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Abstract. In this paper we consider a scalar parabolic equation on a star
graph; the model is quite general but what we have in mind is the description
of traffic flows at a crossroad. In particular, we do not necessarily require the
continuity of the unknown function at the node of the graph and, moreover,
the diffusivity can be degenerate. Our main result concerns a necessary and
sufficient algebraic condition for the existence of traveling waves in the graph.
We also study in great detail some examples corresponding to quadratic and
logarithmic flux functions, for different diffusivities, to which our results apply.

1. Introduction. Partial differential equations on networks have been considered
in the last years by several authors, in particular in the parabolic case; we quote for
instance [8, 10, 11, 16, 24, 30]. According to the modeling in consideration and to
the type of equations on the edges of the underlying graph, different conditions at
the nodes are imposed. In most of the cases, precise results of existence of solutions
are given, even for rather complicated networks.

In this paper, the main example we have in mind comes from traffic modeling,
where the network is constituted by a crossroad connecting m incoming roads with
n outgoing roads; the traffic in each road is modeled by the scalar diffusive equation

ρh,t + fh(ρh)x = (Dh(ρh)ρh,x)x , h = 1, . . . ,m+ n, (1.1)

where t denotes time and x the position along the road. In this case ρh is a vehicle
density; about the diffusivity Dh(ρh) ≥ 0 we do not exclude that it may vanish
at some points. System (1.1) is completed by a condition of flux conservation at
the crossroad, which implies the conservation of the total number of cars. Such
a model is derived from the famous Lighthill-Whitham-Richards equation [17, 25].
We refer to [3, 15, 17, 20, 22, 27] for several motivations about the introduction
of (possibly degenerate) diffusion in traffic flows and in the close field of crowds
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dynamics. We also refer to the recent books [10, 11, 26] for more information on
the related hyperbolic modeling.

We focus on a special class of solutions to (1.1), namely, traveling waves. In
the case of a single road, traveling waves are considered, for instance, in [21]; in
the case of a second-order model without diffusion but including a relaxation term,
we refer to [9, 28]; for a possibly degenerate diffusion function and in presence
of a source term, detailed results are given in [6, 7]. In the case of a network,
the papers dealing with this subject, to the best of our knowledge, are limited to
[30, 31] for the semilinear diffusive case and to [19] for the case of a dispersive
equation. In these papers, as in most modeling of diffusive or dispersive partial
differential equations on networks, both the continuity of the unknown functions and
the Kirchhoff condition (or variants of it) are imposed at the nodes. We emphasize
that while the classical Kirchhoff condition implies the conservation of the flow
and then that of the mass, some variants of this condition are dissipative and,
then, imply none of the conservations above. While these assumptions are natural
when dealing with heat or fluid flows, they are much less justified in the case of
traffic modeling, where the density must be allowed to jump at the node while the
conservation of the mass must always hold. Moreover, they impose rather strong
conditions on the existence of the profiles, which often amount to proportionality
assumptions on the parameters in play.

In this paper we only require the conservation of the (parabolic) flux at the node,
as in [4]; differently from that paper and the other ones quoted above, we do not
impose the continuity condition. A strong motivation for dropping this condition
comes from the hyperbolic modeling [1, 10, 11, 26]; nevertheless, we show how our
results simplify when such a condition is required. In particular, in Sections 6 and 7
we provide explicit conditions for traveling wave solutions which do not satisfy the
continuity condition; in some other cases, such a condition is indeed always satisfied.
Our main results are essentially of algebraic nature and concern conditions about
the end states, flux functions, diffusivities and other parameters which give rise to
a traveling wave moving in the network.

Here follows a plan of the paper. In Section 2 we introduce the model and give
some basic definitions; for simplicity we only focus on the case of a star graph. Sec-
tion 3 deals with a general existence result in the case of a single equation; its proof
is provided in Appendix A. Section 4 contains our main theoretical results about
traveling waves in a network. In that section we characterize both stationary/non-
stationary and degenerate/non-degenerate waves; in particular, Theorem 4.12 con-
tains an important necessary and sufficient condition that we exploit in the following
sections. Section 5 focus on the continuity condition; in this case the conditions for
the existence of traveling wave solutions are much stricter than in the previous case.
Detailed applications of these results are provided in Sections 6 for quadratic fluxes
and in Section 7 for logarithmic fluxes; in particular, in subsection 6.2 and in the
whole Section 7 the diffusivity is as in [3]. For simplicity, we only deal there with
the case of a single ingoing road but we consider both constant and degenerate
diffusivities.

From a theoretical point of view, the extension of our work to more general
networks is possible by applying the results in Section 4 to each node iteratively.
However, a quick look at Sections 6 and 7 shows that the corresponding results
become quickly very technical. In particular, in the general case the whole problem
must be recast by using the graph notation, see for instance [18].
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2. The model. In terms of graph theory, we consider a semi-infinite star-graph
with m incoming and n outgoing edges; this means that the incidence vector d ∈
R
m+n has components di = 1 for i ∈ I

.
= {1, . . . ,m} and dj = −1 for j ∈ J

.
=

{m+ 1, . . . ,m+ n}. We also denote H
.
= {1, . . . ,m+ n} and refer to Figure 1. For

simplicity, having in mind the example in the Introduction, we always refer to the
graph as the network, to the node as the crossroad and to the edges as the roads.
Then, incoming roads are parametrized by x ∈ R−

.
= (−∞, 0] and numbered by the

index i, outgoing roads by x ∈ R+
.
= [0,∞) and j; the crossroad is located at x = 0

for both parameterizations. We denote the generic road by Ωh for h ∈ H; then
Ωi

.
= R− for i ∈ I and Ωj

.
= R+ for j ∈ J. The network is defined as N

.
=
∏

h∈H
Ωh.

Ω1

Ω2...
Ωi...
Ωm Ωm+1

...
Ωm+2

...
Ωj

Ωm+n

Figure 1. A star graph.

Following the above analogy, we understand the unknown functions ρh as ve-
hicular densities in the roads Ωh, h ∈ H; ρh ranges in [0, ρh], where ρh is the
maximal density in the road Ωh. Without loss of generality we assume that ρh = 1
for every h ∈ H; the general case is easily recovered by a change of variables and
modifying (2.2)-(2.3) below for a multiplicative constant. With a slight abuse of
notation we denote ρ

.
= (ρ1, . . . , ρm+n) : R × N → [0, 1]m+n understanding that

ρ(t, x1, . . . , xm+n) = (ρ1(t, x1), . . . , ρm+n(t, xm+n)).
For each road we assign the functions fh, the hyperbolic flux, and Dh, the diffu-

sivity; we assume for every h ∈ H

(f) fh ∈ C1([0, 1];R+) is strictly concave with fh(0) = fh(1) = 0;
(D) Dh ∈ C1([0, 1];R+) and Dh(ρ) > 0 for any ρ ∈ (0, 1).

We emphasize that in (D) we can possibly have either Dh(0) = 0 or Dh(1) = 0, or
even both possibilities at the same time. The evolution of the flow is described by
the equations

ρh,t + fh(ρh)x = (Dh(ρh)ρh,x)x , (t, x) ∈ R× Ωh, h ∈ H. (2.1)

Assumption (f) is standard when dealing with traffic flows [2]. More precisely, in
that case fh(ρh) = ρh Vh(ρh), where Vh is the velocity. Then, assumption (f) is
satisfied if, for instance, Vh ∈ C2([0, 1];R+) is either linear or strictly concave,
decreasing and satisfying Vh(1) = 0, see [17, 25]. The prototype of such a velocity
satisfying (f) is Vh(ρ) = vh(1 − ρ) with vh > 0, which was introduced in [14];
another example is given in [23]. The simplest model for the diffusivity is then
Dh(ρh) = −δhρh V ′

h(ρh), where δh is an anticipation length [3, 21].
The coupling among the differential equations in (2.1) occurs by means of suitable

conditions at the crossroad. In this paper, having in mind the previous example,
we impose a condition on the conservation of the total flow at the crossroad, see
[4, 5]; in turn, this implies the conservation of the mass. More precisely, we define
the parabolic flux by

Fh(ρh, ρh,x)
.
= fh(ρh)−Dh(ρh) ρh,x
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and require

Fj
(

ρj(t, 0
+), ρj,x(t, 0

+)
)

=
∑

i∈I

αi,j Fi
(

ρi(t, 0
−), ρi,x(t, 0

−)
)

for a.e. t ∈ R, j ∈ J,

(2.2)

for given constant coefficients αi,j ∈ (0, 1] satisfying
∑

j∈J

αi,j = 1, i ∈ I. (2.3)

Conditions (2.2) and (2.3) imply
∑

j∈J

Fj
(

ρj(t, 0
+), ρj,x(t, 0

+)
)

=
∑

i∈I

Fi
(

ρi(t, 0
−), ρi,x(t, 0

−)
)

for a.e. t ∈ R, (2.4)

which is the conservation of the total flow at the crossroad. Conditions (2.2) and
(2.3) deserve some comments. First, by no means they imply

ρi(t, 0
−) = ρj(t, 0

+), t ∈ R, (i, j) ∈ I× J. (2.5)

Condition (2.5) is largely used, together with some Kirchhoff conditions, when deal-
ing with parabolic equations in networks and takes the name of continuity condition.
Second, above we assumed αi,j > 0 for every i and j. The case when αi,j = 0 for
some i and j would take into account the possibility that some outgoing j roads
are not allowed to vehicles coming from some incoming i roads; this could be the
case, for instance, if only trucks are allowed in road i but only cars are allowed in
road j. For simplicity, we do not consider this possibility. Third, we notice that
assumption (2.2) destroys the symmetry of condition (2.4); indeed, with reference to
the example of traffic flow, the loss of symmetry is due to the fact that all velocities
Vh are positive.

We point out that condition (2.3) is almost never explicitly exploited in Section
4 and in most of the following: our results hold for every choice of the coefficients
αi,j > 0. Clearly, condition (2.3) must be imposed to have mathematically (see [11,
Lemma 5.1.9]) and physically meaningful solutions; however, this requirement only
adds algebraic conditions on the parameters we are dealing with (the end states,
the ratios of the traveling-wave speeds, the proportionality coefficients - see (6.11),
for instance - and so on) which do not affect the final results.

Then, we are faced with the system of equations (2.1) that are coupled through
(2.2), with the αi,j satisfying (2.3). Solutions to (2.1)-(2.2) are meant in the weak
sense, namely ρh ∈ C1(R×Ωh; [0, 1]) a.e.; see also [2, 11] for an analogous definition
in the hyperbolic case. We do not impose any initial condition because we only
consider traveling waves, which are introduced in the next sections.

3. Traveling waves for a single equation. In this section we briefly remind
some definitions and results about traveling waves [12] for the single equation

ρh,t + fh(ρh)x = (Dh(ρh)ρh,x)x , (t, x) ∈ R× Ωh, (3.1)

where we keep for future reference the index h. Equation (3.1) has no source terms
(differently from [30, 31]) and then any constant is a solution; for simplicity we
discard constant solutions in the following analysis.

Definition 3.1. A weak solution ρh(t, x) to (3.1) is a traveling-wave solution of (3.1)
if ρh(t, x) = ϕh(x−cht) for (t, x) ∈ R×Ωh, for a non-constant profile ϕh : R → [0, 1]
and speed ch ∈ R.
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This definition coincides with that given in [19, 29] because we are considering
non-constant profiles. The profile must satisfy the equation

(Fh(ϕh, ϕ
′
h)− chϕh)

′
= 0, (3.2)

namely,

(Dh(ϕh)ϕ
′
h)

′
− g′h(ϕh)ϕ

′
h = 0, (3.3)

in the weak sense, where

gh(ρ)
.
= fh(ρ)− ch ρ (3.4)

is the reduced flux, see Figure 2.

gh(ℓ
±
h )

ℓ−h ℓ+h 1 ρ

y = ch ρ

y

gh(ℓ
±
h )

ℓ−h ℓ+h 1 ρ

y = ch ρ

y

Figure 2. A flux fh satisfying (f), solid curve, and the corre-
sponding reduced flux gh defined in (3.4), dashed curve, in the case
ch < 0, left, and in the case ch > 0, right.

This means that ϕh ∈ C0(R; [0, 1]), Dh(ϕh)ϕ
′
h ∈ L1

loc
(R;R) and

∫

R

(Dh (ϕh(ξ))ϕ
′
h(ξ)− gh (ϕh(ξ)))ψ

′(ξ) dξ = 0,

for every ψ ∈ C∞
c (R;R). Equation (3.3) is coupled with the limit conditions

ϕh(±∞) = ℓ±h , (3.5)

for ℓ±h ∈ [0, 1]. Clearly, solutions to (3.3)-(3.5) are determined up to a shift. We
define

Ih
.
=
{

ξ ∈ R : ℓ−h < ϕh(ξ) < ℓ+h
}

. (3.6)

The existence of profiles is a well-established result [12]; nevertheless, we state for
completeness the following theorem, where we point out the qualitative properties
of these fronts. The proof is deferred to Appendix A.

