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Abstract. In this work, we are concerned with the convergence of the mul-

tiscale finite element method (MsFEM) for elliptic homogenization problems,
where we do not assume a certain periodic or stochastic structure, but an av-

eraging assumption which in particular covers periodic and ergodic stochastic

coefficients. We also give a result on the convergence in the case of an arbi-
trary coupling between grid size H and a parameter ε. ε is an indicator for

the size of the fine scale which converges to zero. The findings of this work are

based on the homogenization results obtained in [B. Schweizer and M. Ven-
eroni, The needle problem approach to non-periodic homogenization, Netw.

Heterog. Media, 6 (4), 2011].

1. Introduction. This contribution is dedicated to the numerical analysis of the
multiscale finite element method (MsFEM) for elliptic homogenization problems.
This method, originally developed by Hou and Wu [31], is constructed to solve
partial differential equations, where the coefficient functions are rapidly oscillating.
Typically, standard methods fail to directly solve such types of equations, since
resolving the oscillatory structure requires a tremendous computational demand.
Therefore it is necessary to propose alternative methods, so called multiscale meth-
ods, which are capable of determining the average effect of the micro-structure
on the effective macroscopic behavior, without resolving all the fine-scale details.
One example for a multiscale method is the heterogeneous multiscale finite element
method (HMM) introduced by E and Engquist [11], where the fine scale behavior of
the solution is reconstructed in small cells around quadrature points to pass an aver-
aged information to a discrete coarse-scale problem (c.f. [11, 12, 4, 13, 3, 44, 26, 27]).
Another example is the variational multiscale method (VMM), based on the works
of Hughes et al. [33, 34]. Here, the solution space is split into a direct sum of a coarse
scale space and a fine scale space. Then fine scale equations are formally solved in
dependency of the residual of the coarse scale solution (c.f. [35, 36, 43, 42, 37, 38]).
Another approach, based on the construction of a suitable two-scale finite element
space, is the two-scale finite element method by Matache and Schwab [40, 41, 45]
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or the Sparse Multiscale FEM by Hoang and Schwab [29, 28] that is based on a
discretization of a multiscale homogenized equation by means of sparse grids.

As already mentioned, this work is dedicated to the multiscale finite element
method (MsFEM), whose central idea is to determine a set of fine-scale finite el-
ement basis functions, which are obtained by solving suitable fine-scale problems
for every grid element of a given triangulation. These basis functions incorporate
the required information about the micro-structure of the problem, so that the
remaining (discrete) global problem is low dimensional, but still yields accurate ap-
proximations of the exact solution of the original equation. Lately, the MsFEM was
proposed for a large variety of applications, such as for two phase flow in porous
media [14], for stochastic porous media flow [1] and applications to uncertainty
quantification [10], for solving optimal control problems governed by elliptic ho-
mogenization problems [39], for mechanical problems of heterogeneous materials in
elasticity [47], for elliptic interface problems with high contrast coefficients [8] and
for solving high-contrast problems using local spectral basis functions [22]. Mixed
multiscale finite element methods using limited global information were proposed
by Aarnes, Efendiev and Jiang [2]. A detailed survey on the topic of MsFEM is
given in the book by Efendiev and Hou [15]. In the following we are concerned with
the numerical analysis of MsFEM approximations for linear elliptic problems, i.e.,
find uε ∈ H̊1(Ω), such that

−∇ · (Aε∇uε) = f in Ω.

Here, ε is a parameter which characterises the fine scale of the problem, i.e. the
smaller ε, the faster the micro-scale oscillations of the matrix Aε which varies on
a scale of size O(ε). A typical structure might be Aε(x) = A(xε ) where A is a
1-periodic function.

There are several contributions dealing with the convergence of MsFEM approx-
imations for this type of problems. First a-priori error estimates in the L2 and in
the H1-norm were obtained by Hou, Wu and Cai [31, 32] in the periodic setting.
The convergence of a nonconforming multiscale finite element method in the peri-
odic setting was investigated in [23]. The mentioned work also includes the analysis
of an oversampling technique to reduce the resonance error which appears when
there is a mismatch between the mesh-size and the wavelength of the fine-scale os-
cillations. The resonance error becomes apparent in the derived a-priori estimates,
which contain terms of order ε

H , where H denotes the grid size. The convergence of
the MsFEM for nonlinear elliptic problems was treated by Efendiev, Hou and Gint-
ing [16] and by Chen and Savchuk [7], again, under the assumption of periodicity.
An analysis for the MsFEM for random homogenization problems was also given by
Chen and Savchuk [7]. The case of a multiscale finite element method with noncon-
forming elements for elliptic (random and periodic) homogenization problems was
treated by Chen, Cui, Savchuk and Yu [6].

There are also several works by Efendiev and Pankov in which they can show
convergence (up to a subsequence) of the coarse scale part of MsFEM approxima-
tions to the homogenized solution. Nonlinear elliptic homogenization problems are
treated in [17, 18] and nonlinear parabolic homogenization problems in [19, 20, 21].
These contributions are in the general setting of G-convergence, however, the proof
of corrector convergence (i.e. an accurate approximation of the solution gradient)
still requires the assumption of ergodic stochastic coefficients.
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In this work we present a convergence study for MsFEM approximations (includ-
ing the convergence to the correct solution gradient) in a general setting which does
not assume a certain periodic or ergodic stochastic structure as required in previous
works. Still, these cases are included in the analysis. For 2d and 3d we get that
the H1-error in fact converges to zero for either limH→0 limε→0 or limε→0 limH→0

(i.e. the limits are obtained one after the other). Furthermore, we also treat the
case of an arbitrary coupling of ε and mesh size H. The finding is, that for the 1d
case, any sequence of MsFEM approximations with (H, ε)→ 0 is convergent to the
correct solution. Even resonance errors average out by an intrinsic homogenization
process, once ε and H become small enough. This case has not yet been studied
to the best of our knowledge. We also find out, that the mentioned 1d result does
not hold for any other space dimension. The analysis in this contribution is based
on the homogenization theory presented by Schweizer and Veneroni [46] under the
assumption that the family of coefficients Aε allows averaging. For the subsequent
work, this is the only assumption that we make on the type of the fine-scale struc-
ture of Aε. Since we are working in a general framework, it is not possible to state
explicit orders for the speed of convergence in ε.

Outline: In Section 2 we introduce the setting of this paper and we state the
definition of the MsFEM for elliptic homogenization problems. In Section 3 we
state the major assumption on the structure of our elliptic multiscale problem and
we state the associated homogenization results obtained by Schweizer and Veneroni
[46]. Furthermore, we present the two main results of this contribution concerning
the convergence of the MsFEM. A discussion and the proofs of these two theorems
are given in Section 4 for the 2d and 3d case and in Section 5 for the 1d case.

2. Setting and definitions. The following definitions and assumption are as-
sumed for all the subsequent sections. Ω ⊂ Rd denotes a d-dimensional, bounded
Lipschitz domain with polygonal boundary and with d ∈ {1, 2, 3}. In the following
we assume that (Aε)ε>0 ∈ L∞(Ω,Rd×d) is a family of coefficient functions which is
uniformly elliptic in ε, i.e. there exist constants α, β ∈ R>0, such that:

α|γ|2 ≤ Aε(x)γ · γ ≤ β|γ|2 ∀γ ∈ Rd, and almost everywhere in Ω.

