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Abstract: This study examines two decades of labor and capital costs and gross output to evaluate 

production in 19 industries. A lesson learned is the need to have more input cost variables specifically 

defined to capture the production environment. Simply evaluating production by two categories 

alone—labor and capital—is not sufficient. This study tests a new production equation, producing an 

ordinary least squares regression model to explain changes to labor and capital resources in the U.S. 

economy. I found that increasingly growing capital intensity might not be optimal. Labor continues to 

play a role in production. Applied in proper proportion—neither too much nor too little—labor can be 

effective in producing maximum output. This study contributes to the literature by quantifying capital 

intensity with a measure that generalizes about U.S. production across industries. Evidence shows that 

12 out of 19 industries had low capital intensity; in other words, most industries were labor intensive 

with relatively small utilization of equipment. 
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Abbreviations: BEA: Bureau of Economic Analysis; BLS: Bureau of Labor Statistics; GDP: Gross 

Domestic Product; GO: Gross Output; IPP: Intellectual Property Products; NAICS: North American 

Industry Classification System; NIPA: National Income and Product Accounts; QCEW: Quarterly 

Census of Employment and Wages. 

1. Introduction 

Can advanced computer software programs, automatic machines, robots, and other equipment 

produce greater output than what workers can do? Can labor be totally replaced by equipment? If not, 

how many workers should be retained in a production environment that uses both labor and equipment? 

What is the optimal mix of workers and machines? 

The debate on choosing machines over workers has a long history that goes back to the Industrial 

Revolution. The question continues to be asked as artificial intelligence and other advanced computing 

technologies develop. 

Previous research studies indicate that the answer is not as simple as substituting machines for 

workers. Given that a machine can break down and stop production for a certain amount of time, 

Levhari and Sheshinski (1970) developed a model to factor in the probability of machine failure and 

the need to have workers to repair machines. Levhari and Sheshinski’s study suggests that not all 

workers can be eliminated. Baron and Bielby (1982) examined how workers relate to machines and 

found that the way in which firms distribute jobs and tasks among workers (suborganization factors) 

can be decisive in affecting the structure of work. 

By drilling deeper into specific skills, productivity can be better analyzed. In the iron ore industry, 

Schmitz (2005) explained how mines in the Great Lakes region had turned around inefficient production 

by allowing machine operators to carry out tasks previously done by maintenance and repair workers. 

The consolidation of tasks reassigned to machine operators allowed machines to produce more output 

continuously throughout the day. Revealing firms’ capacity to scale up operations, Foster et al. (2006) 

surveyed the effect of increased information technology investments during the 1990s in retail and found 

a considerable shift in the type of establishments, in so far as the industry moved from lower productive 

single-unit establishments to higher productive national chains. Bartel et al. (2007) studied the effects of 

information technology on worker skills in the valve manufacturing industry and found that 

implementation of computer numerically controlled (CNC) machines required operators to have fewer 

routine skills and deeper technical and problem-solving skills. In a wide range of service-related 

industries from education to finance and health care to accommodation and food, Rust and Huang (2012) 

explored the trade-off between productivity and customer service and articulated the point that better 

service tends to require more labor but at lower productivity. Revisiting production in the Industrial 

Revolution, Bessen (2012) found increased production of cotton cloth in the nineteenth century occurred 

not because of more machines but because of improved skills of cotton weavers. A number of cotton 

weavers were employed to monitor and operate power looms. Acemoglu and Restrepo (2019) analyzed 

how various kinds of tasks are either eliminated or created by automation to a point at which automation 

displaces labor on one hand and reinstates it on the other. From the nineteenth century to the present day, 

the use of labor and capital to produce goods and services has been a complex dynamic that leverages 

the power of machines on one hand and extracts the abilities of humans on the other. 
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All the foregoing studies share a common feature. Researchers applied different methods to 

evaluate productivity, taking into consideration job quality and specific work requirements. Studies 

factored in additional variables beyond the conventional output, labor, and capital variables based on 

price and quantity. The approaches overcome methodological issues in estimating a production 

function, typically a two-input or two-variable equation that forms the basis of a Cobb–Douglas 

production function (see Levinsohn and Petrin, 2003; Van Biesebroeck, 2007; Ackerberg et al., 2015). 

A drawback to conducting firm-level inquiries is that it can be difficult to extrapolate the results to 

other firms and other industries. Such studies tend to be narrowly tailored to a particular industry. They 

also can be expensive to conduct since a greater amount of planning must go into research design. With 

each study applying a method, it can be difficult to apply one’s method to another to replicate results. 

There is value in developing a standard method of measuring productivity and labor changes in 

context of technology. Brooks (1983, page 117) pointedly remarked: “It is misleading to look at the 

effects of increasing productivity due to technology only within the context of single firms or single 

industries. The effects of technology depend on what happens to employment in the whole economy, 

not just the industry immediately affected.” 

Brooks understood the difficulty in calculating job quality in precise ways that can be 

generalizable to all industries. Job quality and work requirements are abstractions that require 

descriptions in the context of how they are applied. These qualitative terms need to be translated into 

a quantified form. This is why conventional measures continue to rely on market prices. Price is a 

concrete metric and can be quickly measured and reproduced. Unlike an abstract term such as job 

quality, market price is readily understood on its own without having to explain further in some 

particular context. 

