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Abstract. Many distributed systems lend themselves to be modelled as net-

works, where nodes can have a range of attributes and properties based on
which they may be classified. In this paper, we attempt the task of quantify-

ing varying levels of similarity among nodes in a complex network over a period

of time. We analyze how this similarity varies as nodes implement their func-
tional logic and node states vary accordingly. We then use information theory

to analyze how much Shannon information is conveyed by such a similarity

measure, and how such information varies with time. We also propose node
congruity as a measure to quantify the contribution of each node to the net-

work’s scalar assortativity. Finally, focussing on networks with binary states,

we present algorithms (logic functions) which can be implemented in nodes to
maximize or minimize scalar assortativity in a given network, and analyze the

corresponding tendencies in information content.

1. Introduction. Networks are ubiquitous in today’s world. Communication net-
works such as world wide web, telephone networks and mobile phone networks are
changing the way we live and we interact with other people. Social networks built
on top of these, such as Facebook and Twitter, are redefining ways of keeping in
touch. Vast airline and rail networks have given us access to the remotest parts of
the world and reduced travel times by orders of magnitude. Our survival depends
on the functioning of a number of biological and ecological networks. The energy
needed for our domestic and industrial use is supplied by electric power networks.
Indeed, the interest and awareness about networks are not only a trend in scientific
research but also a social and cultural phenomenon of this age [6].

Nodes of complex networks may have a number of properties [6, 1, 16]. Some of
these properties may be boolean in nature, taking one of two states. For example,
in a social network, each node may have a gender (male or female), or in a neural
network, each neuron may be spiking or not spiking at a given time [10, 22, 11, 8].
Other properties may take integer values, such as the number of friends to a person
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in a social network, and yet other properties may be continuous real numbers, such
as the age of people in a social network [5] or reading of sensors in a sensor network.
In each of these cases, the node-states have a distribution. For example, let us
say that in a binary network, the node-state distribution is such that most nodes
have state ‘1’ rather than ‘0’. One may then ask, does that mean that if we pick a
random neighbour of a node, that neighbour is more likely to have state ‘1’? That
is not always the case.

To illustrate this, consider a star network with the central node (the hub) having
state ‘0’, and all other nodes having state ‘1’. While most nodes have state ‘1’,
neighbours of most nodes have state ‘0’ (since the hub is the sole neighbour for all
other nodes). In other words, even though most nodes have state ‘1’, if we pick a
random link, finding a ‘1’ at an end of this link is not more likely than finding a ‘0’.
In fact these likelihoods are equal, and are influenced by the topology.

The knowledge about the likelihood of finding a given state at the end of a link
is quite important to understanding a complex network and its dynamics [23]. For
instance, in a sensor network, relatively high readings of temperature in a chain
of direct neighbours may point to a potential fault line. In a social network, we
may be interested to know whether people who are directly connected are in similar
age groups. In a neural network, it may be important to understand if all the
neurons which spike at the given time are directly connected [11]. A number of
other examples could be provided from other domains of complex networks. In
short, measuring the tendency in a network where directly connected nodes have
similar properties is critically important in understanding the network’s dynamics.
In this paper we analyze this tendency, by generalizing and extending the concept
of scalar assortativity, as described below.

Assortative mixing in complex networks has been one of the much explored areas
in network science and graph theory in recent years [14, 15, 18, 17, 4]. Assortative
mixing quantifies the tendency of nodes in a network to make links with similar
nodes. Accordingly, assortativity is defined by a correlation coefficient, whereby
perfect correlation means the network is perfectly assortative where all nodes are
‘identical’, while perfect anti-correlation means the network is disassortative where
no instance of similar nodes being connected can be found. While similarity between
nodes can be interpreted in many ways, assortativity has been primarily defined by
similarity of degrees of nodes [14, 15, 18, 17]. Thus, the assortativity coefficient is
related to network topology and is constant for that network while the topology
remains unaltered. The concept of assortativity was extended by Newman [15] to
measure similarity of scalar attributes of nodes (other than degree) - this was called
scalar assortativity by [15].

While network topology is an important aspect of a complex network, studying
the network dynamics gives us a much deeper understanding of its functionality.
The state of the node, whether it is a boolean, discrete or continuous quantity, is
an attribute of node, and similarity of nodes can be interpreted in terms of this
attribute. Moreover, unlike node degree, the node state will change with time,
therefore when similarity is defined in terms of node-states, the assortativity coef-
ficient of a network varies with time as well. Therefore, it is possible to measure
scalar assortativity over time and analyze its tendencies as a way of understanding
the dynamics of the network.

In this paper, we analyze scalar assortativity coefficient as a function of time,
based on node-states. We focus on binary states, while pointing out that the work
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could be extended to multi-state models. Network scalar assortativity measures
the tendency of nodes to have direct links with similar nodes in terms of their
states, and can vary with time. We show that network scalar assortativity carries
information about the network’s dynamics that cannot be described by either the
topology alone or by the state distribution alone, and we quantify this information
using information theoretic measures. Furthermore, following [17], we also define a
local contribution of an individual node to the global scalar assortativity, which we
call node congruity. We analyze a number of model and real-world networks and
their dynamics using these concepts.