For the source term f , we demand f ∈ L2(Ω). Moreover, we define

H̊1(Ω) := C̊∞(Ω)
‖·‖H1(Ω)

,

where C̊∞(Ω) denotes the space of infinitely differentiable functions with compact
support in Ω and where ‖u‖H1(Ω) := ‖u‖L2(Ω) + ‖∇u‖L2(Ω). Analogously we define

the seminorm on H1 by |u|H1(Ω) := ‖∇u‖L2(Ω). Furthermore, we introduce for
simplicity:

Aε(Φ,Ψ) :=

∫
Ω

Aε(x)∇Φ(x) · ∇Ψ(x) dx and F(Φ) :=

∫
Ω

f(x)Φ(x) dx.

In the following, we consider the problem to find uε ∈ H̊1(Ω) with

Aε(uε,Φ) = F(Φ) ∀Φ ∈ H̊1(Ω). (1)

In particular, we are interested in the case of ε becoming extremely small.

For discretizing the problem, let TH(Ω) be a regular simplicial partition of Ω.
The elements of TH(Ω) are denoted by T and the barycenter of T ∈ TH(Ω) is
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denoted by xT . For the diameter of an element T ∈ TH(Ω) we use HT :=diam(T )
and H := supT∈TH(Ω)HT . The usual finite element space of continuous, piecewise
linear functions is given by

VH(Ω) := {ΦH ∈ H̊1(Ω) ∩ C0(Ω) |ΦH|T ∈ P1(T ) ∀T ∈ TH(Ω)}.

Here, P1(T ) denotes the space of polynomials of degree 1 on T .
Let N denote the dimension of VH(Ω) and let {Φi| 1 ≤ i ≤ N} denote the usual

Lagrange basis of VH(Ω). We define the MsFEM solution space by

V εH(Ω) := span{Φεi | 1 ≤ i ≤ N},

where for every T ∈ TH(Ω), Φεi ∈ H̊1(Ω) is the solution of∫
T

Aε(x)∇Φεi(x) · ∇φ(x) = 0 ∀φ ∈ H̊1(T ),

and with Φεi = Φi on ∂T . Due to continuity, this yields a conforming set of basis
functions, i.e. V εH(Ω) ⊂ H1(Ω) (c.f. the book of Efendiev and Hou [15]). Now, we
can define the MsFEM solution uεH :

Definition 2.1 (MsFEM). The MsFEM approximation uεH ∈ V εH(Ω) of uε solves∫
Ω

Aε(x)∇uεH · ∇ΦεH(x) dx =

∫
Ω

f(x)ΦεH(x) dx

for all ΦεH ∈ V εH(Ω). We note that uεH is a H1-approximation of uε.

3. Homogenization and main results. In this section we introduce the homog-
enization result obtained by Schweizer and Veneroni [46] under the assumption that
the family of coefficients Aε allows averaging, which is defined below. On the ba-
sis of this result, we are concerned with the convergence of a sequence of MsFEM
approximations. The corresponding main results are presented at the end of this
section.

We start with the following assumption, initially introduced in [46] for the needle
problem approach to non-periodic homogenization:

Assumption 1. We assume that Aε allows averaging of the constitutive relation
with the matrix A0 ∈ Rd×d, i.e. for every simplex T ⊂ Ω, every ξ ∈ Rd, every b ∈ R
we have

lim
ε→0

∫
T

− Aε∇vε = A0ξ (2)

where vε ∈ H1(T ) is defined as the solution of∫
T

Aε(x)∇vε(x) · ∇φ(x) = 0 ∀φ ∈ H̊1(T )

and with vε(x) = ξ · x+ b on ∂T .

For instance, this assumption covers the periodic setting (i.e. Aε(x) = A(xε ),

with a [0, 1]d-periodic matrix A) or the case of ergodic stochastic coefficients. In
the periodic case, the convergence in (2) is directly obtained via weak convergence
of Aε∇vε and in the case of ergodic stochastic coefficients, we refer to the appendix
of [46].

The following homogenization result was obtained by Schweizer and Veneroni
[46]:
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Theorem 3.1. Let uε ∈ H̊1(Ω) denote the solution of equation (1). Under the
general assumptions of Section 2 and if Aε allows averaging of the constitutive
relation with the matrix A0 ∈ Rn×n, we obtain that the sequence (uε)ε of solutions
satisfies:

uε ⇀ u0 weakly in H1(Ω),

Aε∇uε ⇀ A0∇u0 weakly in L2(Ω),

where u0 ∈ H̊1(Ω) is the solution of∫
Ω

A0∇u0 · ∇Φ =

∫
Ω

f Φ ∀Φ ∈ H̊1(Ω) (3)

Remark 1. In [46], Theorem 3.1 is only stated for d = 2, 3. However, it is easy
to verify, that it also holds for d = 1. In this case, the existence of a homogenized
matrix A∗ and a homogenized solution u∗ can be obtained in the very general setting
of H-convergence. To verify A∗ = A0, we can use that the H-limit A∗ is equal to
the inverse of the weak-∗ L∞-limit of (Aε)−1. A simple computation yields that is
identical to A0. The same argument is also used in Section 5, where it is elaborated
with more details.

Remark 2. The homogenized matrix A0 ∈ Rd×d introduced in Theorem 3.1 is
elliptic with the same constant α > 0 as Aε, i.e.:

A0γ · γ ≥ α|γ|2 ∀γ ∈ Rd.

This is a simple conclusion if we observe that Theorem 3.1 implies H-convergence
of Aε to A0. Compactness results of H-convergent sequences guarantee that if the
whole sequence (Aε)ε>0 is uniformly elliptic with the same constant α, the condition
also holds for the limit A0. See for instance Theorem 13.4 in [9].

Definition 3.2. We define u0,ε
H ∈ VH(Ω), the coarse scale part of uεH , by

u0,ε
H :=

N∑
i=1

αεiΦi,

where (Φi)i denotes the Lagrange basis of VH(Ω) and αε ∈ RN denotes the coeffi-

cient vector of uεH in V εH(Ω), i.e. uεH =
∑N
i=1 α

ε
iΦ

ε
i .

Now, we can state the main results of this contribution. The first theorem treats
the case d = 2, 3 and, in particular, shows that under the given assumptions, the
sequence of MsFEM approximations captures the fine-scale oscillations of the exact
solution uε, i.e. we have lim

H→0
lim
ε→0
‖uε − uεH‖H1(Ω) = 0:

Theorem 3.3 (Convergence in 2- and 3-d). Let d = 2, 3 and let uε ∈ H̊1(Ω) denote
the solution of equation (1) and let uεH denote the MsFEM solution from Definition
2.1. If Ω is a convex domain and if Aε allows averaging in the sense of Assumption
1, we obtain the following estimates:

lim sup
ε→0

‖uε − uεH‖H1(Ω) ≤ CH and lim
ε→0
‖uε − uεH‖L2(Ω) ≤ CH2,

lim
ε→0
‖u0 − u0,ε

H ‖H1(Ω) ≤ CH and lim
ε→0
‖u0 − u0,ε

H ‖L2(Ω) ≤ CH2.