A drawback to relying on market prices in a production function and in productivity measures is 

that the calculated output does not produce an exact figure. There can be some variability. The result 

represents an approximated value—an estimate. Levhari and Sheshinski (1970) concluded that a 

Cobb–Douglas production function can be sufficient with only the costs of labor and capital but, if 

calculating an optimum is crucial, then additional cost factors have to be used. The problem with 

conventional productivity measures can emerge as firms employ more computers and information 

technology in their operations. Studies in the literature have examined the Solow paradox (e.g., Whelan, 

2002; Acemoglu et al., 2014). Solow (1987, page 36) critiqued a book about the status of the 

manufacturing industry at the time and remarked, “You can see the computer age everywhere but in 

the productivity statistics.” Whelan (2002) found that the National Income and Product Accounts 

(NIPA) measures underestimate the contributions of computers to productivity by a wide margin. 

Uechi (2023) expands a Cobb–Douglas production function to create an equation that includes 

labor, equipment, raw materials, processed materials, land, and a residual of all other input costs.1 

Uechi defined capital more specifically as machine equipment and distinguished the general category 

of materials between raw materials defined as a mineral resource or an unprocessed commodity and 

 
1 The new equation moves beyond the current convention in economics. Instead of examining production by simply 

calculating labor and capital, Uechi argues that the production function needs to be inclusive of specific input factors. The 

additional factors are a breakdown of capital. If one continues to use the conventional production function, equipment, 

materials, land, and the residual of all other inputs would be aggregated into capital. 
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processed materials defined as a supply item or a manufactured material. Processed materials would 

be intermediate inputs that firms require to produce final products. For example, an automobile 

manufacturer needs bolts, wheels, seats, and other parts to build an automobile; all of those parts are 

produced by other firms, each one of which has its own process to produce the individual part. Uechi 

further explained that each variable is the product of the variable’s price and quantity and that the sum 

of all variables and the residual amounts to the total cost of production. “The total production cost 

would be less than or equal to total revenue” (Uechi, 2023, page 11) or equivalent to total output of 

produced goods and services. 

In Uechi’s production equation, each variable can be an aggregate of several sub items 

differentiated by price. Uechi (2023, page 15) teaches, “If any resource category has one or more 

subcategories with different unit costs, then the category needs to be broken down by subcategories.” 

For example, a firm’s total labor cost can consist of many different job positions with each position 

having a different wage. Each job position is a sub item or a subcategory of the labor variable. The total 

labor cost is the summation of each job position’s wage and number of workers hired for that position. 

This logic can be applied to other variables in the production equation. In the instance of capital, a firm 

can have different types of capital with each having a different unit price and quantity demanded. 

The example of disaggregating labor takes into consideration various types of occupations that a 

firm would need to produce goods or services. From executive staff through department managers to 

production workers, all job positions can be included in the calculation. Uechi seems to have found a 

precise way to capture job quality through the specificity of job positions or occupations in a simple 

calculation. A specific type of job position would indicate a level of quality inherent in the job. 

Different levels of the same job classification marked by skill or seniority (e.g., master, journeyman, 

and apprentice) can be captured in the calculation. A firm would hire a number of individuals at a 

given wage commensurate with their level of skill or seniority. 

This paper seeks to test whether Uechi’s production equation can, in general, measure the output 

of the U.S. economy and, in particular, evaluate changes to labor affected by changes to capital 

resources. I modify Uechi’s equation given the availability of public data. The production equation 

requires a substantial amount of firm-level data from a large sample of firms encompassing all 

industries. An ideal research study would collect data on many types of job positions, many types of 

machines, and many types of raw and processed materials. For the purpose of this research study, I 

limit the scope to assessing macroeconomic growth at the national level. While firm-level data would 

produce an accurate measure of productivity, aggregate data would suffice to produce a 

macroeconomic indicator of capital intensity. The results will answer the questions posed at the start 

of the introduction. Direction for further research is provided at the end of the paper. 

2. Data 

The data set used in the analysis is a composite of national level employee wages, capital inputs, 

and gross output data from the U.S. Bureau of Labor Statistics (BLS) and the U.S. Bureau of Economic 

Analysis (BEA). I started with a compilation of annual average data files from the Quarterly Census 

of Employment and Wages (QCEW) program (BLS, 2021). The QCEW data include 19 private-sector 

industries from 2000 to 2020, selecting aggregation level code 14, which is “National, NAICS 
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Sector—by ownership sector.” Industries are identified by the following two-digit North American 

Industry Classification System (NAICS) codes: 

