(t) ∈ U a.e.} = A (Z is compact
and so is U) the space of admissible rules. Because of (H(L)) and (H(f)), for all a ∈
Uad((0, T ), U), (6) has a unique solution belonging to L2((0, T ), V )∩H1((0, T ), V ∗)
and moreover, the solution belongs to C([0, T ], H) (see [37] for the construction of
such a solution). We will make an extensive use of the mild formulation of the
solution of (6), given by

φat (v, d) = S(t)v +

∫ t

0

S(t− s)fd(φas(v, d), a(s))ds, (9)

with φa0(v, d) = v. One of the keys in the construction of a controlled PDMP in
finite or infinite dimension is to ensure that φa enjoys the flow property φat+s(v, d) =
φas(φat (v, d), d) for all (v, d, a) ∈ H × D × Uad((0, T ), U) and (t, s) ∈ R+. It is the
flow property that guarantees the Markov property for the process. Under the
formulation (9), it is easy to see that the solution φa cannot feature the flow property
for any reasonable set of admissible rules. In particular, the jump process (dt, t ≥ 0)
given by (7) and (8) is not Markovian. Moreover in control problems, and especially
in Markovian control problems, we are generally looking for feedback controls which
depend only on the current state variable so that at any time, the controller needs
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only to observe the current state to be able to take an action. Feedback controls
would ensure the flow property. However they impose a huge restriction on the class
of admissible controls. Indeed, feedback controls would be functions u : H×D → U
and for the solution of (6) to be uniquely determined, the function x→ fd(x, u(x, d))
needs to be Lipschitz continuous. It would automatically exclude discontinuous
controls and therefore would not be adapted to control problems. To avoid this
issue, Vermes introduced piecewise open-loop controls (see [40]): after a jump of
the discrete component, the controller observes the location of the jump, say (v, d) ∈
H × D and chooses a control rule a ∈ Uad((0, T ), U) to be applied until the next
jump. The time elapsed since the last jump must then be added to the state variable
in order to see a control rule as a feedback control. While Vermes [40] and Davis
[19] only add the last post jump location we also want to keep track of the time of
the last jump in order to define proper controls for the Markov Decision Processes
that we introduce in the next section, and to eventually obtain optimal feedback
policies. According to these remarks, we now enlarge the state space and define
control strategies for the enlarged process. We introduce first several sets that will
be useful later on.

Definition 2.2. We define the sets D(T, 2) := {(t, s) ∈ [0, T ]2 | t + s ≤ T},
Ξ := H ×D ×D(T, 2)×H and Υ := H ×D × [0, T ].

Definition 2.3. Control strategies. Enlarged controlled PDMP. Survival function.
a) The set A of admissible control strategies is defined by

A := {α : Υ→ Uad([0, T ];U) measurable}.
b) On Ξ we define the enlarged controlled PDMP (Xα

t )t≥0 = (vt, dt, τt, ht, νt)t≥0

with strategy α ∈ A as follows:

• (vt, dt)t≥0 is the process defined by (6), (7) and (8),
• τt is the time elapsed since the last jump at time t,
• ht is the time of the last jump before time t,
• νt is the post jump location right after the jump at time ht.

c) Let z := (v, d, h) ∈ Υ. For a ∈ Uad([0, T ];U) we will denote by χa. (z) the solution
of

d

dt
χat (z) = −χat (z)λd(φ

a
t (z), a(t)), χa0(z) = 1,

and its immediate extension χα. (z) to A such that the process (Xα
t )t≥0 starting at

(v, d, 0, h, v) ∈ Ξ, admits χα. as survival function:

P[T1 > t] = χαt (z).

The notation φat (z) means here

φat (z) := S(t)v +

∫ t

0

S(t− s)fd(φas(z), a(s))ds.

and φαt (z) is to be understood as φ
α(z)
t (z).

Remark 2. i) Thanks to [46, Lemma 3], the set of admissible control strategies is
in bijection with

{α : Υ× [0, T ]→ U measurable},
and thus can be seen as a set of measurable feedback controls acting on Ξ (but
not depending on the first component) and with values in U . The formulation of
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Definition 2.3 is adequate to address the associated discrete-time control problem
in Section 2.3.
ii) In view of Definition 2.3, given α ∈ A, the deterministic dynamics of the process
(Xα

t )t≥0 = (vt, dt, τt, , ht, νt)t≥0 between two consecutive jumps obeys the initial
value problem 

v̇t = −Lvt + fd(vt, α(v, d, s)(τt)), vs = v ∈ E,

ḋt = 0, ds = d ∈ D,
τ̇t = 1, τs = 0,

ḣt = 0, hs = s ∈ [0, T ],

ν̇t = 0, νs = vs = v,

(10)

with s the last time of jump. The jump rate function and transition measure of the
enlarged PDMP are straightforwardly given by the ones of the original process and
will be denoted the same (see Appendix A for their expression).
iii) If the relation t = ht + τt indicates that the variable ht might be redundant,
recall that we keep track of it on purpose. Indeed, the optimal control will appear
as a function of the jump times so that keeping them as a variable will make the
control feedback.
iv) Because of the special definition of the enlarged process, for every control strat-
egy in A, the initial point of the process (Xα

t )t≥0 cannot be any point of the enlarged
state space Ξ. More precisely we introduce in Definition 2.4 below the space of co-
herent initial points.

Definition 2.4. Space of coherent initial points.
Take α ∈ A and x := (v0, d0, 0, h0, v0) ∈ Ξ and extend the notation φαt (x) of

Definition 2.3 to Ξ by

φαt (x) := S(t)v0 +

∫ t

0

S(t− s)fd0
(φαs (x), α(v0, d0, h0)(τs))ds

The set Ξα ⊂ Ξ of coherent initial points is defined as follows

Ξα := {(v, d, τ, h, ν) ∈ Ξ | v = φατ (ν, d, 0, h, ν)}. (11)

Then we have for all x := (v0, d0, τ0, h0, ν0) ∈ Ξα,

φαt (x) := S(t)v0 +

∫ t

0

S(t− s)fd0
(φαs (x), α(ν0, d0, h0)(τs))ds (12)

Note that (Xα
t ) can be constructed like any PDMP by a classical iteration that we

recall in Appendix A for the sake of completeness.

Proposition 1. The flow property.
Take α ∈ A and x := (v0, d0, τ0, h0, ν0) ∈ Ξα. Then φαt+s(x) = φαt (φαs (x), ds, τs,

hs, νs) for all (t, s) ∈ R2
+.

Based on equation (12) and the definition of Ξα, the proof of Proposition 1 is
straightforward.

Notation. Let α ∈ A. For z ∈ Υ, we will use the notation αs(z) := α(z)(s).
Furthermore, we will sometimes denote by Qα(·|v, d) instead of Q(·|v, d, ατ (ν, d, h))
for all (v, d, τ, h, ν) ∈ A× Ξα.
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2.2. A probability space common to all strategies. Up to now, thanks to
Definition 2.3, we can formally associate the PDMP (Xα

t )t∈R+ to a given strategy
α ∈ A. However, we need to show that there exists a filtered probabily space
satisfying the usual conditions under which, for every control strategy α ∈ A,
the controlled PDMP (Xα

t )t≥0 is a homogeneous strong Markov process. This is
what we do in the next theorem which provides an extension of [10, Theorem 4]
to controlled infinite-dimensional PDMPs and some estimates on the continuous
component of the PDMP.

Theorem 2.5. Assume that assumptions (H(λ)), (H(Q)), (H(L)) and (H(f)) (or
(H(f))’) are satisfied.
a) There exists a filtered probability space satisfying the usual conditions such that
for every control strategy α ∈ A the process (Xα

t )t≥0 introduced in Definition 2.3
is a homogeneous strong Markov process on Ξ with extended generator Gα given in
Appendix B.
b) For every compact set K ⊂ H, there exists a deterministic constant cK > 0 such
that for all control strategy α ∈ A and initial point x := (v, d, τ, h, ν) ∈ Ξα, with
v ∈ K, the first component vαt of the control PDMP (Xα

t )t≥0 starting at x is such
that

sup
t∈[0,T ]

||vαt ||H ≤ cK .

The proof of Theorem 2.5 is given in Appendix B. In the next section, we intro-
duce the MDP that will allow us to prove the existence of optimal strategies.

2.3. A Markov Decision Process (MDP). Because of the particular definition
of the state space Ξ, the state of the PDMP just after a jump is in fact fully
determined by a point in Υ. In Appendix B we recall the one-to-one correspondence
between the PDMP on Ξ and the included pure jump process (Zn)n∈N with values
in Υ. This pure jump process allows to define a Markov Decision Process (Z ′n)n∈N
with values in Υ ∪ {∆∞}, where ∆∞ is a cemetery state added to Υ to define a
proper MDP. In order to lighten the notations, the dependence on a control strategy
α ∈ A of both jump processes is implicit. The stochastic kernel Q′ of the MDP
satisfies

Q′(B × C × E|z, a) =

∫ T−h

0

ρtdt, (13)

for any z := (v, d, h) ∈ Υ, Borel sets B ⊂ H, C ⊂ D, E ⊂ [0, T ], and a ∈
Uad([0, T ], U), where

ρt := λd(φ
a
t (z), a(t))χat (z)1E(h+ t)1B(φat (z))Q(C|φat (z), d, a(t)),

with φat (z) given by (9) and Q′({∆∞}|z, a) = χaT−h(z), and Q′({∆∞}|∆∞, a) =
1. The conditional jumps of the MDP (Z ′n)n∈N are then given by the kernel
Q′(·|z, α(z)) for (z, α) ∈ Υ × A. Note that Z ′n = Zn as long as Tn ≤ T , where
Tn is the last component of Zn. Since we work with Borel state and control spaces,
we will be able to apply techniques of [6] for discrete-time stochastic control prob-
lems, without being concerned by measurability matters. See [6, Section 1.2] for an
illuminating discussion on these measurability questions.

3. Relaxed controls. Relaxed controls are constructed by enlarging the set of
ordinary ones, in order to convexify the original system, and in such a way that
it is possible to approximate relaxed strategies by ordinary ones. The difficulty
in doing so is twofold. First, the set of relaxed trajectories should not be much
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larger than the original one. Second, the topology considered on the set of relaxed
controls should make it a compact set and, at the same time, make the flow of the
associated PDE continuous. Compactness and continuity are two notions in conflict
so being able to achieve such a construction is crucial. Intuitively a relaxed control
strategy on the action space U corresponds to randomizing the control action: at
time t, instead of taking a predetermined action, the controller will take an action
with some probability, making the control a transition probability. This has to be
formalized mathematically.
Notation and reminder. Z is a compact Polish space, C(Z) denotes the set of
all real-valued continuous, necessarily bounded, functions on Z, endowed with the
supremum norm. Because Z is compact, by the Riesz Representation Theorem, the
dual space [C(Z)]∗ of C(Z) is identified with the space M(Z) of Radon measures
on B(Z), the Borel σ-field of Z. We will denote by M1

+(Z) the space of probability
measures on Z. The action space U is a closed subset of Z. We will use the notations
L1(C(Z)) := L1((0, T ), C(Z)) and L∞(M(Z)) := L∞((0, T ),M(Z)).

3.1. Relaxed controls for a PDE. Let B([0, T ]) denote the Borel σ-field of [0, T ]
and Leb the Lebesgue measure. A transition probability from ([0, T ],B([0, T ]), Leb)
into (Z,B(Z)) is a function γ : [0, T ]× B(Z)→ [0, 1] such that{

t→ γ(t, C) is measurable for all C ∈ B(Z),

γ(t, ·) ∈M1
+(Z) for all t ∈ [0, T ].