Here, C denotes a constant independent of ε and H.
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In general, i.e. if Ω is possibly not convex, there exists some s ∈ [ 3
2 , 2], where

u0 ∈ H̊1(Ω) ∩Hs(Ω), and we get:

lim sup
ε→0

‖uε − uεH‖H1(Ω) ≤ CHs−1 and lim
ε→0
‖uε − uεH‖L2(Ω) ≤ CHs,

lim
ε→0
‖u0 − u0,ε

H ‖H1(Ω) ≤ CHs−1 and lim
ε→0
‖u0 − u0,ε

H ‖L2(Ω) ≤ CHs−1.

For instance, if n = 2, we have s = 1 + π
ω , where ω > π denotes the largest interior

angle of an opening (i.e. of a re-entrant corner).

The proof of this theorem is given in Section 4.

For completeness, we also state a well known result which holds for any space
dimension and which guarantees convergence for H → 0. For convenience of the
reader it is also stated in Section 4 (see Proposition 1):

Remark 3. Let uε ∈ H̊1(Ω) denote the solution of equation (1) and let uεH denote
the MsFEM solution from Definition 2.1, then we also have

lim
H→0
‖uε − uεH‖H1(Ω) = 0.

In the following theorem, the case d = 1 is treated. Here we observe that,
independently of how we couple ε → 0 and H → 0, we get convergence for any
sequence of MsFEM approximations uεH to the same limit. The reason for this is
that the MsFEM-problem behaves like a homogenized (or averaged) problem, once ε
and H get sufficiently small (i.e. the MsFEM problem behaves like a discretization
of a homogenized/averaged equation). In Section 5, we go into detail. In the
following theorem, we also note the interesting case of 0 < H

ε =const< 1, which

typically yields a rapidly oscillating coarse scale part u0,ε
H .

Theorem 3.4. Assume d = 1, let uε ∈ H̊1(Ω) denote the solution of (1) and uεH the
MsFEM approximation from Definition 2.1. If we assume that Aε allows averaging
in the sense of Assumption 1, we get the following convergence for any sequence
H(ε) with H(ε)→ 0 for ε→ 0:

lim
ε→0
‖uεH(ε) − u

ε‖L2(Ω) = 0.

The theorem is a conclusion from Theorem 5.3, which is proved in Section 5.

Remark 4. Note that Theorem 3.4 does not hold for higher dimensions. If we
couple H and ε by a fixed ratio, we might obtain convergence to a wrong approx-
imation. Even if ε

H = r � 1, there might be always a (possibly extremely small)
remainder. This is also discussed at the end of Section 4.

4. Convergence of the MsFEM for d = 2, 3. In this section, we are essentially
concerned with proving Theorem 3.3. We therefore assume d = 2, 3.

We start this section with introducing a new formulation of the MsFEM problem,
which is more convenient for our purposes. First, we define the discrete multiscale
operator Rε which transforms a basis function into a multiscale basis function.

Definition 4.1 (Discrete Multiscale Operator). For Φ ∈ H̊1(Ω) and T ∈ TH , the

local multiscale correction QεT (Φ) ∈ H̊1(T ) is the solution of the following problem:∫
T

Aε(x)∇QεT (Φ)(x) · ∇φ(x) = −
∫
T

Aε(x)∇Φ(x) · ∇φ(x) ∀φ ∈ H̊1(T ).
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The global multiscale correction Qε(Φ) ∈ H̊1(Ω) is given piecewise for every T ∈ TH
by the local parts:

Qε(Φ)(x) := QεT (Φ)(x) for x ∈ T ∈ TH .

Furthermore we define Rε(Φ) := Φ + Qε(Φ). Note that Rε(Φ) ∈ H̊1(Ω), since

Qε(Φ) ∈ H̊1(T ) for all T ∈ TH(Ω).

Remark 5. Observe that we have the relation Rε(Φi) = Φεi , since for every i, for

every T ∈ TH(Ω) and every φ ∈ H̊1(T ):∫
T

Aε(x)∇Rε(Φi)(x) · ∇φ(x) dx

=

∫
T

Aε(x)∇Qε(Φi)(x) · ∇φ(x) dx+

∫
T

Aε(x)∇Φi(x) · ∇φ(x) dx = 0

and Rε(Φi) = Qε(Φi) + Φi = Φi on ∂T , which is exactly the definition of Φεi .

Next, we define the MsFEM bilinear form and the MsFEM right hand side func-
tional:

Definition 4.2. To describe the MsFEM, we define the multiscale bilinear form
AεH on VH(Ω)× VH(Ω) by:

AεH(ΦH ,ΨH) :=

∫
Ω

Aε(x)∇Rε(ΦH)(x) · ∇Rε(ΨH)(x) dx.

and the associated right hand side functional by:

FεH(ΦH) :=

∫
Ω

f(x)Rε(ΦH)(x) dx for ΦH ∈ VH(Ω).

The following is a direct conclusion from the preceding definition and from Re-
mark 5:

Conclusion 1 (Reformulation of the MsFEM). If u0,ε
H ∈ VH(Ω) solves

AεH(u0,ε
H ,ΦH) = FεH(ΦH) (4)

for all ΦH ∈ VH(Ω), then we have uεH = Rε(u0,ε
H ), where uεH denotes the MsFEM

solution. In particular, we obtain∫
T

Aε(x)∇uεH(x) · ∇φ(x) = 0 ∀φ ∈ H̊1(T ). (5)

The next theorem proves that AεH is a coercive bilinear form:

Theorem 4.3 (Ellipticity of AεH). The bilinearform AεH is uniformly coercive on
VH(Ω) × VH(Ω) with the same constant α > 0 assumed for Aε, i.e. we have inde-
pendent of ε and H:

α|ΦH |2H1(Ω) ≤ A
ε
H(ΦH ,ΦH).

Proof. Let us fix T ∈ TH and ΦH ∈ VH . For the affine function g(x) := ΦH(x)|T =
ξ · x + b (i.e. ξ := ∇ΦH(xT ) and b := ΦH(xT ) − ∇ΦH(xT ) · xT ) we consider the

problem: find w = u+ g ∈ H1(T ) with u ∈ H̊1(T ) and∫
T

∇u · ∇φ = 0 ∀φ ∈ H̊1(T ).
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From the Lax-Milgram theorem we get the unique solution u = w − g = 0, i.e.
w(x) = g(x) = ΦH(x)|T . This is equivalent to w minimizing the corresponding
energy functional. We get:∫

T

|∇ΦH |2 =

∫
T

|∇w|2

= min

{∫
T

|∇v|2| v ∈ H1(T ), v = g on ∂T

}
≤
∫
T

|∇(ΦH +Qε(ΦH))|2,

where we used that ΦH +Qε(ΦH) is admissible because of ΦH = g|T and Qε(ΦH) ∈
H̊1(T ). Exploiting this inequality we get:

AεH(ΦH ,ΦH) =
∑
T∈TH

∫
T

Aε(x)∇Rε(ΦH)(x) · ∇Rε(ΦH)(x) dx

≥
∑
T∈TH

∫
T

α|∇ΦH(x) +∇Qε(ΦH)(x)|2 dx

≥
∑
T∈TH

∫
T

α|∇ΦH(x)|2 dx = α|ΦH |2H1(Ω).