1. NAICS Code 11: Agriculture, Forestry, Fishing, and Hunting 

2. NAICS Code 21: Mining, Quarrying, and Oil and Gas Extraction 

3. NAICS Code 22: Utilities 

4. NAICS Code 23: Construction 

5. NAICS Code 31–33: Manufacturing 

6. NAICS Code 42: Wholesale Trade 

7. NAICS Code 44–45: Retail Trade 

8. NAICS Code 48–49: Transportation and Warehousing 

9. NAICS Code 51: Information 

10. NAICS Code 52: Finance and Insurance 

11. NAICS Code 53: Real Estate and Rental and Leasing 

12. NAICS Code 54: Professional and Technical Services 

13. NAICS Code 55: Management of Companies and Enterprises 

14. NAICS Code 56: Administrative and Waste Services 

15. NAICS Code 61: Educational Services 

16. NAICS Code 62: Health Care and Social Assistance 

17. NAICS Code 71: Arts, Entertainment, and Recreation 

18. NAICS Code 72: Accommodation and Food Services 

19. NAICS Code 81: Other Services, except Public Administration. 

References to industries in the text and tables use the two-digit NAICS codes. The NAICS code 

is written in the form, NAICS plus its number (e.g., NAICS 11) for brevity. Readers can return to the 

foregoing list to find the definition of each code. Industry names may be spelled out for emphasis. 

I add to the QCEW data five asset categories of capital input costs for the same industries and 

years from the “Capital Details for Major Sectors and Industries” data file prepared by BLS and 

released on 24 March 2022 (BLS, 2022). The selected measure is capital cost levels in billions of 

dollars. I exclude productive capital stock, gross investment, wealth stock, asset share, and 

depreciation rate. The asset categories include (1) equipment, (2) intellectual property products (IPP), 

(3) structures, (4) inventories, and (5) land. According to BLS, equipment covers a wide range of 39 

types from household furniture to electromedical instruments, from tractors to vehicles and vessels, 

and from machinery to computers—all of which are in some physical form that is tangible. Intangible 

forms are included. IPP encompasses products created principally from the mind for use in a variety 

of venues; IPP covers computer software programs, artistic works, and research and development. 

Structures include 35 types of facilities and physical installations, such as buildings, warehouses, 

hospitals, hotels, shopping and restaurant establishments, and infrastructure for mining, energy, 

electrical and water distribution, waste disposal, transportation, and telecommunications. Inventories 

and land are self-explanatory. 

I finally add annual gross output (GO) for the same industries and years from the “Gross Output 

by Industry” data file prepared by BEA and published on 30 March 2022 (BEA, 2022). I use only 

amounts in millions of dollars, excluding real gross output in chain dollars. GO reflects current dollars 

for the years in which they were reported. It needs to be noted that GO is substantively different from 
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gross domestic product (GDP). GO figures are much less than GDP figures, because gross output does 

not include consumer spending, business spending, government spending, and net exports; GDP 

includes all of those types of spending and net exports2 (BEA, 2021). GO is a focused economic 

measure on total sales and receipts of goods and services produced by industries for consumers and 

other industries (BEA, 2021). 

The combined data set contains six cost variables and one output variable—a total of seven 

variables. The output variable is gross output. The cost variables are (1) total labor cost, (2) total 

equipment cost, (3) total IPP cost, (4) total structures cost, (5) total inventories cost, and (6) total land 

cost. Total labor cost is total annual average wages paid to employees. Conversions had been applied 

to cost and output variables to align all amounts in billions of dollars. 

The combined data set also contains eight variables derived from the cost and output variables. 

The sum of all six cost variables amounts to an approximated total production cost. I assume additional 

costs exist and were not collected. A combined equipment and IPP variable was produced by adding 

those two cost variables together to form one composite measure. In the next section, I explain the 

rationale for that step. The quotient of the aforementioned composite variable and total labor cost 

produces a ratio of equipment and labor (equipment–labor cost ratio). The remaining five calculated 

measures represent a share of the total production cost. The shares of labor cost, the combined 

equipment and IPP cost, structures cost, inventories cost, and land cost were calculated by dividing the 

respective resource cost by total cost. 

To summarize, the data set is a sample of 399 national-industry observations covering 19 major 

industry sectors and spanning 21 years. The sample is broken down by each industry sector reporting 

annual cost and output data from 2000 to 2020 (i.e., 21 years of annual industry data for 19 industries). 

The data represent the U.S. economy in the first two decades of the twenty-first century. Fifteen 

variables are used to assess macroeconomic growth and changes to labor and capital inputs. 

3. Methodology 

I sought publicly available data sources from government agencies, which would closely align 

with Uechi’s production equation. The BEA provides numerous input variables, covering all industries, 

including NAICS 92 (public administration). However, nearly all the BEA’s variables are not suitable 

for Uechi’s equation. Chain-type indexes must be disaggregated to specific item prices and quantities 

in order to use the data. The BEA’s gross output is the only variable that can be used. 

Alternatively, the BLS’s input costs are suitable for Uechi’s equation. An assumption is made 

that the aggregated totals were calculated based on prices and quantities of numerous items. Inventories 

would fit under Uechi’s processed materials. Structures would fit appropriately under Uechi’s residuals. 

With various types of structures captured, it cannot be determined without disaggregating the category 

which specific types would fit under equipment. Some structures that can contribute directly to output 

(e.g., certain types of infrastructure) would fit under equipment. Without knowing the details of 

structures, the aggregated structures cost is assumed to belong in residual costs. 

