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Abstract. We discuss coupling conditions for the p–system in case of a transi-
tion from supersonic states to subsonic states. A single junction with adjacent

pipes is considered where on each pipe the gas flow is governed by a general

p–system. By extending the notion of demand and supply known from traffic
flow analysis we obtain a constructive existence result of solutions compatible

with the introduced conditions.

1. Introduction. Natural gas pipeline transportation systems are an important
part of our infrastructure. Besides transport of gas, also CO2 pipeline transport
plays an important role in carbon capture and storage, see for example [18]. A well–
established mathematical model for such flow is the p–system (1). The p–system
in conservative variables density ρ > 0 and flux q is given by

∂tρ(t, x) + ∂xq(t, x) = 0, ∂tq(t, x) + ∂x

(
q2(t, x)

ρ(t, x)
+ p(ρ(t, x))

)
= 0, (1)

where t ≥ 0 is time, x is space, and ρ → p(ρ) is the pressure law. The system is
stated in Eulerian coordinates and it is a simplified model for gas flow in pipes [21]
or water flow in open canals [11]. In the latter case ρ = h is the water height and
p(h) = g

2h
2 with g denoting the gravitational acceleration. We are interested in the

situation of a single junction connected to pipes depicted in Figure 1. The pipes are
modeled as directed arcs and the junction as node. We suppose to have n incoming
pipes parameterized by x ∈ (−∞, 0] and labeled by k ∈ δ− := {−n, . . . ,−1}. Simi-
larly, we suppose to have m outgoing pipes k ∈ δ+ := {1, . . . ,m} and parameterized
by x ∈ [0,∞). Along each pipe the evolution of the gas is supposed to fulfill (1) and
the state of the system in pipe k is denoted by Uk := (ρk, qk)t. The dynamics of the
pipes is then coupled at x = 0 through coupling conditions [2]. General results on
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the p–system at a junction are given in [9]. For a recent overview of theoretical and
numerical results for flows on networks governed by hyperbolic equations we refer to
[4]. Except for [14] all current coupling conditions rely on a transversality condition
[10] to establish well–posedness. This condition is replaced here by a solvability
condition prior to Theorem 2.3 having a similar meaning, namely, that Lax curves
are not parallel in the point of intersection in phase space.

Figure 1. Junction of n+m = |δ−|+ |δ+| connected pipes.

It has been shown that the transversality condition is fulfilled for subsonic data,
i.e. initial conditions U0

i (x) with i ∈ δ+ ∪ δ− fulfilling λ1(U0
i ) < 0 < λ2(U0

i ) where
λj , j = 1, 2 are the characteristic velocities given by equation (5). To the best of
our knowledge, no results in the supersonic case exist. However, in the scalar case
on networks this case has been well–understood and discussed intensively, see for
example [17, 6] or [12]. We are interested in the coupling of supersonic and subsonic
states for the p–system. We focus on the most common coupling condition for gas
networks as well as coupled open canals, namely, we prescribe

p(ρk(t, 0+)) = p∗(t) ∀k ∈ δ+, p(ρk(t, 0−)) = p∗(t) ∀k ∈ δ−, (2a)∑
k∈δ−

qk(t, 0−) =
∑
k∈δ+

qk(t, 0+). (2b)

for some unknown nodal pressure p∗(t) and where 0± denote the trace values coming
from the interior of the pipe. We refer to [2, 15, 9] for a more detailed discussion
of coupling conditions. Our main result is Theorem 2.3 showing that there exists
a solution to the coupling conditions (2) under suitable assumptions on the initial
data. The key assumption is on the sign eigenvalues of the initial datum, i.e.,
equation (17). Briefly summarized the assumption states that the data on incoming
arcs is supersonic and the data on outgoing arcs is subsonic.

The study of the coupling of subsonic and supersonic flow is also important for
algorithmic purposes. For example in an iterative method for the solution of opti-
mal control problems (see for example [7]), it can happen that during the iteration
in an intermediate step, supersonic states appear even if the optimal state is sub-
sonic. The transition from supersonic to subsonic flow is important for high-speed
aircraft, where a supersonic external freestream flow must be decelerated efficiently
to subsonic speed at the turbine inlet. This transition from supercritical flow to
subcritical flow also occurs in Fanno flows, see [22], (p. 199). The transition from
supercritical to subcritical regime in free surface flow of yield stress fluids has been
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studied in [23] where a hydraulic jump during laminar flow of an Herschel-Bukley
fluid in a rectangular channel is studied. An experimental assessment of scale effects
affecting two-phase flow properties in hydraulic jumps is given in [20].