2. Definitions and terms. In this section, we review the concepts related to
degree-based assortativity. Let us consider a network with N nodes (vertices) and
M links (edges). Let us say that the probability of a randomly chosen node having
degree k is pk, where 1 ≤ k ≤ Np. The distribution of such probabilities is called the
degree distribution pk of the network. Let us now consider a randomly chosen link
in an undirected network. We may denote the probability of the node at a random
end of this link having remaining-degree k as qk. We call the distribution of such
probabilities as the excess degree distribution qk of the network. This distribution
is biased in favour of nodes of high degree, since more links end at a high-degree
node than at a low-degree one [14]. It is related to the original degree distribution
as follows:

qk =
(k + 1)pk+1∑Np

1 kpk
, 1 ≤ k ≤ Np (1)

Now let us consider an undirected link having a node with excess-degree j on one
end and a node with excess-degree k on the other end. Following [4] and Newman
[14], we can define the quantity ej,k to be the joint probability distribution of the
degrees of the two nodes at either end of a randomly chosen link.

2.1. Network assortativity. The measure proposed in [15, 14] defines assortativ-
ity as a correlation function in terms of degrees at the network level [4, 14]. This
correlation function yields zero for non-assortative mixing and positive or negative
values for assortative or disassortative mixing respectively. In the case of undi-
rected networks, If no preferential mixing occurs, then ej,k = qjqk. Therefore the
correlation can be defined as

r =
1

σ2
q

∑
jk

jk (ej,k − qjqk)

 (2)

where ej,k is the joint probability distribution of the remaining degrees of the two
nodes at either end of a randomly chosen link. σq is the standard deviation of the
remaining degree distribution of the network, qk. Similarly, the term

∑
j

jqj can be

understood as µq, the expected value or mean of the remaining degree distribution.
Therefore network assortativity r can be defined also as:

r =
1

σ2
q

(
∑
jk

jkej,k)− µ2
q

 (3)

where µq and σq are both constants for the network.
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Here r lies between −1 and 1, whereby r = 1 means perfect assortativity, r = −1
means perfect disassortativity, and r = 0 means no assortativity (random linking).

This definition was extended in [15] to any scalar attribute of a network. Ac-
cordingly, scalar assortativity in [15] is defined as

r =
1

1−
∑
jk

ajbk

∑
jk

(ej,k − ajbk)

 (4)

where aj and bk are the fraction of each type of end (source or target) of a link that
is attached to node of type j and node of type k . In undirected networks, where
there is no ‘source’ or ‘target’ node, aj = bk. As before, ej,k is the fraction of links
which have type j of node at source and type k of nodes at target.

Let us say that a given node at a given time t is in state yt. For simplicity, let us
assume that yt takes only integer values (though the concept of scalar assortativity
is applicable to continuous node states with appropriate binning). Most of the ex-
amples we present in this paper, in fact, assume binary node states. Following the
excess degree distribution, let us define distribution qty as the probability distribu-

tion of finding a link with node state yt at an end of a link at time t. Similarly,
let us define distribution ety,z as the probability distribution of finding a link with

node state yt at one end of the link and node state zt at the other end of the link.
Let us also say the expectation of qty at a given instant t is denoted as µt

q and the

standard deviation of the same distribution at time t as σt
q, Then network scalar

assortativity L t is defined as [15]:

L t =
1

(σt
q)

2

[∑
yz

yz
(
ety,z − qtyqtz

)]
(5)

Equivalently, we can also write

L t =
1

(σt
q)

2

[(∑
yz

yzety,z

)
− (µt

q)2

]
(6)

where µt
q is the expected value of node-state at the end of a link at time t.

Let us note that if the scalar assortativity L t = 1, it means all links in the net-
work have same node-states at either side of the link (In a non-fragmented network,
this also means that all nodes must be on the same state). If L t = −1, it means
that all links have nodes with dissimilar states on either side of them.

If L t = 0, it means that a link is equally likely to have similar or dissimilar
node-states on either side of the link.

We should note that L t = 0 does not imply a random distribution of nodes
states. Indeed, scalar assortativity is a measure of the influence of topology in the
‘expected’ node state at the end of a link. Therefore, if the expected value of the
node-state distribution is equal to the expected value of qtz, then scalar assortativity
should be zero. The following examples with some model networks will illustrate
this point further.

3. Synthetic network models. Before analyzing real-world networks, we con-
sider the scalar assortativity of some simple canonical networks with some simple
node-state distributions. For simplicity, let us consider binary node states, where
node state can be either 1 or 0. Note that regardless of the number of possible
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states and their discrete/continuous nature, network scalar assortativity will take
continuous values. This is the case even when the node states are binary.

Perfect positive scalar assortativity L t = 1.0 is possible if and only if all nodes
are in the same state, regardless of the topology (unless the network is fragmented).
Therefore let us concentrate on the cases which show perfect negative scalar assor-
tativity L t = −1.0.