 
2 The term net exports means the exports of goods and services minus the imports of goods and services. 
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IPP is closely aligned with equipment and logically fits into the broad equipment category. In 

many cases, finished IPP products would be incorporated into physical forms of equipment in order to 

be used. For example, computer software requires computer hardware for executing program code. In 

another example, an artistic motion-picture film product requires a film projector and a large screen 

(specific types of equipment). A particular IPP product is not useful in production without combining 

it with some type of equipment. For this reason, IPP can be combined with Uechi’s equipment. 

Raw materials is the only category that appears to be missing from the BLS’s asset categories. 

Perhaps raw materials might be captured in inventories, but it cannot be determined without 

disaggregating inventories. 

Although some costs are missing and category names are different, the BLS’s variables capture 

the concept of what Uechi’s equation is intended to measure. The BLS’s input costs and the BEA’s 

gross output together form the variables to include in Uechi’s production equation—albeit in modified 

form that deviates from the original design. The equation in modified form is as follows: 

 𝐺 ≥ 𝐶𝐿 + 𝐶𝐸 + 𝐶𝑆 + 𝐶𝑀 + 𝐶𝐷 (1) 

G is gross output. Each input cost is represented by CL, CE, CS, CM, and CD for labor cost, 

equipment and IPP cost, structures cost, inventories cost, and land cost, respectively. IPP cost is 

included as a part of equipment cost in a composite measure. 

To reiterate from the previous section, the annual cost and output data in the data set correspond 

to the variables specified in Equation (1). All the amounts reflect current dollars for the years in which 

they were reported. I do not adjust for inflation because the purpose of the study is not to compare 

economic growth or contraction over time. Several years of data provide for a large sample in which I 

can examine how industries change their inputs to produce output. In this regard, factoring inflation is 

appropriate since price changes influenced by external forces would affect the business decisions of 

firms to purchase machines and hire workers. Firms may change the mix of labor, equipment, and 

other inputs in their budgets from one year to the next, based on various internal and external reasons 

(e.g., management decisions, consumer demand, changes to the market, and economic recession). 

To answer my research questions, an ordinary least squares (OLS) regression was conducted. All 

the input costs are the independent variables. Gross output is the dependent variable. An initial analysis 

examined equipment cost and IPP cost separately as two independent variables in the regression model. 

A subsequent analysis used the combined equipment and IPP cost in the regression model, reducing 

the number of independent variables from six to five. These two initial models examined whether it is 

appropriate to combine equipment and IPP. In the first two analyses, none of the variables was 

transformed. A third analysis transformed three variables, applying the natural logarithms of gross 

output, labor cost, and equipment and IPP cost in the regression model. The other three variables 

remained untransformed in the third analysis. A fourth analysis applied the natural logarithm of 

structures cost. The natural logarithms of inventories cost and land cost cannot be calculated, unless 

negative values are removed from the data set. Additional analyses examined just two independent 

variables in the model (labor cost and equipment and IPP cost) to compare the difference between the 

full and partial regression models. This last examination created a conventional model that resembles 

a production function that only factors labor and capital. 
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I devised hypothetical scenarios to demonstrate application of the selected regression model. Each 

scenario represents, in theory, a production budget that allocates a certain amount of dollars to each 

input. The regression model is then used to compute the input costs to generate an estimated output 

(predicted output). Through 11 scenarios, I hold the costs of structures, inventories, and land and the 

total cost constant while systematically changing the costs of labor and equipment in a logical manner. 

Incremental changes to labor and equipment indicate what output could be from a high-cost labor 

scenario to a low-cost labor scenario. It is assumed that a firm would develop a number of production 

scenarios in which different combinations of labor and equipment would be used. A firm analyzes 

these scenarios to determine which one would produce maximum output. It is this assumption that the 

hypothetical scenarios are based upon. 

In theory, the scenarios could be for a single firm or numerous firms. I propose that the regression 

model can be used to analyze business activities of multiple industries to calculate economic output in 

the aggregate. This would be accomplished using the described methodology on a sample of firms. In 

this case, the cost and output data would be those reported by firms in a survey. Alternatively, a single 

firm would compile its own cost and output data and determine how much to spend on each input to 

produce the most output. 

Correlations were calculated on the cost and output variables to compare the relative strength of 

the relationship between a given pair of variables. The cost and output variables—both transformed 

and untransformed—were plotted on a graph, comparing an input cost variable against the output 

variable. Descriptive statistics, specifically the mean and the standard deviation of the input costs, 

gross output, equipment–labor ratio, and input cost shares were calculated for the national average and 

each individual industry across the same time frame. The data set was segmented by industry. 

A script was written and saved to generate the scatter diagrams and to calculate the natural 

logarithms, descriptive statistics, correlations, and OLS regression. Segmenting of the data set by 

industry was also written in the script. The script was then executed in the R statistical software 

program. Outputs from R were saved and analyzed in Microsoft Excel. The R statistical software 

program generated the scatter diagrams and had saved them as images. 

4. Results 

Over the first two decades of the twenty-first century, the U.S. had annual gross output of less 

than $1.3 trillion3, on average, in a total of 19 private-sector industries. That level of output would 

have fluctuated year by year by as much as $1.2 trillion. In terms of total production cost, the U.S. 

spent an annual mean of $484.4 billion with a standard deviation of $399 billion in 19 industries. 