We will denote by R([0, T ], Z) the set of all transition probability measures from
([0, T ],B([0, T ]), Leb) into (Z,B(Z)).
Recall that we consider the PDE (6):

v̇t = Lvt + fd(vt, a(t)), v0 = v, v ∈ V, a ∈ Uad([0, T ], U). (14)

The relaxed PDE is then of the form

v̇t = Lvt +

∫
Z

fd(vt, u)γ(t)(du), v0 = v, v ∈ V, γ ∈ R([0, T ], U), (15)

where R([0, T ], U) := {γ ∈ R([0, T ], Z)|γ(t)(U) = 1 a.e. in [0, T ]} is the set of
transition probabilities from ([0, T ],B([0, T ]), Leb) into (Z,B(Z)) with support in U .
The integral part of (15) is to be understood in the sense of Bochner-Lebesgue as we
show now. The topology we consider on R([0, T ], U) follows from [5] and because
Z is a compact metric space, it coincides with the usual topology of relaxed control
theory of [43]. It is the coarsest topology that makes continuous all mappings

γ →
∫ T

0

∫
Z

f(t, z)γ(t)(dz)dt ∈ R,

for every Carathodory integrand f : [0, T ]×Z → R, a Carathodory integrand being
such that 

t→ f(t, z) is measurable for all z ∈ Z,
z → f(t, z) is continuous a.e.,

|f(t, z)| ≤ b(t) a.e., with b ∈ L1((0, T ),R).

This topology is called the weak topology on R([0, T ], Z) but we show now
that it is in fact metrizable. Indeed, Carathodory integrands f on [0, T ] × Z
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can be identified with the Lebesgue-Bochner space L1(C(Z)) via the application
t → f(t, ·) ∈ L1(C(Z)). Now, since M(Z) is a separable (Z is compact), dual
space (dual of C(Z)), it enjoys the Radon-Nikodym property. Using [21, Theorem
1 p. 98], it follows that [L1(C(Z))]∗ = L∞(M(Z)). Hence, the weak topology on
R([0, T ], Z) can be identified with the w∗-topology in (L∞(M(Z)), L1(C(Z))), the
latter being metrizable since L1(C(Z)) is a separable space (see [23, Theorem 1
p. 426]). This crucial property allows to work with sequences when dealing with
continuity matters with regards to relaxed controls.

Finally, by Alaoglu’s Theorem, R([0, T ], U) is w∗-compact in L∞(M(Z)), and
the set of original admissible controls Uad([0, T ], U) is dense in R([0, T ], U) (see [5,
Corollary 3 p. 469]).

For the same reasons why (14) admits a unique solution, by setting f̄d(v, γ) :=∫
Z
fd(v, u)γ(du), it is straightforward to see that (15) admits a unique solution.

The following theorem gathers the results of [37, Theorems 3.2 and 4.1] and will be
of paramount importance in the sequel.

Theorem 3.1. If assumptions (H(L)) and (H(f)) (or (H(f))’) hold, then
a) the space of relaxed trajectories (i.e. solutions of 15) is a convex, compact set
of C([0, T ], H). It is the closure in C([0, T ], H) of the space of original trajectories
(i.e. solutions of 14).
b) The mapping that maps a relaxed control to the solution of (15) is continuous
from R([0, T ], U) into C([0, T ], H).

3.2. Relaxed controls for infinite-dimensional PDMPs. First of all, note
that since the control acts on all three characteristics of the PDMP, convexity
assumptions on the fields fd(v, U) would not necessarily ensure existence of optimal
controls as it does for partial differential equations. Such assumptions should also
be imposed on the rate function and the transition measure of the PDMP. For
this reason, relaxed controls are even more important to prove existence of optimal
controls for PDMP. For what has been done for PDE above, we are now able to
define relaxed PDMPs. The next definition is the relaxed analogue of Definition
2.3.

Definition 3.2. Relaxed control strategies, relaxed local characteristics.
a) The set AR of relaxed admissible control strategies for the PDMP is defined by

AR := {µ : Υ→ R([0, T ];U) measurable}.

Given a relaxed control strategy µ ∈ AR and z ∈ Υ, we will denote by µz := µ(z) ∈
R([0, T ];U) and µzt the corresponding probability measure on (Z,B(Z)).
b) For γ ∈M1

+(Z), (v, d) ∈ H×D and C ∈ B(D), we extend the jump rate function
and transition measure as follows

λd(v, γ) :=

∫
Z

λd(v, u)γ(du),

Q(C|v, d, γ) := (λd(v, γ))
−1
∫
Z

λd(v, u)Q(C|v, d, u)γ(du),

(16)

the expression for the enlarged process being straightforward. This allows us to
give the relaxed survival function of the PDMP and the relaxed mild formulation
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of the solution of (15)
d

dt
χµt (z) = −χµt (z)λd(φ

µ
t (z), µzt ), χµ0 (z) = 1,

φµt (z) = S(t)v +

∫ t

0

∫
Z

S(t− s)fd(φµs (z), u)µzs(du)ds,

(17)

for µ ∈ AR and z := (v, d, h) ∈ Υ. For γ ∈ R([0, T ], U), we will also use the
following notation

χγt (z) = exp

(
−
∫ t

0

λd(φ
γ
s (z), γ(s))ds

)
,

φγt (z) = S(t)v +

∫ t

0

∫
Z

S(t− s)fd(φγs (z), u)γ(s)(du)ds,

The following proposition is a direct consequence of Theorem 2.5b).

Proposition 2. For every compact set K ⊂ H, there exists a deterministic constant
cK > 0 such that for all control strategy µ ∈ AR and initial point x := (v, d, τ, h, ν) ∈
Ξα, with v ∈ K, the first component vµt of the control PDMP (Xµ

t )t≥0 starting at x
is such that

sup
t∈[0,T ]

||vµt ||H ≤ cK .

The relaxed transition measure is given in the next section through the relaxed
stochastic kernel of the MDP associated to our relaxed PDMP.

3.3. Relaxed associated MDP. Let z := (v, d, h) ∈ Υ and γ ∈ R([0, T ], U). The
relaxed stochastic kernel of the relaxed MDP satisfies

Q′(B × C × E|z, γ) =

∫ T−h

0

ρ̃tdt, (18)

for Borel sets B ⊂ H, C ⊂ D, E ⊂ [0, T ], where

ρ̃t := χγt (z)1E(h+ t)1B(φγt (z))

∫
Z

λd

(
φγt (z), u

)
Q
(
C|φγt (z), d, u

)
γ(t)(du),

= χγt (z)1E(h+ t)1B(φγt (z))λd

(
φγt (z), γ(t)

)
Q
(
C|φγt (z), d, γ(t)

)
and Q′({∆∞}|z, γ) = χγT−h(z), and Q′({∆∞}|∆∞, γ) = 1, with, as before, the
conditional jumps of the MDP (Z ′n)n∈N given by the kernel Q′(·|z, µ(z)) for (z, µ) ∈
Υ×AR.

4. Main results. Here, we are interested in finding optimal controls for optimiza-
tion problems involving infinite-dimensional PDMPs. For instance, we may want
to track a targeted “signal” (as a solution of a given PDE, see Section 5). To do so,
we are going to study the optimal control problem of the imbedded MDP defined
in Section 2.3. This strategy has been for example used in [12] in the particular
setting of a decoupled finite-dimensional PDMP, the rate function being constant.
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4.1. The optimal control problem. Thanks to the preceding sections we can
consider ordinary or relaxed costs for the PDMP Xα or the MDP and their cor-
responding value functions. For z := (v, d, h) ∈ Υ and α ∈ A we denote by Eαz
the conditional expectation given that Xα

h = (v, d, 0, h, v) and by Xα
s (φ) the first

component of Xα
s . Furthermore, we denote by Xα

s := (vs, ds, τs, hs, νs), then the
shortened notation α(Xα

s ) will refer to ατs(νs, ds, hs). These notations are straight-
forwardly extended to AR. We introduce a running cost c : H × Z → R+ and a
terminal cost g : H → R+ satisfying

(H(c)): (v, z)→ c(v, z) and v → g(v) are nonnegative quadratic functions, that is
there exists (a, b, c, d, e, f, g, h, i, j) ∈ R9 such that for v, z ∈ H × Z,

c(v, u) = a||v||2H + bd̄(0, u)2 + c||v||H d̄(0, u) + d||v||H + ed̄(0, u) + f,

g(v) = h||v||2H + i||v||H + j,

with d̄(·, ·) the distance on Z.

Remark 3. This assumption might seem a bit restrictive, but it falls within the
framework of all the applications we have in mind. More importantly, it can be
widely loosened if we slightly change the assumptions of Theorem 4.3. In particular,
all the following results, up to Lemma 4.14, are true and proved for continuous
functions c : H × Z → R+ and g : H → R+. See Remark 6 below.

Definition 4.1. Ordinary value function for the PDMP Xα.
For α ∈ A , we define the ordinary expected total cost function Vα : Υ→ R and

the corresponding value function V as follows:

Vα(z) := Eαz

[∫ T

h

c(Xα
s (φ), α(Xα

s ))ds+ g(Xα
T (φ))

]
, z := (v, d, h) ∈ Υ, (19)

V (z) = inf
α∈A

Vα(z), z ∈ Υ. (20)

Assumption (H(c)) ensures that Vα and V are properly defined.

Definition 4.2. Relaxed value function for the PDMP Xµ.
For µ ∈ AR we define the relaxed expected cost function Vµ : Υ → R and the

corresponding relaxed value function Ṽ as follows:

Vµ(z) := Eµz

[∫ T

h

∫
Z

c(Xµ
s (φ), u)µ(Xµ

s )(du)ds+ g(Xµ
T (φ))

]
, z := (v, d, h) ∈ Υ,

(21)

Ṽ (z) = inf
µ∈AR

Vµ(z), z ∈ Υ. (22)

We can now state the main result of this section.

Theorem 4.3. Under assumptions (H(λ)), (H(Q)), (H(L)), (H(f)) and (H(c)),

the value function Ṽ of the relaxed optimal control problem on the PDMP is con-
tinuous on Υ and there exists an optimal relaxed control strategy µ∗ ∈ AR such
that

Ṽ (z) = Vµ∗(z), ∀z ∈ Υ.
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Remark 4. All the subsequent results that lead to Theorem 4.3 would be easily
transposable to the case of a lower semicontinuous cost function. We would then
obtain a lower semicontinuous value function.

The next section is dedicated to proving Theorem 4.3 via the optimal control
of the MDP introduced before. Let us briefly sum up what we are going to do.
We first show that the optimal control problem of the PDMP is equivalent to the
optimal control problem of the MDP and that an optimal control for the latter
gives an optimal control strategy for the original PDMP. We will then build up
a framework, based on so called bounding functions (see [12]), in which the value
function of the MDP is the fixed point of a contracting operator. Finally, we show
that under the assumptions of Theorem 4.3, the relaxed PDMP Xµ belongs to this
framework.

4.2. Optimal control of the MDP. Let us define the ordinary cost c′ on Υ ∪
{∆∞} × Uad([0, T ];U) for the MDP defined in Section 2.3. For z := (v, d, h) ∈ Υ
and a ∈ Uad([0, T ];U),

c′(z, a) :=

∫ T−h

0

χas(z) c(φas(z), a(s))ds+ χaT−h(z)g(φaT−h(z)), (23)

and c′(∆∞, a) := 0.
Assumption (H(c)) allows c′ to be properly extended to R([0, T ], U) by the for-

mula

c′(z, γ) =

∫ T−h

0

χγs (z)

∫
Z

c(φγs (z), u)γ(s)(du)ds+ χγT−h(z)g(φγT−h(z)), (24)

and c′(∆∞, γ) = 0 for (z, γ) ∈ Υ × R([0, T ], U). We can now define the expected
cost function and value function for the MDP.

Definition 4.4. Cost and value functions for the MDP (Z ′n).
For α ∈ A (resp. µ ∈ AR), we define the total expected cost Jα (resp. Jµ) and

the value function J (resp. J ′)

Jα(z) = Eαz

[ ∞∑
n=0

c′(Z ′n, α(Z ′n))

]
, Jµ(z) = Eµz

[ ∞∑
n=0

c′(Z ′n, µ(Z ′n))

]
,

J(z) = inf
α∈A

Jα(z), J ′(z) = inf
µ∈AR

Jµ(z),

for z ∈ Υ and with α(Z ′n) (resp. µ(Z ′n)) being elements of Uad([0, T ], U) (resp.
R([0, T ], U)).