Figure 1. Star network with scalar assortativity L t = −1

First, let us consider a Star network with dissimilar node as a hub. Star topol-
ogy is an important motif in many real world networks including communication
networks, Local Area Networks (LAN), and regulatory networks [23]. We alluded
to this network at the start of this paper in discussing the motivation for this work.
The star network shown in Figure 1 with binary nodes states has scalar assorta-
tivity of L t = −1. It should be noted that even though most nodes have similar
states, the scalar assortativity shows extreme negative correlation. This is the sim-
plest case with perfect negative scalar assortativity. L t = −1 is not possible for
all network topologies however. In scale free networks, it may not be possible to
achieve L t = −1 for any combination of node states, simply due to the topology.
However, if the scale free networks is a tree, then a set of node states can be found
such that L t = −1.

In general, the exact values of L t depend not only on the topology but also on
the number of possible states.

Now let us consider a ring network with nodes having alternating states. The
ring network, as shown in Figure 2, also shows L t = −1.

As an example for the simple scale-free network (in this case, also a network
with a tree topology) showing perfect negative scalar assortativity, we present the
network in Figure 3. As the figure shows, this network with the given node-states
has perfect negative scalar assortativity.

A random or scale-free network, with randomly distributed binary node states,
would display L t ≈ 0.

We have utilized a number of topologies above to demonstrate the occurrences
of extreme scalar assortativity values (L t = 1.0 , L t = −1.0) and L t = 0. How-
ever, it is important to note that network scalar assortativity is not determined by
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Figure 2. Ring network with scalar assortativity L t = −1

Figure 3. A scale-free network with scalar assortativity L t = −1

topology alone. Indeed, even for very simple topologies, the whole range of scalar
assortativity values are possible. To demonstrate this, let us consider the simple
‘benzene-ring’ like topology in Figure 4. Assume that, in seven time steps, the
nodes take the node-states shown in Table 1. As Table 1 also shows, as the ‘1’
states propagate the scalar assortativity goes from 1.0 to −1.0, while the topol-
ogy remains the same. We will show that large fluctuations in scalar assortativity
are possible in other topologies also, including scale-free networks. Thus, network
scalar assortativity provides more information about the node-states and dynamics
of networks than the network’s degree-based assortativity (a correlation measure of
network topology) or statistical measures such as the standard deviation of node-
states (correlation measures on node-state distribution) can by themselves provide.

4. Scalar assortativity in Random Boolean Networks. To understand scalar
assortativity as a function of time, we simulated network dynamics on a number of
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Node T=1 T=2 T=3 T=4 T=5 T=6 T=7
1 0 1 1 1 1 1 1
2 0 0 0 0 0 0 0
3 0 0 1 1 1 1 1
4 0 0 0 0 0 0 0
5 0 0 0 1 1 1 1
6 0 0 0 0 0 0 0
7 0 0 0 0 1 1 1
8 0 0 0 0 0 0 0
9 0 0 0 0 0 1 1
10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0
scalar assortativity 1.0 -0.14 -0.33 -0.60 -0.71 -0.84 -1.0

Table 1. The states for seven time steps and corresponding scalar
assortativity for the network shown in Figure 4

Figure 4. A benzene-ring like topology shows scalar assortativity
ranging from L t = 1 to L t = −1 depending on node-states (The
states in the figure corerspond to T = 7 in Table 1).

boolean networks and measured their scalar assortativity against time. We used the
topologies of a number of real world networks (eg: E. coli transcription network),
but in simulating the dynamics, we assumed that their node state would be either
‘zero’ or ‘one’ (i.e we considered them as boolean networks). Particularly, we utilised
the topologies of Gene Regulatory Networks and transcription networks, since it has
been shown that boolean networks are good models for these types of real world
networks [3, 2]. The interpretation of the boolean states is expressed or not-expressed
states of the genes. We implemented a number of logic functions in the nodes to
simulate the dynamics, as listed below.

1. logic f1: The nodes are simply assigned a boolean state (‘0’ or ‘1’) with
probabilities 1− p and p. The previous state of the node considered or other
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nodes do not influence the current state. If p = 0.5, the node will be randomly
assigned ‘1’ or ‘0’ with equal likelihood.

2. logic f2: The nodes follow the ‘average state’ of all their neighbours with
probability p. Specifically:
• If node state yv = 0 and average neighbour state z > 0.5, then with

probability p = Az, the node changes state to yv = 1. A is a parameter
of the logic.
• If node state yv = 1 and average neighbour state z < 0.5, then with

probability p = Az, the node changes state to yv = 0
3. logic f3: The nodes ‘oppose’ the states of their neighbours with probability
p. Since a node will have a number of neighbours, a node will choose one
node from its neighbours and change its state to ‘oppose’ that neighbours
state. The probability of a neighbour being chosen is proportional to the
neighbour’s degree. That is, nodes with more connections are more likely to
be ‘opposed’ by their neighbours. Formally, for the concerned node v with
degree dv, choose a node w among the neighbours with probability pw such
that

pw =
kw∑dv

1 kw
(7)

and change the node state of node v such that yv 6= yw.

We ran a number of simulation experiments, implementing the above logical
functions in the nodes of networks. In a given simulation experiment, all nodes had
identical logical behaviour. However, the logic function that is run on nodes could
change with time (e.g., nodes implementing f1 for T1 time-steps and then f2 for
T2 time-steps, periodically.). The node states were synchronously updated, with
the updating order random and shuffled for each time step. The simulation results
for the boolean network with the E. coli transcription network topology are given
below.