Table 1 breaks down the cost and output by industry and input cost. NAICS 31–33 (manufacturing) 

stands out with the highest output and costs on four measures. The manufacturing industry produced 

an annual mean gross output of less than $5.2 trillion with an annual mean total cost of more than $1.6 

trillion. Manufacturing exceeded the national average by a wide margin. The difference between output 

 
3 All output figures are estimates of GO, not estimates of GDP. As explained in the data section, GO is an economic 

measure that captures sales and receipts of goods and services. The result produces a GO estimate that is less than a 

GDP estimate. 
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and cost produces a substantial net profit, which allows manufacturing firms to reinvest in production 

(i.e., improve machinery, expand operations, provide employee bonuses, or raise wages). The 

manufacturing industry further had the highest mean labor cost at $744.9 billion and the highest mean 

equipment and IPP cost at $600.2 billion. More than half of the equipment and IPP cost went into IPP 

products alone. 

NAICS 53 and NAICS 52 ranked second and third in the highest annual mean gross output at 

$2.9 trillion and $2.1 trillion, respectively. NAICS 62 and NAICS 54 ranked fourth and fifth in the 

highest annual mean gross output at $1.8 trillion and $1.7 trillion, respectively. NAICS 71, NAICS 61, 

NAICS 11, NAICS 55, and NAICS 21 ranked among the lowest in annual mean gross output from 

nineteenth to fifteenth, respectively. The penultimate industry was educational services. Five industries 

close to the national average in annual mean gross output were NAICS 23, NAICS 42, NAICS 44–45, 

NAICS 48–49, and NAICS 51. These five industries included a diverse mix from construction and 

transportation to retail trade and information. 

The distribution of input costs is reported in Table 2. Most industries spent a fraction of 1%, on average, in 

inventories. In terms of both percentage share and dollar value, NAICS 42, NAICS 44–45, NAICS 31–33, 

and NAICS 11 spent a relatively high amount in inventories. This is not surprising since agriculture, 

manufacturing, retail trade, and wholesale trade depend on certain levels of stocks and supplies. 

Costs in both structures and land show variability among industries with a few spending higher 

amounts than others. In both percentage share and dollar value, NAICS 11 and NAICS 53 had the 

highest annual mean land cost of all industries. This result is expected, since land contributes to these 

two industries’ output. Agriculture, forestry, fishing, and hunting consumed relatively the most in land 

cost by a wide margin at a mean share of 39.3%. Real estate and rental and leasing followed behind at 

a mean share of 14.6%. 

NAICS 21 (mining) and NAICS 22 (utilities) had the highest annual mean share of structures cost 

of all industries at 60.1% and 43.4%, respectively. In terms of dollar value, however, NAICS 31–33 

spent the highest in structures cost at $176.7 billion on average. Manufacturing’s share of structures 

cost amounted to 10.7% on average—below the national average. NAICS 52 showed a similar pattern 

with a mean structures cost at $133 billion and mean share at 13.7%. The results of structures cost 

create a complex picture of variation. 

Figures 1 and 2 help to explain variation in the structures cost and other input costs. Panel C1 in 

Figure 1 shows the observations of structures cost loosely organized in such a way that multiple 

patterns can be discerned. By applying a natural logarithm to structures cost, Panel C2 in Figure 2 

shows a smoother pattern, but numerous observations remain outside the patten. Structures cost shows 

variability in both diagrams. 

Panel E1 in Figure 1 shows the observations of land cost spread apart with no linear pattern. Most 

observations are clustered together with outliers far from the cluster. 

Panel D1 in Figure 1 shows an interesting finding in inventories cost. Most of the observations 

create a vertical line. The pattern suggests that inventories cost is inelastic. A firm would not be 

responsive to changes to inventories in relation to changes to output. The cost in inventories would 

remain relatively the same at any amount of output. 
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Table 1. Average annual input costs and gross output in billions, by industry (2000–2020). 

Descriptive Statistic U.S. 

National 

NAICS 

11 

NAICS 

21 

NAICS 

22 

NAICS 

23 

NAICS 

31–33 

NAICS 

42 

NAICS 

44–45 

NAICS 

48–49 

NAICS 

51 

Labor Cost ($)           

Mean 282.9 33.5 57.0 49.3 335.2 744.9 370.0 418.5 199.7 236.6 

SD 235.2 8.2 18.0 8.2 74.2 74.1 66.1 62.0 50.2 54.0 

Eqp. & IPP Cost ($)           

Mean 112.8 26.9 26.8 65.4 58.8 600.2 109.5 75.7 77.1 345.4 

SD 152.0 5.5 8.4 12.5 18.8 134.4 22.0 18.9 23.2 97.7 

IPP Cost ($)           

Mean 44.4 0.1 2.9 5.7 4.3 319.3 29.4 16.9 5.4 213.8 

SD 87.4 0.0 0.7 1.4 1.7 94.0 10.4 7.0 2.2 68.8 

Structures Cost ($)           