Theorem 3.2. Assume (f) and (D). Equation (3.1) admits a traveling-wave solu-
tion ρh with profile ϕh satisfying (3.5) if and only if

0 ≤ ℓ−h < ℓ+h ≤ 1 and ch =
fh(ℓ

+
h )− fh(ℓ

−
h )

ℓ+h − ℓ−h
. (3.7)

We have that ϕh ∈ C2
(

Ih; (ℓ
−
h , ℓ

+
h )
)

is unique (up to shifts) and ϕ′
h(ξ) > 0 for

ξ ∈ Ih; moreover, the following holds true.



344 A. CORLI, L. DI RUVO, L. MALAGUTI AND M. D. ROSINI

(i) Dh(0) = 0 = ℓ−h if and only if there exists ν−h ∈ R such that Ih ⊆ (ν−h ,∞) and

ϕh(ξ) = 0 for ξ ≤ ν−h . In this case

lim
ξ↓ν

−

h

ϕ′
h(ξ) =







ℓ
+

h
f ′

h(0)−fh(ℓ
+

h
)

ℓ
+

h
D′

h
(0)

if D′
h(0) > 0,

∞ if D′
h(0) = 0,

(3.8)

lim
ξ↓ν

−

h

Dh (ϕh(ξ))ϕ
′
h(ξ) = 0. (3.9)

(ii) Dh(1) = 0 = 1−ℓ+h if and only if there exists ν+h ∈ R such that Ih ⊆ (−∞, ν+h )

and ϕh(ξ) = 1 for ξ ≥ ν+h . In this case

lim
ξ↑ν

+

h

ϕ′
h(ξ) =







(1−ℓ−h )f
′

h(1)+fh(ℓ
−

h
)

(1−ℓ−h )D′

h
(1)

if D′
h(1) < 0,

∞ if D′
h(1) = 0,

(3.10)

lim
ξ↑ν

+

h

Dh (ϕh(ξ))ϕ
′
h(ξ) = 0. (3.11)

(iii) In all the other cases Ih = R and

lim
ξ→±∞

ϕ′
h(ξ) = 0. (3.12)

We observe that for ch given by (3.7), we deduce by (f) that gh(ρ) ≥ 0 for all
ρ ∈ [ℓ−h , ℓ

+
h ], see Figure 2. Moreover, we have

gh(ℓ
+
h ) = gh(ℓ

−
h ) = −

fh(ℓ
+
h ) ℓ

−
h − fh(ℓ

−
h ) ℓ

+
h

ℓ+h − ℓ−h
(3.13)

and no ρ 6= ℓ±h makes gh(ρ) equal to that value.
Theorem 3.2 motivates the following definition.

Definition 3.3. A traveling-wave solution ρh is stationary if ch = 0. It is degenerate
if at least one of conditions (i) or (ii) of Theorem 3.2 holds.

Remark 3.4. A consequence of assumption (f) is that if ρh is degenerate, then the
profile ϕh is singular either at ν−h in case (i) or at ν+h in case (ii), in the sense that
ϕ′
h cannot be extended to the whole of R as a continuous function.

In case (i) (or (ii)) of Theorem 3.2 does not hold we define ν−h
.
= −∞ (respec-

tively, ν+h
.
= ∞). In this way the interval (ν−h , ν

+
h ) is always defined and coincides

with the interval Ih defined in (3.6):

Ih = (ν−h , ν
+
h ).

The interval Ih is bounded if and only if both (i) and (ii) hold; in this case ρh is
both degenerate and stationary. As a consequence, if ρh is non-stationary then Ih
is unbounded and coincides either with a half line (if ρh is degenerate) or with R

(if ρh is non-degenerate). At last, ρh is degenerate if and only if either ν−h or ν+h is
finite.

In the case of non-stationary traveling-wave solutions ρh we use the notation

ωh
.
= min{c−1

h ν−h , c
−1
h ν+h }. (3.14)

Lemma 3.5. Let ρh be a traveling-wave solution of (3.1); then we have the follow-
ing.

(a) If ρh is stationary, then it is degenerate if and only if Dh(0)Dh(1) = 0 and
ℓ−h = 0 (hence ℓ+h = 1).
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(b) If ρh is non-stationary, then it is degenerate if and only if one of the following
equivalent statements hold:
• either Dh(0) = 0 = ℓ−h or Dh(1) = 0 = 1− ℓ+h , but not both;
• ωh is finite.

In this case the function ξ 7→ ϕ′
h(chξ) is singular at ξ = ωh and C1 elsewhere.

Proof. We recall that ρh is degenerate if and only if either Dh(0) = 0 = ℓ−h or

Dh(1) = 0 = 1− ℓ+h . This means that at least one of the end states must be 0 or 1,
say 0; but then ch = 0 if and only if the other end state is 1. This proves (a) and
the first part of (b).

Now, we prove the second part of (b). Since ch 6= 0, ρh is degenerate if and
only if exactly one between (i) and (ii) of Theorem 3.2 occurs, namely, exactly one
between ν−h and ν+h is finite. If ν−h is finite and ν+h = ∞, then ch = fh(ℓ

+
h )/ℓ

+
h > 0

and ωh = c−1
h ν−h is finite. By Remark 3.4, we know that ξ 7→ ϕ′

h(ξ) is singular at

ξ = ν−h and C1 elsewhere, whence the regularity of ξ 7→ ϕ′
h(chξ). Analogously, if

ν+h is finite and ν−h = −∞, then ch = −fh(ℓ
−
h )/(1 − ℓ−h ) < 0 and ωh = c−1

h ν+h is
finite. The statement about the smoothness of ξ 7→ ϕ′

h(chξ) is proved as above.
Finally, the converse is straightforward. In fact, if ωh is finite, then either

ωh = c−1
h ν−h and ν−h is finite, or ωh = c−1

h ν+h and ν+h is finite; in both cases ρh
is degenerate.

Because of the smoothness properties of the profile proved in Theorem 3.2, we
can integrate equation (3.2) in (ξ−, ξ) ⊂ Ih and we obtain

chϕh(ξ) − Fh (ϕh(ξ), ϕ
′
h(ξ)) = chϕh(ξ−)− Fh (ϕh(ξ−), ϕ

′
h(ξ−)) .

If ξ− ↓ ν−h in the previous expression, by applying (3.9) or (3.12) we deduce

Fh (ϕh(ξ), ϕ
′
h(ξ)) = chϕh(ξ) + gh(ℓ

±
h ), ξ ∈ Ih. (3.15)

We observe that (3.15) is trivially satisfied in case (i) when ξ < ν−h and in case (ii)

when ξ > ν+h ; moreover, by a continuity argument, we deduce from (3.9) and (3.11)

that (3.15) is satisfied in case (i) at ξ = ν−h and in case (ii) at ξ = ν+h , respectively.
In conclusion, we have that (3.15) holds in the whole R, namely

Dh (ϕh(ξ)) ϕ
′
h(ξ) = gh (ϕh(ξ)) − gh(ℓ

±
h ), ξ ∈ R. (3.16)

4. Traveling waves in a network. In this section we consider the traveling-wave
solutions of problem (2.1)-(2.2) in the network N . We first introduce the definition
of traveling-wave solution in N .

Definition 4.1. For any h ∈ H, let ρh be a traveling-wave solution of (2.1)h in the
sense of Definition 3.1 and set ρ

.
= (ρ1, . . . , ρm+n). With reference to Definition 3.3,

we say that:

• ρ is stationary if each component ρh is stationary;
• ρ is completely non-stationary if none of its components is stationary;
• ρ is degenerate if at least one component ρh is degenerate;
• ρ is completely degenerate if each of its components is degenerate.

Finally, we say that ρ is a traveling-wave solution of problem (2.1)-(2.2) in the
network N if (2.2) holds.

For brevity, from now on we simply write “traveling wave” for “traveling-wave
solution”. In analogy to the notation above, we say that ϕ

.
= (ϕ1, . . . , ϕm+n) is a

profile for ρ if ϕh is a profile corresponding to ρh for every h ∈ H.
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For clarity of exposition, we collect our general results for stationary and non-
stationary traveling waves in the following subsections.

4.1. General results. In this subsection, as well as in the following ones, we always
assume (f) and (D) without explicitly mentioning it. Moreover, by Definition 4.1
and Theorem 3.2, the end states and the speeds of the profiles must satisfy (3.7)
for every h ∈ H; both conditions in (3.7) are tacitly assumed as well.

Proposition 4.2. The function ϕ is the profile of a traveling wave for (2.1)-(2.2)
if and only if ϕh is a solution to (3.5)-(3.16) for any h ∈ H and

cj ϕj(cjt) + gj(ℓ
±
j ) =

∑

i∈I

αi,j
(

ci ϕi(cit) + gi(ℓ
±
i )
)

, t ∈ R, j ∈ J. (4.1)

In (4.1) any combination of the signs ± is allowed.

Proof. By plugging ρh(t, x) = ϕh(x−cht) in (2.2) and recalling that by Theorem 3.2
the profiles are continuous in R, we obtain

Fj
(

ϕj(−cjt), ϕ
′
j(−cjt)

)

=
∑

i∈I

αi,j Fi
(

ϕi(−cit), ϕ
′
i(−cit)

)

, t ∈ R, j ∈ J,

which is equivalent to (4.1) by (3.16). At last, we can clearly choose any combination
of signs in (4.1) because of (3.13).

Differently from what specified in Proposition 4.2, in the following the choice of
the signs “±” follows the usual rules, i.e., top with top and bottom with bottom.

Lemma 4.3. Assume that problem (2.1)-(2.2) admits a traveling wave. Then for
any j ∈ J we have

max
{

fj(ℓ
−
j ), fj(ℓ

+
j )
}

=
∑

i∈I

αi,j max
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

, (4.2)

min
{

fj(ℓ
−
j ), fj(ℓ

+
j )
}

=
∑

i∈I

αi,j min
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

. (4.3)

Proof. Fix j ∈ J. We notice that (4.1) is equivalent to

Υj(t) =
∑

i∈I

αi,jΥi(t), t ∈ R, j ∈ J,

where the map t 7→ Υh(t)
.
= ch ϕh(cht) + gh(ℓ

−
h ) is non-decreasing because the

profiles are so, by Theorem 3.2. Since we can write Υh(t) = fh(ℓ
−
h )+ch[ϕh(cht)−ℓ

−
h ],

we see that Υh ranges between fh(ℓ
−
h ) and fh(ℓ

+
h ) because of (3.7) and the fact that

ξ 7→ ϕh(ξ) takes values in [ℓ−h , ℓ
+
h ]. As a consequence,

lim
t→∞

Υh(t) = max
{

fh(ℓ
−
h ), fh(ℓ

+
h )
}

, lim
t→−∞

Υh(t) = min
{

fh(ℓ
−
h ), fh(ℓ

+
h )
}

.

Hence, by passing to the limit for t → ±∞ in (4.1) we obtain (4.2) and (4.3),
respectively.

Lemma 4.4. Assume that problem (2.1)-(2.2) admits a traveling wave. The trav-
eling wave is stationary if and only if one of the following equivalent statements
hold:

(i) there exists j ∈ J such that cj = 0;
(ii) ci = 0 for all i ∈ I;
(iii) cj = 0 for all j ∈ J.
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Proof. By subtracting (4.3) to (4.2) we obtain

|fj(ℓ
+
j )− fj(ℓ

−
j )| =

∑

i∈I

αi,j |fi(ℓ
+
i )− fi(ℓ

−
i )|.

Since ch = 0 if and only if fh(ℓ
−
h ) = fh(ℓ

+
h ), from the above equation we immediately

deduce that (i), (ii) and (iii) are equivalent. By the equivalence of (ii) and (iii), a
traveling wave is stationary if and only if one of the statements above holds.

Lemma 4.4 shows that either a traveling wave is stationary, and then ch = 0 for
every h ∈ H, or it is non-stationary, and then

there exists i ∈ I such that ci 6= 0 and cj 6= 0 for every j ∈ J. (4.4)

Of course, by Lemma 4.4, ci 6= 0 for some i ∈ I if and only if cj 6= 0 for every j ∈ J.

Proposition 4.5. Fix ℓ±i ∈ [0, 1] with ℓ−i < ℓ+i , i ∈ I. Then for any j ∈ J there
exist ℓ±j ∈ [0, 1] with ℓ−j < ℓ+j and satisfying (4.2)-(4.3) if and only if















max
[0,1]

fj >
∑

i∈I

αi,j max
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

if c1 = . . . = cm = 0,

max
[0,1]

fj ≥
∑

i∈I

αi,j max
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

otherwise.
(4.5)

In this case, the end states ℓ±j are uniquely determined if and only if ci = 0 for
every i ∈ I.