Logic f1: When node states are randomly assigned (with P (1) = p), the scalar
assortativity remains close to zero for any number of time steps. We tried changing
the value p periodically, so that the proportion of ‘1’ states changes with time. The
result of such a simulation experiment is shown in Figure 5, where parameter p is
periodically changed from p = 0.2 to p = 0.8. We see that despite the change in
the proportion of ‘1’ states, the scalar assortativity remains close to zero. A similar
example is shown in Figure 6, where parameter p is periodically and linearly (rather
than like a step-function) changed from p = 0.2 to p = 1.0. Again, we see that the
scalar assortativity remains close to zero throughout the simulation time.

These results are easy to explain. Scalar assortativity does not depend only on the
distribution of states, but it depends also on the placement of states topologically.
If the topological assignment is random, then despite the variations in the state
distribution, the scalar assortativity will be close to zero. It can be shown that
this result is valid for networks with any number of states, not just binary state
networks.

Logic f2: As seen above, logic f2 is implemented in such a way that nodes tend
to (stochastically) follow the states of their neighbours. Intuitively, this should
mean that the scalar assortativity must increase, since links are increasingly likely
to have nodes with similar states at each end over time. The result of a simulation
for 200 time-steps where nodes implement this logic is shown in Figure 7. The
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nodes are initialised randomly. Indeed, we could see from this figure that the scalar
assortativity starts from close to zero and increases exponentially and stabilises at
L = 0.63. We observe that comparatively the proportion of ‘1’s do not change
much. The result of another run of the same simulation is shown in Figure 8
where the proportion of ‘1’ states actually decreases, while scalar assortativity still
increases exponentially.

From these results, it is clear that scalar assortativity can vary by orders of
magnitude while the distribution of states remain nearly unchanged. In this case,
the implemented dynamics, which encourages neighbouring nodes to have similar
states, is responsible for the eventual high (positive) scalar assortativity.
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Figure 5. Variation of scalar assortativity vs time for a boolean
network with E.coli transcription topology. The nodes implement a
simple logic to randomly assign node states. The state distribution
is varied, periodically having a high proportion of ‘1’ states. While
the state distribution peaks periodically, scalar assortativity does
not change much and stays close to zero. Stars: mean of state
distribution. Crosses: network scalar assortativity.

Logic f3: Logic f3 is implemented in such a way that nodes stochastically ‘op-
pose’ the state of their neighbours, with the neighbours with the highest degree
having more likelihood to be ‘opposed’. Intuitively, this should mean that the
scalar assortativity must decrease from zero, since links are increasingly likely to
have nodes with opposite states at each end. The results of two separate simulation
runs for 200 time-steps where nodes implement this logic are shown in Figure 9
and 10. Again, the nodes are initialised randomly. We could see from these figures
that scalar assortativity indeed decreases from zero and stabilises on considerably
negative values (around L = −0.5). In Figure 9, the proportion of ‘1’s slightly
increases with time, whereby in Figure 10, the proportion of ‘1’s slightly decreases
with time; however, in both cases, the scalar assortativity decreases by an order
of magnitude. These results further confirm that scalar assortativity can vary by
orders of magnitude while the distribution of states remain nearly unchanged. In
this case, the implemented dynamics, which discourages neighbouring nodes to have
similar states, is responsible for the eventual negative scalar assortativity.
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Figure 6. Variation of scalar assortativity vs time for a boolean
network with E.coli transcription topology. The nodes implement a
simple logic to randomly assign node states. The state distribution
is varied, periodically having a high proportion of ‘1’ states. While
the state distribution peaks periodically, scalar assortativity does
not change much and stays close to zero. Stars: mean of state
distribution. Crosses: network scalar assortativity.
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Figure 7. Variation of scalar assortativity vs time for a boolean
network with E.coli transcription topology. The nodes implement
a simple logic to probabilistically follow the average state of their
neighbours. The initial node states are random. Note that while
the state distribution does not change much, scalar assortativity
increases exponentially from near zero (scalar non-assortativity)
to positive scalar assortativity. Stars: mean of state distribution.
Crosses: network scalar assortativity.
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Figure 8. Variation of scalar assortativity vs time for a boolean
network with E.coli transcription topology. The nodes implement
a simple logic to probabilistically follow the average state of their
neighbours. The initial node states are random. While the state
distribution does not change much, scalar assortativity increases
exponentially from near zero (scalar non-assortativity) to positive
scalar assortativity. Stars: mean of state distribution. Crosses:
network scalar assortativity.
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Figure 9. Variation of scalar assortativity vs time for a boolean
network with E.coli transcription topology. The nodes implement
a simple logic to probabilistically oppose the state of their neigh-
bours. The initial node states are random.While the state distribu-
tion does not change much, scalar assortativity decreases exponen-
tially from near zero (scalar non-assortativity) to negative scalar
assortativity. Stars: mean of state distribution. Crosses: network
scalar assortativity.
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Figure 10. Variation of scalar assortativity vs time for a boolean
network with E.coli transcription topology. The nodes implement
a simple logic to probabilistically oppose the state of their neigh-
bours. The initial node states are random. While the state dis-
tribution does not change much, scalar assortativity decreases ex-
ponentially from near zero (scalar non-assortativity) to negative
scalar assortativity. Stars: mean of state distribution. Crosses:
network scalar assortativity.
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Figure 11. Variation of scalar assortativity vs time for a boolean
network with E.coli transcription topology. The nodes alterna-
tively implement two logics, one assigning node states randomly
and the other logic where nodes probabilistically follow their neigh-
bour’s states. When the second logic is implemented, scalar assor-
tativity increases rapidly, and when the first logic is implemented,
scalar assortativity drops back to near zero. The proportion of
nodes with state ‘1’ comparatively does not change much. Stars:
mean of state distribution. Crosses: network scalar assortativity.
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Figure 12. Variation of entropy vs time for a boolean network
having the topology of E. coli transcription network, simulated
with logic f2. Note that as scalar assortativity increases with time
(even though not shown in this figure, logic f2 ensures that it will
increase with time as we have seen before), the entropy H(ut) de-
creases but the entropy H(qt) increases. Crosses: H(ut). Stars:
H(qt).