Mean 57.6 17.9 146.7 92.5 10.2 176.7 50.4 57.4 44.6 71.6 

SD 55.9 2.4 61.4 26.3 4.8 38.9 26.2 18.4 17.3 38.8 

Inventories Cost ($)           

Mean 12.0 7.3 1.2 0.9 6.1 72.5 96.8 31.5 1.0 2.8 

SD 29.2 1.7 0.9 1.0 4.8 28.2 47.9 13.1 0.4 1.1 

Land Cost ($)           

Mean 19.1 57.6 7.6 1.7 25.9 41.4 34.3 23.9 7.2 10.5 

SD 23.3 18.8 4.6 0.4 13.2 10.3 16.5 11.4 2.3 7.9 

Total Cost ($)           

Mean 484.4 143.1 239.2 209.8 436.3 1,635.7 661.1 606.9 329.7 666.9 

SD 399.0 33.3 88.1 46.4 109.9 260.1 174.1 106.0 87.6 191.3 

Gross Output ($)           

Mean 1,291.3 376.4 459.8 464.0 1,262.4 5,188.2 1,460.8 1,415.3 930.7 1,308.5 

SD 1,202.9 86.0 158.5 71.1 260.1 719.6 438.8 308.0 242.3 314.9 

Continued on next page 
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Descriptive Statistic NAICS 

52 

NAICS 

53 

NAICS 

54 

NAICS 

55 

NAICS 

56 

NAICS 

61 

NAICS 

62 

NAICS 

71 

NAICS 

72 

NAICS 

81 

Labor Cost ($)           

Mean 503.6 96.6 629.1 200.0 275.2 105.5 714.6 65.7 206.7 132.9 

SD 110.4 23.5 194.9 63.7 69.1 31.9 207.6 15.5 54.3 26.5 

Eqp. & IPP Cost ($)           

Mean 286.7 139.1 134.0 12.3 47.8 4.4 63.0 24.7 31.5 13.1 

SD 95.9 29.4 35.4 4.5 15.3 1.7 17.6 4.7 6.3 1.9 

IPP Cost ($)           

Mean 97.4 4.5 85.0 8.2 18.9 1.6 8.4 16.0 2.3 3.2 

SD 47.3 1.8 25.5 3.9 8.2 0.8 3.2 2.5 0.9 0.8 

Structures Cost ($)           

Mean 133.0 97.2 23.5 14.8 13.9 15.1 66.3 12.7 44.0 5.7 

SD 46.6 33.0 9.8 3.0 4.9 6.4 28.3 4.6 14.4 1.7 

Inventories Cost ($)           

Mean 1.0 1.8 2.5 0.1 0.6 0.1 0.3 0.2 1.6 0.3 

SD 1.7 0.5 0.8 0.1 0.3 0.0 0.2 0.1 0.7 0.5 

Land Cost ($)           

Mean 25.6 66.6 4.8 7.4 4.1 1.8 11.9 4.0 23.3 3.6 

SD 4.8 51.1 1.9 2.1 1.5 0.8 4.5 1.1 6.9 1.0 

Total Cost ($)           

Mean 949.8 401.3 793.9 234.7 341.7 126.9 856.2 107.3 307.2 155.7 

SD 253.6 129.8 238.7 72.9 89.6 40.4 256.3 24.7 81.0 29.3 

Gross Output ($)           

Mean 2,149.6 2,854.0 1,696.2 451.6 749.8 272.8 1,795.8 251.6 803.1 571.6 

SD 586.0 693.1 443.4 135.2 232.5 79.7 516.0 63.9 209.4 100.8 

Note: Eqp. means equipment. Source: Author’s analysis of data from the U.S. Bureau of Labor Statistics and the U.S. Bureau of Economic Analysis.
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Table 2. Average annual input cost shares and equipment–labor cost ratio, by industry (2000–2020). 

Descriptive Statistic U.S. 

National 

NAICS 

11 

NAICS 

21 

NAICS 

22 

NAICS 

23 

NAICS 

31–33 

NAICS 

42 

NAICS 

44–45 

NAICS 

48–49 

NAICS 

51 

Eqp.–Labor Ratio           

Mean 0.48 0.82 0.48 1.32 0.17 0.80 0.29 0.18 0.38 1.45 

SD 0.47 0.11 0.06 0.08 0.02 0.12 0.01 0.02 0.05 0.24 

Labor Share (%)           

Mean 59.2 23.5 24.9 23.8 77.4 46.1 57.4 69.2 61.1 36.5 

SD 22.7 2.8 5.2 1.9 3.6 4.5 5.9 2.1 4.4 6.3 

Eqp. & IPP Share (%)           

Mean 19.5 19.0 11.7 31.5 13.3 36.3 16.9 12.3 23.2 51.7 

SD 12.5 1.9 2.1 2.7 1.0 2.6 1.3 1.3 1.8 3.2 

Structures Share (%)           

Mean 14.1 12.9 60.1 43.4 2.3 10.7 7.1 9.3 13.1 9.9 

SD 14.3 2.1 6.1 4.0 0.5 1.4 2.4 1.9 2.6 3.7 

Inventories Share (%)           

Mean 1.8 5.2 0.4 0.4 1.3 4.3 13.8 5.3 0.3 0.4 

SD 3.5 1.2 0.3 0.5 0.8 1.2 3.7 2.4 0.1 0.2 

Land Share (%)           