Proof. Assume that there exist ℓ±j ∈ [0, 1], with ℓ−j < ℓ+j , which satisfy (4.2)-(4.3).

Then clearly we have max[0,1] fj ≥
∑

i∈I
αi,j max{fi(ℓ

−
i ), fi(ℓ

+
i )}. If ci = 0 for

every i ∈ I, then we have cj = 0 for every j ∈ J by Lemma 4.4; the equality
max[0,1] fj = f(ℓ−j ) = f(ℓ+j ) would imply ℓ−j = ℓ+j because of (f), a contradiction,

and then max[0,1] fj > f(ℓ−j ) = f(ℓ+j ). This proves (4.5).

fjfj

ρρ 11 ℓ−jℓ−jℓ−j ℓ+jℓ+jℓ+j

max{fj(ℓ
−
j ), fj(ℓ

+
j )}

min{fj(ℓ
−
j ), fj(ℓ

+
j )}

Figure 3. Values max{fj(ℓ
−
j ), fj(ℓ

+
j )} and min{fj(ℓ

−
j ), fj(ℓ

+
j )}

equal the right-hand side of (4.2) and (4.3), respectively; the lines
have slope cj 6= 0. Left: cj > 0. Right: cj < 0.

Conversely, assume (4.5). If ci = 0 for every i ∈ I, then ℓ−j < ℓ+j are uniquely
determined because of the strict concavity of fj. Assume, on the contrary, that

ci 6= 0 for some i ∈ I; then cj 6= 0 by Lemma 4.4, i.e., fj(ℓ
−
j ) 6= fj(ℓ

+
j ). Thus

(4.2)-(4.3) determine exactly four possible choices of end states ℓ±j with ℓ−j < ℓ+j ,
see Figure 3.



348 A. CORLI, L. DI RUVO, L. MALAGUTI AND M. D. ROSINI

By Proposition 4.5 and Lemma 4.4 we deduce that the end states ℓ±j are uniquely

determined in terms of the end states ℓ±i if and only if the traveling wave is stationary
and the first condition in (4.5) holds.

We now give an algebraic result about determining the end states of the outgoing
profiles in terms of the end states of the ingoing ones. We introduce

L±
i,j

.
=

{

ℓ±i if ci cj ≥ 0,

ℓ∓i if ci cj < 0.
(4.6)

Proposition 4.6. Assume that problem (2.1)-(2.2) admits a traveling wave. Then
for any j ∈ J we have

fj(ℓ
±
j ) =

∑

i∈I

αi,j fi(L
±
i,j). (4.7)

Moreover, (4.7) is equivalent to (4.2)-(4.3).

Proof. Fix j ∈ J. By Lemma 4.3 it is sufficient to prove that (4.7) is equivalent to
(4.2)-(4.3). If cj > 0, and then fj(ℓ

+
j ) > fj(ℓ

−
j ), by (4.6) we have

max
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

=

{

fi(ℓ
+
i ) if ci ≥ 0

fi(ℓ
−
i ) if ci < 0

= fi(L
+
i,j),

min
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

=

{

fi(ℓ
−
i ) if ci ≥ 0

fi(ℓ
+
i ) if ci < 0

= fi(L
−
i,j),

and therefore (4.7) is equivalent to (4.2)-(4.3). The case cj < 0 is analogous. If
cj = 0, then fj(ℓ

+
j ) = fj(ℓ

−
j ) and by Lemma 4.4 we have fi(ℓ

+
i ) = fi(ℓ

−
i ) for any

i ∈ I. In this case formulas (4.2)-(4.3) reduce to a single equation, which coincides
with (4.7).

4.2. The stationary case. In this short subsection we briefly consider stationary
traveling waves.

Theorem 4.7. Problem (2.1)-(2.2) admits infinitely many stationary traveling
waves; such waves are characterized by the conditions on the end states

fh(ℓ
+
h ) = fh(ℓ

−
h ), fj(ℓ

−
j ) =

∑

i∈I

αi,j fi(ℓ
−
i ) for h ∈ H, j ∈ J. (4.8)

Proof. Clearly, (4.8) is trivially satisfied if ℓ−h = 0 and ℓ+h = 1 for all h ∈ H. We

claim that there exist infinitely many choices of ℓ±1 , . . . , ℓ
±
m+n satisfying (4.8). To

prove the claim, we choose ℓ±i ∈ [0, 1], with ℓ−i < ℓ+i , such that fi(ℓ
−
i ) = fi(ℓ

+
i )

are sufficiently small to satisfy the first condition in (4.5) for all j ∈ J. Then, by
a continuity argument, we can choose ℓ±j ∈ [0, 1] so that ℓ−j < ℓ+j and fj(ℓ

−
j ) =

fj(ℓ
+
j ) =

∑

i∈I
αi,j fi(ℓ

−
i ). This proves the claim.

With this choice of the end states, by Theorem 3.2 we deduce the existence of a
stationary traveling wave in each road satisfying (2.1). At last we notice that, in
the stationary case, condition (4.1) is equivalent to the latter condition in (4.8).

Remark 4.8. The previous result does not use condition (2.3); in case it holds,
then (4.8) implies

∑

j∈J

fj(ℓ
−
j ) =

∑

i∈I

fi(ℓ
−
i ). (4.9)
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Conversely, consider the stationary case and assume conditions (4.8), (4.9); if more-
over fi(ℓ

−
i ) 6= 0 and either

∑

j∈J
αi,j ≥ 1 or

∑

j∈J
αi,j ≤ 1 for every i ∈ I, then (2.3)

holds. Indeed, (4.8)2 and (4.9) imply
∑

i∈I

fi(ℓ
−
i ) =

∑

j∈J

fj(ℓ
−
j ) =

∑

(i,j)∈I×J

αi,j fi(ℓ
−
i ),

namely
∑

i∈I
fi(ℓ

−
i )
[

1−
∑

j∈J
αi,j

]

= 0, whence (2.3).

Clearly, if both Dh(0) 6= 0 and Dh(1) 6= 0 for every h ∈ H, then problem (2.1)-
(2.2) admits no degenerate traveling wave. However, even in the general case, the
proof of Theorem 4.7 shows that (2.1)-(2.2) admits infinitely many non-degenerate
stationary traveling waves: just choose 0 6= ℓ−h < ℓ+h 6= 1 satisfying (4.8). Moreover,
if there exists h ∈ H such that either Dh(0) = 0 or Dh(1) = 0, then (2.1)-(2.2)
admits also infinitely many degenerate stationary traveling waves: just choose ℓ−h =

0 = 1− ℓ+h and determine the other end states by (4.8).

4.3. The non-stationary case. In this subsection we consider non-stationary
traveling waves. By Lemma 4.4 this is equivalent to consider the scenario in (4.4):
there exists i ∈ I such that fi(ℓ

−
i ) 6= fi(ℓ

+
i ) and fj(ℓ

−
j ) 6= fj(ℓ

+
j ) for every j ∈ J. We

can therefore introduce the following notation:

ci,j
.
=
ci
cj
, Ai,j

.
= αi,j ci,j , kj

.
=
∑

i∈I
c

0

(

Ai,j L
±
i,j

)

− ℓ±j , κj
.
= cjkj , (4.10)

where Li,j is defined in (4.6) and

I0
.
= {i ∈ I : ci = 0} = {i ∈ I : fi(ℓ

−
i ) = fi(ℓ

+
i )}, I

c

0

.
= I \ I0.

We notice that Ic
0
6= ∅ by (4.4) and that both I0 and I

c

0
depend on the end states ℓ±i ,

i ∈ I, indeed. Moreover, kj is well defined because by (4.7)
∑

i∈Ic
0

Ai,j
(

L+
i,j − L−

i,j

)

=
∑

i∈Ic
0

αi,jc
−1
j

(

fi(L
+
i,j)− fi(L

−
i,j)
)

= c−1
j

(

fj(ℓ
+
j )− fj(ℓ

−
j )
)

= ℓ+j − ℓ−j .

Finally, by (f) we deduce that

for no j ∈ J we have both ℓ−j = 0 = 1− ℓ+j .

Proposition 4.9. The function ϕ is the profile of a non-stationary traveling wave
for (2.1)-(2.2) if and only if ϕh is a solution to (3.5)-(3.16) for any h ∈ H and

ϕj(ξ) =
∑

i∈Ic
0

(Ai,j ϕi (ci,j ξ))− kj , ξ ∈ R, j ∈ J. (4.11)

Proof. By Proposition 4.2 it is sufficient to prove that by (4.4) condition (4.1) is
equivalent to (4.11). By (3.13) we have gi(ℓ

+
i ) = gi(ℓ

−
i ) = gi(L

+
i,j) = gi(L

−
i,j) and

then by (4.7) we have κj = gj(ℓ
±
j ) −

∑

i∈I
αi,jgi(L

±
i,j). Hence, by (4.4), with the

change of variable ξ = cjt, condition (4.1) is

cj ϕj(ξ) = −gj(ℓ
±
j ) +

∑

i∈I

αi,j
(

ci ϕi(ci,jξ) + gi(L
±
i,j)
)

=
∑

i∈I

αi,j ci ϕi(ci,jξ)− κj ,

that is equivalent to (4.11).
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We observe that kj and (4.11) can be written in a little bit more explicit form
by avoiding the use of L±

i,j as follows

kj =
∑

i∈Ic
0

(

Ai,j
ℓ−i + ℓ+i

2

)

−
ℓ−j + ℓ+j

2
, (4.12)

ϕj(ξ) =
ℓ−j + ℓ+j

2
+
∑

i∈Ic
0

Ai,j

(

ϕi (ci,j ξ)−
ℓ−i + ℓ+i

2

)

.

Proposition 4.9 shows how each outgoing profile ϕj can be expressed by (4.11) in
terms of the ingoing profiles ϕi, i ∈ I. We know a priori that ϕj is increasing and
its end states are contained in the interval [0, 1]. Now, we prove a sort of converse
implication, which shows that these properties of the profile ϕj are enjoined by the
function defined by the right-hand side of (4.11).

Lemma 4.10. Let ϕi, for i ∈ I, be the profiles provided by Theorem 3.2 and assume
that Ic

0
6= ∅; fix j ∈ J and consider any l±j ∈ [0, 1] satisfying (4.7) and such that, for

the corresponding cj, it holds cj 6= 0. Then l−j < l+j . Moreover, denote by ℓj(ξ) the

right-hand side of (4.11); then ξ 7→ ℓj(ξ) is non-decreasing and ℓj(±∞) = l±j .

Proof. Since by Theorem 3.2 we know that ℓ−i < ℓ+i , then by (4.7)

l+j − l−j = c−1
j

(

fj(l
+
j )− fj(l

−
j )
)

=
∑

i∈I

αi,j c
−1
j

(

fi(L
+
i,j)− fi(L

−
i,j)
)

=
∑

i∈I

αi,j ci,j
(

L+
i,j − L−

i,j

)

=
∑

i∈Ic
0

αi,j |ci,j |
(

ℓ+i − ℓ−i
)

> 0.

By definition of ℓj we have ℓ′j(ξ) =
∑

i∈Ic
0

αi,j c
2
i,j ϕ

′
i (ci,j ξ) for a.e. ξ ∈ R, hence

ξ 7→ ℓj(ξ) is non-decreasing since all profiles ϕi do. Moreover, ℓj(±∞) = l±j because
by the definitions of ℓj and κj we have

cj ℓj(±∞) =
∑

i∈Ic
0

(

αi,j ci L
±
i,j

)

− κj = cj l
±
j .

We notice that Proposition 4.9 exploits condition (2.2) through its expression
(4.1) for the profiles; the diffusivities Dh are not involved in (4.11). Indeed, Propo-
sition 4.9 imposes strong necessary conditions on the diffusivities as we discuss now
as a preparation to (4.17).

We notice that if both ν−h and ν+h are finite, then ℓ−h = 0 = 1 − ℓ+h and conse-

quently ch = 0; therefore either ν−h or ν+h (possibly both) is infinite for any h ∈ I
c
0
∪J.

The following result is similar to Lemma 4.4.

Lemma 4.11. Problem (2.1)-(2.2) admits a degenerate non-stationary traveling
wave ρ if and only if at least one of the following conditions holds:

(A) for some i ∈ I0 we have Di(0)Di(1) = 0 and ℓ−i = 0 (hence ℓ+i = 1);
(B) for every h ∈ I

c

0
∪ J we have either Dh(0) = 0 = ℓ−h or Dh(1) = 0 = ℓ+h − 1,

but not both. In this case we have

ωi = ωj
.
= ω, i ∈ I

c

0, j ∈ J. (4.13)

Proof. Let us introduce the following conditions:

(B)′ for some i ∈ I
c
0
we have either Di(0) = 0 = ℓ−i or Di(1) = 0 = ℓ+i − 1, but not

both;
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(B)′′ for some j ∈ J we have either Dj(0) = 0 = ℓ−j or Dj(1) = 0 = ℓ+j − 1, but not
both.