Combination of logical functions: To further verify the results above, we
combined the logic functions mentioned above along the time axis. For example,
logic f1 was implemented on all nodes for t = 60 time steps followed by logic f2
for t = 20 time steps on all nodes. This process is repeated to create a periodic
combination of logic f1 and logic f2. The results of such an experiment are shown
in Figure 11. We may see that when random logic f1 is implemented, (with p =
0.5), the scalar assortativity remains close to zero. When logic f2 is implemented
though, scalar assortativity raises by an order of magnitude. The proportion of
‘1’ states either increases or decreases depending on the node state distributions
when the logic is flipped (from logic f1 to logic f2), but in all cases the change in
the proportion of ‘1’ states is small compared to the change in scalar assortativity.
When the logic is flipped again (from logic f2 to logic f1), scalar assortativity
drops back immediately close to zero. We combined logic f3 with logic f1 and logic
f2 and obtained similar results. These results confirm that scalar assortativity is
highly influenced by topological placement of node states (node values), and as
such provides information about the network dynamics that cannot be obtained by
just analysing the node state distributions of the network. In the next section, we
attempt to quantify the information provided by scalar assortativity.

5. Scalar assortativity and information content. In the previous sections we
have seen that scalar assortativity can convey more information about the states
of the network than just conveyed by the network’s state-distribution. How can we
quantify this? In other words, what is the relationship between scalar assortativity
and the information contained in the network in terms of its node states? To answer
this, we should define the information content of a network in terms of node states.

Shannon information I(q) is a more generic measure of dependence than the
correlation functions that measure linear relations [12, 9, 13]. In [23, 18, 21], the
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entropy and information content were defined with respect to the degree distribution
and joint degree distribution — purely in topological terms, irrespective of node
states. Now we will attempt to define these in terms of node states in a network.

At first glance, one may wish to define the entropy of a network, using the
probability distribution ut that is defined via the probabilities utz of encountering a
node at the state zt anywhere in the network, at time t:

H(ut) = −
∑
z

utz log utz (8)

In this paper however, we are interested in node states as well as the topology,
and therefore, shall define entropy and information content in terms of node state
distributions that depend on the link distribution. Such network entropy can be
defined as

H(qt) = −
∑
z

qtz log qtz (9)

where qtz is, at time t, the probability (proportion) of links with a node (at one end)
in the state z. Since qtz is dependent on link distribution, the entropy defined by
Equation (9) also depends on the network topology, and is not just the entropy of
node states, defined by Equation (8).

The defined entropy measures are contrasted in Figure 12. Note that the boolean
network having the topology of E. coli transcription network is simulated here,
with logic f2 implemented in nodes. As seen before, the logic f2 will ensure that
scalar assortativity of the network will increase with time until it stabilises at a
maximum value. We may note that the entropy H(ut) decreases but the entropy
H(qt) increases with time. This is due to the fact that the former is not dependent
on topology, and simply reflects the proportion of zeros and ones, while the latter
depends on topology and reflects the scalar assortativity of the network.

Similarly, mutual information in terms of node states can be defined as:

I
(
qt
)

=
∑
y

∑
z

ety,z log
ety,z
qtyq

t
z

(10)

where ety,z is the proportion of links connecting, at time t, the nodes with states

y, z respectively; qty is the proportion of links, at time t, with a node (at one end)

in the state y; and similarly, qtz is the proportion of links, at time t, with a node (at
one end) in the state z.