In this work we will introduce a notion of supply and demand for the state of the
system on the adjacent pipes similar to the notion in traffic flow [19, 14]. This will
allow to solve for constant initial data U0

k = cst the problem (1) and (2) also in the
supersonic case. Necessary conditions on the constants U0

k are presented ensuring
solvability. In the case of n = m = 1 the solution coincides with a classical solution
to a Riemann problem.

2. Theoretical results. We recall the Lax–curves for the p–system for a pressure
law satisfying the following assumption on the equation of state, i.e. p ∈ C3(R+;R+)
with

p′(ρ) > 0, p′′(ρ) ≥ 0, (3a)

6p′(ρ) + 3p′′(ρ)(ρ− ρ) + ρ (3p′′(ρ) + (ρ− ρ)p′′′(ρ)) > 0 ∀ ρ > ρ ≥ 0 (3b)

and such that p(ρ), p′(ρ) → 0 for ρ → 0. Note that the first condition (3a) implies
the usual assumption on the equation of state

ρp′′(ρ) + 2p′(ρ) > 0, (4)

see e.g. [9, 5]. This also implies that both characteristic fields are genuinely non-
linear. In addition, the second condition (3b) is required later in order to obtain
strict convex (resp. concave) wave curves. The assumptions (3) are fulfilled by the
pressure law of the isentropic Euler equations p(ρ) = ργ for γ > 1 as well as for the
shallow–water equations where the hydrostatic pressure is p(ρ) = g

2ρ
2. In particu-

lar, the isothermal equation p(ρ) = ρ is frequently applied in network simulations.
We note that a sufficient condition for (3b) is p′′′(ρ) ≥ 0 that for isentropic Euler
equations only holds for γ ≥ 2.

Under the assumption (3a) the p–system (1) is strictly hyperbolic in the non-

vacuum states {U : ρ > 0}. The speed of sound is given by c(ρ) =
√
p′(ρ) and the

eigenvalues of the ith characteristic field are for i = 1, 2

λ1(U) =
q

ρ
− c(ρ), λ2(U) =

q

ρ
+ c(ρ). (5)

Both characteristic fields are genuinely nonlinear if the equation of state fulfills (4)
and (3a). The 1–Lax–curve through U =U` is given by

L1(σ;U) =

(
R1(σ;U) σ ≤ ρ
S1(σ;U) σ > ρ

)
. (6)

The reversed 2–Lax–curve through U =Ur is given by

L−2 (σ;U) =

(
S2(σ;U) σ > ρ
R2(σ;U) σ ≤ ρ

)
. (7)

Here, for i = 1, 2 we have the positive and negative branch of

Si(σ;U) = σ
q

ρ
∓
√
σ

ρ
(σ − ρ)(p(σ)− p(ρ)),

Ri(σ;U) = σ
q

ρ
∓ σ

∫ σ

ρ

c(s)

s
ds.

The precise form and derivation of the curves can be found e.g. in [9, 13]. Therein,
also the following properties are established: The shock curves Si, i = 1, 2, are
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concave and convex with respect to U in the ρ-q–plane. The rarefaction curves
Ri, i = 1, 2, are concave and convex, respectively, in the ρ-q–plane. The Riemann
problem has a global unique solution, see [5, Section 6.3]. The remaining Lax curves
are given for example in [9, Equation 4.1,Equation 4.2].

From the explicit form of Ri we obtain

d2

dσ2
Ri(σ, U) = ∓

(
σp′′(σ) + 2p′(σ)

2σ
√
p′(σ)

)
.

Since σ > ρ > 0, the discriminant s(σ) = σ
ρ (σ − ρ)(p(σ) − p(ρ)) in Si(σ;U) is

positive. Furthermore, due to assumption (3), s is strict convex, i.e.

s′′(σ) = 2
σ

ρ
p′(σ) +

2

ρ
(p(σ)− p(ρ)) +

σ − ρ
ρ

(2p′(σ) + σp′′(σ)) > 0.