Mean 5.4 39.3 2.9 0.8 5.8 2.5 4.9 3.8 2.3 1.4 

SD 8.9 4.6 1.3 0.2 2.2 0.5 1.6 1.4 0.8 0.9 

Continued on next page 
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Descriptive Statistic NAICS  

52 

NAICS 

53 

NAICS 

54 

NAICS 

55 

NAICS 

56 

NAICS 

61 

NAICS 

62 

NAICS 

71 

NAICS 

72 

NAICS 

81 

Eqp.–Labor Ratio           

Mean 0.56 1.45 0.22 0.06 0.17 0.04 0.09 0.38 0.16 0.10 

SD 0.08 0.10 0.03 0.01 0.02 0.01 0.00 0.03 0.02 0.01 

Labor Share (%)           

Mean 53.6 24.7 79.2 85.1 80.8 83.8 83.8 61.3 67.3 85.2 

SD 3.2 3.0 2.3 1.0 1.9 2.9 1.4 2.0 0.9 1.8 

Eqp. & IPP Share (%)           

Mean 29.8 36.0 17.0 5.2 13.8 3.4 7.4 23.2 10.5 8.5 

SD 2.5 5.1 1.8 0.6 1.4 0.6 0.4 1.4 1.3 1.0 

Structures Share (%)           

Mean 13.7 24.2 2.9 6.5 4.0 11.4 7.4 11.5 14.1 3.6 

SD 1.5 3.5 0.6 0.8 0.7 2.1 1.5 1.9 1.2 0.6 

Inventories Share (%)           

Mean 0.1 0.5 0.3 0.0 0.2 0.1 0.0 0.2 0.5 0.3 

SD 0.1 0.2 0.1 0.0 0.1 0.0 0.0 0.1 0.2 0.4 

Land Share (%)           

Mean 2.8 14.6 0.6 3.2 1.2 1.3 1.4 3.9 7.6 2.4 

SD 0.5 7.4 0.2 0.4 0.3 0.3 0.3 1.2 0.8 0.9 

Note: Eqp. means equipment. Source: Author’s analysis of data from the U.S. Bureau of Labor Statistics and the U.S. Bureau of Economic Analysis. 
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Figure 1. Scatter diagrams of relationships between various input costs and gross output (2000–2020). Note: Gross output is the 

Y-axis in all scatter diagrams. A1 is labor cost and gross output. B1 is equipment and IPP cost and gross output. C1 is structures 

cost and gross output. D1 is inventories cost and gross output. E1 is land cost and gross output.  Source: Author’s analysis of data 

from the U.S. Bureau of Labor Statistics and the U.S. Bureau of Economic Analysis.   
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Figure 2. Scatter diagrams of relationships between the logs of input costs and the log of gross output (2000–2020). Note: The 

scatter diagrams show the observations of the natural logarithms of labor cost, equipment and IPP cost, structures cost, and gross 

output. Gross output is the Y-axis in all scatter diagrams. A2 is labor cost and gross output. B2 is equipment and IPP cost and gross 

output. C2 is structures cost and gross output. Compare these diagrams with the corresponding ones in Figure 1. Source: Author’s 

analysis of data from the U.S. Bureau of Labor Statistics and the U.S. Bureau of Economic Analysis. 

  



281 

National Accounting Review          Volume 6, Issue 2, 266–290. 

Table 3. Relative strength in relationships between various input costs and gross output (2000–2020). 

Variable Labor 

Cost 

Eqp. & IPP 

Cost 

Equipment 

Cost 

IPP 

Cost 

Structures 

Cost 

Inventories 

Cost 

Land 

Cost 

Gross 

Output 

Labor 

Cost 

1.00 0.57 0.55 0.54 0.35 0.38 0.10 0.70 

Eqp. & IPP 

Cost 

0.57 1.00 0.94 0.96 0.68 0.44 0.30 0.85 

Equipment 

Cost 

0.55 0.94 1.00 0.81 0.75 0.44 0.45 0.90 

IPP 

Cost 

0.54 0.96 0.81 1.00 0.56 0.41 0.16 0.74 

Structures 

Cost 

0.35 0.68 0.75 0.56 1.00 0.30 0.34 0.66 

Inventories 

Cost 

0.38 0.44 0.44 0.41 0.30 1.00 0.33 0.50 

Land 

Cost 

0.10 0.30 0.45 0.16 0.34 0.33 1.00 0.50 

Gross 

Output 

0.70 0.85 0.90 0.74 0.66 0.50 0.50 1.00 

Note: Eqp. Means equipment. The equipment cost variable and the IPP cost variable are included in the table to show their relationships to other variables. 

The equipment-related variables can be compared against each other relative to other variables with particular attention to their relationships to structures 

cost. Source: Author’s analysis of data from the U.S. Bureau of Labor Statistics and the U.S. Bureau of Economic Analysis. 
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Panel B1 in Figure 1 also shows an interesting pattern. The observations of equipment and IPP cost 

create a slope that appears rather steep. Applying a natural logarithm to the values makes an improvement 

in the way the observations are organized. Panel B2 in Figure 2 shows a stronger pattern that is curvilinear 

in the observations of equipment and IPP cost. 