Now we can analyse how this mutual information changes with scalar assorta-
tivity. To do so, we looked at the two logical functions (other than f1) of random
boolean networks, plotting network mutual information as well as scalar assortativ-
ity. The results are given in the Figures 13, 14 respectively. From the figures we
may see that the information content matches the absolute values of scalar assor-
tativity. That is, the more assortative or disassortative the network is, the more
information it contains about expected states at the end of links. The beginning of
each simulation where scalar assortativity is close to zero contains the least amount
of information. We also note that there is no evidence for just positive scalar as-
sortativity containing more information or vice-versa. Therefore, as suggested in
[18] for assortativity and information content regarding degrees, we postulate that
information content in a network regarding note states has a positive correlation
with the absolute value of scalar assortativity. A detailed study of this correlation,
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Figure 13. Variation of scalar assortativity and mutual informa-
tion vs time for a boolean network having the topology of E. coli
transcription network. Note that information content increases
with the increase in positive scalar assortativity. Simulated with
logic f2. Stars: mutual information. Crosses: network scalar as-
sortativity.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  50  100  150  200  250  300

S
c
a
la

r 
a
s
s
o
rt

a
ti
v
it
y
 /
 M

I

time

Figure 14. Variation of scalar assortativity and mutual informa-
tion vs time for a boolean network having the topology of E.coli
transcription network. Note that information content increases
with the increase in negative scalar assortativity. Simulated with
logic f3. Stars: mutual information. Crosses: network scalar as-
sortativity.

as done in [18] for information content and degree-based assortativity, is a subject
of future research.

6. Node congruity. The concept of local assortativity [17] was introduced to
quantify the contribution of an individual node to network assortativity. Since
the scalar assortativity L t measures similarity of nodes globally, the local scalar
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assortativity, denoted λt, can be defined for each node as the node’s contribution
to the scalar assortativity L t, at time t. We choose for simplicity to call this local
property λt the node congruity. We believe that congruity is a suitable term as it
quantifies the extent to which a node is similar (congruent) to its neighbours. In
this section we derive the expression for node congruity λt.

Following [17] and [20], we propose to derive node congruity as the contribution of
a given node to the network scalar assortativity, which means we need to determine
how much each node v contributes to the term

1

σ2
q

[(∑
yz

yzety,z

)
− (µt

q)2

]
Let us first look at the term

∑
yz
yzety,z (which is calculated over node states) and

the contribution of the node v in the state yv to this term.
Suppose we visit all the nodes in a network, and from each node in turn we

visit all the links of that node. In a network with N nodes and M links, the total
visits we will thus make will be 2M , since each link will be visited twice, once from
each end. Suppose we build up the probability distribution ety,z as we make these
visits. Each link will add a probability of (1/2M) to the pair of (y, z) where y and
z are the node states of nodes at each end of the link. Thus, each visit to a link
will contribute yz/2M to the sum

∑
yz
yzety,z. Therefore, if we examine the node v

with state yv and degree dv which is connected to nodes with states z1, z2, . . . zdv
,

it will contribute (yvz1/2M) + (yvz2/2M) + . . . + (yvzdv/2M) = yv

2M

dv∑
i=1

zi to the

sum
∑
yz
yzety,z. Let us denote the average of node states of a node’s neighbours as

z = 1
dv

dv∑
i=1

zi. Then we can represent the individual node’s contribution, αv, to the

sum
∑
yz
yzety,z as

αv =
yv

2M

dv∑
i=1

zi =
yv

2M
dvz (11)

Now let us consider a node’s contribution to the term (µt
q)2. To do so, let us first

examine the definition of µt
q:

µt
q =

1

2M

2M∑
m=1

ym =
1

2M

N∑
w=1

dwyw (12)

where m is an end of a link; ym is the state of the node at the end m; while dw is a
node-degree and yw a node state. The equivalence of the two representations used
in this definition, is yielded by the replacement of every set of links connected to
some node by that node scaled by its degree. It follows that

(µt
q)2 =

(
1

2M

N∑
w=1

dwyw

)2

(13)

(µt
q)2 =

1

4M2
(d1y1 + d2y2 + .....+ dNyN )

2
(14)

Now, let us consider the node v (without loss of generality, let it be the node 1
with node state y1), and its contribution to the expression above. The terms with
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index 1 are:

1

4M2
((d1y1)

2
+ 2d1y1(d2y2 + d3y3 + ...........+ dNyN )) (15)

Among these, terms such as 2d1y1djyj have to be ‘divided’ between node 1 and
node j respectively. These are multiplication terms, and we assume that an equal
division is appropriate. Therefore, we can consider that contribution of node 1 is:

1

4M2
((d1y1)

2
+ d1y1(d2y2 + d3y3 + ...........+ dNyN )) (16)

=
1

4M2
(d1y1(d1y1 + d2y2 + d3y3 + ...........+ dNyN )) (17)

=
1

4M2

(
d1y1

N∑
v=1

dvyv

)
(18)

Therefore, the contribution of a given node v to the term (µt
q)2 can be given by:

βv =
1

4M2

(
dvyv

N∑
w=1

dwyw

)
(19)

βv =
1

2M

(
dvyvµ

t
q

)
(20)

The standard deviation is already a scaling term, and we need not worry about a
single node’s contribution to it. Combining Equations (11) and (20) we formally
define congruity of a node.