Theorem 4.3 guarantees uniform boundedness of the coarse scale part of uεH :

Remark 6. Let u0,ε
H denote the solution of problem (4), then we have:

‖u0,ε
H ‖H1(Ω) ≤

√
cp

α
‖f‖L2(Ω).

Here, cp denotes the constant from the Poincaré-inequality. This is a direct conse-
quence of Theorem 4.3, which gives us

α‖u0,ε
H ‖

2
H1(Ω) ≤ A

ε
H(u0,ε

H , u0,ε
H ) = FεH(u0,ε

H ) ≤ ‖f‖L2(Ω)‖uεH‖L2(Ω) ≤
cp
α
‖f‖2L2(Ω),

where we used
∫

Ω
Aε(x)∇uεH · ∇uεH(x) dx =

∫
Ω
f(x)uεH(x) dx in the last step.

Before we can deal with the H1-convergence of a sequence of MsFEM approxima-
tions, we require a stabilization result and a compensated compactness result, both
obtained by Schweizer and Veneroni in [46]. Furthermore, we need some additional
definitions to state the mentioned results properly. We start with the stabilization:

Lemma 4.4 (Stabilization). Suppose that the general assumptions of this section
are fulfilled. In particular, we assume that Aε ∈ L∞(Ω,Rd×d) allows averaging with
the matrix A0 according to Assumption 1. Let be T ∈ TH(Ω), ξ ∈ Rd, b ∈ R and let
(vε)ε>0 ⊂ H1(T ) be a sequence of weak solutions of∫

T

Aε(x)∇vε(x) · ∇φ(x) = 0 ∀φ ∈ H̊1(T )

with the boundary condition vε(x) = ξ · x+ b on ∂T . Then we obtain the following
convergence for the sequence vε:

vε ⇀ v weakly in H1(T ) and

Aε∇vε ⇀ A0∇v weakly in L2(T,Rd),
where v is linear with ∇v ≡ ξ.
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The proof of this Lemma can be found in [46], Proposition 2.7.

Conclusion 2. Let Rε denote the multiscale operator of Definition 4.1. Then we
have for every ΦH ∈ VH(Ω) and every φ ∈ H̊1(T ):∫

T

Aε∇Rε(ΦH) · ∇φ =

∫
T

Aε (∇Qε(ΦH) +∇ΦH) · ∇φ = 0

and Rε(ΦH)(x) = ΦH(x) = ΦH(xT ) + (x − xT ) · ∇ΦH(xT ) on ∂T . Therefore,
using Lemma 4.4 (which yields an affine weak limit vH) and the above boundary
condition, we obtain

Rε(ΦH) ⇀ ΦH weakly in H1(T ) and

Aε∇Rε(ΦH) ⇀ A0∇ΦH weakly in L2(T,Rd).

In the next step, we show ellipticity of the homogenized matrix A0. The proof is
similar to the proof of Theorem 4.3, but we need a little more tools, in particular,
the already mentioned compensated compactness. For this purpose, we need to
introduce some definitions, which can be also found in [46]: see Definition 3.1 for
points of typical average, Definition 3.3 for typical segments and Definition 3.7 for
2d adapted grids.

Definition 4.5 (Points of typical average). Let (εk)k∈N denote a sequence with
εk → 0. Then, x ∈ Ω is called a a point with typical average for uε and (εk)k∈N, if
there exists a subsequence (εkl)l∈N of (εk)k∈N, real numbers cx and Mx, such that:∫

B
k
−1
l

(x)

− |∇uεkl (z)|2 dLd(z) ≤Mx ∀l ∈ N, (6)

∫
B
k
−1
l

(x)

− uεkl (z) dLd(z)→ cx for l→∞. (7)

Here, Bk−1
l

(x) denotes the ball of radius k−1
l and with center x and Ld denotes the

d-dimensional Lebesgue measure. A subsequence (εkl)l∈N of (εk)k∈N is called a good
sequence for the point x if (6) and (7) are fulfilled for this sequence.

Definition 4.6 (Typical segments). Let Ω ⊂ Rd denote a domain, (uε)ε a bounded
sequence in H1(Ω) and (εk)k∈N a sequence with εk → 0. Γ = [x, y] is called a typical
segment if x and y are points of typical average and if there exists a subsequence
(εkl)l∈N of (εk)k∈N and a positive real number MΓ with

‖uεkl|Γ ‖
2
L2(Γ) + ‖∇τu

εkl
|Γ ‖

2
L2(Γ) ≤MΓ

and where (εkl)l∈N is a good subsequence for x and y. A subsequence with these
properties is called a good subsequence for the segment Γ. Here, ∇τ denotes the
(weak) tangential gradient (along Γ). For regular functions u this yields ∇τu(x) =
∇u(x) − (n(x) · ∇u(x))n(x) with unit outer normal n (i.e. the projection of the
gradient ∇u onto the tangent space at x ∈ Γ).

For the sake of simplicity, we restrict ourselves to presenting the definition of an
adapted grid only for the case d = 2. In higher dimensions, additional definitions are
required which we leave out for the convenience of the reader. For further details
we refer to the work of Schweizer and Veneroni [46].
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Definition 4.7 (Adapted grid for d = 2). Let Q ⊂ R2 denote a bounded Lipschitz
domain, (uε)ε a bounded sequence in H1(Q) and (εk)k∈N a sequence with εk → 0.
For fixed h > 0, we call a family Th of simplices an adapted grid for (uε)ε if the
boundaries of all these simplices are typical segments and if there is one subsequence
(εkl)l∈N of (εk)k∈N that is a good subsequence for all the segments.

Now, we are finally prepared to state the compensated compactness result, which
is given in [46], Theorem 4.8.

Theorem 4.8. Assume that we have space dimension 2 or 3. Let Q ⊂ Rd be a
bounded Lipschitz domain with polygonal boundary and (wε)ε a bounded sequence
in H1(Q). Then, for any h > 0 there exists a triangulation Th of Q (i.e. the
maximum diameter of a grid element is less than h) that is an adapted grid for
(wε)ε. Furthermore, if wε ⇀ w weakly in H1(Q) and if (qε)ε is a sequence in
L2(Q;Rd) with the following properties:

qε ⇀ q weakly in L2(Q);

∇ · qε → b strongly in H−1(S), for all S ∈ Th,

then the following result holds true:

lim
ε→0

∫
Q

qε(x) · ∇wε(x) dx =

∫
Q

q(x) · ∇w(x) dx.

Now, we can prove H1-convergence of the coarse scale part of uεH to the homog-
enized solution u0:

Theorem 4.9. Let u0
H ∈ VH(Ω) denote the finite element approximation of the

homogenized solution of problem (3), i.e. u0
H solves∫

Ω

A0∇u0
H · ∇ΦH =

∫
Ω

fΦH

for all ΦH ∈ VH(Ω). If furthermore u0,ε
H ∈ VH(Ω) denotes the coarse scale part of

the MsFEM solution uεH , i.e. if u0,ε
H solves (4), then we have:

u0,ε
H

ε→0−→ u0
H strongly in H1(Ω).