Hence,
d2

dσ2
Si(σ, U) = ∓ 1

2
√
s(σ)

(
s′′(σ)− s′(σ)2

2s(σ)

)
.

The function s̃(σ) = 2s′′(σ)s(σ)−s′(σ)2 vanishes at σ = ρ and s̃′(σ) = 2s′′′(σ)s(σ).
We also note that

s′′′(σ)ρ = 6p′(σ) + 3p′′(σ)(σ − ρ) + σ (3p′′(σ) + (σ − ρ)p′′′(σ)) > 0

provided that condition (3b) holds true. Then, s̃ is a monotone increasing function
for all σ > ρ starting at zero. This yields the strict concavity and convexity of Si,
respectively.

Under assumption (3b) we therefore obtain

Si is strictly concave and Ri is strictly convex, i = 1, 2. (8)

Hence, L1 and L−2 have a single maximum and minimum, respectively. We denote

by q∗ = q∗(U) the maximum of the functions ρ → L1(ρ;U) and ρ → −L−2 (ρ;U).

The corresponding density is denoted by ρ∗ = ρ∗(U). The Heaviside function is
denoted by H(x).

2.1. The notion of demand and supply for the p–system. We now define
the demand and supply for the p–system extending the notion in the scalar case
[19]. In the ρ-q–plane and for ρ > 0 the demand ρ 7→ d(ρ;U) is an extension of the
non–decreasing part of the curve ρ 7→L1(ρ;U). In the ρ-q–plane and for ρ > 0 the
supply function ρ 7→ s(ρ;U) is an extension of the non–increasing part of the curve
ρ 7→ − L−2 (ρ;U). The maximum of L1 and −L−2 depend on U. For readability we
skip this dependence in the following formulas for d and s.

d(ρ;U) =

(
L1(ρ;U), 0 < ρ ≤ min{ρ, ρ∗}

q H(ρ∗ − ρ) + q∗ H(ρ− ρ∗), else

)
(9)

s(ρ;U) =

(
L−2 (ρ;U)H(ρ− ρ∗)− q∗H(ρ∗ − ρ), ρ > ρ∗

qH(ρ− ρ) +H(ρ− ρ) max{q, L−2 (ρ;U)}, ρ < ρ∗

)
. (10)

A sketch of the supply and demand for different states U = (ρ, q) is given in
Figure 2 and Figure 3, respectively.

The demand and supply are used to determine admissible fluxes for waves of
non–positive and non–negative speed, respectively. A Riemann problem is a Cauchy

problem for equation (1) and initial data U0(x) =

(
U` x < 0
Ur x > 0

)
. A weak solution
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Figure 2. The supply function ρ 7→ s(ρ;U) in red for given data
U indicated by a cross for ρ > ρ∗ (left) and ρ < ρ∗ (right). Also
shown in blue is the curve L−2 . The state U∗ is indicated by a circle.

Figure 3. The demand function ρ 7→ d(ρ;U) in red for given data
U . Also shown in blue is the curve L1.

to the Riemann problem is defined e.g. in [3] and consists of a superposition of self–
similar waves. In the case of the 2×2 system we obtain at most two waves separated
by an intermediate state. The general structure in the present case therefore is a
superposition of either a shock or rarefaction wave of the first family with a shock
or rarefaction wave of the second family.

Theorem 2.1. Let U with ρ > 0 be given and assume (3). Then, for all q ≤ d(ρ;U),

there exists a state Ũ = (ρ̃, q) such that the Riemann problem for (1) with U` = U

and Ur = Ũ admits a weak self–similar solution composed of waves of non–positive
speed.

Proof. We have to distinguish two cases. Suppose ρ < ρ∗(U), see Figure 3 (right).
Then, d(ρ;U) = q. Denote by τ 6= ρ the value of ρ, such that q = L1(τ ;U). Due
to the strict concavity of L1 and for q < d(ρ;U) there exists a unique density
ρ̃ > τ, such that L1(ρ̃;U) = q. The solution to the Riemann problem consists of
a single shock propagating with non–positive velocity. Suppose ρ < ρ∗(U) and