Congruity of a node λtv is given by

λtv =
αv − βv

(σt
q)2

= yvdv

(
z − µt

q

)
2M(σt

q)
2 (21)

Congruity can be interpreted as a scaled difference between (i) the average state
of the node’s neighbours, and (ii) the average state across the whole network (i.e.,
the expected global or network-level state). If the node’s local neighbours are in the
states that are comparatively ‘higher’ than the globally expected value, then the
node’s congruity is positive. On the other hand, if the neighbours are in the states
that are comparatively ‘lower’ than the globally expected value, then the congruity
of the node is negative. Thus, congruity also quantifies the extent of how much the
states of the node’s immediate neighbours differ to the network as a whole. From
the definition and derivation of congruity, it also follows that the sum of congruities
λtv over all nodes is equal to network scalar assortativity L t, at any time t. That
is,

L t =

N∑
v=1

λtv (22)
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7. Distributions of node congruity. Since congruity is a property of a node,
it is possible to construct node congruity distributions for a given network, just
like local assortativity distributions mentioned in [17]. We may plot node congruity
values against degrees, or we may calculate the average node congruity value for
all nodes with a given degree k. If we denote by N(k) the number of nodes with
degree k, the following equations hold true.

L t =
∑

k
N(k)λt (k) (23)

where λt(k) is the average congruity λt, at time t, of all nodes with degree k.

L t = N
∑

k
pkλt (k) (24)

where pk is the degree distribution of the network, being independent of time.
The Figures 15, 16, 17, 18, 19 show some examples of congruity distributions of

networks. Figure 15 shows the node congruity distribution of M. musculus Gene
Regulatory Network, simulated according to f2 described above, until the scalar
assortativity stabilises at its maximum (which was, in this case L =0.94). Thus,
this network at the considered point in time has near perfect scalar assortativity.
We note that the congruity distribution shows a strong correlation between node
degree and node congruity. That is, it is the hubs which have the highest congruity.
However, we may note that the relationship between node congruity and node degree
is not linear. That is, there are some nodes which seems to have higher or lower
congruity than predicted by a linear correlation with degrees. This shows that the
overall placement of a node in the network (not merely the degree of the nodes),
as well as the overall distribution of node states across the network, plays a part in
node congruity.

Figure 16 shows the congruity distribution of E. coli transcription network, sim-
ulated according to f3 described above, until the scalar assortativity stabilises at
its minimum (which was, in this case L t = −0.52). Let us note that, as mentioned
above, minimal scalar assortativity is harder to achieve in a network topology, since
it requires neighbouring nodes to have different values, and the topology may make
this harder to achieve. We note that the congruity distribution shows again strong
correlation between node degree and node congruity, with the hubs having the
highest negative congruity. Again, we may note that the relationship between node
congruity and node degree is not linear. Figure 17 shows the node congruity dis-
tribution of E. coli transcription network, simulated according to random logic:
logic f1. Here the scalar assortativity remains close to scalar non-assortativity
(L t = 0.10) and we may see that there is no recognisable correlation between node
congruity and node degree. Other simulated networks confirmed the patterns in
the results described above.

When a network has maximal scalar assortativity, (L t = 0.94) does it mean that
all nodes in the network will have positive node congruity, or merely the majority of
nodes will? This question cannot be answered by the plots above, since the average
node congruity is plotted against degree. In the following two Figures 18, 19, we
show node congruity of all individual nodes, where network scalar assortativity
is either maximal or minimal. It can be noted that when scalar assortativity is
maximal, all nodes have positive node congruity. However, when scalar assortativity
is minimal, quite a few nodes still have positive congruity. This is again a property
of congruity, since as we explained above, it is not always possible for a node to be
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different from all of its neighbours. However, it could be easily similar to all of its
neighbours, if almost all nodes have similar states anyway. It is important to note
that this result is true only for binary states — specifically, if the number of states
are comparable to, or higher than, the number of nodes, then it is much easier
for the nodes to be dissimilar. Thus node congruity profiles gives us interesting
insights about the interplay between node states, average neighbour-degree, and
network size in a network with complex dynamics.
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8. Conclusions. The dynamics of a network is influenced by its topology, and the
topology of a network evolves as a result of its functional requirements and dynamics
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Figure 19. Node congruity profile with individual nodes. The E.
coli transcription network is simulated with logic f3. L = −0.52.

[3, 7, 24, 25, 19]. Therefore, the patterns in a network dynamics and its topology
are closely interdependent. In this paper, we considered scalar assortativity as a
function of time. It measures the tendency of nodes in a network to make links
with similar nodes, where similarity is interpreted in terms of node-states, rather
than node-degree. High positive scalar assortativity of a network means that nodes
which have direct links to each other tend to have similar node-states at the given
time, whereas high negative scalar assortativity means that nodes which have direct
links to each other tend to have dissimilar states.

Scalar assortativity can vary with time and show tendencies which give informa-
tion about the dynamics of the networks. Using simulated boolean networks, we
showed that networks which initially have nodes with random states, can in time
achieve either high positive or high negative scalar assortativity, depending on the
functionality of the nodes (the logic the nodes implement). We also showed that
such networks can have high positive or high negative scalar assortativity, even if
nodes are no more likelier to be in one state than the other (the state distribution
is more or less uniform). We pointed out a number of scenarios where scalar assor-
tativity could be used to measure dynamics of real-world networks, and quantified
the relationship between network scalar assortativity and information content of
networks.