Proof. Using Remark 6, we see that (u0,ε
H )ε is a bounded sequence in the finite

dimensional Hilbert space VH(Ω). Therefore, there exists a subsequence (u0,εk
H )k∈N

of (u0,ε
H )ε and a function ũ0

H ∈ VH(Ω), so that

‖u0,εk
H − ũ0

H‖H1(Ω)
k→∞−→ 0.

Due to the definitions of Qε(u0,ε
H ) ∈ H̊1(T ) and Qε(ũ0

H) ∈ H̊1(T ), we get∫
T

Aε∇Qε(u0,ε
H ) · ∇

(
Qε(u0,ε

H )−Qε(ũ0
H)
)

= −
∫
T

Aε∇u0,ε
H · ∇

(
Qε(u0,ε

H )−Qε(ũ0
H)
)

and∫
T

Aε∇Qε(ũ0
H) · ∇

(
Qε(u0,ε

H )−Qε(ũ0
H)
)

= −
∫
T

Aε∇ũ0
H · ∇

(
Qε(u0,ε

H )−Qε(ũ0
H)
)
.

Combining this and using the ellipticity of Aε, we get

α|Qε(ũ0
H)−Qε(u0,ε

H )|H1(T ) ≤ β|ũ0
H − u

0,ε
H |H1(T ).
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And therefore:

|Rεk(ũ0
H)−Rεk(u0,εk

H )|H1(T ) ≤ |Qεk(ũ0
H)−Qεk(u0,εk

H )|H1(T ) + |ũ0
H − u

0,εk
H |H1(T )

≤
(

1 +
β

α

)
|ũ0
H − u

0,εk
H |H1(T )

k→∞−→ 0.

This yields the following strong convergence:

|Rεk(ũ0
H)−Rεk(u0,εk

H )|H1(Ω)
k→∞−→ 0. (8)

Furthermore, by means of Conclusion 2:

Aε∇Rε(ũ0
H) ⇀ A0∇ũ0

H weakly in L2(T,Rd). (9)

Now, we can identify the limit equation that is fulfilled by ũ0
H . Recall Definition

2.1 and the relation uεH = Rε(u0,ε
H ). First we observe∫

T

Aε(x)∇uεH(x) · ∇Rε(ΦH)(x) dx

=

∫
T

Aε(x)∇uεH(x) · ∇Qε(ΦH)(x) dx+

∫
T

Aε(x)∇uεH(x) · ∇ΦH(x) dx

=

∫
T

Aε(x)∇uεH(x) · ∇ΦH(x) dx,

due to (5) with Qε(ΦH) ∈ H̊1(T ). Therefore∫
Ω

Aε(x)∇uεH(x) · ∇Rε(ΦH)(x) dx =

∫
Ω

Aε(x)∇uεH(x) · ∇ΦH(x) dx

for all ΦH ∈ VH(Ω). Together with the definition of the MsFEM this gives us:

0 =

∫
Ω

Aεk∇uεkH · ∇R
εk(ΦH)−

∫
Ω

fRεk(ΦH)

=

∫
Ω

Aεk∇uεkH · ∇ΦH −
∫

Ω

fRεk(ΦH)

=

∫
Ω

Aεk∇
(
Rεk(u0,εk

H )−Rεk(ũ0
H)
)
·∇ΦH +

∫
Ω

Aεk∇Rεk(ũ0
H) ·∇ΦH−

∫
Ω

fRεk(ΦH)

k→∞−→
∫

Ω

A0∇ũ0
H · ∇ΦH −

∫
Ω

fΦH .

Here we used (8), (9) and Conclusion 2. Note that∫
Ω

Aε
(
∇Rε(u0,ε

H )−∇Rε(ũ0
H)
)
· ∇ΦH → 0

because of ∫
Ω

Aεk
(
∇Rεk(u0,εk

H )−∇Rεk(ũ0
H)
)
· ∇ΦH

≤ β|Rεk(ũ0
H)−Rεk(u0,εk

H )|H1(Ω)|ΦH |H1(Ω) → 0.

So ũ0
H ∈ VH(Ω) solves∫

Ω

A0∇ũ0
H · ∇ΦH −

∫
Ω

fΦH = 0 ∀ΦH ∈ VH(Ω).

Because of Remark 2, we know that the problem above yields a unique solution.
Due to this uniqueness, we obtain that any subsequence must converge to the same
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limit. So we have convergence of the whole sequence (u0,ε
H )ε>0 and in particular

ũ0
H = u0

H .

Conclusion 3. From the proof of the last theorem, we conclude:

uεH −Rε(u0
H)

ε→0−→ 0 strongly in H1(Ω).

This is a direct consequence of the Poincaré-inequality and equation (8) if we recall

uεH = Rε(u0,ε
H ), ũ0

H = u0
H and that we have convergence for the whole sequence.

Finally, we can deal with the proof of the first main result, namely Theorem 3.3:

Proof of Theorem 3.3. Let d = 2, 3 and let u0
H denote the FEM-approximation of

the homogenized solution u0. If we split the MsFEM-error into

‖uε − uεH‖H1(Ω) ≤ ‖uε −Rε(u0
H)‖H1(Ω) + ‖Rε(u0

H)− uεH‖H1(Ω),

it remains to estimate ‖uε − Rε(u0
H)‖H1(Ω), since we already have ‖Rε(u0

H) −
uεH‖H1(Ω) → 0 by Conclusion 3.

We start with the L2-norm. Note that we need to treat the L2 and the H1-error
separately to get an optimal order of convergence for the L2-part. First, we recall
that uε converges to u0 weakly in H1(Ω) (by Theorem 3.1) and Rε(u0

H) converges to
u0
H also weakly in H1(Ω) (by Conclusion 2). Since Ω has a Lipschitz boundary we

can use the Sobolev embedding theorem to see that both sequences must converge
strongly in L2(Ω). This gives us:

lim
ε→0
‖uε − uεH‖L2(Ω) = lim

ε→0
‖uε −Rε(u0

H)‖L2(Ω) = ‖u0 − u0
H‖L2(Ω). (10)

Next, we treat the H1-seminorm, which requires the compensated compactness
stated in Theorem 4.8. We estimate:

α|uε −Rε(u0
H)|2H1(Ω) ≤

∫
Ω

Aε(∇uε −∇Rε(u0
H)) · (∇uε −∇Rε(u0

H))

=

∫
Ω

Aε∇uε · ∇uε −
∫

Ω

Aε∇uε · ∇Rε(u0
H)

−
∫

Ω

Aε∇Rε(u0
H) · ∇uε +

∫
Ω

Aε∇Rε(u0
H) · ∇Rε(u0

H)

=

∫
Ω

fuε +

∫
Ω

Aε∇Rε(u0
H) · ∇Rε(u0

H)

−
∫

Ω

Aε∇uε · ∇Rε(u0
H)−

∫
Ω

Aε∇Rε(u0
H) · ∇uε.