Clearly (B) implies both (B)′ and (B)′′. Moreover, by Lemma 3.5 and (4.4), prob-
lem (2.1)-(2.2) admits a degenerate non-stationary traveling wave ρ if and only if
at least one of the conditions (A), (B)′ and (B)′′ holds. To complete the proof it
is therefore sufficient to show that (B), (B)′ and (B)′′ are equivalent. By Lemma
3.5(b) and (4.4), the conditions (B), (B)′ and (B)′′ are respectively equivalent to

(I) ωh is finite for every h ∈ I
c
0
∪ J,

(II) for some i ∈ I
c
0
we have that ωi is finite,

(III) for some j ∈ J we have that ωj is finite,

where ωh is defined in (3.14). Differentiating (4.11) gives

ϕ′
j(cjξ) =

∑

i∈Ic
0

αi,jc
2
i,jϕ

′
i (ciξ) for a.e. ξ ∈ R, j ∈ J. (4.14)

More precisely, by Lemma 3.5, formula (4.14) holds for ξ ∈ R \
(

{ωj} ∪
⋃

i∈Ic
0

ωi

)

;

moreover, by the same lemma we know that ξ 7→ ϕ′
h(chξ) is singular at ξ = ωh and

C1 elsewhere, for h ∈ I
c

0
∪ J. Hence, (4.14) implies (4.13). By (4.13) we have that

the above statements (I), (II) and (III) are equivalent and then also (B), (B)′ and
(B)′′ are so.

As for Lemma 4.4, we notice that Lemma 4.11 implies that a non-stationary
traveling wave ρ is either non-degenerate, and then ρh is non-degenerate for every
h ∈ H, or ρ is degenerate, and then either there exists i ∈ I0 such that ρi is
degenerate, or ρh is degenerate for all h ∈ I

c

0
∪ J. In both cases a non-stationary

traveling wave ρ satisfies (4.13).
When modeling traffic flows it is natural to use different diffusivities, which

however share some common properties. For instance, this led to consider in [3, 7]
the following subcase of (D):

(D1) Dh satisfies (D) and Dh(0) = 0, Dh(1) > 0, for every h ∈ H.

The proof of the following result is an immediate consequence of Lemma 4.11
and, hence, omitted.

Corollary 1. Assume that problem (2.1)-(2.2) has a non-stationary traveling wave
ρ and (D1) holds. Then ρ is degenerate if and only at least one of the following
conditions holds:

(A) for some i ∈ I0 we have ℓ−i = 0 (hence ℓ+i = 1);
(B) for every h ∈ I

c
0
∪ J we have ℓ−h = 0 (hence ℓ+h 6= 1).

The case when Dh satisfies (D) and Dh(0) = 0 = Dh(1) for every h ∈ H, see
[6, 7], can be dealt analogously.

The next result is the most important of this paper; there, we give necessary
and sufficient conditions for the existence of non-stationary traveling waves in a
network. About its statement, let us recall Theorem 3.2: we have ϕ′

h(ξ) = 0 in case
(i) if ξ < ν−h or in case (ii) if ξ > ν+h . Since ϕh satisfies equation (3.16), we are led

to extend the quotient ℓ 7→
gh(ℓ)−gh(ℓ

−

h
)

Dh(ℓ)
to the whole of R by defining

γh(ℓ)
.
=

{

gh(ℓ)−gh(ℓ
−

h
)

Dh(ℓ)
if Dh(ℓ) 6= 0,

0 if Dh(ℓ) = 0.
(4.15)
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In fact, when ℓ is replaced by ϕh(ξ), then γh(ℓ) = ϕ′
h(ξ) for ξ ∈ R \ {ν−h , ν

+
h }. We

remark that condition Dh(ℓ) = 0 occurs at most when either ℓ = 0 or ℓ = 1. To
avoid the introduction of the new notation (4.15), in the following we simply keep

on writing
gh(ℓ)−gh(ℓ

−

h
)

Dh(ℓ)
for γh(ℓ). As a consequence, any non-stationary traveling

wave of problem (2.1)-(2.2) satisfies

ϕ′
h(ξ) =

gh (ϕh(ξ))− gh(ℓ
−
h )

Dh (ϕh(ξ))
, ξ ∈ R \ {ν−h , ν

+
h }, h ∈ H. (4.16)

Theorem 4.12. Assume conditions (f) and (D). Problem (2.1)-(2.2) admits a non-
stationary traveling wave if and only if the following condition holds.

(T ) There exist ℓ±1 , . . . , ℓ
±
m ∈ [0, 1] with ℓ−i < ℓ+i , i ∈ I, such that:

(i) I
c

0
6= ∅;

(ii) for any j ∈ J there exist ℓ±j ∈ [0, 1] satisfying (4.7) and such that fj(ℓ
−
j ) 6=

fj(ℓ
+
j );

(iii) for any j ∈ J we have

gj (ℓj(cj ξ))− gj(ℓ
−
j )

Dj (ℓj(cj ξ))
=
∑

i∈Ic
0

Ai,j ci,j
gi (ϕi(ci ξ))− gi(ℓ

−
i )

Di (ϕi(ci ξ))
for a.e. ξ ∈ R, (4.17)

where ϕ1, . . . , ϕm are solutions to (3.5)-(3.16) and, for kj as in (4.10),

ℓj(ξ)
.
=
∑

i∈Ic
0

(Ai,j ϕi (ci,j ξ))− kj , ξ ∈ R. (4.18)

Proof. First, assume that problem (2.1)-(2.2) admits a non-stationary traveling
wave ρ with profiles ϕh, end states ℓ±h and speeds ch, for h ∈ H. By Theorem 3.2 we

have that ℓ±h and ch satisfy (3.7). By Proposition 4.9 the profiles ϕh satisfy (3.5)-

(3.16) and (4.11). The end states ℓ±j , j ∈ J, satisfy (4.7) by Proposition 4.6. Since ρ

is non-stationary we are in the scenario given by (4.4): Ic
0
6= ∅ and fj(ℓ

−
j ) 6= fj(ℓ

+
j )

for all j ∈ J. By (4.16) with h = j we have

ϕ′
j(cjξ) =

gj (ϕj(cjξ))− gj(ℓ
−
j )

Dj (ϕj(cjξ))
(4.19)

for ξ ∈ R in the non-degenerate case and for ξ ∈ R \ {ω} with ω given by (4.13)
in the degenerate case. On the other hand, by differentiating (4.11) and applying
(4.16) with h = i we deduce

ϕ′
j(ξ) =

∑

i∈Ic
0

Ai,j ci,j ϕ
′
i(ci,jξ) =

∑

i∈Ic
0

Ai,j ci,j
gi (ϕi(ci,jξ))− gi(ℓ

−
i )

Di (ϕi(ci,jξ))
(4.20)

for ξ ∈ R in the non-degenerate case and for ξ ∈ R \ {ω} with ω given by (4.13)
in the degenerate case. Identity (4.17) follows because ℓj ≡ ϕj by (4.11) and by
comparing (4.19), (4.20).

Conversely, assume that condition (T ) holds. We remark that the existence of
ϕi, i ∈ I, is assured by Theorem 3.2. Fix j ∈ J. By defining ϕj

.
= ℓj we obtain

(4.11). We know by assumption that I
c

0
6= ∅, ℓ±j ∈ [0, 1] satisfy (4.7) and cj 6= 0;

we can apply therefore Lemma 4.10 and deduce that ℓ−j < ℓ+j , ϕj is non-decreasing

and satisfies (3.5) with h = j. By Proposition 4.9, what remains to prove is that ϕj
satisfies (3.16). But by (4.11) we deduce (4.20) for a.e. ξ ∈ R, because ϕ1, . . . , ϕm
satisfy (3.16) and hence, recalling the extension (4.15), also (4.16); then by (4.17)
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we conclude that ϕj satisfies (4.16) for a.e. ξ ∈ R and then (3.16) for a.e. ξ ∈ R.
Finally, (3.16) holds by the regularity ensured by Theorem 3.2 for the profiles.

Remark 4.13. As previously in Theorem 4.7, also in Theorem 4.12 we do not use
condition (2.3). We observe that (2.3) together with (4.7), or equivalently (4.2)-(4.3)
by Proposition 4.6, imply

∑

j∈J

max
{

fj(ℓ
−
j ), fj(ℓ

+
j )
}

=
∑

i∈I

max
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

. (4.21)

Conversely, consider the non-stationary case and assume conditions (4.2), (4.21); if
moreover max{fi(ℓ

−
i ), fi(ℓ

+
i )} 6= 0 and either

∑

j∈J
αi,j ≥ 1 or

∑

j∈J
αi,j ≤ 1 for

every i ∈ I, then (2.3) holds. Indeed, (4.2) and (4.21) imply
∑

i∈I

max
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

=
∑

j∈J

max
{

fj(ℓ
−
j ), fj(ℓ

+
j )
}

=
∑

(i,j)∈I×J

αi,j max
{

fi(ℓ
−
i ), fi(ℓ

+
i )
}

,

namely
∑

i∈I
max

{

fi(ℓ
−
i ), fi(ℓ

+
i )
} [

1−
∑

j∈J
αi,j
]

= 0, whence (2.3).

Remark 4.14. Fix ℓ±i ∈ [0, 1], i ∈ I, so that ℓ−i < ℓ+i and (4.5) holds. We know
by Proposition 4.5 that for every j ∈ J there exists (ℓ−j , ℓ

+
j ) ∈ [0, 1]2, with ℓ−j < ℓ+j ,

that satisfies (4.7), but it is not unique. If beside (4.7) we impose also (4.17), then
we may have three possible scenarios: such (ℓ−j , ℓ

+
j ) either does not exist, or it exists

and is unique, or else it exists but is not unique. We refer to Subsections 6.1 and
6.2 for further discussion.

5. The continuity condition. In this section we discuss the case when solutions
to (2.1)-(2.2) are also required to satisfy the continuity condition (2.5); this makes
the analysis much easier because (2.5) implies several strong conditions.

First, we provide the main results about traveling waves satisfying condition
(2.5). We point out that some of the consequences below have already been pointed
out in [19, 30, 31] in the case that some Kirchhoff conditions replace the conservation
of the total flow (2.2). In order to emphasize the consequences of the continuity
condition (2.5), the first two parts of the following lemma do not assume that also
condition (2.2) holds.

Lemma 5.1. For any h ∈ H, let ρh be a traveling wave of (2.1)h in the sense
of Definition 3.1 and set ρ

.
= (ρ1, . . . , ρm+n); then the following holds for every

(i, j) ∈ I× J and h ∈ H.

(i) ρ satisfies (2.5) if and only if

ϕj(cjt) = ϕi(cit)
.
= Φ(t), t ∈ R. (5.1)

(ii) If ρ satisfies (2.5), then either it is stationary (hence (5.1) reduces to ϕj(0) =
ϕi(0)), or it is completely non-stationary and the speeds ch have the same sign
(hence ci,j > 0). In the latter case, ρ is either non-degenerate or completely
degenerate; moreover

(c−1
j Ij) = (c−1

i Ii)
.
= I, (5.2)

ℓ±j = ℓ±i = L±
i,j

.
= ℓ±, (5.3)

cj
gj(ℓ)− gj(ℓ

±)

Dj(ℓ)
= ci

gi(ℓ)− gi(ℓ
±)

Di(ℓ)
, ℓ ∈ (ℓ−, ℓ+). (5.4)
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(iii) If ρ is non-stationary and satisfies both (2.2) and (2.5), then

cj =
∑

i∈I

αi,jci,
∑

j∈J

cj =
∑

i∈I

ci, κj = 0,
∑

i∈I

Ai,j = 1. (5.5)

Proof. We split the proof according to the items in the statement.

(i) Condition (2.5) and (5.1) are clearly equivalent.
(ii) Since we are discarding constant profiles, by (5.1) we have that either ch = 0

for all h ∈ H or ch 6= 0 for all h ∈ H. The stationary case is trivial; therefore
we consider below only the non-stationary case and assume that ch 6= 0 for
all h ∈ H. By differentiating (5.1) with respect to t we deduce

cjϕ
′
j(cjt) = ciϕ

′
i(cit) for a.e. t ∈ R. (5.6)

Then (5.6) implies that either ρ is non-degenerate or it is completely de-
generate. Moreover (5.6) implies (5.2) because, by Lemma 3.5, we have
that ρh is degenerate if and only if the map ξ 7→ ϕ′

h(chξ) is singular at
ξ = ωh ∈ R and C1 elsewhere. By taking t ∈ I in (5.6) we deduce that
ci and cj have the same sign. As a consequence we have L±

i,j = ℓ±i and then

ℓ±i = ℓ±j by letting t → ±∞ in (5.1). By (5.1), (3.16) and (5.3) we have

Dh (Φ(ξ)) Φ
′(ξ) = ch (gh(Φ(ξ)) − gh(ℓ

±)) for all h ∈ H, whence (5.4) by the
extension (4.15).