assume q = q = d(ρ;U). Then, Ũ = U as well as Ũ = (τ, q) where τ 6= ρ fulfills
L1(τ ;U) = q. Note that in the latter case the solution is a shock of zero speed.
Since this is a stationary discontinuity located at a single point we can exclude this
solution from our construction as in [16].
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In the case ρ > ρ∗(U), see Figure 3 (left), we obtain d(ρ;U) = q∗(U). For
q ≤ q ≤ q∗(U) we find a density ρ̃ such that ρ∗ ≤ ρ̃(U) ≤ ρ and q = L1(ρ̃;U).
The solution to the corresponding Riemann problem consists of a rarefaction wave
with non–positive speed. For q < q, we find ρ̃ > ρ and q = L1(ρ̃;U), such that
the solution to the corresponding Riemann problem consists of a shock of negative
speed.

Corollary 1. Let U with ρ > 0 be given and assume (3). Then, for all q ≥ s(ρ;U),

there exists a state Ũ = (ρ̃, q) such that the Riemann problem for (1) with U` = Ũ
and Ur = U admits a weak self–similar solution composed of waves of non–negative
speed.

The proof is similar to the proof of Theorem 2.1 and omitted. It should be noted
that in the formulation of Corollary 1 the right state U is given instead of the left
state in Theorem 2.1.

2.2. The coupling at a single junction. We introduce the following subsets of
R+ × R depending on the sign of the eigenvalues λi given by (5).

A+ := {U := (ρ, q) : λi(U) > 0, i = 1, 2}, (11)

A := {U := (ρ, q) : λ1(U) < 0 < λ2(U)}, (12)

A− := {U := (ρ, q) : λi(U) < 0, i = 1, 2}.

The set A comprises of the states in the subsonic region, A+ ∪A− is the supersonic
region. For the junction located at x = 0 we consider the Riemann problem

∂t

(
ρk(t, x)
qk(t, x)

)
+ ∂x

(
qk(t, x)

q2k(t,x)
ρk(t,x)

+ p(ρk(t, x))

)
= 0, Uk(t, 0) =

(
U−k x < 0
U+
k x > 0

)
. (13)

Depending on the pipe only one of the Riemann data is defined at t = 0, i.e.
U−k = U0,k if k ∈ δ− and U+

k = U0,k if k ∈ δ+. For each pipe the remaining

unknown state U±k for k ∈ δ± is determined in such a way that equation (2) holds
true. We construct a Riemann solver at the node (Uk(t, x))k∈δ± to (13) and (2).
An explicit construction is provided for constant initial data self–similar solutions
Uk(t, x) consisting of wave of non–positive speed and non–negative speed for k ∈ δ−
and k ∈ δ+, respectively. This solution is restricted to Uk(t, x) for x < 0 and x > 0,
when k ∈ δ− and k ∈ δ+, respectively.

The demand and supply allows to construct solutions of certain wave speeds.
Consider k ∈ δ−. Let U−k := U0,k and q ≤ d(ρ0,k;U0,k) be given. Then, according to

Theorem 2.1, there exist a state U+
k with q+k = q and such that the Riemann problem

(13) admits a solution Uk(t, x). The solution consists of a wave of non–positive
speed. Similarly, for k ∈ δ+, data U+

k := U0,k and any q ≥ s(ρ0,k;U0,k) a self–
similar solution Uk(t, x) consisting of waves of non–negative speed exist according
to Corollary 1.

In order to obtain a unique density at the node we define the function U 7→ τk(U)
by

k ∈ δ− : τk(U) :=

(
ρ∗(U) if ρ ≥ ρ∗(U),
ρ̃ else

)
, where ρ̃ 6= ρ and L1(ρ̃;U) = q.

(14a)

Similarly,
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k ∈ δ+ : τk(U) =

(
ρ∗(U) if ρ ≥ ρ∗(U),
ρ̃ else

)
, where ρ̃ 6= ρ and L−2 (ρ̃;U) = q.

(14b)

Clearly, τk > 0 if ρ > 0. τk is well–defined due to equation (8). For k ∈ δ− and
ρ < ρ∗(U) we obtain L1(τk(U);U) = L1(ρ;U)= q. Hence, in this case τk(U) is the
density such that the wave connecting U` = (ρ, q) and Ur = (τk(U), q) has zero
speed and is omitted as in the proof of Theorem 2.1.