The finiteness of these sums will by justified later by Lemma 4.9.

4.2.1. The equivalence Theorem. In the following theorem we prove that the relaxed
expected cost function of the PDMP equals the one of the associated MDP. Thus,
the value functions also coincide. For the finite-dimensional case we refer the reader
to [19] or [12] where the discrete component of the PDMP is a Poisson process and
therefore the PDMP is entirely decoupled. The PDMPs that we consider are fully
coupled.

Theorem 4.5. The relaxed expected costs for the PDMP and the MDP coincide:
Vµ(z) = Jµ(z) for all z ∈ Υ and relaxed control µ ∈ AR. Thus, the value functions

Ṽ and J ′ coincide on Υ.
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Remark 5. Since we have A ⊂ AR, the expected costs Vα(z) and Jα(z) also
coincide for all z ∈ Υ and ordinary control strategy α ∈ A

Proof. Let µ ∈ AR and z = (v, d, h) ∈ Υ and consider the PDMP Xµ starting
at (v, d, 0, h, v) ∈ Ξµ. We drop the dependence in the control in the notation and
denote by (Tn)n∈N the jump times, and Zn := (vTn , dTn , Tn) ∈ Υ the point in Υ
corresponding to Xµ

Tn
. Let Hn = (Z0, . . . , Zn), Tn ≤ T . For a purpose of concision

we will rewrite µn := µ(Zn) ∈ R([0, T ], U) for all n ∈ N.

Vµ(z) = Eµz

[ ∞∑
n=0

∫ T∧Tn+1

T∧Tn

∫
Z

c(Xµ
s (φ), u)µns−Tn(du)ds+ 1{Tn≤T<Tn+1}g(Xµ

T (φ))

]

=

∞∑
n=0

Eµz

[
Eµz

[∫ T∧Tn+1

T∧Tn

∫
Z

c(Xµ
s (φ), u)µns−Tn(du)ds

+ 1{Tn≤T<Tn+1}g(Xµ
T (φ))|Hn

]]
,

all quantities being non-negative. We want now to examine the two terms that we
call I1 and I2 separately. For n ∈ N, we start with

I1 := Eµz

[∫ T∧Tn+1

T∧Tn

∫
Z

c(Xµ
s (φ), u)µns−Tn(du)ds|Hn

]
that we split according to Tn ≤ T < Tn + 1 or Tn+1 ≤ T (if T ≤ Tn, the corre-
sponding term vanishes). Then

I1 = 1{Tn≤T}E
µ
z

[∫ T

Tn

∫
Z

c(Xµ
s (φ), u)µns−Tn(du)1{Tn+1>T}ds|Hn

]

+ Eµz

[
1{Tn+1≤T}

∫ Tn+1

Tn

∫
Z

c(Xµ
s (φ), u)µns−Tn(du)ds|Hn

]
.

By the strong Markov property and the flow property, the first term on the RHS is
equal to

1{Tn≤T}E
µ
z

[∫ T−Tn

0

∫
Z

c(Xµ
Tn+s(φ), u)µns (du)1{Tn+1−Tn>T−Tn}ds|Hn

]

= 1{Tn≤T}χ
µ
T−Tn(Zn)

∫ T−Tn

0

∫
Z

c(φµs (Zn), u)µns (du)ds.

Using the same arguments, the second term on the RHS of I1 can be written as

1{Tn≤T}

∫ T−Tn

0

∫
Z

λdn(φµt (Zn), u)µnt (du)χµt (Zn)

∫ t

0

∫
Z

c(φµs (Zn), u)µnt (du)dsdt,

An integration by parts yields

I1 = 1{Tn≤T}

∫ T−Tn

0

χµt (Zn)

∫
Z

c(φαt (Zn), u)µnt (du)dt.

Moreover

I2 := Eµz
[
1{Tn≤T<Tn+1}g(Xµ

T )|Hn

]
= 1{Tn≤T}χ

µ
T−Tn(Zn)g(φµT−Tn(Zn))
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By definition of the Markov chain (Z ′n)n∈N and the function c′, we then obtain for
the total expected cost of the PDMP,

Vµ(z) =

∞∑
n=0

Eµz

[
1{Tn≤T}

∫ T−Tn

0

χµt (Zn)

∫
Z

c(φαt (Zn), u)µnt (du)dt

+ 1{Tn≤T} χ
µ
T−Tn(Zn)g(φµT−Tn(Zn))

]

= Eµz

[ ∞∑
n=0

c′(Z ′n, µ(Z ′n))

]
= Jµ(z).

4.2.2. Existence of optimal controls for the MDP. We now show existence of opti-
mal relaxed controls under a contraction assumption. We use the notation R :=
R([0, T ];U) in the sequel. Let us also recall some notations regarding the different
control sets we consider.

• u is an element of the control set U .
• a : [0, T ]→ U is an element of the space of admissible control rules
Uad([0, T ], U)

• α : Υ → Uad([0, T ], U) is an element of the space of admissible strategies for
the original PDMP.

• γ : [0, T ] → M1
+(Z) is an element of the space of relaxed admissible control

rules R.
• µ : Υ→ R is an element of the space of relaxed admissible strategies for the

relaxed PDMP.

The classical way to address the discrete-time stochastic control problem that
we introduced in Definition 4.4 is to consider an additional control space that we

will call the space of Markovian policies and denote by Π. Formally Π :=
(
AR
)N

and a Markovian control policy for the MDP is a sequence of relaxed admissible
strategies to be applied at each stage. The optimal control problem is to find
π := (µn)n∈N ∈ Π that minimizes

Jπ(z) := Eπz

[ ∞∑
n=0

c′(Z ′n, µn(Z ′n))

]
.

Now denote by J∗(z) this infimum. We will in fact prove the existence of a
stationary optimal control policy that will validate the equality

J∗(z) = J ′(z).

Let us now define some operators that will be useful for our study and state
the first theorem of this section. Let w : Υ → R a continuous function, (z, γ, µ) ∈
Υ×R×AR and define

Rw(z, γ) := c′(z, γ) + (Q′w)(z, γ),

Tµw(z) := c′(z, µ(z)) + (Q′w)(z, µ(z)) = Rw(z, µ(z)),

(T w)(z) := inf
γ∈R
{c′(z, γ) + (Q′w)(z, γ)} = inf

γ∈R
Rw(z, γ),

where (Q′w)(z, γ) :=
∫

Υ
w(x)Q′(dx|z, γ) which admits also the expression
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∫ T−h

0

χγt (z)

∫
Z

λd

(
φγt (z), u

)∫
D

w
(
φγt (z), r, h+ t

)
Q
(

dr|φγt (z), d, u
)
γ(t)(du)dt.

Theorem 4.6. Assume that there exists a subspace C of the space of continuous
bounded functions from Υ to R such that the operator T : C → C is contracting
and the zero function belongs to C. Assume furthermore that C is a Banach space.
Then J ′ is the unique fixed point of T and there exists an optimal control µ∗ ∈ AR
such that

J ′(z) = Jµ∗(z), ∀z ∈ Υ.

All the results needed to prove this Theorem can be found in [6]. We break down
the proof into the two following elementary propositions, suited to our specific
problem. Before that, recall that from [6, Proposition 9.1 p.216], Π is the adequate
control space to consider since history-dependent policies do not improve the value
function.

Let us now consider the n-stages expected cost function and value function de-
fined by

Jnπ(z) := Eπz

[
n−1∑
i=0

c′
(
Z ′i, µi(Z

′
i)
)]

Jn(z) := inf
π∈Π

Eπz

[
n−1∑
i=0

c′
(
Z ′i, µi(Z

′
i)
)]

for n ∈ N and π := (µn)n∈N ∈ Π. We also set J∞ := limn→∞ Jn.

Proposition 3. Let assumptions of Theorem 4.3 hold. Let v, w : Υ→ R such that
v ≤ w on Υ, and let µ ∈ AR. Then Tµv ≤ Tµw. Moreover

Jn(z) = inf
π∈Π

(Tµ0Tµ1 . . . Tµn−10)(z) = (T n0)(z),

with π := (µn)n∈N and J∞ is the unique fixed point of T in C.

Proof. The first relation is straightforward since all quantities defining Q′ are non-
negative. The equality Jn = infπ∈Π Tµ0

Tµ1
. . . Tµn−1

0 is also immediate since Tµ
just shifts the process of one stage (see also [6, Lemma 8.1, p194]).

Let I ∈ C, ε > 0 and n ∈ N. For every k ∈ {1..n − 1}, T kI ∈ C and so there

exist µ0, µ1, . . . , µn−1 ∈
(
AR
)n

such that

Tµn−1
I ≤ T I + ε, Tµn−2

T I ≤ T T I + ε, . . . , Tµ0
T n−1I ≤ T T n−1I + ε.

We then get

T nI ≥ Tµ0T n−1I − ε ≥ Tµ0Tµ1T n−2I − 2ε ≥ · · · ≥ Tµ0Tµ1 . . . Tµn−1I − nε
≥ inf
π∈Π
Tµ0
Tµ1

. . . Tµn−1
I − nε.

Since this last inequality is true for any ε > 0 we get

T nI ≥ inf
π∈Π
Tµ0
Tµ1

. . . Tµn−1
I,

and by definition of T , T I ≤ Tµn−1
I. Using the first relation of the proposition we

get

T nI ≤ Tµ0
Tµ1

. . . Tµn−1
I.
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Finally, T nI = infπ∈Π Tµ0Tµ1 . . . Tµn−1I for all I ∈ C and n ∈ N. We deduce from
the Banach fixed point theorem that J∞ = limn→∞ T n0 belongs to C and is the
only fixed point of T .

Proposition 4. There exists µ∗ ∈ AR such that J∞ = Jµ∗ = J ′.

Proof. By definition, for every π ∈ Π, Jn ≤ Jnπ, so that J∞ ≤ J∗. Now from the
previous proposition, J∞ = infγ∈RRJ∞(·, γ), R is a compact space and RJ∞ is a
continuous function. We can thus find a measurable mapping µ∗ : Υ→ R such that
J∞ = Tµ∗J∞. J∞ ≥ 0 so from the first relation of the previous proposition, for all
n ∈ N, J∞ = T nµ∗J∞ ≥ T nµ∗0 and by taking the limit J∞ ≥ Jµ∗ . Since Jµ∗ ≥ J∗ we
get J∞ = Jµ∗ = J∗. We conclude the proof by remarking that J∗ ≤ J ′ ≤ Jµ∗ .

The next section is devoted to proving that the assumptions of Theorem 4.6 are
satisfied for the MDP.

4.2.3. Bounding functions and contracting MDP. The concept of bounding function
that we define below will ensure that the operator T is a contraction. The existence
of the space C of Theorem 4.6 will mostly result from Theorem 3.1 and again from
the concept of bounding function.

Definition 4.7. Bounding functions for a PDMP.
Let c (resp. g) be a running (resp. terminal) cost as in Section 4.1. A measurable

function b : H → R+ is called a bounding function for the PDMP if there exist
constants cc, cg, cφ ∈ R+ such that
(i) c(v, u) ≤ ccb(v) for all (v, u) ∈ H × Z,
(ii) g(v) ≤ cgb(v) for all v ∈ H,
(iii) b(φγt (z)) ≤ cφb(v) for all (t, z, γ) ∈ [0, T ]×Υ×R, z = (v, d, h).

Given a bounding function for the PDMP we can construct one for the MDP
with or without relaxed controls, as shown in the next lemma (cf. [13, Definition
7.1.2 p.195]).