Now, we let ε → 0 in the various parts of the right hand side. Due to uε ⇀ u0 in
H1(Ω), we have ∫

Ω

f(x)uε(x)dx→
∫

Ω

f(x)u0(x)dx.
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For the second summand we can use Assumption 1, which says that Aε allows
averaging: ∫

Ω

Aε∇Rε(u0
H) · (∇u0

H +∇Qε(u0
H))

=

∫
Ω

Aε∇Rε(u0
H) · ∇u0

H

=
∑
T∈TH

(∫
T

Aε∇Rε(u0
H)

)
· ∇u0

H(xT )

→
∑
T∈TH

(∫
T

A0∇u0
H

)
· ∇u0

H(xT )

=
∑
T∈TH

∫
T

A0∇u0
H · ∇u0

H

=

∫
Ω

A0∇u0
H · ∇u0

H dx

For the third summand, we apply Theorem 4.8 with Q = T to obtain an adapted
grid Th(T ) of T . Let us define qε := Aε∇uε which is a sequence in L2(T,Rd) with
weak limit A0∇u0. For ∇ · qε we obtain for every S ∈ Th(T )

(∇ · qε) (φ) =

∫
S

Aε∇uε · ∇φ = 0 ∀φ ∈ H̊1(S).

So ∇ · qε = 0 ∈ H−1(S) for all ε. Additionally, with Conclusion 2, we have

Rε(u0
H) ⇀ u0

H weakly in H1(T ).

We therefore have that the assumptions of Theorem 4.8 are fulfilled and we get:∫
T

Aε∇uε · ∇Rε(u0
H)→

∫
T

A0∇u0 · ∇u0
H .

This yields: ∫
Ω

Aε∇uε · ∇Rε(u0
H) =

∑
T∈TH

∫
T

Aε∇uε · ∇Rε(u0
H)

→
∑
T∈TH

∫
T

A0∇u0 · ∇u0
H =

∫
Ω

A0∇u0 · ∇u0
H .

For the last summand we proceed analogously, using again Conclusion 2. Here, we
define qε := Aε∇Rε(u0

H) to exploit Theorem 4.8. Let Th(T ) be an adapted grid for
T , then we also have from the definition of Rε:

(∇ · qε) (φ) =

∫
S

Aε∇Rε(u0
H) · ∇φ =

∫
T

Aε∇Rε(u0
H) · ∇φ = 0

for all S ∈ Th(T ) and for all φ ∈ H̊1(S). So Theorem 4.8 applies again and we get:∫
Ω

Aε∇Rε(u0
H) · ∇uε =

∑
T∈TH

∫
T

Aε∇Rε(u0
H) · ∇uε

→
∑
T∈TH

∫
T

A0∇u0
H · ∇u0 =

∫
Ω

A0∇u0
H · ∇u0.
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Combining the various parts yields:

lim sup
ε→0

|uε − uεH |2H1(Ω) = lim sup
ε→0

|uε −Rε(u0
H)|2H1(Ω)

≤ 1

α

∫
Ω

A0(∇u0 −∇u0
H) · (∇u0 −∇u0

H)

≤ β

α
|u0 − u0

H |2H1(Ω).

In summary, what we have shown is the following:

lim
ε→0
‖uε − uεH‖L2(Ω) = ‖u0 − u0

H‖L2(Ω); lim sup
ε→0

|uε − uεH |H1(Ω) ≤ C|u0 − u0
H |H1(Ω).

But u0
H denotes the FEM approximation of the homogenized solution u0 so we

can use standard estimates to control ‖u0 − u0
H‖Hm(Ω), for m = 0, 1. If u0 ∈

H̊1(Ω) ∩Hs0(Ω), with 1 ≤ s0 ≤ 2, we get with standard interpolation estimates:

‖u0 − u0
H‖L2(Ω) ≤ CHs0 and |u0 − u0

H |H1(Ω) ≤ CHs0−1.

Since Ω is a bounded polygonal domain and since A0 is constant, we even know
that 3

2 ≤ s0 ≤ 2 (c.f. [25], e.g. chapter 6) and therefore at least:

‖u0 − u0
H‖L2(Ω) ≤ CH

3
2 and |u0 − u0

H |H1(Ω) ≤ CH
1
2 .

In the case of n = 2, s0 can specified by means of the largest interior angle of
an opening. Here we have s0 = 1 + π

ω , where ω > π denotes the largest angle
of a re-entrant corner (c.f. [5]). Finally, if Ω is a convex domain, we obtain full
H2-regularity for u0 (c.f. [24], chapter 3.2) and therefore an optimal second order
convergence for the L2-error and linear convergence for the H1-error.

The remaining estimates for ‖u0 − u0,ε
H ‖L2(Ω) and |u0 − u0,ε

H |H1(Ω) are obtained
in the same way, using Theorem 4.9 which immediately yields

lim
ε→0
‖u0 − u0,ε

H ‖H1(Ω) = ‖u0 − u0
H‖H1(Ω).

This ends the proof.

In Remark 3 we already mentioned the H1(Ω)-convergence of the MsFEM ap-

proximations in H, i.e. uε−uεH
H→0−→ 0 strongly in H1. This is a known result which

can be for instance found in the book of Efendiev and Hou, [15]. For the sake of
completeness, we also state the result in our framework. A proof can be found e.g.
in [15].

Proposition 1. Let uε ∈ H̊1(Ω) denote the solution equation (1) and let uεH denote
the MsFEM solution from Definition 2.1, then the error is bounded independent of
H and ε:

‖uε − uεH‖H1(Ω) ≤ C‖f‖L2(Ω),

furthermore, the limits in ε and the limits in H are both equal to zero. In particular,
we have:

lim sup
ε→0

|uε − uεH |H1(Ω) ≤ CH and

|uε − uεH |H1(Ω) ≤ C|uε − IH(uε)|H1(Ω) + CH‖f‖L2(Ω),
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IH : H̊1(Ω) → VH(Ω) defines an arbitrary interpolation operator. Note that the
quality of the second estimate depends on the regularity of uε, whereas the first
estimate is independent of the regularity.

The estimates above suggest to ask for convergence if we choose a coupling such
as ε

H ≈ const. The answer is, that we cannot formulate general results, since
the sequence of MsFEM approximations is still convergent, but typically not to
the correct approximation. In the following, we give an easy example with scalar
diffusion, where Aε is constant in one direction and periodic in the other direction:

Model Problem. Let Ω :=]0, 4
5 [2. Find uε ∈ H̊1(Ω) with

−∇ · (Aε∇uε) = 1 in Ω.

and where Aε(x) := A(xε ) is given by A(y1, y2) := (1.01 + cos(2πy1))Id.

In this special case it is easy to compute that the homogenized matrix is given
by

A0 =

((∫ 1

0
(1.01 + cos(2πy))

−1
dy
)−1

0

0 1.01

)
(see for instance the book of Cioranescu and Donato [9]).

Now let us define the ’MsFEM Matrix’ A0,ε by

A0,ε
ij (x) :=

∫
T

− Aε(ei +∇Qε(vi)) · ej for x ∈ T

and where vi(x) := ei · x. We easily see∫
Ω

Aε∇Rε(u0,ε
H ) · ∇Rε(ΦH) =

∫
Ω

A0,ε∇u0,ε
H · ∇ΦH .

Now, let us assume we start with a triangulation TH0
(Ω) that separates Ω into two

right triangles. Then we create THi+1(Ω) by two uniform refinements of THi(Ω),

so that Hi+1 = Hi
2 . For THi , εi shall be equal to the length of a cathetus of an

element of THi(Ω). With this strategy, we get a coupling of Hi and εi. With the
transformation formula, it is easy to check that any element T which is a shifted
and scaled version of the reference element yields the same value for A0,ε

ij on T .