Finally, we turn to the description of the Riemann solver for problem (13) and
(2). Due to assumption (3) we have that the condition (2) is equivalent to

ρk(t, 0+) = ρk′(t, 0−) ∀k ∈ δ+, k′ ∈ δ−, (15)

and ∑
k∈δ−

qk(t, 0−)−
∑
k∈δ+

qk(t, 0+) = 0. (16)

Note that in the case n = m = 1, i.e. δ± = {±1}, the conditions (15) and (2) imply
by means of the Rankine-Hugoniot jump conditions in particular

q−1(t, 0−) = q1(t, 0+),
q2−1(t, 0−)

ρ−1(t, 0−)
+ p(ρ−1(t, 0−)) =

q21(t, 0+)

ρ1(t, 0+)
+ p(ρ1(t, 0+)).

For consistency a solution to (13) should therefore be also a solution to a (classical)

Riemann problem for (1) with initial data U(0, x) =

(
U−−1 x < 0
U+
1 x > 0

)
.

We are interested in supersonic and subsonic coupling at the junction. Therefore,
we assume in the following that

U−k = U0,k ∈ A+ for k ∈ δ−, U+
k = U0,k ∈ A for k ∈ δ+. (17)

Remark 1. Due to the symmetry of the Lax curves for the p–system, the discussion
also includes the case where U−k ∈ A for k ∈ δ− and U+

k ∈ A− for k ∈ δ+. The case

U±k ∈ A for k ∈ δ± has been discussed for example in [8].

We now plan to construct a solution fulfilling the coupling conditions. As pre-
liminary result we prove the monotonicity of the Lax curves.

Lemma 2.2. Assume U0,k for k ∈ δ± with ρ0,k > 0 are given. Suppose further
that (3) holds true.

Then, for all σ ≥ σlb we have that σ 7→L1(σ;U0,k) for k ∈ δ− is strictly monotone
decreasing and σ 7→L−2 (σ;U0,k) for k ∈ δ+ is strictly monotone increasing.

Proof. In the case ρ0,k < ρ∗(U0,k) we have that τk(U0,k) > ρ∗(U0,k) by defini-
tion (14). Therefore, the proof follows from the monotonicity properties of L1(·)
and L−2 (·), respectively. The monotonicity implies that σ 7→

∑
k∈δ− L1(σ;U0,k)

and σ 7→
∑
k∈δ+ L

−
2 (σ;U0,k) are monotone decreasing and increasing in [σlb,∞),

respectively. Furthermore, L1(σlb;U0,k) ≤ d(σlb;U0,k), k ∈ δ− and L2(σlb;U0,k) ≥
s(σlb;U0,k), k ∈ δ+. This finishes the proof.

In general, under assumption (17), the solution to a Riemann problem for (1)
consists of a superposition of waves of the first family and waves of the second
family. In order to solve the problem (13) we mimic this behavior by constructing
of a solution as follows. Denote by

σlb := max
k∈δ±

τk(U0,k). (18)
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Then, equation (16) is fulfilled provided that there exists σ with σ ≥ σlb and (16)∑
k∈δ−

L1(σ;U0,k)−
∑
k∈δ+

L−2 (σ;U0,k) = 0. (19)

The following Theorem guarantees the solvability of the previous equation and
presents the main result.

Theorem 2.3. Assume U0,k for k ∈ δ± with ρ0,k > 0 are given. Suppose further
that (3) holds true. Let σlb be given by equation (18).
Provided that ∑

k∈δ−
L1(σlb;U0,k) ≥

∑
k∈δ+

L−2 (σlb;U0,k) (20)

there exists a unique σ ≥ σlb, such that equation (19) is fulfilled.

The proof follows immediately from the monotonicity properties established be-
fore.

Now, we continue our construction: Suppose (19) has a unique solution σ, see
Theorem 2.3. Then, define

U+
k := (σ, L1(σ;U0,k))

T
, k ∈ δ−, U−k :=

(
σ, L−2 (σ;U0,k)

)T
, k ∈ δ+. (21)

Then, we have L1(σ;U0,k) ≤ d(ρ0,k;U0,k) for k ∈ δ− and L−2 (σ;U0,k) ≥ s(ρ0,k;U0,k)
for k ∈ δ+ due to Lemma 2.2. According to Theorem 2.1 and Corollary 1 this
ensures that the solution to problem (13) has non–positive and non–negative speed,
respectively. Therefore, a solution to the problem (13) fulfills equation (16) and
(15).