Lemma 4.8. Let b is a bounding function for the PDMP. We keep the notations
of Definition 4.7. Let ζ > 0. The function Bζ : Υ 7−→ R+ defined by Bζ(z) :=

b(v)eζ(T−h) for z = (v, d, h) is an upper bounding function for the MDP. The two
inequalities below are satisfied for all (z, γ) ∈ Υ×R,

c′(z, γ) ≤ Bζ(z)cφ
(cc
δ

+ cg

)
, (25)

∫
Υ

Bζ(y)Q′(dy|z, γ) ≤ Bζ(z) cφ
Mλ

(ζ + δ)
. (26)

Proof. Take (z, γ) ∈ Υ×R , z = (v, d, h). On the one hand from (24) and Definition
4.7 we obtain

c′(z, γ) ≤
∫ T−h

0

e−δscccφb(v)ds+ e−δ(T−h)cgcφb(v)

≤ Bζ(z)e
−ζ(T−h)cφ

(
cc

1− e−δ(T−h)

δ
+ e−δ(T−h)cg

)
,
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which immediately implies (25). On the other hand∫
Υ

Bζ(y)Q′(dy|z, γ) =

∫ T−h

0

χγs (z)b(φγs (z))eζ(T−h−s)∫
Z

λd(φ
γ
s (z), u)Q(D|φγs (z), u)γs(du)ds

≤ eζ(T−h)b(v)cφMλe
−ζτ

∫ T−h

0

e−δse−ζsds

= Bζ(z)cφ
Mλ

ζ + δ

(
1− e−(ζ+δ)(T−h)

)
which implies (26).

Let b be a bounding function for the PDMP. Consider ζ∗ such that C :=
cφ

Mλ

ζ∗+δ < 1. Denote by B∗ the associated bounding function for the MDP. We

introduce the Banach space

L∗ := {v : Υ→ R continuous ; ||v||∗ := sup
z∈Υ

|v(z)|
|B∗(z)|

<∞} . (27)

The following two lemmas give an estimate on the expected cost of the MDP
that justifies manipulations of infinite sums.

Lemma 4.9. The inequality Eγz [B∗(Z ′k)] ≤ CkB∗(z) holds for any (z, γ, k) ∈ Υ×
R× N.

Proof. We proceed by induction on k. Let z ∈ Υ. The desired inequality holds for
k = 0 since Eγz [B∗(Z ′0)] = B∗(z). Suppose now that it holds for k ∈ N. Then

Eγz
[
B∗(Z ′k+1)

]
= Eγz

[
Eγz
[
B∗(Z ′k+1)|Z ′k

]]
= Eγz

[∫
Υ

B∗(y)Q′(dy|Z ′k, γ)

]
= Eγz

[
B∗(Z ′k)

∫
Υ
B∗(y)Q′(dy|Z ′k, γ)

B∗(Z ′k)

]
.

Using (26) and the definition of C, we conclude that Eγz
[
B∗(Z ′k+1)

]
≤ CEγz [B∗(Z ′k)]

and by the assumption on k Eγz
[
B∗(Z ′k+1)

]
≤ Ck+1B∗(z).

Lemma 4.10. There exists κ > 0 such that for any (z, µ) ∈ Υ×AR,

Eµz

[ ∞∑
k=n

c′(Z ′k, µ(Z ′k))

]
≤ κ Cn

1− C
B∗(z).

Proof. The results follows from Lemma 4.9 and from the fact that

c′(Z ′k, µ(Z ′k)) ≤ B∗(Zk)cφ

(cc
δ

+ cg

)
for any k ∈ N.

We now state the result on the operator T .

Lemma 4.11. T is a contraction on L∗: for any (v, w) ∈ L∗ × L∗,
||T v − T w||B∗ ≤ C ||v − w||B∗ ,

where C = cφ
Mλ

ζ∗+δ .
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Proof. We prove here the contraction property. The fact T : L∗ → L∗ is less
straightforward and is addressed in the next section. Let z := (v, d, h) ∈ Υ. Let us
recall that for functions f, g : R → R

sup
γ∈R

f(γ)− sup
γ∈R

g(γ) ≤ sup
γ∈R

(f(γ)− g(γ)) .

Moreover since infγ∈R f(γ) − infγ∈R g(γ) = supγ∈R(−g(γ)) − supγ∈R(−f(γ)), we
have

T v (z)− T w (z) ≤ sup
γ∈R

∫ T−h

0

χγs (z)

∫
Z

λd(φ
γ
s (z), u)I(u, s) γ(s)(du)ds,

where

I(u, s) :=

∫
D

(
v(φγs (z), r, h+ s)− w(φγs (z), r, h+ s)

)
Q(dr|φγs (z), d, u),

so that

||T v − T w||B∗ ≤ sup
(z,γ)∈Υ×R

∫ T−h

0

χγs (z)

∫
Z

λd(φ
γ
s (z), u)J (s, u)γ(s)(du)ds

where

J (s, u) :=

∫
D

B∗(φγs (z), r, h+ s)

B∗(z)
||v − w||B∗Q(dr|φγs (z), d, u)

We then conclude that

||T v − T w||B∗ ≤ sup
(z,γ)∈Υ×R

∫ T−h

0

e−δsMλcφe
−ζ∗sds ||v − w||B∗

≤Mλcφ ||v − w||B∗
∫ T−h

0

e−(δ+ζ∗)sds

≤ C||v − w||B∗ .

4.2.4. Continuity properties. Here we prove that the trajectories of the relaxed
PDMP are continuous w.r.t. the control and that the operator R transforms con-
tinuous functions in continuous functions.

Lemma 4.12. Assume that (H(L)) and (H(f)) are satisfied. Then the mapping

φ : (z, γ) ∈ Υ×R → φγ· (z) = S(0)v +

∫ ·
0

∫
Z

S(· − s)fd(φγs (z), u)γ(s)(du)ds

is continuous from Υ×R in C([0, T ];H).

Proof. This proof is based on the result of Theorem 3.1. Here we add the joint
continuity on Υ×R whereas the continuity is just on R in [37]. Let t ∈ [0, T ] and
let (z, γ) ∈ Υ ×R. Assume that (zn, γn) → (z, γ). Since D is a finite set, we take
the discrete topology on it and if we denote by zn = (vn, dn, hn) and z = (v, d, h),
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we have the equality dn = d for n large enough. So for n large enough we have

φγnt (zn)− φγt (z) = S(t)vn − S(t)v +

∫ t

0

∫
Z

S(t− s)fd(φγnt (zn), u)γn(s)(du)ds

−
∫ t

0

∫
Z

S(t− s)fd(φγt (z), u)γ(s)(du)ds

= S(t)vn − S(t)v

+

∫ t

0

∫
Z

S(t− s)[fd(φγnt (zn), u)γn(s)(du)− fd(φγt (z), u)γn(s)(du)]ds

+

∫ t

0

∫
Z

S(t− s)[fd(φγt (z), u)γn(s)(du)− fd(φγt (z), u)γ(s)(du)]ds.

From(H(f))1. we get

||φγnt (zn)−φγt (z)||H ≤MS ||vn− v||H +MSlf

∫ t

0

||φγns (zn)−φγs (z)||Hds+ ||`n(t)||H

where `n(t) :=
∫ t

0

∫
Z
S(t − s)[fd(φγt (z), u)γn(s)(du) − fd(φγt (z), u)γ(s)(du)]ds. By

the Gronwall lemma we obtain a constant C > 0 such that

||φγnt (zn)− φγt (z)||H ≤ C(||vn − v||H + sup
s∈[0,T ]

||`n(s)||H).

Since limn→+∞ ||vn − v||H = 0, the proof is complete if we show that the sequence
of functions (||`n||H) uniformly converges to 0.

Let us denote by xn(t) :=
∫ t

0

∫
Z

(h, S(t−s)fd(φγt (z), u)))Hγn(s)(du)ds. Using the
same argument as the proof of [37, Theorem 3.1], there is no difficulty in proving that
(xn)n∈N is compact in C([0, T ], H) so that, passing to a subsequence if necessary,
we may assume that xn → x in C([0, T ], H). Now let h ∈ H.

(h, `n(t))H =

∫ t

0

∫
Z

(h, S(t− s)fd(φγt (z), u)))Hγn(s)(du)ds

−
∫ t

0

∫
Z

(h, S(t− s)fd(φγt (z), u)))Hγ(s)(du)ds −−−−→
n→∞

0,

since (t, u) → (h, S(t − s)fd(φ
γ
t (z), u)))H ∈ L1(C(Z)) and γn → γ weakly* in

L∞(M(Z)) = [L1(C(Z))]∗. Thus, x(t) =
∫ t

0

∫
Z
S(t − s)fd(φγt (z), u)γ(s)(du)ds and

`n(t) = xn(t)− x(t) for all t ∈ [0, T ], proving the uniform convergence of ||`n||H on
[0, T ].

The next lemma establishes the continuity property of the operator R.

Lemma 4.13. Suppose that assumptions (H(L)), (H(f)), (H(λ)), (H(Q)), (H(c))
are satisfied. Let b be a continuous bounding function for the PDMP. Let w :
Υ× U → R be continuous with |w(z, u)| ≤ cwB∗(z) for some cw ≥ 0. Then

(z, γ)→
∫ T−h

0

χγs (z)

(∫
Z

w(φγs (z), d, h+ s, u)γ(s)(du)

)
ds

is continuous on Υ×R, with z := (v, d, h). Quite straightforwardly,

(z, γ)→ Rw(z, γ) = c′(z, γ) +Q′w (z, γ)

is continuous on Υ×R.

Proof. See Appendix C.
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It now remains to show that there exists a bounding function for the PDMP.
This is the result of the next lemma.

Lemma 4.14. Suppose assumptions (H(L)), (H(f)) and (H(c)) are satisfied. Now
define c̃ and g̃ from c and g by taking the absolute value of the coefficients of these
quadratic functions. Let M2 > 0. Define M3 := (M2 + b1T )MSe

MSb2T and b : H →
R+ by

b(v) :=


max

||x||H≤M3

max
u∈U

c̃(x, u) + max
||x||H≤M3

g̃(x), if ||v||H ≤M3,

max
u∈U

c̃(v, u) + g̃(v), if ||v||H > M3,
(28)

is a continuous bounding function for the PDMP.

Proof. For all (v, u) ∈ H × U , c(v, u) ≤ b(v) and g(v) ≤ b(v). Now let (t, z, γ) ∈
[0, T ]×Υ×R, z = (v, d, h).

• If ||φγt (z)||H ≤ M3, b(φγt (z)) = b(M3). If ||v||H ≤ M3 then b(v) = b(M3) =
b(φγt (z)). Otherwise, ||v||H > M3 and b(v) > b(M3) = b(φγt (z)).

• If ||φγt (z)||H > M3 then ||v||H > M2 and ||φγt (z)||H ≤ ||v||HM3/M2 (See 42
in Appendix B). So,

b(φγt (z))) = max
u∈U

c̃(φγt (z), u) + g̃(φγt (z)) ≤ b
(
M3

M2
v

)
≤ M2

3

M2
2

b(v),

since M3/M2 > 1.

Remark 6. Lemma 4.14 ensures the existence of a bounding function for the
PDMP. To broaden the class of cost functions considered, we could just assume
the existence of a bounding for the PDMP in Theorem 4.3 and then, the assump-
tion on c and g should just be the continuity.

4.3. Existence of an optimal ordinary strategy. Ordinary strategies are of
crucial importance because they are the ones that the controller can implement
in practice. Here we give convexity assumptions that ensure the existence of an
ordinary optimal control strategy for the PDMP.

(A) (a) For all d ∈ D, the function fd : (y, u) ∈ H×U → E is linear in the control
variable u.

(b) For all d ∈ D, y ∈ H and E ∈ B(D), the function λd(y, ·) : U → R+ is
concave and the function λd(y, ·)Q(E|y, d, ·) : u ∈ H×U → R+ is convex.

(c) The cost function c : (y, u) ∈ E×U → R+ is convex in the control variable
u.

Theorem 4.15. Suppose that assumptions (H(L)), (H(f)), (H(λ)), (H(Q)), (H(c))
and (A) are satisfied. If we consider µ∗ ∈ AR an optimal relaxed strategy for the
PDMP, then the ordinary strategy µ̄t :=

∫
Z
uµ∗t (du) ∈ A is optimal, i.e. Vµ̄(z) =

Ṽµ∗(z) = V (z), ∀z ∈ Υ.