(iii) To deduce (5.5)1, we differentiate (4.1) and then exploit (5.6). Formula (5.5)2
follows by summing (5.5)1 with respect to j and by (2.3). By (5.5)1 we have
∑

i∈I
Ai,j =

∑

i∈I
αi,jcic

−1
j = 1, which proves (5.5)4. Finally, (5.3) and (5.5)4

imply (5.5)3.

In the following proposition we deal with stationary traveling waves satisfying
condition (2.5).

Proposition 5.2. Problem (2.1)-(2.2) admits infinitely many stationary traveling
waves satisfying (2.5); their end states ℓ±h satisfy (4.8) and are such that S

.
=

⋂

h∈H
(ℓ−h , ℓ

+
h ) 6= ∅.

Proof. By (5.1) condition (2.5) holds in the stationary case if and only if ϕi(0) =
ϕj(0) for (i, j) ∈ I × J. Recalling the proof of Theorem 4.7, it is sufficient to take

ℓ±h ∈ [0, 1] satisfying (4.8) and such that S 6= ∅, ℓ0 ∈ S and the unique solution
ϕh to (3.5)-(3.16) such that ϕh(0) = ℓ0. There are infinitely many of such profiles
because of the arbitrariness of ℓ±h .

We point out that condition S = ∅ can occur if the functions fh assume their
maximum values at different points. This is not the case when the following condi-
tion (5.10)1 is assumed.

The following result is analogous to Theorem 4.12 in the case (2.5) holds.

Theorem 5.3. Assume conditions (f) and (D). Problem (2.1)-(2.2) admits a (com-
pletely) non-stationary traveling wave satisfying (2.5) if and only if the following
condition holds.

(Tc) There exist ℓ± ∈ [0, 1] with ℓ− < ℓ+, such that for any h ∈ H, i ∈ I and j ∈ J

fh(ℓ
−) 6= fh(ℓ

+), (5.7)

fj(ℓ
±) =

∑

i∈I

αi,jfi(ℓ
±), (5.8)
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cj
gj (ϕj(cjt))− gj(ℓ

−)

Dj (ϕj(cjt))
= ci

gi (ϕi(cit))− gi(ℓ
−)

Di (ϕi(cit))
for a.e. t ∈ R, (5.9)

where ch is given by (3.7), ϕh is a solution to (3.16) such that ϕh(±∞) = ℓ±

and ϕ1(0) = . . . = ϕm+n(0).

Proof. Assume that condition (Tc) holds; the other implication is obvious. We
remark that the existence of ϕ1, . . . , ϕm+n is assured by Theorem 3.2; indeed, for
any ℓ0 ∈ (ℓ−, ℓ+), up to shifts it is always possible to assume that ϕh(0) = ℓ0,
h ∈ H. By (5.8) we have (5.5)4 because

∑

i∈I

Ai,j =
∑

i∈I

αi,j
fi(ℓ

+)− fi(ℓ
−)

fj(ℓ+)− fj(ℓ−)
= 1.

By (5.7) we have that I
c
0
= I, I0 = ∅ and ρ corresponding to the profile ϕ

.
=

(ϕ1, . . . , ϕm+n) is completely non-stationary. Then (5.5)4 and (4.12) imply (5.5)3,
namely kj = 0. By Lemma 5.1 (i) and Proposition 4.9 it remains to prove (5.1)
and (4.11). We start with (5.1). Clearly (5.1) holds for t = 0 because ϕh(0) = ℓ0,
h ∈ H. Then by the extension (4.15) and (5.9) we have

d

dt
(ϕj(cjt)− ϕi(cit)) = cj

gj (ϕj(cjt))− gj(ℓ
−)

Dj (ϕj(cjt))
− ci

gi (ϕi(cit))− gi(ℓ
−)

Di (ϕi(cit))
= 0.

Therefore we conclude that (5.1) holds. Finally, (4.11) follows immediately from
(5.1), (5.5)3 and (5.5)4.

Consider in particular the case when the functions f and D satisfy (f) and (D),
respectively, and assume that

fh(ℓ)
.
= vhf(ℓ), Dh(ℓ)

.
= δhD(ℓ), ℓ ∈ [0, 1], (5.10)

for some constants vh, δh > 0. Denote

vi,j
.
=
vi
vj
, δi,j

.
=
δi
δj
. (5.11)

We notice that now we have

vi,j = ci,j . (5.12)

In the following proposition we apply Theorem 5.3 when (5.10) is assumed; in this
case conditions (5.8) and (5.9) no longer depend on the end states and the statement
is somewhat simplified.

Proposition 5.4. Assume (5.10) with f and D satisfying (f) and (D), respectively.
Problem (2.1)-(2.2) admits a (completely) non-stationary traveling wave satisfying
(2.5) if and only if for every i ∈ I and j ∈ J we have

v2i,j = δi,j and
∑

i∈I

αi,jvi,j = 1. (5.13)

Proof. We only need to translate condition (Tc) to the current case. Let ℓ± ∈ [0, 1]
with ℓ− < ℓ+ and f(ℓ−) 6= f(ℓ+). By (5.10) it is obvious that (5.7) is satisfied.
If ℓ− = 0 or ℓ+ = 1 condition (5.8) is satisfied by (f). In all the other cases (5.8)
is equivalent to

∑

i∈I
αi,jvi,j = 1 by (5.10). Similarly, condition (5.9) reduces to

cjvjδ
−1
j = civiδ

−1
i and hence, by (5.12), it is equivalent to v2i,j = δi,j .

Remark that by (5.12) condition (5.13)2 is equivalent to (5.5)4.
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6. Application to the case of a quadratic flux, m = 1. In this section we
assume (5.10) for some constants vh, δh > 0, D satisfying (D) and the quadratic
flux [14]

f(ρ)
.
= ρ (1− ρ),

with no further mention. The case when only (5.10)1 holds is doable and follows
with slight modifications. We use the notation introduced in (5.11).

For simplicity, in the whole section we focus on the case m = 1, see Figure 4,
even without explicitly mentioning it. Then I = {1}, J = {2, . . . , n + 1}, H =
{1, 2, . . . , n+ 1}. The general case m > 1 offers no further difficulties than heavier
calculations.

Ω1

Ω2

...
Ω3

...
Ωj

Ωn+1

Figure 4. A network with m = 1.

In this case, condition (3.7) becomes

0 ≤ ℓ−h < ℓ+h ≤ 1 and ch = vh [1− ℓ+h − ℓ−h ]. (6.1)

In particular, by (6.1)2

ρh is stationary ⇐⇒ ℓ+h + ℓ−h = 1. (6.2)

Moreover, gh(ℓ) = vh ℓ [ℓ
+
h + ℓ−h − ℓ] implies

gh(ℓ)− gh(ℓ
±
h ) = vh (ℓ

+
h − ℓ) (ℓ− ℓ−h ), (6.3)

and therefore (3.16) becomes

δhD (ϕh(ξ)) ϕ
′
h(ξ) = vh

(

ℓ+h − ϕh(ξ)
) (

ϕh(ξ)− ℓ−h
)

, ξ ∈ R. (6.4)

We first consider stationary traveling waves and specify Theorem 4.7 and Propo-
sition 5.2 in the current framework. We define the intervals

L0
j

.
=











(0, 1/2) if α1,j v1,j ≤ 1,
(

0,
1−

√

1−α−1

1,j v
−1

1,j

2

)

if α1,j v1,j > 1,
j ∈ J.

Proposition 6.1. Problem (2.1)-(2.2) admits infinitely many stationary traveling
waves; their end states are characterized by the conditions

ℓ−1 ∈
⋂

j∈J

L0
j , ℓ+1 + ℓ−1 = 1, ℓ±j =

1

2

(

1±
√

1− 4α1,j v1,j ℓ
+
1 ℓ

−
1

)

, j ∈ J.

Moreover, up to shifts, any stationary traveling wave satisfies (2.5).

Proof. The first part of the proposition follows from Theorem 4.7. Indeed, condi-
tions (6.2), (3.7)1 and (4.8) are satisfied if and only if for any h ∈ H and j ∈ J

ℓ−h ∈ [0, 1/2), ℓ+h + ℓ−h = 1, ℓ−j (1− ℓ−j ) = α1,j v1,j ℓ
−
1 (1− ℓ−1 );

then it is sufficient to compute ℓ±j and to observe that the definition of L0
j guarantees

that they are real numbers.
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The latter part of the proposition is deduced by Proposition 5.2 because 1/2 ∈
S
.
=
⋂

h∈H
(ℓ−h , ℓ

+
h ) 6= ∅.

In the following we treat the existence of non-stationary traveling waves. Since
m = 1, by Lemma 4.4 this is equivalent to assume ch 6= 0 for h ∈ H, namely, the
traveling wave is completely non-stationary. By (4.7), (6.1) and (6.2), from (4.10)
we deduce

c1,j = v1,j
1− ℓ+1 − ℓ−1
1− ℓ+j − ℓ−j

, A1,j = α1,jv1,j
1− ℓ+1 − ℓ−1
1− ℓ+j − ℓ−j

,

kj = A1,j L
±
1,j − ℓ±j , κj = vjℓ

−
j ℓ

+
j − α1,jv1ℓ

−
1 ℓ

+
1 .

(6.5)

The following result translates Theorem 4.12 to the present case. We define the
intervals

Lcj
.
=











[0, 1] if α1,j v1,j ≤ 1,

[0, 1] \

(

1−
√

1−α−1

1,j v
−1

1,j

2 ,
1+

√

1−α−1

1,j v
−1

1,j

2

)

if α1,j v1,j > 1,
j ∈ J.

Proposition 6.2. Problem (2.1)-(2.2) admits a (completely) non-stationary trav-
eling wave if and only if the following condition holds.

(Tq) There exist ℓ±1 ∈ [0, 1] with ℓ−1 < ℓ+1 such that:
(i) ℓ+1 + ℓ−1 6= 1;
(ii) ℓ±1 ∈

⋂

j∈J
Lcj;

(iii) for any j ∈ J we have

D(ℓ) =
α1,j δ1,j
v1,j

D

(

ℓ + kj
A1,j

)

, ℓ ∈ (ℓ−j , ℓ
+
j ), (6.6)

where kj is defined in (6.5) with ℓ±j being solutions to

ℓ±j (1 − ℓ±j ) = α1,jv1,jL
±
1,j(1− L±

1,j). (6.7)

Proof. The proof consists in showing that, in the present case, condition (T ) of
Theorem 4.12 is equivalent to (Tq).

• The first item of (T ) is clearly equivalent to the first item of (Tq).

• We prove now that the second item of (T ) is equivalent to the second item of
(Tq).

“⇒” Assume that for any j ∈ J there exist ℓ±j ∈ [0, 1] satisfying (4.7) and such

that fj(ℓ
−
j ) 6= fj(ℓ

+
j ). Fix j ∈ J. Clearly (4.7) is equivalent to (6.7).

If we denote z±1,j
.
= 4α1,jv1,jL

±
1,j(1−L±

1,j), then the ℓ±j -solutions to (6.7) are, see
Figure 3,







ℓ−j = 1
2

(

1−
√

1− z−1,j

)

,

ℓ+j ∈
{

1
2

(

1±
√

1− z+1,j

)}

,
if cj > 0, (6.8)







ℓ−j ∈
{

1
2

(

1±
√

1− z−1,j

)}

,

ℓ+j = 1
2

(

1 +
√

1− z+1,j

)

,
if cj < 0. (6.9)

The square roots in (6.8)-(6.9) are real numbers if and only if z±1,j ≤ 1, namely,

ℓ±1 (1− ℓ±1 ) ≤ (4α1,jv1,j)
−1.
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It is easy to see that the above estimate is equivalent to require ℓ±1 ∈ Lcj .

“⇐” Assume that ℓ±1 ∈
⋂

j∈J
Lcj and fix j ∈ J. The square roots in (6.8)-(6.9) are

then real numbers and ℓ±j given in (6.8)-(6.9) satisfy (6.7), namely (4.7). Obviously

ℓ±j belong to [0, 1]. Finally, since ℓ±j are solutions to (6.7), it is easy to see that

fj(ℓ
+
j ) 6= fj(ℓ

−
j ) because f1(ℓ

+
1 ) 6= f1(ℓ

−
1 ).

• We prove now that (T ) implies the last item of (Tq). Since the first two items in
(T ) are equivalent to the first two items in (Tq), we can assume that ℓ+1 + ℓ−1 6= 1,

ℓ±1 ∈
⋂

j∈J
Lcj and that for any j ∈ J we have (4.17), namely,

(

ℓ+j − ℓj(cj ξ)
) (

ℓj(cj ξ)− ℓ−j
)

D (ℓj(cj ξ))
=
A1,j c1,j v1,j

δ1,j

(

ℓ+1 − ϕ1(c1 ξ)
) (

ϕ1(c1 ξ)− ℓ−1
)

D (ϕ1(c1 ξ))
(6.10)

for a.e. ξ ∈ R, where ϕ1 is a solution to (3.5)-(6.4) and

ℓj(ξ)
.
= A1,j

(

ϕ1(c1,j ξ)− L±
1,j

)

+ ℓ±j , ξ ∈ R.