Some remarks are in order.

Remark 2. Note that this construction is also valid in the case U−k ∈ A and
coincides with the solution to the equal pressure condition proposed in [8, 2].

In the case n = m = 1 we have U+
−1 = U−1 =: U. Since λ1(U) < λ2(U) the

solution (13) consists by construction of at most a wave of the first family on k = −1.
On k = 1 we may have at most a wave of the second family. This is consistent with

the solution to a Riemann problem (13) with initial data U(0, x) =

(
U−−1 x < 0
U+
1 x > 0

)
.

Remark 3. Note that linearization techniques in order to solve (2) and (16) will fail
to provide a solution to (13) due to the fact that at U0,k, k ∈ δ− both eigenvalues
are non–negative. Therefore, a linear system obtained through linearization at
U0,k, k ∈ δ± would have onlym degrees of freedom to prescribe boundary conditions.
However, the given set of conditions are in fact n + m. This is different compared
with the case U0,k ∈ A for all k ∈ δ±.

In the case U0,k ∈ A− for k ∈ δ+ the problem (13),(15) and (16) is more com-
plicated in the following way. The characteristic families can no longer be uniquely
related to whether they are incoming (k ∈ δ−) or outgoing (k ∈ δ+). One can easily
find examples such that we observe two waves of different families on the outgoing
and a wave on the incoming pipe. Therefore, new additional conditions have to be
imposed to treat the additional degree of freedom.

2.3. Example. We consider p(ρ) = ρ2 as an example. Further, we assume δ− =
{−3, . . . ,−1} and δ+ = {1, . . . , 4}. Initial data U0,k is chosen randomly such that
U0,k ∈ A+ for k ∈ δ− and U0,k ∈ A for k ∈ δ+. The initial data U0,k does not
fulfill the coupling condition (16) and (15) as seen in Table 1. We then compute
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the states at the junction (21) according to the discussion of the previous section.
Numerically, we solve equation (19) using Newton’s method. The results are given
in Table 2. As expected the density and the pressure fulfill (2) and (15). Further,
we report on the difference between incoming and outgoing fluxes. The equation
(19) has been solved up to machine precision.

Pipe k (ρ0,k, q0,k) p(ρ0,k)
-1 (5.151e-01,2.519e+00) 2.653e-01
-2 (6.317e-01,2.794e+00) 3.991e-01
-3 (6.642e-01,3.905e+00) 4.412e-01
1 (5.730e-01,-2.648e-01) 3.283e-01
2 (7.460e-01,-1.523e-01) 5.565e-01
3 (5.931e-01,-1.280e-01) 3.518e-01
4 (5.849e-01,6.020e-01) 3.421e-01

Table 1. Random initial states U0,k on incoming pipes k < 0 and
outgoing pipes k > 0. The initial difference in the sum of the mass
fluxes is given by ∆ = 9.162e+ 00.

Pipe k (ρk, qk) p(ρk)
-1 (2.089e+00,5.101e+00) 4.364e+00
-2 (2.089e+00,4.868e+00) 4.364e+00
-3 (2.089e+00,8.090e+00) 4.364e+00
1 (2.089e+00,3.757e+00) 4.364e+00
2 (2.089e+00,3.357e+00) 4.364e+00
3 (2.089e+00,4.147e+00) 4.364e+00
4 (2.089e+00,6.798e+00) 4.364e+00

Table 2. Terminal states Uk(t, 0±) for k ∈ δ±. The difference in
the sum of the mass fluxes is zero.

3. Summary. While coupling conditions for the subsonic flow in gas pipelines are
well-established, in this paper the coupling conditions for the transonic transition
from supersonic flow to subsonic flow are studied that have not been thoroughly
analyzed before. In this way we fill a gap in the theory, which is important in
order to have a complete theory that covers all cases. This can also be important
for algorithmic purposes, since during an iterative method for the solution of an
optimal control problem, it may happen that supersonic states occur, even if the
optimal state is subsonic. The purely subsonic case has been treated explicitly in
[1] and in general e.g. in [8]. For a complete theory of all possible cases the fully
supersonic case is still at large. Future work may then include a complete statement
provided the challenges in the supersonic regime can be dealt with.
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