Proof. This result is based on the fact that for all (z, γ) ∈ Υ × R, (Lw)(z, γ) ≥
(Lw)(z, γ̄), with γ̄ =

∫
Z
uγ(du). Indeed, the fact that the function fd is linear in

the control variable implies that for all (t, z, γ) ∈ [0, T ]×Υ×R, φγt (z) = φγ̄t (z). The
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convexity assumptions (A) give the following inequalities∫
Z

λd(φ
γ
s (z), u)γ(s)(du) ≤ λd(φγ̄s (z), γ̄(s)),∫

Z

λd(φ
γ
s (z), u)Q(E|φγs (z), d, u)γ(s)(du) ≥ λd(φγ̄s (z), γ̄(s))Q(E|φγ̄s (z), d, γ̄(s)),∫

Z

c(φγs (z), u)γs(du) ≥ c(φγ̄s (z), γ̄s),

for all (s, z, γ, E) ∈ [0, T ]×Υ×R×B(D), so that in particular χγt (z) ≥ χγ̄t (z). We
can now denote for all (z, γ) ∈ Υ×R and w : Υ→ R+,

(Lw)(z, γ)

=

∫ T−h

0

χγs (z)

∫
Z

c(φγs (z), u)γ(s)(du)ds+ χγT−h(z)g(φγT−h(z))

+

∫ T−h

0

χγs (z)

∫
Z

λd(φ
γ
s (z), u)

∫
D

w(φγs (z), r, h+ s)Q(dr|φγs (z), d, u)γ(s)(du)ds

≥
∫ T−h

0

χγ̄s (z)c(φγ̄s (z), γ̄(s))ds+ χγ̄T−h(z)g(φγ̄T−h(z))

+

∫ T−h

0

χγ̄s (z)

∫
Z

λd(φ
γ̄
s (z), u)

∫
D

w(φγ̄s (z), r, h+ s)Q(dr|φγ̄s (z), d, u)γ(s)(du)ds.

Furthermore,∫
Z

λd(φ
γ̄
s (z), u)

∫
D

w(φγ̄s (z), r, h+ s)Q(dr|φγ̄s (z), d, u)γ(s)(du) ≥

λd(φ
γ̄
s (z), γ̄(s))

∫
D

w(φγ̄s (z), r, h+ s)Q(dr|φγ̄s (z), d, γ̄(s)),

so that

(Lw)(z, γ) ≥
∫ T−h

0

χγ̄s (z)c(φγ̄s (z), γ̄(s))ds+ χγ̄T−h(z)g(φγ̄T−h(z))

+

∫ T−h

0

χγ̄s (z)λd(φ
γ̄
s (z), γ̄(s))

∫
D

w(φγ̄s (z), r, h+ s)Q(dr|φγ̄s (z), d, γ̄(s))

= (Lw)(z, γ̄).

4.4. An elementary example. Here we treat an elementary example that satisfies
the assumptions made in the previous two sections.

Let V = H1
0 ([0, 1]),H = L2([0, 1]), D = {−1, 1}, U = [−1, 1]. V is a Hilbert

space with inner product

(v, w)V :=

∫ 1

0

v(x)w(x) + v′(x)w′(x)dx.

We consider the following PDE for the deterministic evolution between jumps

∂

∂t
v(t, x) = ∆v(t, x) + (d+ u)v(t, x),

with Dirichlet boundary conditions. We define the jump rate function for (v, u) ∈
H × U by
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λ1(v, u) =
1

e−||v||2 + 1
+ u2, λ−1(v, u) = e

− 1
||v||2+1 + u2,

and the transition measure by Q({−1}|v, 1, u) = 1, and Q({1}|v,−1, u) = 1.
Finally, we consider a quadratic cost function c(v, u) = K||Vref −v||2 +u2, where

Vref ∈ D(∆) is a reference signal that we want to approach.

Lemma 4.16. The PDMP defined above admits the continuous bounding function

b(v) := ||Vref ||2H + ||v||2H + 1. (29)

Furthermore, the value function of the optimal control problem is continuous and
there exists an optimal ordinary control strategy.

Proof. The proof consists in verifying that all assumptions of Theorem 4.15 are
satisfied. Assumptions (H(Q)), (H(c)) and (A) are straightforward. For (v, u) ∈
H × U , 1/2 ≤ λ1(v, u) ≤ 2 and e−1 ≤ λ1(v, u) ≤ 2. The continuity in the variable
u is straightforward and the locally Lipschitz continuity comes from the fact that

the functions v → 1/(e−||v||
2

+ 1), and v → e−β(v), with β(v) := 1/(||v||2 + 1),

are Frchet differentiable with derivatives v → 2(v, ·)H/(e−||v||
2

+ 1)2, and v →
2(v, ·)Hβ2(v)e−β(v).

−∆v : w ∈ V →
∫ 1

0
v′(x)w′(x)dx so that −∆ : V → V ∗ is linear. Let (v, w) ∈ V 2.

〈−∆(v − w), v − w〉 =

∫ 1

0

((v − w)′(x))2dx ≥ 0.

|〈−∆v, w〉|2 = |
∫ 1

0

v′(x)w′(x)dx|2 ≤
∫ 1

0

(v′(x))2dx

∫ 1

0

(w′(x))2dx ≤ ||v||2V ||w||2V ,

and so || −∆v||V ∗ ≤ ||v||V . 〈−∆v, v〉 =
∫ 1

0
(v′(x))2dx ≥ C ′||v||2V , for some constant

C ′ > 0, by the Poincar inequality.
Now, define for k ∈ N∗, fk(·) :=

√
2 sin(kπ·), a Hilbert base of H.

On H, S(t) is the diagonal operator

S(t)v =
∑
k≥1

e−(kπ)2t(v, fk)Hfk.

For t > 0, S(t) is a contracting Hilbert-Schmidt operator.
For (v, w, u) ∈ H2 × U , fd(v, u) = (d+ u)v and

||fd(v, u)− fd(w, u)||H ≤ 2||v − w||H , ||fd(v, u)||H ≤ 2||v||H .
This means that for every z = (v, d, h) ∈ Υ, γ ∈ R([0, T ], U) and t ∈ [0, T ],

||φγt (z)||H ≤ e2T ||v||H .

5. Application to the model in Optogenetics.

5.1. Proof of Theorem 1.2. We begin this section by making some comments on
Definition 1.1.

In (1), Cm > 0 is the membrane capacitance and V− and V+ are constants defined
by V− := min{VNa, VK , VL, VChR2} and V+ := max{VNa, VK , VL, VChR2}. They
represent the physiological domain of our process. In (2), the constants gx > 0
are the normalized conductances of the channels of type x and Vx ∈ R are the
driving potentials of the channels. The constant ρ > 0 is the relative conductance
between the open states of the ChR2. For a matter of coherence with the theoretical
framework presented in the paper, we will prove Theorem 1.2 for the mollification
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of the model that we define now. This model is very close to the one of Definition
1.1. It is obtained by replacing the Dirac masses δz by their mollifications ξNz that
are defined as follows. Let ϕ be the function defined on R by

ϕ(x) :=

{
Ce

1
x2−1 , if |x| < 1,

0, if |x| ≥ 1,
(30)

with

C :=

(∫ 1

−1

exp

(
1

x2 − 1

)
dx

)−1

such that
∫
R ϕ(x)dx = 1.

Now, let UN :=
(

1
2N , 1−

1
2N

)
and ϕN (x) := 2Nϕ(2Nx) for x ∈ R. For z ∈ IN ,

the N th mollified Dirac mass ξNz at z is defined for x ∈ [0, 1] by

ξNz (x) :=

{
ϕN (x− z), if x ∈ UN
0, if x ∈ [0, 1] \ UN .

(31)

For all z ∈ IN , ξ
N
z ∈ C∞([0, 1]) and ξNz → δz almost everywhere in [0, 1] as

N → +∞, so that (ξNz , φ)H → φ(z), as N → ∞ for every φ ∈ C(I,R). The
expressions v(i/N) in Definition 1.1 are also replaced by (ξNi/N , v)H . The decision

to use the mollified Dirac mass over the Dirac mass can be motivated by two main
reasons. First of all, as mentioned in [10], the concentration of ions is homogeneous
in a spatially extended domain around an open channel so the current is modeled
as being present not only at the point of a channel, but in a neighborhood of it.
Second, the smooth mollified Dirac mass leads to smooth solutions of the PDE and
we need at least continuity of the flow. Nevertheless, the results of Theorem 1.2
remain valid with the Dirac masses and we refer the reader to Section 5.2.

The following lemma is a direct consequence of [10, Proposition 7] and will be
very important for the model to fall within the theoretical framework of the previous
sections.

Lemma 5.1. For every y0 ∈ V with y0(x) ∈ [V−, V+] for all x ∈ I, the solution y
of (1) is such that for t ∈ [0, T ],

V− ≤ y(t, x) ≤ V+, ∀x ∈ I.

Physiologically speaking, we are only interested in the domain [V−, V+]. Since
Lemma 5.1 shows that this domain is invariant for the controlled PDMP, we can
modify the characteristics of the PDMP outside the domain [V−, V+] without chang-
ing its dynamics. We will do so for the rate functions σx,y of Table 1. From now on,
consider a compact set K containing the closed ball of H, centered in zero and with
radius max(V−, V+). We will rewrite σx,y the quantities modified outside K such
that they all become bounded functions. This modification will enable assumption
(H(λ))1. to be verified.

The next lemma shows that the stochastic controlled infinite-dimensional Hodgk-
in-Huxley-ChR2 model defines a controlled infinite-dimensional PDMP as defined
in Definition 2.3 and that Theorem 2.5 applies.

Lemma 5.2. For N ∈ N∗, the N th stochastic controlled infinite-dimensional
Hodgkin-Huxley-ChR2 model satisfies assumptions (H(λ)), (H(Q)), (H(L)) and
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(H(f)). Moreover, for any control strategy α ∈ A, the membrane potential vα

satisfies

V− ≤ vαt (x) ≤ V+, ∀(t, x) ∈ [0, T ]× I.

Proof. The local Lipschitz continuity of λd from H × Z in R+ comes from the
local Lipschitz continuity of all the functions σx,y of Table 2.5 and the inequality
|(ξNz , v)H − (ξNz , w)H | ≤ 2N ||v − w||H . By Lemma 5.1, the modified jump rates
are bounded. Since they are positive, they are bounded away from zero, and then,
Assumption (H(λ)) is satisfied. Assumption (H(Q)) is also easily satisfied. We
showed in Section 4.4 that (H(L)) is satisfied. As for fd, the function does not
depend on the control variable and is continuous from H to H. For d ∈ D and
(y1, y2) ∈ H2,

fd(y1)− fd(y2) =
1

N

∑
i∈IN

(
gK1{di=n4} + gNa1{di=m3h1}

+ gChR2(1{di=O1} + ρ1{di=O2}) + gL

)
(ξNi

N
, y2 − y1)Hξ

N
i
N
.

We then get

||fd(y1)− fd(y2)||H ≤ 4N2(gK + gNa + gChR2(1 + ρ) + gL)||(y2 − y1)||H .

Finally, since the continuous component vαt of the PDMP does not jump, the
bounds are a direct consequence of Lemma 5.1.

Proof of Theorem 1.2. In Lemma 5.2 we already showed that assumptions (H(λ)),
(H(Q)), (H(L)) and (H(f)) are satisfied. The cost function c is convex in the control
variable and norm quadratic on H × Z. The flow does not depend on the control.
The rate function λ is linear in the control. the function λQ is also linear in the
control. We conclude that all the assumptions of Theorem 4.3 are satisfied and that
an optimal ordinary strategy can be retrieved.

We end this section with an important remark that significantly extends the scope
of this example. Up to now, we only considered stationary reference signals but
nonautonomous ones can be studied as well, as long as they feature some properties.
Indeed, it is only a matter of incorporating the signal reference Vref ∈ C([0, T ], H)
in the process by adding a variable to the PDMP. Instead of considering H as the
initial state space for the continuous component, we consider H̃ := H ×H.