But due to cos(2π(1 − x1)) = cos(2πx1), we get that A0,εi also takes the same
value on every triangle T that is rotated at 180◦. All in all, we get the same value
for every triangle T and for every of the above triangulations THi(Ω). So we have

A0,εi(x) = Ã for some matrix Ã ∈ Rd×d, for every x and every εi. This implies that

uεi,0Hi
is independent of εi and Hi. An easy computation yields

Ã ≈
(

0.667 0
0 1.01

)
, whereas A0 ≈

(
0.144 0

0 1.01

)
which is why ‖u0,ε

H − u0‖ is constant and does not converge. Also if H does not hit
the period ε and if we do not construct a constant matrix A0,ε, we can still observe
a stagnation of the error as depicted in Table 1.

However, it can be shown for periodic (c.f. [32]) or some cases of random ho-
mogenization problems (c.f. [7]) that we have the following a-priori error estimate:

‖u0 − u0,ε
H ‖L2(Ω) ≤ C

(
H +

( ε
H

) 1
2

)
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Table 1. In the table we can see a stagnation of the error for
a coupling of H and ε by the fixed ratio ε

H = 1.28. The local
problems for computing the multiscale basis functions are solved
with sufficient accuracy (h = 2−6HT for a triangulation Th(T ) of
T ).

ε H ‖u0 − u0,ε
H ‖L2(Ω)

0.256 0.2 0.01685
0.128 0.2 · 2−1 0.01493
0.064 0.2 · 2−2 0.01318
0.032 0.2 · 2−3 0.01296
0.016 0.2 · 2−4 0.01294
0.008 0.2 · 2−5 0.01293
0.004 0.2 · 2−6 0.01293
0.002 0.2 · 2−7 0.01293

This at least yields smallness of the error if ε � H, but we still might only deal
with convergence to the homogenized solution, up to a small reminder of size

√
δ,

where δ = ε
H . Note that, due to our very general assumptions (which say nothing

about the speed of convergence in (2)), we can not derive a-priori error estimates
with explicit orders in ε in our framework. However, in comparison to d > 1, it
is possible to give a clear answer to the question of convergence of the MsFEM
solutions for H(ε)→ 0 for the 1d case. This is done in the subsequent section.

5. Convergence of the MsFEM for d = 1. In this section, we are concerned
with the convergence of a sequence of MsFEM approximations in one space di-
mension. Here, it is possible to partially generalize the results from the preceding
section, in the sense that we can show L2-convergence without any restriction on
the way of coupling H and ε. In particular we do neither assume H

ε → 0 nor
ε
H → 0. The proof is accomplished by deriving explicit formulas for computing the
MsFEM approximations. It turns out that there occurs a homogenization process
for the MsFEM solutions within the original homogenization process in ε. Now, we
introduce the setting of this section:

Definition 5.1. In this section, I := [a, b] ⊂ R denotes an interval with partition
a = x0 < x1 < x2 < ... < xN = b, where N ∈ N>0. Furthermore, we define the
mesh size by Hi := xi+1 − xi and the maximum by H := max{Hi|1 ≤ i ≤ N}. In
this spirit, TH(I) corresponds with this triangulation. The MsFEM approximation
uεH is given by Definition 2.1 and the multiscale correction operator Qε by Definition
4.1.

We start with a lemma that is required for computing Qε(id):

Lemma 5.2. Let [c0, c1] ⊂ I be an interval and w ∈ H̊1(c0, c1) the solution of∫ c1

c0

Aεw′φ′ = −
∫ c1

c0

Aεφ′ ∀φ ∈ H̊1(c0, c1).

Then we have

w(x) = v(x)− g(x)
v(c1)

g(c1)
,
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where

v(x) :=

∫ x

c0

Aε(c1)−Aε(y)

Aε(y)
dy and g(x) :=

∫ x

c0

Aε(c1)

Aε(y)
dy.

In particular, we get

Aε(x)(w′(x) + 1) =

(∫ c1

c0

− 1

Aε(y)
dy

)−1

Proof. It is easy to verify that w is the unique solution of the above problem. For
the last statement, we calculate:

w′(x) + 1 =
Aε(c1)

Aε(x)
− Aε(c1)

Aε(x)

v(c1)

g(c1)

=
Aε(c1)

Aε(x)
− Aε(c1)

Aε(x)

∫ c1
c0

Aε(c1)
Aε(y) dy − (c1 − c0)∫ c1
c0

Aε(c1)
Aε(y) dy

=
(c1 − c0)

Aε(x)

1∫ c1
c0

1
Aε(y) dy

.

Multiplying this term with Aε(x) gives the desired result.

By means of Lemma 5.2, we can restate the MsFEM in a more explicit way:

Conclusion 4. In one space dimension (d = 1), we have explicit formulas for the
description of the MsFEM problem to determine the approximation uεH ∈ V εH(I).

In particular, we have that u0,ε
H ∈ VH(I) is the solution of

N−1∑
n=0

H2
i

(∫ xi+1

xi

1

Aε(y)
dy

)−1

(u0,ε
H )′(xi+ 1

2
) Φ′H(xi+ 1

2
) =

∫
I

fΦH ∀ΦH ∈ VH(I),

where xi+ 1
2

= 2−1(xi+1 + xi). Furthermore, to compute uεH = u0,ε
H + Qε(u0,ε

H ), we

have

Qε(ΦH)(x) = Qεi(x) · Φ′H(x) for x ∈ [xi, xi+1] and ΦH ∈ VH(I),

where Qεi(x) = vεi (x)− gεi (x)
vεi (xi+1)
gεi (xi+1) and

vεi (x) :=

∫ x

xi

Aε(xi+1)−Aε(y)

Aε(y)
dy and gεi (x) :=

∫ x

xi

Aε(xi+1)

Aε(y)
dy.

Proof. This conclusion is a direct consequence of Lemma 5.2. We have:∫
I

Aε∇Rε(u0,ε
H ) · ∇Rε(ΦH) =

N−1∑
i=0

∫ xi+1

xi

Aε(∇u0,ε
H +∇Qε(u0,ε

H )) · ∇ΦH

=

N−1∑
i=0

∫ xi+1

xi

(∫ xi+1

xi

− Aε(1 +∇Qε(id))

)
∇u0,ε

H · ∇ΦH

=

N−1∑
i=0

∫ xi+1

xi

(∫ xi+1

xi

− 1

Aε

)−1

∇u0,ε
H · ∇ΦH

=

N−1∑
i=0

∫ xi+1

xi

A0,ε∇u0,ε
H · ∇ΦH ,
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where we defined

A0,ε(x) :=

(∫ xi+1

xi

− 1

Aε(y)
dy

)−1

for x ∈ [xi, xi+1).

Using the previous results, we are prepared to formulate the main result of this
section, namely the independence of the L2-limit of the MsFEM solution on the
choice of how to couple ε and H. Again we note that the following result does not
hold for d > 1 as discussed in the previous section.