We point out that the above expression of ℓj is deduced from (4.18) by applying
(6.5); moreover (6.10) is deduced from (4.17) by applying (6.3). Recall that both
fractions in (6.10) are meant as in (4.15). Since

(

ℓ+j − ℓj(cj ξ)
) (

ℓj(cj ξ)− ℓ−j
)

= A2
1,j

(

L+
1,j − ϕ1(c1 ξ)

) (

ϕ1(c1 ξ)− L−
1,j

)

,
(

ℓ+1 − ϕ1(c1 ξ)
) (

ϕ1(c1 ξ)− ℓ−1
)

=
(

L+
1,j − ϕ1(c1 ξ)

) (

ϕ1(c1 ξ)− L−
1,j

)

,

we have that (6.10) is equivalent to

D (ℓj(cjξ)) =
α1,jδ1,j
v1,j

D (ϕ1(c1 ξ)) for a.e. ξ ∈ R.

To conclude now that the above condition is equivalent to (6.6) it is sufficient to
recall that by Lemma 4.10 the continuous function ξ 7→ ℓj(ξ) is increasing and

ℓj(±∞) = ℓ±j and that ℓj(ξ) = A1,j ϕ1(c1,j ξ)− kj by (6.5).

• Finally, to prove that (Tq) implies the last item of (T ) it is enough to trace
backwards the proof of the previous item.

We notice that if D is a polynomial with degree d, then (6.6) is equivalent to
d+ 1 conditions on the parameters, see for instance (6.15) and (6.25).

Remark 6.3. We point out that by Proposition 5.4 we have that problem (2.1)-
(2.2) admits a (completely) non-stationary traveling wave satisfying (2.5) if and
only if

v21,j = δ1,j and α1,jv1,j = 1, j ∈ J. (6.11)

The special cases of constant or linear diffusivities are treated in the following
subsections.

6.1. The case of constant diffusivities. In this subsection we assume

D
.
= 1, (6.12)

and in this case problem (3.5)-(6.4) reduces to
{

δh ϕ
′
h(ξ) = vh

(

ℓ+h − ϕh(ξ)
) (

ϕh(ξ) − ℓ−h
)

, ξ ∈ R,

ϕh(±∞) = ℓ±h .
(6.13)



TRAVELING WAVES ON NETWORKS 359

For any h ∈ H, the function

ψh(ξ)
.
=

ℓ+h

1 + e
−

vh
δh
(ℓ+h −ℓ

−

h )ξ
+

ℓ−h

1 + e
vh
δh
(ℓ+h−ℓ

−

h )ξ
(6.14)

solves (6.13) because ℓ−h < ℓ+h ; all the other solutions are of the form ϕh(ξ) =

ψh(ξ + σh) for σh ∈ R. Notice that ψh(0) = (ℓ+h + ℓ−h )/2.
We rewrite Proposition 6.2 in the current setting; we emphasize that the shifts

appear below because in this case we have the explicit solution (6.14) to problem
(6.13).

Proposition 6.4. Assume (6.12). Problem (2.1)-(2.2) admits a (completely) non-
stationary traveling wave if and only if

α1,jδ1,j = v1,j . (6.15)

In this case any non-stationary traveling wave ρ has a profile ϕ of the form

ϕ(ξ) = (ψ1(ξ + σ1), . . . , ψn+1(ξ + σn+1)) , ξ ∈ R, (6.16)

with ℓ±h satisfying (i), (ii) and (6.7) in Proposition 6.2 and σh ∈ R, h ∈ H, such
that

cjσ1 = c1σj , j ∈ J. (6.17)

Proof. By Theorem 3.2, any solution to (6.13) has the form (6.16) with σh ∈ R,
h ∈ H. Therefore, by Proposition 4.2 it only remains to prove that (4.1) is equivalent
to (6.15)-(6.17). Straightforward computations show that in the present case (4.1)
can be written as

fj(ℓ
+
j ) ζj(t) + fj(ℓ

−
j )

1 + ζj(t)
= α1,j

f1(ℓ
+
1 ) ζ1(t) + f1(ℓ

−
1 )

1 + ζ1(t)
, t ∈ R, j ∈ J, (6.18)

where ζh(t)
.
= exp zh(t), for zh(t)

.
= vh

δh
(ℓ+h − ℓ−h )(cht+ σh), h ∈ H. By Proposition

4.6 we have

either fj(ℓ
±
j ) = α1,jf1(ℓ

±
1 ), or fj(ℓ

±
j ) = α1,jf1(ℓ

∓
1 ).

• In the former case, identity (6.18) is equivalent to
(

fj(ℓ
+
j )− fj(ℓ

−
j )
)

(ζj(t)− ζ1(t)) = 0, t ∈ R, j ∈ J.

Since by assumption fj(ℓ
+
j ) 6= fj(ℓ

−
j ), it must be ζj ≡ ζ1, i.e., zj(t) = z1(t), namely

{

vj
δj

(ℓ+j − ℓ−j ) cj =
v1
δ1

(ℓ+1 − ℓ−1 ) c1,
vj
δj

(ℓ+j − ℓ−j )σj =
v1
δ1

(ℓ+1 − ℓ−1 )σ1,
⇔







v1,j
δ1,j

=
fj(ℓ

+

j )−fj(ℓ
−

j )

f1(ℓ
+

1
)−f1(ℓ

−

1
)
= α1,j ,

σj

cj
= σ1

c1
.

• In the latter case, identity (6.18) is equivalent to
(

fj(ℓ
+
j )− fj(ℓ

−
j )
)

(ζj(t)ζ1(t)− 1) = 0, t ∈ R, j ∈ J.

Since by assumption fj(ℓ
+
j ) 6= fj(ℓ

−
j ), it must be ζj ζ1 ≡ 1, i.e. zj(t) = −z1(t),

namely
{

vj
δj

(ℓ+j − ℓ−j ) cj = − v1
δ1

(ℓ+1 − ℓ−1 ) c1,
vj
δj

(ℓ+j − ℓ−j )σj = − v1
δ1

(ℓ+1 − ℓ−1 )σ1,
⇔







v1,j
δ1,j

= −
fj(ℓ

+

j )−fj(ℓ
−

j )

f1(ℓ
+

1
)−f1(ℓ

−

1
)
= α1,j ,

σj

cj
= σ1

c1
.

In both cases we proved that (4.1) is equivalent to (6.15)-(6.17); this concludes the
proof.
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Remark 6.5. Consider conditions (6.11)1, (6.11)2 and (6.15). Any two of them
implies the third one.

Proposition 6.6. Assume (6.12). Problem (2.1)-(2.2) admits a (completely) non-
stationary traveling wave satisfying (2.5) if and only if (6.11) holds true. In this
case a non-stationary traveling wave satisfies (2.5) if and only if its end states
satisfy (5.3).

Proof. The first part of the statement is just Remark 6.3. In this case, since (6.11)
implies (6.15), by Proposition 6.4 any (completely) non-stationary traveling wave ρ
has a profile of the form (6.16)-(6.17).

The second part of the statement characterizes the end states. If a non-stationary
traveling wave ρ satisfies (2.5), then (5.3) holds because of Lemma 5.1. Conversely,
if the end states of ρ satisfy (5.3), then long but straightforward computations show
that (5.1) holds true, and therefore ρ satisfies (2.5).

6.2. The case of linear diffusivities. In this subsection we assume

D(ρ)
.
= ρ. (6.19)

We notice that D degenerates at 0 and this makes the subject more interesting. In
this case problem (3.5)-(6.4) reduces to

{

δhϕhϕ
′
h = vh(ℓ

+
h − ϕh)(ϕh − ℓ−h ), ξ ∈ R,

ϕh(±∞) = ℓ±h .
(6.20)

If ℓ−h = 0, then the function

ψh(ξ)
.
=







ℓ
+

h

2

(

2− e
−

vh
δh
ξ
)

if ξ ≥ − δh
vh

ln 2,

0 if ξ < − δh
vh

ln 2,
(6.21)

solves (6.20) because ℓ−h < ℓ+h ; by (3.6) we have Ih =
(

− δh
vh

ln 2,∞
)

. If ℓ−h > 0,

then Ih = R and the function ψh implicitly given by

(

2 exp

(

vh
δh
ξ

)

ψh(ξ)− ℓ−h
ℓ+h − ℓ−h

)ℓ
−

h

=

(

2 exp

(

vh
δh
ξ

)

ℓ+h − ψh(ξ)

ℓ+h − ℓ−h

)ℓ
+

h

(6.22)

solves (6.20) because ℓ−h < ℓ+h . Notice that in both cases ψh(0) = (ℓ+h + ℓ−h )/2 and
all the other solutions are of the form ϕh(ξ) = ψh(ξ + σh) for σh ∈ R. Hence, any
non-stationary traveling wave ρ has a profile ϕ of the form

ϕ(ξ) = (ψ1(ξ + σ1), . . . , ψn+1(ξ + σn+1)) , ξ ∈ R. (6.23)

In the sequel we prove that the shifts σh, h ∈ H, satisfy (6.17), or equivalently

v1,j σ1 = δ1,j σj , j ∈ J. (6.24)

Lemma 6.7. Assume (6.19). If ℓ+1 + ℓ−1 6= 1, then condition (6.6) is equivalent to

v21,j
δ1,j

=
1− ℓ+j − ℓ−j

1− ℓ+1 − ℓ−1
and ℓ−j ℓ

+
j = α1,j v1,j ℓ

−
1 ℓ

+
1 . (6.25)

Proof. In the present case, condition (6.6) becomes (c1,jv1,j − δ1,j) ℓ − δ1,j kj = 0
for ℓ ∈ (ℓ−j , ℓ

+
j ): it is satisfied if and only if both c1,jv1,j = δ1,j and kj = 0. The

former is equivalent to (6.25)1, the latter is equivalent to (6.25)2 by (6.5)4, because
κj = 0.
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We observe that (6.25)1 and (6.5)1 imply that c1,j = δ1,j/v1,j > 0; therefore (6.7)
becomes

ℓ±j (1− ℓ±j ) = α1,j v1,j ℓ
±
1 (1− ℓ±1 ), j ∈ J. (6.26)

As a consequence ρ is either non-degenerate or completely degenerate.
Now, we discuss (completely) non-stationary traveling waves by considering sep-

arately the (completely) degenerate and non-degenerate case. We denote

∆j
.
=
{

α1,j δ1,j ,
√

δ1,j ,
3

√

α1,j δ21,j

}

, j ∈ J.

Proposition 6.8. Assume (6.19). Problem (2.1)-(2.2) admits a traveling wave that
is both (completely) degenerate and (completely) non-stationary if and only if either
(6.11) holds true or

0 <v1,j < min∆j or v1,j > max∆j , j ∈ J,

v1,2(δ1,2 − v21,2)

α1,2 δ21,2 − v31,2
= . . . =

v1,n+1(δ1,n+1 − v21,n+1)

α1,n+1 δ21,n+1 − v31,n+1

.
(6.27)

In the first case, problem (2.1)-(2.2) has infinitely many of such waves; each of
them satisfies (5.3) and (up to shifts) (2.5).

In the second case, problem (2.1)-(2.2) has a unique (up to shifts) such wave,
which does not satisfy (for no shifts) (2.5). Its end states do not satisfy (5.3) and
are

ℓ−1 = 0 = ℓ−j , ℓ+1 =
v1,j(δ1,j − v21,j)

α1,j δ21,j − v31,j
, ℓ+j = α1,j

δ1,j(δ1,j − v21,j)

α1,j δ21,j − v31,j
, j ∈ J. (6.28)

In both cases, any degenerate non-stationary traveling wave ρ has a profile ϕ of the
form (6.23) with ψh defined by (6.21) and σh ∈ R, h ∈ H, satisfying (6.24).

Proof. We claim that the existence of a degenerate non-stationary traveling wave
is equivalent to the existence of ℓ+h ∈ (0, 1), h ∈ H, such that

ℓ+j = α1,j
δ1,j
v1,j

ℓ+1 and
(

α1,j δ
2
1,j − v31,j

)

ℓ+1 + v1,j
(

v21,j − δ1,j
)

= 0, j ∈ J.