This way, the part on the control problem is not impacted at all and we consider
the continuous cost function c̃ defined for (v, v̄, u) ∈ H̃ × U by

c̃(v, v̄, u) = κ||v − v̄||2H + u+ cmin, (32)

the result and proof of lemma 1.2 remaining unchanged with the continuous bound-
ing function defined for v ∈ H by

b(v) :=


κM2

3 + κ sup
t∈[0,T ]

||Vref (t)||2H + umax, if ||v||H ≤M3,

κ||v||2H + κ sup
t∈[0,T ]

||Vref (t)||2H + umax, if ||v||H > M3.

In the next section, we present some variants of the model and the corresponding
results in terms of optimal control.
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Table 1. Expression of the individual jump rate functions and the
Hodgkin-Huxley model.

In D1 = {n0, n1, n2, n3, n4} :

σn0,n1
(v, u) = 4αn(v), σn1,n2

(v, u) = 3αn(v),

σn2,n3
(v, u) = 2αn(v), σn3,n4

(v, u) = αn(v)

σn4,n3
(v, u) = 4βn(v), σn3,n2

(v, u) = 3βn(v),

σn2,n1
(v, u) = 2βn(v), σn1,n0

(v, u) = βn(v).

In D2 = {m0h1,m1h1,m2h1,m3h1,m0h0,m1h0,m2h0,m3h0} :

σm0h1,m1h1(v, u) = σm0h0,m1h0(v, u) = 3αm(v),

σm1h1,m2h1(v, u) = σm1h0,m2h0(v, u) = 2αm(v),

σm2h1,m3h1(v, u) = σm2h0,m3h0(v, u) = αm(v),

σm3h1,m2h1(v, u) = σm3h0,m2h0(v, u) = 3βm(v),

σm2h1,m1h1(v, u) = σm2h0,m1h0(v, u) = 2βm(v),

σm1h1,m0h1(v, u) = σm1h0,m0h0(v, u) = βm(v).

In DChR2 = {o1, o2, c1, c2} :

σc1,o1
(v, u) = ε1u, σo1,c1(v, u) = Kd1,

σo1,o2
(v, u) = e12, σo2,o1

(v, u) = e21

σo2,c2(v, u) = Kd2, σc2,o2
(v, u) = ε2u,

σc2,c1(v, u) = Kr.

αn(v) = 0.1−0.01v
e1−0.1v−1 , βn(v) = 0.125e−

v
80 ,

αm(v) = 2.5−0.1v
e2.5−0.1v−1 , βm(v) = 4e−

v
18 ,

αh(v) = 0.07e−
v
20 , βh(v) = 1

e3−0.1v+1 .

(HH)



CV̇ (t) = ḡKn
4(t)(EK − V (t)) + ḡNam

3(t)h(t)(ENa − V (t))

+ gL(EL − V (t)) + Iext(t),

ṅ(t) = αn(V (t))(1− n(t))− βn(V (t))n(t),

ṁ(t) = αm(V (t))(1−m(t))− βm(V (t))m(t),

ḣ(t) = αh(V (t))(1− h(t))− βh(V (t))h(t).
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5.2. Variants of the model and perspectives. We begin this section by giving
arguments showing that the results of Theorem 4.3 remain valid for the model of
Definition 1.1, which does not exactly fits into our theoretical framework. Then,
the variations we present concern the model of ChR2, the addition of other light-
sensitive ionic channels, the way the control acts on the three local characteristics
and the control space. The optimal control problem itself will remain unchanged.
First of all, let us mention that since the model of Definition 1.1 satisfies the con-
vexity conditions (A), the theoretical part on relaxed controls is not necessary for
this model. Nevertheless, the model of ChR2 presented on Figure 1 is only one
among several others, some of which do not enjoy a linear, or even concave, rate
function λ. For those models, that we present next, assumption (A) fails and the
relaxed controls are essential.

We will not present them here, but the previous results for the Hodgkin-Huxley
model remain straightforwardly unchanged for other neuron models such as the
FitzHugh-Nagumo model or the Morris-Lecar model.

Optimal control for the original model.
In the original model, the function fd is defined from V to V ∗. Nevertheless,

the semigroup of the Laplacian regularizes Dirac masses (see [4, Lemma 3.1]) and
the uniform bound in Theorem 2.5 is in fact valid in V , the solution belonging to
C([0, T ], V ). This is all we need since the control does not act on the PDE. This is
why the domain of our process is V ×DN and not just H×DN , and all computations
of the proofs of the previous sections can be done in the Hilbert space V . From this
consideration, and using the continuous embedding of H1

0 (I) in C0(I) we can justify
the local Lipschitz continuity of λd from V × Z in R+. Indeed, it comes from the
local Lipschitz continuity of all functions σx,y of Table 1 and from the inequality

|v(
i

N
)− w(

i

N
)| ≤ sup

x∈I
|v(x)− w(x)| ≤ C||v − w||V .

Finally, [10, Proposition 5] states that the bounds of Lemma 5.2 remain valid
with Dirac masses.

Modifications of the ChR2 model.
We already mentioned the paper of Nikolic and al. [33] in which a three states

model is presented. It is a somehow simpler model that the four states model of
Figure 1 but it gives good qualitative results on the photocurrents produced by the
ChR2. In first approximation the model can be considered to depend linearly in
the control as seen on Figure 2.

This model features one open state o and two closed states, one light-adapted
d and one dark-adapted c. This model would lead to the same type of model as
in the previous Section. In fact, the time constants 1/Kd and 1/Kr are also light
dependent with a dependence in log(u). The corresponding model is represented
on Figure 3 below

Some mathematical comments are needed here. On Figure 3, the control u
represents the light intensity and c1, c2, Kr and τd are positive constants. This
model of ChR2 is experimentally accurate for intensities between 108 and 1010

µm2 · s−1 approximately. We would then consider U := [0, umax] with umax ' 1010

µm2 · s−1. Furthermore,

lim
u→0

Kr + c2 log(u) = −∞, lim
u→0

1

τd − log(u)
= 0.
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c d

o

u(t)

Kr

Kd

Figure 2. Simplified ChR2 three states model

c d

o

c1u(t)

Kr + c2 log(u)

1
τd−log(u)

Figure 3. ChR2 three states model

The first limit is not physical since rate jumps between states are positive num-
bers. The second limit is not physical either because it would mean that, in the
dark, the proteins are trapped in the open state o, which is not the case. In the
dark, when u = 0, the jump rates corresponding to the transition o→ d and d→ c
are positive constants. For this reason, the functions σo,d and σd,c should be smooth
functions such that they are equal to the rates of Figure 3 for large intensities, but
still with τd − log(u) > 0, and converge to Kdark

d > 0 and Kdark
r > 0 respectively,

when u goes to 0. The resulting rate function λ is not concave and thus does
not satisfy assumption (A) anymore. We can only affirm the existence of optimal
relaxed strategies.

The four states model of Figure 1 is also an approximation of a more accurate
model that we represent on Figure 4 below. The transition rates can depend on
either the membrane potential v or the irradiance u, which is the control variable.
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The details of the model and the numerical constants can be found in [44]. Note
that the model of Figure 4 is already an approximation of the model in [44] because
the full model in [44] would not lead to a Markovian behavior for the ChR2 (the
transition rates would depend on the time elapsed since the light was switched on).

o1 o2

c2c1

Kd1(v)

e12(u)

e21(u)

Kd2 Ka2u

Kr(v)

Ka1u

Figure 4. ChR2 channel : Ka1, Ka2, and Kd2 are positive con-
stants defined by:

Kd1(v) = K
(1)
d1 −K

(2)
d1 tanh((v + 20)/20),

e12(u) = e12d + c1 ln(1 + u/c),

e21(u) = e21d + c2 ln(1 + u/c),

Kr(v) = K(1)
r exp(−K(2)

r v),

with K
(1)
d1 , K

(2)
d1 , e12d, e21d, c, c1 and c2 positive constants. As for the model of

Figure 3, the mathematical definition of the function σo1,c1 should be such that it
is a positive smooth function and equals Kd1(v) in some subset of the physiological
domain [V−, V+]. The resulting rate function λ will be concave but the function
λQ will not be convex (it will be concave as well). Hence, Assumption (A) is not
satisfied.

Addition of other light-sensitive ion channels.
Channelrhodopsin-2 has a promoting role in eliciting action potentials. There

also exists a chlorine pump, called Halorhodopsin (NpHR), that has an inhibitory
action. NpHR can be used along with ChR2 to obtain a control in both directions.
Its modelisation as a multistate model was considered in [34]. The transition rates
between the different states have the same shape that the ones of the ChR2 and
the same simplifications are possible. This new light-sensitive channel can be easily
incorporated in our stochastic model and we can state existence of optimal relaxed
and/or ordinary control strategies depending on the level of complexity of the NpHR
model we consider. It is here important to remark that since the two ionic channels
do not react to the same wavelength of the light, the resulting control variable would
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be two-dimensional with values in [0, umax]2. This would not change the qualitative
results of the previous sections.

Modification of the way the control acts on the local characteristics.
Up to now, the control acts only on the rate function, and also on the measure

transition via its special definition from the rate function. Nevertheless, we can
present here a modification of the model where the control acts linearly on the
PDE. This modification amounts to considering that the control variable is directly
the gating variable of the ChR2. Indeed, we show in [38] that the optimal control
of the deterministic counterpart of the stochastic Hodgkin-Huxley-ChR2 model, in
finite dimension and with the three states ChR2 model of Figure 2, is closely linked
to the optimal control of

dV

dt
= gKn

4(t)(VK − V (t)) + gNam
3(t)h(t)(VNa − V (t))

+ gChR2u(t)(VChR2 − V (t)) + gL(VL − V (t)),

dn

dt
= αn(V (t))(1− n(t))− βn(V (t))n(t),

dm

dt
= αm(V (t))(1−m(t))− βm(V (t))m(t),

dh

dt
= αh(V (t))(1− h(t))− βh(V (t))h(t),

where the control variable is the former gating variable o. Now the stochastic
counterpart of the last model is such that the function fd is now linear in the control
and the rate function λ and the transition measure function Q do not depend on the
control any more. Finally, by adding NpHR channels to this model, we would obtain
a fully controlled infinite-dimensional PDMP in the sense that the control would
then act on the three local characteristics of the PDMP. Depending on the model
of NpHR chosen, we would obtain relaxed or ordinary optimal control strategy.

Modification of the control space.
In all models discussed previously, the control has no spatial dependence. Any

light-stimulation device, such as a laser, has a spatial resolution and it is possible
that we do not want or cannot stimulate the entire axon. For this reason, spatial
dependence of the control should be considered. Now, as long as the control space
remains a compact Polish space, spatial dependence of the control could be consid-
ered. We propose here a control space defined as a subspace of the Skorohod space
D, constituted of the cdlg functions from [0, 1] to R. This control space represents
the aggregation of multiple laser beams that can be switched on and off. Suppose
that each of these beams produces on the axon a disc of light of diameter r > 0
that we call spatial resolution of the light. For an axon represented by the segment
[0, 1], r is exactly the spatial domain illuminated. We consider now two possibilities
for the control space. Suppose first that the spatial resolution is fixed and define
p := b 1

r c and

U := {u : [0, 1]→ [0, umax] |
u is constant on [i/p, (i+ 1)/p), i = 0, .., p− 1, u(1) = u((p− 1)/p)}.

Lemma 5.3. U is a compact subset of D.
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Proof. We tackle this proof by remarking that U is in bijection with the finite
dimensional compact space [0, umax]p.

In this case, the introduction of the space D was quite artificial since the control
space remains finite-dimensional. Nevertheless, the Skorohod space will be very
useful for the other control space. Suppose now that the spatial resolution of the
laser can evolve in [rmin, rmax] with rmin, rmax > 0. Let p ∈ N∗ the number of
lasers used and define

Ũ := {u : [0, 1]→ [0, umax] | ∃{xi}0≤i≤p subdivision of [0, 1],

u is constant on [xi, xi + 1), i = 0, .., p− 1,

u(1) = u(xp−1)}.

Now Ũ is infinite-dimensional and the Skorohod space allows us to use the char-
acterization of compact subsets of D.

Lemma 5.4. Ũ is a compact subset of D.

Proof. For this proof, we need to introduce some notation and a critera of compact-
ness in D. A complete treatment of the space D can be found in [7].