Theorem 5.3. Let d = 1. If we assume that Aε allows averaging in the sense of
Assumption 1, we get that the L2-limit of uεH is independent of the coupling of ε
and H. This means, for any sequence of tuples (Hn, εn) with Hn → 0 and εn → 0,
we have

‖uεnHn − u
εn‖L2(I) + ‖u0,εn

Hn
− u0‖L2(I) → 0 for n→∞,

where u0 denotes the homogenized solution introduced in problem (3). Note the
special case H = r · ε, with r ∈ R>0.

Proof. Let H and ε be coupled in an arbitrary way with ’H → 0 ⇔ ε → 0’. We

start in the spirit of Conclusion 4 and define A0,ε(x) :=
(∫ xi+1

xi
− 1

Aε(y) dy
)−1

for

x ∈ [xi, xi+1). Let us consider the problem to find u0,ε ∈ H̊1(I) with∫
I

A0,ε∇u0,ε · ∇Φ =

∫
I

fΦ ∀Φ ∈ H̊1(I).

We can regard this as a new homogenization problem with a sequence of positive
L∞(I)-coefficients A0,ε (this is possible since H = H(ε)). In the setting of H-
convergence, we obtain that there exists a subsequence (for simplicity still denoted
by A0,ε) with associated H-limit A∗. This limit is identical to the inverse of the
weak-∗ L∞-limit of (A0,ε)−1 (c.f. Hornung [30]). In particular, we get

lim
ε→0

∫
I

(A0,ε)−1φ =

∫
I

A∗φ ∀φ ∈ L1(I). (11)

Now, let I0 = [a0, b0] denote an arbitrary subinterval of I and let w ∈ H̊1(I0) denote
the solution of ∫

I0

Aεw′φ′ = −
∫
I0

Aεφ′ ∀φ ∈ H̊1(I0).

By choosing φ as the indicator function of I0 = [a0, b0] in (11), we get with Lemma
5.2: ∫

I0

A∗ =

(
lim
ε→0

∫
I0

(A0,ε)−1

)−1

=

lim
ε→0

∑
[xi,xi+1]⊂I0

(xi+1 − xi)
(∫ xi+1

xi

− 1

Aε(y)
dy

)
+O(ε)

−1

= lim
ε→0

(∫
I0

1

Aε(y)
dy

)−1

= lim
ε→0

∫
I0

Aε(y)(w′(y) + 1) dy

= |I0|A0,
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Table 2. In this table, we can see the error between homogenized
solution and MsFEM approximation for H = 0.1, but for different
values of ε. For ε = H, we get the best approximation, for ε 6= H
we are dealing with a significant resonance error. Here, we denote

the relative error by ‖u0 − u0,ε
H ‖relL2(I) :=

‖u0−u0,ε
H ‖L2(I)

‖u0‖L2(I)
.

ε H ‖u0 − u0,ε
H ‖relL2(I)

0.1 0.1 3.1 · 10−5

0.099 0.1 2.2 · 10−2

0.09 0.1 2.6 · 10−2

0.08 0.1 1.9 · 10−2

0.07 0.1 1.8 · 10−2

where we used Assumption 1 in the last step. Since I0 was arbitrary, we get A∗ = A0

and we obtain:

‖u0,ε − u0‖L2(I) → 0 for ε→ 0.

Note that the above subsequence can be replaced by the whole sequence in ε, since
A∗ is unique. Finally we obtain:

‖u0,ε
H − u

0‖L2(I)≤‖u0,ε − u0,ε
H ‖L2(I)+‖u0,ε − u0‖L2(I)≤C

β

α
H+‖u0,ε − u0‖L2(I)→0.

The convergence of ‖uεH − uε‖L2(I) → 0 is an easy conclusion, where we use that

‖uε−u0‖L2(I) → 0 and ‖u0,ε
H −uεH‖L2(I) → 0. Here, the second part can be obtained

by a simple computation using |Qεi | ≤ CHi.

The above result in Theorem 5.3 can be illustrated in a numerical experiment.
Let us therefore consider the following model problem:

Model Problem. Find uε ∈ H̊1(0, 1) with

d

dx

(
Aε(x)

d

dx
uε(x)

)
= 1 in I := (0, 1)

and where Aε(x) := A(xε ) is given by A(y) := (2 + cos(2πy))−1.

In the above problem, we have explicit formulas for A0, u0 and uε. In particular,
we get A0 = 2−1, u0(x) = x− x2 and

uε(x) = 2x− x2 − ε2

4π2
cos(2π

x

ε
) +

ε2

4π2
−
(

2x+
ε

2π
sin(2π

x

ε
)
)1 + ε2

4π2 (1− cos( 2π
ε )

2 + ε
2π sin( 2π

ε )
.

For the problem above, it is possible to derive exact formulas for computing
the MsFEM approximations uεH and u0,ε

H . Using these results we can compute

the L2-error between u0 and u0,ε
H for fixed H = 0.1 but various values of ε. The

errors are depicted in Table 2. First of all, we see that the typical resonance error
becomes significant even for very small discrepancies between ε and H. For (H, ε) =
(0.1, 0.099) the error is a thousand times larger than for (H, ε) = (0.1, 0.1). However,
Theorem 5.3 predicts that the effects of the resonance error are ’homogenized’, if
H(ε) becomes small enough. In fact, this is exactly what we can see in Table 3,
where we observe a nice linear convergence. This is complementary to the 2d-case
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Table 3. Depiction of various errors. In this table we can see
that effects of a resonance error start to average out, once ε and
H become small enough. Here, we denote ‖u0 − u0,ε

H ‖relL2(I) :=

‖u0−u0,ε
H ‖L2(I)

‖u0‖L2(I)
and ‖uε−uεH‖relL2(I) :=

‖uε−uεH‖L2(I)

‖uε‖L2(I)
.

ε H
‖u0−uε‖L2(I)

‖uε‖L2(I)
‖u0 − u0,ε

H ‖relL2(I) ‖u
ε − u0,ε

H ‖relL2(I) ‖u
ε − uεH‖relL2(I)

7 ·10−1 1 1.34 · 10−1 2.42 · 10−2 1.24 · 10−1 6.08 · 10−2

7 ·10−2 10−1 2.09 · 10−2 1.83 · 10−2 1.36 · 10−2 9.94 · 10−4

7 ·10−3 10−2 1.85 · 10−3 1.56 · 10−3 1.40 · 10−3 1.08 · 10−5

7 ·10−4 10−3 1.46 · 10−4 1.08 · 10−4 1.41 · 10−4 3.67 · 10−7

7 ·10−5 10−4 2.12 · 10−5 1.88 · 10−5 1.40 · 10−5 4.56 · 10−8

7 ·10−6 10−5 1.86 · 10−6 1.58 · 10−6 1.40 · 10−6 1.41 · 10−8

example at the end of Section 4. This might be also relevant for applications, in
which there is no explicit knowledge about the size of ε.

6. Conclusion. In this work we dealt with the convergence of the H1-error be-
tween MsFEM approximations and the exact solution of an elliptic homogenization
problem. This was established without assuming a certain periodic or stochastic
structure of the problem. Furthermore, we were, in particular, dealing with the case
of 1d-problems, to observe that the convergence does not depend on the coupling
between ε and the grid size H, whereas the result cannot be generalized to other
dimensions. Numerical experiments were given to emphasize our results.
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