(6.29)

In fact, by Proposition 6.2 the existence of a non-stationary traveling wave is equiv-
alent to condition (Tq), where (6.6) can be written as (6.25) by Lemma 6.7 and

(6.7) as (6.26). Then, (6.25) and (6.26) with ℓ−h = 0, h ∈ H, reduce to the relation
among the end states

v21,j
δ1,j

=
1− ℓ+j

1− ℓ+1
, ℓ+j (1− ℓ+j ) = α1,j v1,j ℓ

+
1 (1− ℓ+1 ), j ∈ J. (6.30)

By (6.30) we obtain v21,j/δ1,j = α1,j v1,j ℓ
+
1 /ℓ

+
j and then (6.29)1; by plugging (6.29)1

into (6.30)2 we get (6.29)2 and then the claim.

Assume there is a degenerate non-stationary traveling wave; then ℓ+1 satisfies
(6.29)2. As a consequence, we have either α1,jδ

2
1,j − v31,j = v21,j − δ1,j = 0 or

α1,jδ
2
1,j 6= v31,j for every j ∈ J. The former case is equivalent to (6.11). In the

latter case we can explicitly compute ℓ+1 by (6.29)2 for any j ∈ J and impose the

constraint 0 < ℓ+1 < 1, namely,

0 <
v1,j (δ1,j − v21,j)

α1,j δ21,j − v31,j
< 1.
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A direct computation shows that this is equivalent to (6.27). In conclusion, either
condition (6.11) or (6.27) is necessary for the existence of a non-stationary traveling
wave with ℓ−1 = 0.

Conversely, assume condition (6.11). In this case α1,j δ
2
1,j = α1,j v

4
1,j = v31,j .

Then (6.29)2 is trivially satisfied for every ℓ+1 ∈ (0, 1) and from (6.29)1 we deduce
ℓ+1 = ℓ+j . Hence, there is an infinite family of non-stationary traveling waves param-

eterized by ℓ+1 ∈ (0, 1) and satisfying (5.3); as a consequence, they do not coincide
up to shifts and they all satisfy (up to shifts) the continuity condition (2.5).

Assume now condition (6.27). In this case the values for ℓ+1 and ℓ+j in (6.28)

are well defined since v31,j 6= α1,jδ1,j and they are the unique solution to (6.29).
In particular, condition (ii) in Proposition 6.2 is automatically satisfied. By the
estimates in (6.27) we have ℓ+1 , ℓ

+
j ∈ (0, 1) for j ∈ J. Hence, there is a unique (up

to shifts) degenerate non-stationary traveling wave and its end states satisfy (6.28).
Furthermore, by Lemma 5.1, condition (2.5) implies (5.3), which is precluded by
(6.27). Hence, the traveling wave does not satisfy (2.5).

At last, by Theorem 3.2, any solution to (6.20) has the form (6.23). By (4.14),
that in the present case becomes

ϕ′
j(cjξ) = α1,jc

2
1,jϕ

′
1 (c1ξ) for a.e. ξ ∈ R, j ∈ J,

and the regularity of ψh defined in (6.21), we have

1

cj

(

δj
vj

ln 2 + σj

)

=
1

c1

(

δ1
v1

ln 2 + σ1

)

,

which is equivalent to (6.17) because c1,j = δ1,j/v1,j.

The following result treats the non-degenerate case.

Proposition 6.9. Assume (6.19). Problem (2.1)-(2.2) admits a non-degenerate
(completely) non-stationary traveling wave if and only if condition (6.11) is satisfied.
In this case any non-degenerate non-stationary traveling wave satisfies (up to shifts)
(2.5); moreover, it has a profile ϕ of the form (6.23) with ψh implicitly defined by
(6.22) and σh ∈ R, h ∈ H, satisfying (6.24).

Proof. Assume that there is a non-degenerate non-stationary traveling wave; then
ℓ−h 6= 0 and 1 6= ℓ+h + ℓ−h , h ∈ H. Moreover, by Proposition 6.2, condition (Tq)
is satisfied, where (6.6) becomes (6.25) by Lemma 6.7 and (6.7) is (6.26). When
dividing (6.26) by (6.25)2 we obtain

(1− ℓ+j ) ℓ
−
1 = (1 − ℓ+1 ) ℓ

−
j and (1− ℓ−j ) ℓ

+
1 = (1 − ℓ−1 ) ℓ

+
j , j ∈ J.

By adding the above relations we have ℓ−1 + ℓ+1 = ℓ−j + ℓ+j , hence

0 = ℓ+1 − ℓ+j + ℓ−1 − ℓ−j = ℓ+1 − 1 + (1− ℓ+1 )
ℓ−j

ℓ−1
+ ℓ−1 − ℓ−j =

1− ℓ+1 − ℓ−1
ℓ−1

(ℓ−j − ℓ−1 ).

It is now easy to conclude that (5.3) is satisfied and then also (6.11) holds true by
(6.25). At last, the traveling wave satisfies (up to shifts) (2.5) by Remark 6.3.

Conversely, assume (6.11). Then (6.25) and (6.26) write

ℓ+j + ℓ−j = ℓ+1 + ℓ−1 , ℓ−j ℓ
+
j = ℓ−1 ℓ

+
1 , ℓ±j (1− ℓ±j ) = ℓ±1 (1− ℓ±1 ), j ∈ J.

The same computations as before give that if we impose ℓ−h 6= 0 and 1 6= ℓ+h + ℓ−h ,
h ∈ H, then the above conditions are equivalent to (5.3); the existence of infinitely
many non-degenerate non-stationary traveling waves satisfying (2.5) easily follows.
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At last, by Theorem 3.2, any solution to (6.20) has the form (6.23). Fix j ∈ J.
By (2.5) we have (5.1), namely

ψj(cjt+ σj) = ψ1(c1t+ σ1), t ∈ R.

This identity together with (6.22) and (5.3) imply

(

2 exp

(

vj
δj

(cjt+ σj)

)

ψ1(c1t+ σ1)− ℓ−

ℓ+ − ℓ−

)ℓ−

=

(

2 exp

(

vj
δj

(cjt+ σj)

)

ℓ+ − ψ1(c1t+ σ1)

ℓ+ − ℓ−

)ℓ+

,

(

2 exp

(

v1
δ1

(c1t+ σ1)

)

ψ1(c1t+ σ1)− ℓ−

ℓ+ − ℓ−

)ℓ−

=

(

2 exp

(

v1
δ1

(c1t+ σ1)

)

ℓ+ − ψ1(c1t+ σ1)

ℓ+ − ℓ−

)ℓ+

.

By dividing the above equalities and taking the logarithm we get
(

vj
δj

(cjt+ σj)−
v1
δ1

(c1t+ σ1)

)

ℓ− =

(

vj
δj

(cjt+ σj)−
v1
δ1

(c1t+ σ1)

)

ℓ+, t ∈ R.

Since ℓ− 6= ℓ+ and c1,j = δ1,j/v1,j, the above equality is equivalently to (6.24).

7. Application to the case of a logarithmic flux, m = 1. In this section we
assume (5.10) for some constants vh, δh > 0, D

.
= 1 and the logarithmic flux [13]

defined by

f(ρ)
.
= −ρ ln(ρ)

for ρ ∈ (0, 1] with f(0) = 0 by continuity; in the following we simply write ρ ln(ρ)
for ρ ∈ [0, 1]. We use the notation introduced in (5.11); then, in the present case
the diffusivity Dh coincides with the anticipation length δh of [3], see Section 2. As
in Section 6, we focus on the case m = 1 and do not mention in the following these
assumptions on fh, Dh and m.

Condition (3.7) becomes

0 ≤ ℓ−h < ℓ+h ≤ 1 and ch = −vh
ℓ+h ln(ℓ+h )− ℓ−h ln(ℓ−h )

ℓ+h − ℓ−h
. (7.1)

Moreover we have, for h ∈ H,

gh(ℓ) = vhℓ

(

ℓ+h ln(ℓ+h )− ℓ−h ln(ℓ−h )

ℓ+h − ℓ−h
− ln(ℓ)

)

, (7.2)

gh(ℓ)− gh(ℓ
±
h ) = vh

(

(ℓ− ℓ−h )ℓ
+
h ln(ℓ+h ) + (ℓ+h − ℓ)ℓ−h ln(ℓ−h )

ℓ+h − ℓ−h
− ℓ ln(ℓ)

)

.

Therefore (3.16) becomes

ϕ′
h(ξ) =

vh
δh

[

[

ϕh(ξ)− ℓ−h
]

ℓ+h ln(ℓ+h ) +
[

ℓ+h − ϕh(ξ)
]

ℓ−h ln(ℓ−h )

ℓ+h − ℓ−h
− ϕh(ξ) ln (ϕh(ξ))

]

,

(7.3)

for ξ ∈ R. Let f−1
ℓ : [0, e−1] → [0, e−1] and f−1

r : [0, e−1] → [e−1, 1] be the inverse
functions of the restrictions fℓ and fr of f to [0, e−1] and [e−1, 1], respectively.
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We first consider the case of stationary waves. We define the intervals

L0
j

.
=

{

[0, e−1) if α1,j v1,j ≤ 1,
(

0, f−1
ℓ (e−1α−1

1,j v
−1
1,j )
)

if α1,j v1,j > 1,
j ∈ J.

Proposition 7.1. Problem (2.1)-(2.2) admits infinitely many stationary traveling
waves; their end states are characterized by the conditions

ℓ−1 ∈
⋂

j∈J

L0
j , ℓ+1 = f−1

r

(

−ℓ−1 ln(ℓ−1 )
)

,

ℓ−j = f−1
ℓ

(

−α1,j v1,jℓ
−
1 ln(ℓ−1 )

)

, ℓ+j = f−1
r

(

−α1,j v1,jℓ
−
1 ln(ℓ−1 )

)

, j ∈ J.

Moreover, up to shifts, any stationary traveling wave satisfies (2.5).

Proof. The first part of the proposition follows from Theorem 4.7. Indeed, condi-
tions (3.7)1 and (4.8) are satisfied if and only if for any h ∈ H and j ∈ J

ℓ−h ∈ [0, e−1), ℓ−h ln(ℓ−h ) = ℓ+h ln(ℓ+h ), ℓ−j ln(ℓ−j ) = α1,j v1,j ℓ
−
1 ln(ℓ−1 ).

Hence ℓ+1 = f−1
r (−ℓ−1 ln(ℓ−1 )) and it is sufficient to determine ℓ±j . Observe that the

definition of L0
j guarantees that they can be uniquely computed. At last, the latter

part of the proposition follows by the proof of Proposition 5.2 since e−1 ∈ S
.
=

⋂

h∈H
(ℓ−h , ℓ

+
h ) 6= ∅.

In the following we discuss the existence of non-stationary traveling waves. Since
m = 1, by Lemma 4.4 this is equivalent to assume that the traveling wave is
completely non-stationary. By (7.1)2 we deduce

c1,j = v1,j
ℓ+1 ln(ℓ+1 )− ℓ−1 ln(ℓ−1 )

ℓ+j ln(ℓ+j )− ℓ−j ln(ℓ−j )

ℓ+j − ℓ−j

ℓ+1 − ℓ−1
. (7.4)

The following result translates Theorem 4.12 to the current framework. We define
the intervals

Lcj
.
=

{

[0, 1] if α1,j v1,j ≤ 1,

[0, 1] \
(

f−1
ℓ (e−1α−1

1,j v
−1
1,j ), f

−1
r (e−1α−1

1,j v
−1
1,j )
)

if α1,j v1,j > 1,
j ∈ J.

Proposition 7.2. Problem (2.1)-(2.2) admits a (completely) non-stationary trav-
eling wave if and only if the following condition holds.

(Tl) There exist ℓ±1 ∈ [0, 1] with ℓ−1 < ℓ+1 such that:
(i) ℓ−1 ln(ℓ−1 ) 6= ℓ+1 ln(ℓ+1 );
(ii) ℓ±1 ∈

⋂

j∈J
Lcj;

(iii) for any j ∈ J we have

δ1,j
(

gj(ℓ)− gj(ℓ
−
j )
)

= A1,j c1,j

(

g1

(

ℓ+ kj
A1,j

)

− g1(ℓ
−
1 )

)

, ℓ ∈ (ℓ−j , ℓ
+
j ), (7.5)

where gh is given in (7.2), c1,j in (7.4), A1,j in (4.10)2 and kj in (4.10)3,
with ℓ±j being solutions to

ℓ±j ln(ℓ±j ) = α1,jv1,jL
±
1,j ln(L

±
1,j). (7.6)

Proof. The proof consists in showing that, in the present case, (T ) of Theorem 4.12
is equivalent to (Tl). The first two items in (T ) and (Tl) are clearly equivalent. It
remains to discuss the third one. Condition (4.17) is equivalent to

δ1,j
(

gj (ℓj(cjξ)) − gj(ℓ
−
j )
)

= A1,j c1,j
(

g1 (ϕ1(c1ξ))− g1(ℓ
−
1 )
)

, ξ ∈ R, (7.7)
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where ϕ1 is a solution to (3.5)-(7.3) and ℓj(ξ)
.
= A1,jϕ1(c1,jξ)− kj for c1,j in (7.4),

A1,j in (4.10)2 and kj in (4.10)3. By Theorem 3.2, ϕ1 is strictly increasing and so

is the function ℓj. Put ℓ
.
= ℓj(cjξ). Hence ℓ ∈ (ℓ−j , ℓ

+
j ), by Lemma 4.10, and then

(7.7) is equivalent to (7.5).