Let u ∈ D and {xi}0≤i≤n a subdivision of [0, 1], n ∈ N∗. We define, for i ∈
{0, .., n− 1},

wu([xi, xi+1)) := sup
x,y∈[xi,xi+1)

|u(x)− u(y)|,

and for δ > 0,

w′u(δ) := inf
{xi}

max
0≤i<n

wu([xi, xi+1)),

the infimum being taken on all the subdivisions {xi}0≤i≤n of [0, 1] such that xi+1−
xi > δ for all i ∈ {0, .., n − 1}. Now since Ũ is obviously bounded in D, from [7,
Theorem 14.3], we need to show that

lim
δ→0

sup
u∈Ũ

w′u(δ) = 0.

Let δ > 0 with δ < rmin and u ∈ Ũ . There exists as subdivision {xi}0≤i≤p of [0, 1]
such that for every i ∈ {0, .., p − 1}, u is constant on [xi, xi+1) and xi+1 − xi > δ.
Thus w′u(δ) = 0 which ends the proof.

With either U or Ũ as the control space, the stochastic controlled infinite-
dimensional Hodgkin-Huxley-ChR2 model admits an optimal ordinary control strat-
egy.

Perspectives.
Theorem 4.3 proves the existence of optimal controls for a wide class of infinite-

dimensional PDMPs and Theorem 4.15 gives sufficient conditions to retrieve ordi-
nary optimal controls. Nevertheless, these theorems do not indicate how to compute
optimal controls or approximations of optimal controls. Thus, it would be very in-
teresting, in a further work, to implement numerical methods in order to compute
at least approximation of optimal controls for the control problems defined in this
paper. One efficient way to address numerical optimal control problems for PDMPs
is to use quantization methods that consist in replacing the state and control spaces
by discrete spaces and work with approximations of the processes on these discrete
spaces ([29], [35], [20]).
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Appendix A. Construction of Xα by iteration. Let α ∈ A and let x :=
(v, d, τ, h, ν) ∈ Ξα with z := (ν, d, h) ∈ Υ. The existence of the probability Pαx
below is the object of the next section where Theorem 2.5 is proved.

• Let T1 be the time of the first jump of (Xα
t ). With the notations of Proposition

1, the law of T1 is defined by its survival function given for all t > 0 by

Pαx(T1 > t) = exp

(
−
∫ t

0

λd

(
φαs (x), α(νs, ds, hs)(τs)

)
ds

)
.

• For t < T1, Xα
t solves (10) starting from x namely (vt, dt, τt, ht, νt) =

(φαt (x), d, τ + t, h, ν).
• When a jump occurs at time T1, conditionally to T1, Xα

T1
is a random variable

distributed according to a measure Q̂ on (Ξ,B(Ξ)), itself defined by a measure
Q on (D,B(D)). The target state d1 of the discrete variable is a random
variable distributed according to the measure
Q(·|φαT1

(x), dT−1
, α(νT−1

, dT−1
, hT−1

)(τT−1
)) such that for all B ∈ B(D),

Q̂
(
{φαT1

(x)} ×B × {0} × {h+ τT−1
} (33)

× {φαT1
(x)}|φαT1

(x), dT−1
, τT−1

, hT−1
, νT−1

, α(T−1 )
)

= Q
(
B|φαT1

(s), d, α(ν, d, h)(τ + T1)
)
,

where we use the notation α(T−1 ) = α(dT−1
, τT−1

, hT−1
, νT−1

). This equality

means that the variables v and ν do not jump at time T1, and the variables τ
and h jump in a deterministic way to {0} and {h+ τT−1

} respectively.

• The construction iterates after time T1 with the new starting point (vT1 , dT1 , 0,
h+ T1, vT1

).

Formally the expressions of the jump rate and the transition measures on Ξ are

λ(x, u) := λd(v, u),

Q̂
(
F ×B × E ×G× J |x, u

)
:= 1F×E×G×J(v, 0, h+ τ, ν)Q

(
B|v, d, u

)
,

with F ×B × E ×G× J ∈ B(Ξ), u ∈ U and x := (v, d, τ, h, ν) ∈ Ξ.

Appendix B. Proof of Theorem 2.5. There are two filtered spaces on which
we can define the enlarged process (Xα) of Definition 2.3. They are linked by the
one-to-one correspondence between the PDMP (Xα) and the included jump process
(Zα) that we define now. We then introduce both spaces since each one of them is
relevant to prove useful properties.

Given the sample path (Xα
s , s ≤ T ) such that Xα

0 := (v, d, τ, h, ν) ∈ Ξα, the
jump times Tk of Xα can be retrieved by the formula

{Tk, k = 1, . . . , n} = {s ∈ (0, T ]|hs 6= hs−}.

Moreover we can associate to Xα a pure jump process (Zαt )t≥0 taking values in Υ
in a one-to-one correspondence as follows,

Zαt := (νTk , dTk , Tk), Tk ≤ t < Tk+1. (34)
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Conversely, given the sample path of Zα on [0, T ] starting from Zα0 = (νZ0 , d
Z
0 , T

Z
0 ),

we can recover the path of Xα on [0, T ]. Denote Zαt as (νZt , d
Z
t , T

Z
t ) and define

T0 := TZ0 and Tk := inf{t > Tk−1|TZt 6= TZt−}. Then{
Xα
t = (φαt (Zα0 ), dZ0 , t, T

Z
0 , ν

Z
0 ), t < T1,

Xα
t = (φαt−Tk(ZαTk), dTk , t− Tk, TZTk , ν

Z
Tk

), Tk ≤ t < Tk+1.
(35)

Let us note that TZTk = Tk for all k ∈ N, and that by construction of the PDMP
all jumps are detected since Pα[Tk+1 = Tk] = 0. When no confusion is possible, we
write, for α ∈ A and n ∈ N, Zn = ZαTn .

Part 1. The canonical space of jump processes with values in Υ. The
following construction is very classical, see for instance Davis [19] Appendix A1. We
adapt it here to our peculiar process and to the framework of control. Remember
that a jump process is defined by a sequence of inter-arrival times and jump locations

ω = (γ0, s1, γ1, s2, γ2, . . . ), (36)

where γ0 ∈ Υ is the initial position, and for i ∈ N∗, si is the time elapsed between
the (i − 1)th and the ith jump while γi is the location right after the ith jump.
The jump times (ti)i∈N are deduced from the sequence (si)i∈N∗ by t0 = 0 and
ti = ti−1 + si for i ∈ N∗ and the jump process (Jt)t≥0 is given by Jt := γi for
t ∈ [ti, ti+1) and Jt = ∆ for t ≥ t∞ := limi→∞ ti, ∆ being an extra state, called
cemetery.

Accordingly we introduce Y Υ := (R+ × Υ) ∪ {(R+ ∪∞,∆)}. Let (Y Υ
i )i∈N∗ be

a sequence of copies of the space Y Υ. We define ΩΥ := Υ×Π∞i=1Y
Υ
i the canonical

space of jump processes with values in Υ, endowed with its Borel σ-algebra FΥ and
the coordinate mappings on ΩΥ as follows

Si : ΩΥ −→R+ ∪ {∞},
ω 7−→Si(ω) = si, for i ∈ N∗,

Γi : ΩΥ −→Υ ∪ {∆},
ω 7−→Γi(ω) = γi, for i ∈ N.

(37)

We also introduce ωi : ΩΥ → ΩΥ
i for i ∈ N∗, defined by

ωi(ω) := (Γ0(ω), S1(ω),Γ1(ω), . . . , Si(ω),Γi(ω))

for ω ∈ ΩΥ. Now for ω ∈ ΩΥ and i ∈ N∗, let

T0(ω) := 0,

Ti(ω) :=


i∑

k=1

Sk(ω), if Sk(ω) 6=∞ and Γk(ω) 6= ∆, k = 1, . . . , i,

∞ if Sk(ω) =∞ or Γk(ω) = ∆ for some k = 1, . . . , i,

T∞(ω) := lim
i→∞

Ti(ω).

and the sample path (xt(ω))t≥0 be defined by

xt(ω) :=

{
Γi(ω) Ti(ω) ≤ t < Ti+1(ω),

∆ t ≥ T∞(ω).
(38)
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A relevant filtration for our problem is the natural filtration of the coordinate process
(xt)t≥0 on ΩΥ

FΥ
t := σ{xs|s ≤ t},

for all t ∈ R+. For given starting point γ0 ∈ Υ and control strategy α ∈ A, a
controlled probability measure, denoted Pαγ0

, is defined on ΩΥ by the specification of
a family of controlled conditional distribution functions as follows: µ1 is a controlled
probability measure on (Y Υ,B(Y Υ)) or equivalently a measurable mapping from
Uad([0, T ];U) to the set of probability measures on (Y Υ,B(Y Υ)), such that for all
α ∈ A,

µ1(α(γ0); ({0} ×Υ) ∪ (R+ × {γ0})) = 0.

For i ∈ N \ {0, 1}, µi : ΩΥ
i ×Uad([0, T ];U)×B(Y Υ)→ [0, 1] are controlled transition

measures satisfying:

1. µi(·; Σ) is measurable for each Σ ∈ B(Y Υ),
2. µi(ωi−1(ω), α(Γi−1(ω)); ·) is a probability measure for every ω ∈ ΩΥ and α ∈
A,

3. µi(ωi−1(ω), α(Γi−1(ω)); ({0} ×Υ) ∪ (R+ × {Γi−1(ω)})) = 0 for every ω ∈ ΩΥ

and α ∈ A,
4. µi(ωi−1(ω), α(Γi−1(ω)); {(∞,∆)}) = 1 if Sk(ω) = ∞ or Γk(ω) = ∆ for some
k ∈ {1, . . . , i− 1}, for every α ∈ A.

We need to extend the definition of α ∈ A to the state (∞,∆) by setting α(∆) :=
u∆ where u∆ is itself an isolated cemetery state and α takes in fact values in
Uad([0, T ];U ∪ {u∆}).

Now for a given control strategy α ∈ A, Pαγ0
is the unique probability measure

on (ΩΥ, T Υ) such that for each i ∈ N∗ and bounded function f on ΩΥ
i∫

ΩΥ

f(ωi(ω))Pαγ0
(dω)

=

∫
Y Υ

1

. . .

∫
Y Υ
i

f(y1, . . . , yi)µi(y1, . . . , yi−1, α(yi−1); dyi)

× µi−1(y1, . . . , yi−2, α(yi−2); dyi−1) . . . µ1(α(γ0); dy1),

with α depending only on the variable in Υ when writing “α(yi−1)” , yi−1 =

(si−1, γi−1). Let’s now denote by FΥ
γ,α and (FΥ,γ,α

t )t≥0 the completed σ-fields of

FΥ and (FΥ
t )t≥0 with all the Pαγ -null sets of FΥ. We then rename the intersection

of these σ-fields redefine FΥ and (FΥ
t )t≥0 so that we have

FΥ :=
⋂

γ∈Υα∈A
FΥ
γ,α,

FΥ
t :=

⋂
γ∈Υα∈A

FΥ,γ,α
t for all t ≥ 0.

Then (ΩΥ,FΥ, (FΥ
t )t≥0) is the natural filtered space of controlled jump processes.