Finally, we introduced node congruity as a node’s contribution to scalar assor-
tativity, and showed that a positive node congruity corresponds to comparatively
high readings of node states in a node’s immediate vicinity, and vice-versa. As such,
we showed that congruity distributions provide an additional tool to understand a
network’s dynamics.

The specific contributions of this paper can be briefly listed as (i) extending
the definition of assortativity as a function of time (ii) Definition of Shannon in-
formation content of a network based on both node states and topology (iii) The
demonstration of logic functions which can be used to maximize or minimize scalar
assortativity, while topology remains unchanged (iv) the definition of node con-
gruity, which quantifies a single node’s contribution to the scalar assortativity of a
network.

We hope that the tools we introduced here will be extensively used in quantifying
network properties and dynamic tendencies of complex networks.
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[12] A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information, Physical re-
view E, 69 (2004), 066138.

[13] D. J. MacKay, “Information Theory, Inference, and Learning Algorithms,” 1st edition, Cam-

bridge University Press, Cambridge, 2003.
[14] M. E. J. Newman, Assortative mixing in networks, Physical Review Letters, 89 (2002),

208701.

[15] M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 (2003), 026126.
[16] B. O. Palsson, “Systems Biology: Properties of Reconstructed Networks,” 1st edition, Cam-

bridge University Press, Cambridge, 2006.
[17] M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free net-

works, Europhysics Letters, 84 (2008), 28002.

[18] M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativeness and information in scale-
free networks, European Physical Journal B, 67 (2009), 291–300.

[19] M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativity and growth of Internet ,

European Physical Journal B, 70 (2009), 275–285.
[20] M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free

networks—addendum, Europhysics Letters, 89 (2010), 49901.
[21] M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortative mixing in directed biological

networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (2012),
66–78.

[22] M. Rubinov, O. Sporns, C. van Leeuwen and M. Breakspear, Symbiotic relationship between
brain structure and dynamics, BMC Neuroscience, 10 (2009), 55.

[23] R. V. Sole and S. Valverde, Information theory of complex networks: on evolution and archi-
tectural constraints, in “Lecture Notes in Physics” (eds. E. Ben-Naim, H. Frauenfelder, and

Z. Toroczkai), Springer, (2004), 650.
[24] S. Zhou and R. J. Mondragón, Towards modelling the internet topology - the interactive

growth model, Physical Review E, 67 (2003), 026126.

[25] S. Zhou and R. J. Mondragón, The rich-club phenomenon in the internet topology, Physical

Review E, 8 (2004), 180–182.

Received December 2011; revised June 2012.

E-mail address: mahendrarajah.piraveenan@sydney.edu.au

E-mail address: mikhail.prokopenko@csiro.au

E-mail address: albert.zomaya@sydney.edu.au

http://www.ams.org/mathscinet-getitem?mr=MR1895096&return=pdf
http://dx.doi.org/10.1103/RevModPhys.74.47
http://www.ams.org/mathscinet-getitem?mr=MR2019673&return=pdf
http://dx.doi.org/10.1016/S0167-2789(03)00174-X
http://www.ams.org/mathscinet-getitem?mr=MR2259607&return=pdf
http://dx.doi.org/10.1103/PhysRevE.64.041902
http://dx.doi.org/10.1103/PhysRevE.64.041902
http://www.ams.org/mathscinet-getitem?mr=MR1993912&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1913745&return=pdf
http://dx.doi.org/10.1016/S0167-2789(02)00432-3
http://dx.doi.org/10.1016/j.jneumeth.2009.07.007
http://dx.doi.org/10.1016/j.jneumeth.2009.07.007
http://dx.doi.org/10.1016/j.jneumeth.2009.07.007
http://www.ams.org/mathscinet-getitem?mr=MR2096503&return=pdf
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://www.ams.org/mathscinet-getitem?mr=MR2012999&return=pdf
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://www.ams.org/mathscinet-getitem?mr=MR1975193&return=pdf
http://dx.doi.org/10.1103/PhysRevE.67.026126
http://dx.doi.org/10.1209/0295-5075/84/28002
http://dx.doi.org/10.1209/0295-5075/84/28002
http://dx.doi.org/10.1140/epjb/e2008-00473-5
http://dx.doi.org/10.1140/epjb/e2008-00473-5
http://dx.doi.org/10.1140/epjb/e2009-00219-y
http://dx.doi.org/10.1209/0295-5075/89/49901
http://dx.doi.org/10.1209/0295-5075/89/49901
http://dx.doi.org/10.1186/1471-2202-10-55
http://dx.doi.org/10.1186/1471-2202-10-55
http://www.ams.org/mathscinet-getitem?mr=MR2108978&return=pdf
mailto:mahendrarajah.piraveenan@sydney.edu.au
mailto:mikhail.prokopenko@csiro.au
mailto:albert.zomaya@sydney.edu.au

	1. Introduction
	2. Definitions and terms
	2.1. Network assortativity

	3. Synthetic network models
	4. Scalar assortativity in Random Boolean Networks
	5. Scalar assortativity and information content
	6. Node congruity
	7. Distributions of node congruity
	8. Conclusions
	REFERENCES