In the following we focus on the case of (completely) non-stationary traveling
waves with ℓ−h = 0 for some h ∈ H.

Lemma 7.3. Assume that problem (2.1)-(2.2) admits a traveling wave. The fol-
lowing statements are equivalent:

(i) ℓ−1 = 0;
(ii) ℓ−j = 0 for all j ∈ J;

(iii) there exists j ∈ J such that ℓ−j = 0.

Proof. First, we prove that (i) implies (ii). Fix j ∈ J. Since ℓ−1 = 0, then condition
(7.6) implies that either ℓ−j = 0 or ℓ+j = 1, for j ∈ J. Assume by contradiction that

ℓ+j = 1. Since c1,j < 0, condition (7.6) becomes

ℓ−j ln(ℓ−j ) = α1,j v1,jℓ
+
1 ln(ℓ+1 ).

Therefore, by (7.4), (4.10)2 and (4.10)3 we have that

c1,j = −v1,j
ℓ+1 ln(ℓ+1 )

ℓ−j ln(ℓ−j )

1− ℓ−j

ℓ+1
= −

1− ℓ−j

α1,j ℓ
+
1

, Ai,j = −
1− ℓ−j

ℓ+1
, kj = −1.

Condition (7.5) can be written as

ℓ ln(ℓ)− v1,j(1− ℓ)

(

α1,j ℓ
+
1 ln(ℓ+1 )

1− ℓ−j
+

1− ℓ−j

α1,j δ1,j ℓ
+
1

ln

(

1− ℓ

1− ℓ−j

))

= 0,

for ℓ ∈ (ℓ−j , 1). By differentiating the above equation three times we obtain

−
v1,j(1− ℓ−j )

α1,jδ1,jℓ
+
1 (1− ℓ)2

=
1

ℓ2
, ℓ ∈ (ℓ−j , 1).

This is a contradiction because the two sides have opposite sign. This proves (ii).
Since the implication (ii) ⇒ (iii) is obvious, it remains to show that (iii) ⇒ (i).

Let ℓ−j = 0 for some j ∈ J. By (7.6) it follows that either ℓ−1 = 0 or ℓ+1 = 1. In the

latter case by arguing as above it is easy to obtain a contradiction and then (iii)
follows.

At last, we give a result which is similar to the one given in Proposition 6.8. We
denote

∆j
.
=
{

α1,j δ1,j ,
√

δ1,j

}

, j ∈ J.

By Lemma 7.3 we have either ℓ−h = 0, h ∈ H, or ℓ−h 6= 0, h ∈ H. Below we consider
the first case.

Proposition 7.4. Problem (2.1)-(2.2) admits a (completely) non-stationary trav-
eling wave with ℓ−h = 0, h ∈ H, if and only if either (6.11) holds true or

0 <v1,j < min∆j or v1,j > max∆j , j ∈ J,

(

α1,2
δ1,2
v1,2

)

δ1,2

v2
1,2

−δ1,2 = . . . =
(

α1,n+1
δ1,n+1

v1,n+1

)

δ1,n+1

v2
1,n+1

−δ1,n+1 .
(7.8)
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In the first case, problem (2.1)-(2.2) has infinitely many of such waves; each of
them satisfies (5.3) and (up to shifts) (2.5).

In the second case, problem (2.1)-(2.2) has a unique (up to shifts) such wave and
such wave, which does not satisfy (for no shifts) (2.5). Its end states are

ℓ−1 = 0 = ℓ−j , ℓ+1 =

(

α1,j
δ1,j
v1,j

)

δ1,j

v2
1,j

−δ1,j

, ℓ+j =

(

α1,j
δ1,j
v1,j

)

v2
1,j

v2
1,j

−δ1,j

, j ∈ J,

(7.9)

and do not satisfy (5.3).

Proof. Fix j ∈ J. Since c1,j > 0, by (7.4) the formulas in (4.10) and (7.2) become

c1,j = v1,j
ln(ℓ+1 )

ln(ℓ+j )
, A1,j = α1,j v1,j

ln(ℓ+1 )

ln(ℓ+j )
, kj = 0 = κj ,

gh(ℓ) = vh ℓ ln

(

ℓ+h
ℓ

)

, gh(0) = 0.

Hence (7.6) can be written as

ℓ+j ln(ℓ+j ) = α1,j v1,j ℓ
+
1 ln(ℓ+1 ) (7.10)

and therefore (7.5) becomes
(

δ1,j −
v1,j ℓ

+
j

α1,j ℓ
+
1

)

ln

(

ℓ+j
ℓ

)

= 0, ℓ ∈ (0, ℓ+j ),

namely

ℓ+j = α1,j
δ1,j
v1,j

ℓ+1 . (7.11)

System (7.10)-(7.11) admits a solution if and only if either (6.11) or (7.8) holds true.
In the former case, (7.10)-(7.11) has infinitely many solutions and they satisfy (5.3);
in the latter, the unique solution of (7.10)-(7.11) is (7.9)2,3. We examine separately
these cases.

Assume (6.11). In this case condition (Tl) of Proposition 7.2 with ℓ−1 = 0 = ℓ−j
is equivalent to ℓ+1 = ℓ+j ∈ (0, 1), j ∈ J, and then there are infinitely many traveling

waves. They all satisfy (2.5) by Remark 6.3.
Assume (7.8). In this case condition (Tl) of Proposition 7.2 with ℓ−1 = 0 = ℓ−j

is equivalent to ℓ+h ∈ (0, 1), h ∈ H, satisfying (7.10)-(7.11), namely to (7.8)-(7.9).

In particular, (7.8)1, (7.9) imply that ℓ+j and ℓ+1 are distinct, namely they do not

satisfy (5.3). Moreover, by Remark 6.3 the traveling wave does not satisfies (2.5).
At last, the reverse implications are direct consequences of previous discussion

about the solutions of (7.10)-(7.11) and then the proof is complete.

Appendix A. Proof of Theorem 3.2. Let ℓ±h ∈ [0, 1] with ℓ−h 6= ℓ+h . We intro-
duce the change of variable

rh
.
=
ℓ+h − ρh

ℓ+h − ℓ−h
, (A.1)

which implies ρh = ℓ+h − (ℓ+h − ℓ−h ) rh, ρh,t = −(ℓ+h − ℓ−h ) rh,t and ρh,x = −(ℓ+h −
ℓ−h ) rh,x. Consequently, equation (2.1) can be written

rh,t +Gh(rh)x = (Eh(rh) rh,x)x , (A.2)
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where

Gh(rh)
.
= −

fh
(

ℓ+h − (ℓ+h − ℓ−h ) rh
)

− fh(ℓ
+
h )

ℓ+h − ℓ−h
, Eh(rh)

.
= Dh

(

ℓ+h − (ℓ+h − ℓ−h ) rh
)

.

Furthermore, equation (A.2) has a wavefront solution ψh from 1 to 0 with wave
speed θh if and only if equation (2.1) has a wavefront solution ϕh from ℓ−h to ℓ+h
with the same speed. Notice that ψh satisfies the equation

(Eh(ψh)ψ
′
h)

′
+ (θh −G′

h(ψh))ψ
′
h = 0

and ϕh is obtained by ψh by the change of variable (A.1), i.e.

ϕh(ξ) = (ℓ−h − ℓ+h )ψh(ξ) + ℓ+h , ξ ∈ R. (A.3)

We discuss now the existence of a wavefront solution rh(t, x) = ψh(x−θht+σh) =
ψh(ξ) of (A.2). In order to make use of [12, Theorem 9.1], we only need to show
that

−Gh(rh) > −rhGh(1), rh ∈ (0, 1). (A.4)

By the definition of Gh we have

−rhGh(1) = −rh
fh(ℓ

+
h )− fh(ℓ

−
h )

ℓ+h − ℓ−h
.

Then, inequality (A.4) is equivalent to

fh(ℓ
+
h )−

(

fh(ℓ
+
h )− f(ℓ−h )

)

rh < fh
(

ℓ+h − (ℓ+h − ℓ−h ) rh
)

, for rh ∈ (0, 1),

if and only if ℓ−h < ℓ+h . By the strict concavity of fh the last inequality is satisfied
and then, by [12, Theorem 9.1], we deduce the existence of wavefront solutions ψh
from 1 to 0 for (A.2). The wave speed, in this case, is θh

.
= Gh(1). Furthermore,

the profile ψh is unique up to shifts and, if ψh(0)
.
= ν for some 0 < ν < 1, then



















ψh(ξ) = 1 for ξ ≤ ν−h ,
∫ ν

ψh(ξ)

Eh(s)

−Gh(s) + sGh(1)
= ξ for ν−h < ξ < ν+h ,

ψh(ξ) = 0 for ξ ≥ ν+h ,

(A.5)

where

ν+h
.
=

∫ ν

0

Eh(s)

−Gh(s) + sGh(1)
ds, ν−h

.
= −

∫ 1

ν

Eh(s)

−Gh(s) + sGh(1)
ds.

Notice that, by differentiating (A.5) in the interval (ν−h , ν
+
h ), we obtain that

Eh (ψh(ξ))

Gh (ψh(ξ))− ψh(ξ)Gh(1)
ψ′
h(ξ) = 1, ξ ∈ (ν−h , ν

+
h ), (A.6)

which implies ψ′
h < 0 in (ν−h , ν

+
h ) because of (A.4).

Consider now ϕh defined in (A.3); it satisfies (3.3) with Ih = (ν−h , ν
+
h ) and ϕ

′
h > 0

in Ih. Also condition (3.7) is true and ϕh ∈ C2(Ih, (ℓ
−
h , ℓ

+
h ) by the regularity of Dh

and fh.
Now it remains to consider the boundary conditions of ϕ′

h at the extrema of Ih
in the different cases. We have the following.
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(i) Assume ℓ−h = 0 = Dh(0). We show that

ν−h = −

∫ 1

ν

Eh(s)

−Gh(s) + sGh(1)
ds > −∞. (A.7)

To prove (A.7), notice that Eh(1) = Dh(0) = 0 and that −Gh(s)+sGh(1) → 0
as s→ 1−. In addition, by means of the strict concavity of fh we obtain that

lim
s→1−

E′
h(s)

−G′
h(s) +Gh(1)

=
E′
h(1)

−G′
h(1) +Gh(1)

=
−ℓ+h D

′
h(0)

−f ′
h(0) +

fh(ℓ
+

h
)

ℓ
+

h

≥ 0

and then, by applying de l’Hospital Theorem we prove condition (A.7). More-
over, by condition (A.6), we get

lim
ξ↓ν

−

h

ψ′
h(ξ) =















−
f ′
h(0)−

fh(ℓ
+

h
)

ℓ+
h

ℓ+h D
′
h(0)

if D′
h(0) > 0,

−∞ if D′
h(0) = 0.

By applying (A.3) we conclude that ϕh(ξ) = ℓ−h for ξ ≤ ν−h and the estimates
in (3.8) are satisfied. Furthermore, by the change of variables (A.1), we obtain
that

lim
ξ↓ν

−

h

Dh(ϕh(ξ))ϕ
′
h(ξ) = lim

ξ↓ν
−

h

−ℓ+hEh(ψh(ξ))ψ
′
h(ξ)

and hence, by (A.6), we deduce (3.9).
(ii) Assume 1 − ℓ+h = 0 = Dh(1). With a similar reasoning as in (i) we prove

that ν+h > −∞. In fact, Eh(0) = Dh(1) = 0 and −sGh(s) + sGh(1) → 0 as
s→ 0+. Moreover

lim
s→0+

E′
h(s)

−G′
h(s) +Gh(1)

=
E′
h(0)

−G′
h(0) +Gh(1)

=

(

1− ℓ−h
)

D′
h(1)

f ′
h(1) +

fh(ℓ
−

h
)

1−ℓ−
h

≥ 0

and again, by applying de l’Hospital Theorem we prove that ν+h > −∞.
Moreover, by the estimate (A.6), we have that

lim
ξ↑νh

ψ′
h(ξ) =















fh(ℓ
−

h
)

1−ℓ−
h

+ f ′
h(1)

(

ℓ−h − 1
)

D′
h(1)

if D′
h(1) < 0,

−∞ if D′
h(1) = 0.

By applying (A.3) we conclude that ϕh(ξ) = ℓ+h for ξ ≥ ν+h and the estimates
in (3.10) are satisfied; by (A.1) and (A.6) we derive (3.11).

(iii) In all the other cases it is easy to show that Ih = R and again the slope
condition (3.12) can be obtained by the estimate (A.6).
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