Part 2. The canonical space of cdlg functions with values in Ξ. Let ΩΞ be
the set of right-continuous functions with left limits (cdlg functions), defined on R+

with values in Ξ. Analogously to what we have done in Part 1, we can construct a
filtered space (ΩΞ,FΞ, (FΞ

t )t≥0) with coordinate process (xΞ
t )t≥0 and a probability

Pα on (ΩΞ,FΞ) for every control strategy α ∈ A such that the infinite-dimensional
PDMP is a Pα-strong Markov process. For (t, y) ∈ R+ × ΩΞ, x

Ξ
t (y) = y(t).
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We start with the definition of FΞ,0
t := σ{xΞ

s |s ≤ t} for t ∈ R+ and FΞ,0 :=

∨t≥0FΞ,0
t . In Davis [19] p 59, the construction of the PDMP is conducted on

the Hilbert cube, the space of sequences of independent and uniformly distributed
random variables in [0, 1]. In the case of controlled PDMP, the survival function
F (t, x) in [19] is replaced by the extension to ξα of χα defined in Definition 2.3
and the construction depends on the chosen control. This extension is defined for
x := (v, d, τ, h, ν) ∈ Ξα by

χαt (x) := exp

(
−
∫ t

0

λd(φ
α
s (x), ατ+s(ν, d, h))ds

)
,

such that for z := (v, d, h) ∈ Υ, χαt (z) = χαt (v, d, 0, h, v).
This procedure thus provides for each control α ∈ A and starting point x ∈ Ξα a

measurable mapping ψαx from the Hilbert cube to ΩΞ. Let Pαx := P
[
(ψαx )−1

]
denote

the image measure of the Hilbert cube probability P under ψαx . Now for x ∈ Ξα, let

Fx,αt be the completion of FΞ,0
t with all Pαx -null sets of FΞ,0, and define

FΞ
t :=

⋂
α∈A,x∈Ξα

Fx,αt . (39)

The right-continuity of (FΞ
t )t≥0 follows from the right-continuity of (FΥ

t )t≥0 and
the one-to-one correspondence. The right-continuity of (FΥ

t )t≥0 is a classical result
on right-constant processes. For these reasons, we lose the superscripts Ξ and Υ
consider the natural filtration (Ft)t≥0 in the sequel.

Now that we have a filtered probability space that satisfies the usual conditions,
let us show that the simple Markov property holds for (Xα

t ). Let α ∈ A be a control
strategy, s > 0 and k ∈ N∗. By construction of the process (Xα

t )t≥0,

Pα[Tk+1 − Tk > s|FTk ] = exp

(
−
∫ s

0

λdTk (φαt (Xα
Tk

), αu(νTk , dTk , hTk))du

)
= χαs (Xα

Tk
).

Now for x ∈ Ξα, (t, s) ∈ R2
+ and k ∈ N∗,

Pαx [Tk+1 > t+ s|Ft]1{Tk≤t<Tk+1}

= Pαx [Tk+1 − Tk > t+ s− Tk|Ft]1{0≤t−Tk<Tk+1−Tk}

= exp

(
−
∫ t+s−Tk

t−Tk
λdTk (φαu(Xα

Tk
), αu(νTk , dTk , hTk))du

)
1{0≤t−Tk<Tk+1−Tk} (∗)

= exp

(
−
∫ s

0

λdTk (φαu+t−Tk(Xα
Tk

), αu+t−Tk(νTkdTk , hTk))du

)
1{0≤t−Tk<Tk+1−Tk}.
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The equality (*) is the classical formula for jump processes (see Jacod [32]). On
the other hand,

χαs (Xα
t )1{Tk≤t<Tk+1}

= exp

(
−
∫ s

0

λdt

(
φαu(Xα

t ), αu+τt(νt, dt, ht)
)

du

)
1{Tk≤t<Tk+1}

= exp

(
−
∫ s

0

λdTk

(
φαu(Xα

t ), αu+t−Tk(νTk , dTk , hTk)
)

du

)
1{Tk≤t<Tk+1}

= exp

(
−
∫ s

0

λdTk

(
φαu+t−Tk(Xα

Tk
), αu+t−Tk(νTkdTk , hTk)

)
du

)
1{Tk≤t<Tk+1},

becauseXα
t =

(
φαt−Tk(Xα

Tk
), dTk , t−Tk, hTk , νTk

)
and by the flow property φαu(Xα

t ) =

φαu+t−Tk(Xα
Tk

) on 1{Tk≤t<Tk+1}.

Thus we showed that for all x ∈ Ξα, (t, s) ∈ R2
+ and k ∈ N∗,

Pαx [Tk+1 > t+ s|Ft]1{Tk≤t<Tk+1} = χαs (Xα
t )1{Tk≤t<Tk+1}.

Now if we write Tαt := inf{s > t : Xα
s 6= Xα

s−} the next jump time of the process
after t, we get

Pαx [Tαt > t+ s|Ft] = χαs (Xα
t ), (40)

which means that, conditionally to Ft, the next jump has the same distribution as
the first jump of the process started at Xα

t . Since the location of the jump only
depends on the position at the jump time, and not before, equality (40) is just what
we need to prove our process verifies the simple Markov property.

To extend the proof to the strong Markov property, the application of Theorem
(25.5) (Davis [19]) on the characterization of jump process stopping times on Borel
spaces is straightforward.

From the results of [10], there is no difficulty in finding the expression of the
extended generator Gα and its domain:

• Let α ∈ A. The domain D(Gα) of Gα is the set of all measurable f : Ξ → R
such that t 7→ f(φαt (x), d, τ + t, h, ν)
(resp. (v0, d0, τ0, h0, ν0, t, ω) 7→ f(v0, d0, τ0, h0, ν0)− f(v(t−, ω), d(t−, ω),
τ(t−, ω), h(t−, ω), ν(t−, ω))) is absolutely continuous on R+ for all
x = (v, d, τ, h, ν) ∈ Ξα (resp. a valid integrand for the associated random
jump measure).
• Let f be continuously differentiable w.r.t. v ∈ V and τ ∈ R+. Define hv as

the unique element of V ∗ such that

df

dv
[v, d, τ, h, ν](y) = 〈hv(v, d, τ, h, ν), y〉V ∗,V ∀y ∈ V,

where df
dv [v, d, τ, h, ν] denotes the Frchet-derivative of f w.r.t v ∈ E evaluated

at (v, d, τ, h, ν). If hv(v, d, τ, h, ν) ∈ V ∗ whenever v ∈ V and is bounded in V
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for bounded arguments then for almost every t ∈ [0, T ],

Gαf(v, d, τ, h, ν) =
∂

∂τ
f(v, d, τ, h, ν) + 〈hv(v, d, τ, h, ν), Lv

+ fd(v, ατ (ν, d, h))〉V ∗,V (41)

+ λd(v, ατ (ν, d, h))∫
D

[f(v, p, 0, h+ τ, v)− f(v, d, τ, h, ν)]Qα(dp|v, d).

The bound on the continuous component of the PDMP comes from the following
estimation. Let α ∈ A and x := (v, d, τ, h, ν) ∈ Ξα and denote by vα the first
component of Xα. Then for t ∈ [0, T ],

||vαt ||H ≤ ||S(t)v||H +

∫ t

0

||S(t− s)fds(vαs , ατs(νs, ds, hs))||Hds

≤MS ||v||H +

∫ t

0

MS(b1 + b2||vαs ||H)ds (42)

≤MS(||v||H + b1T )eMSb2T ,

by Gronwall’s inequality.

Appendix C. Proof of Lemma 4.13.
Part 1. Let’s first look at the case when w is bounded by a constant w∞ and define
for (z, γ) ∈ Υ×R

W (z, γ) =

∫ T−h

0

χγs (z)

(∫
Z

w(φγs (z), d, h+ s, u)γ(s)(du)

)
ds

Now take (z, γ) ∈ Υ×R and suppose (zn, γn)→ (z, γ). Let’s write z = (v, d, h) and
zn = (vn, dn, hn) for n ∈ N. For s ∈ [0, T ], let wn(s, u) := w(φγns (zn), dn, hn + s, u)
and w(s, u) := w(φγs (z), d, h + s, u). Let also an = min(T − h, T − hn) and bn =
max(T − h, T − hn). Then

|W (zn, γn)−W (z, µ)| ≤

∣∣∣∣∣
∫ bn

an

χγns (zn)

∫
Z

wn(s, u)γn(s)(du)ds

∣∣∣∣∣
+

∫ T−h

0

χγns (zn)

∫
Z

|wn(s, u)− w(s, u)|γn(s)(du)ds

+
∣∣∣ ∫ T−h

0

χγns (zn)

∫
Z

w(s, u)γn(s)(du)ds

−
∫ T−h

0

χγs (z)

∫
Z

w(s, u)γn(s)(du)ds
∣∣∣

+
∣∣∣ ∫ T−h

0

χγs (z)

∫
Z

w(s, u)γn(s)(du)ds

−
∫ T−h

0

χγs (z)

∫
Z

w(s, u)γ(s)(du)ds
∣∣∣
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The first term on the right-hand side converges to zero for n → ∞ since the inte-
grand is bounded.∫ T−h

0

χγns (zn)

∫
Z

|wn(s, u)− w(s, u)|γn(s)(du)ds ≤∫ T−h

0

e−δs sup
u∈U
|wn(s, u)− w(s, u)|ds

−−−−→
n→∞

0

by dominated convergence and the continuity of w and of φ proved in Lemma 4.12.∣∣∣∣∣
∫ T−h

0

(χγns (zn)− χγs (z))

∫
Z

w(s, u)µns (du)ds

∣∣∣∣∣ ≤ w∞
∫ T−h

0

|χγns (zn)− χγs (z)|ds

−−−−→
n→∞

0

again by dominated convergence, provided that for s ∈ [0, T ], the convergence
χγns (zn) −−−−→

n→∞
χγs (z) holds. For this convergence to hold it is enough that for

t ∈ [0, T ],∫ t

0

∫
Z

λdn(φγns (zn), u)γn(s)(du)ds −−−−→
n→∞

∫ t

0

∫
Z

λd(φ
γ
s (z), u)γ(s)(du)ds.

It is enough to take n large enough so that dn = d and to write∫ t

0

(∫
Z

λd(φ
γn
s (zn), u)γn(s)(du)−

∫
Z

λd(φ
γ
s (z), u)γ(s)(du)

)
ds =∫ t

0

∫
Z

(λd(φ
γn
s (zn), u)− λd(φγs (z), u)) γn(s)(du)ds

+

∫ t

0

(∫
Z

λd(φ
γ
s (z), u)γn(s)(du)−

∫
Z

λd(φ
γ
s (z), u)γ(s)(du)

)
ds

By the local Lipschitz property of λd,∣∣∣∣∫ t

0

∫
Z

(λd(φ
γn
s (zn), u)− λd(φγs (z), u)) γn(s)(du)ds

∣∣∣∣ ≤ lλ ∫ t

0

||φγns (zn)− φγs (z)||Hds

and
∫ t

0
||φγns (zn)−φγs (z)||Eds ≤ t sups∈[0,T ] ||φγns (zn)−φγs (z)||H −−−−→

n→∞
0 by Lemma

4.12. The second term converges to zero by the definition of the weakly* convergence
in L∞(M(Z)).

Part 2. In the general case where |w| ≤ wcB∗, let wB(z, u) = w(z, u)−cwB∗(z) ≤ 0
for (z, u) ∈ Υ × U . wB is a continuous function and there exists a nonincreasing
sequence (wBn ) of bounded continuous functions such that wBn −−−−→

n→∞
wB . By the

first part of the proof we know that

Wn(z, γ) =

∫ T−h

0

χγs (z)

∫
Z

wBn (φγs (z), d, h+ s, u)µs(du)ds

is bounded, continuous, decreasing and converges to

W (z, γ)− cw
∫ T−h

0

χγs (z)b(φγs (z))eζ
∗(T−h−s)ds



458 VINCENT RENAULT, MICHÈLE THIEULLEN AND EMMANUEL TRÉLAT

which is thus upper semicontinuous. Since b is a continuous bounding function it is
easy to show that

(z, γ)→
∫ T−h

0

χγs (z)b(φγs (z))eζ
∗(T−h−s)ds

is continuous so that in fact W is upper semicontinuous. Now considering the
function wB(z, u) = −w(z, u) − cwB∗(z) ≤ 0 we easily show that W is also lower
semicontinuous so that finally W is continuous.

Now the continuity of the applications (z, γ)→ c′(z, γ) and (z, γ)→ (Q′w)(z, γ)
comes from the previous result applied to the continuous functions defined for
(z, u) ∈ Υ×U by w1(z, u) := c(v, u) and w2(z, u) := λd(v, u)

∫
D
w(v, r, h)Q(dr|v, d, u)

with z = (v, d, h). Here the different assumptions of continuity (H(λ))2.3., (H(c))1.
and (H(Q)) are needed.
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