Panel A1 in Figure 1 shows a pattern that is remarkably linear for the observations of labor cost. 

Outliers remain outside of the pattern. With the natural logarithm applied, Panel A2 in Figure 2 shows a 

stronger linear pattern with a slight curve in the observations of labor cost. 

The visual pattern depicted in Panel A2 is confirmed quantitatively. The correlation between labor 

cost and gross output is high at 0.70. However, labor cost has the weakest relationship with gross output 

in comparison with equipment cost and IPP cost. Among all the input cost variables listed in Table 3, the 

correlation between equipment and IPP cost and gross output is the second strongest at 0.85. If equipment 

cost is examined alone, the relationship between equipment cost and gross output has a correlation of 

0.90—a very strong relationship. The relationship between IPP cost alone and gross output has a 

correlation of 0.74. The correlation of the combined equipment and IPP cost represents an average of the 

two individual cost variables. 

The other input costs show a moderately strong relationship with gross output. However, structures 

cost, inventories cost, and land cost show weak relationships with other variables. Land cost shows the 

weakest in relationships with labor cost, IPP cost, equipment and IPP cost, inventories cost, and structures 

cost. Inventories cost shows weak relationships with labor cost and structures cost and moderate to weak 

relationships with equipment cost and IPP cost. Structures cost has a weak relationship with labor cost as 

well but shows moderately strong relationships with IPP cost and equipment and IPP cost. Structures cost 

has the strongest relationship with equipment cost alone. 

With a review of correlations and scatter diagrams, different regression models were examined to 

find the one that would produce the most accurate predictions. I selected the model that applied the natural 

logarithms of gross output, labor cost, and equipment and IPP cost. A model that applied the natural 

logarithm of structures cost produced a weak coefficient for the inventories cost variable (see Appendix 

Table A.1). Adding the natural logarithm of structures cost did not substantially change the other variables’ 

coefficients, the adjusted R-squared, and the residual standard error. Although the coefficient of the 

transformed structures cost variable did increase, the standard error of the natural logarithm of structures 

cost grew larger. The selected best-fit model showed strong coefficients for all variables as indicated by 

their corresponding small standard error and a very small p-value (see Table 4). The selected regression 

model produced the following equation: 

 ln 𝑌 = 3.012 + 0.448 ln 𝐿 + 0.291 ln 𝐸 + 0.002𝑆 − 0.001𝑀 + 0.009𝐷 (2) 

Table 4. Regression model for efficient production. 

Variable b SE p-value 

Intercept 3.012 0.076 0.000 

Log of Labor Cost 0.448 0.017 0.000 

Log of Equipment and IPP Cost 0.291 0.016 0.000 

Structures Cost 0.002 0.000 0.000 

Inventories Cost –0.001 0.001 0.028 

Land Cost 0.009 0.001 0.000 
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Note: The model is representative of a sample consisting of 399 observations of aggregate national-industry data 

from 2000 to 2020 (n = 399). The adjusted R-squared is 0.91. The residual standard error is 0.25 on 393 degrees of 

freedom. The natural logarithms of gross output, labor cost, and equipment and IPP cost were used in the model. 

The other variables were not transformed. Source: Author’s analysis of data from the U.S. Bureau of Labor Statistics 

and the U.S. Bureau of Economic Analysis. 

lnY is the natural logarithm of the predicted output. lnL is the natural logarithm of labor cost. lnE is 

the natural logarithm of equipment and IPP cost. Variables S, M, and D are structures cost, inventories 

cost, and land cost, respectively. 

The adjusted R-squared in this model is 0.91. The residual standard error is 0.25 on 393 degrees of 

freedom. All the variables’ coefficients including the intercept’s coefficient have a standard error of 0.076 

or smaller. 

The model shows that a change to any of the input variables would have an effect on output. In the 

case of inventories, the effect could be negative. For every one dollar increase in the total cost of 

inventories, output would decrease by 0.1%. All other variables would have a positive effect on output. 

For every one dollar increase in the total cost of structures, output would increase by 0.2%. For every 

dollar increase in the total cost of land, output would increase by 0.9%. Interpretation of the coefficients 

of labor cost and equipment and IPP cost is different, but the outcome follows the same pattern. For every 

1% increase in the total cost of labor, output would increase by 0.45%. For every 1% increase in the total 

cost of equipment and IPP, output would increase by 0.29%. 

The effects of labor and equipment are both revealing and surprising. If a regression model were 

generated without structures, inventories, and land, the coefficients would be switched around for labor 

cost and equipment and IPP cost; that is, the coefficient of equipment and IPP cost would be larger than 

the coefficient of labor cost (see Appendix Table A.2). By adding more cost variables to the equation, 

equipment and IPP cost has a smaller effect on output. This outcome could seem counterintuitive in that 

one would assume that equipment plays a larger role in production. If you evaluate labor and equipment 

alone, then equipment would contribute more to output than labor. However, by including additional cost 

variables in the equation, the distribution of labor and equipment completely changes. 

Does the regression model indicate that labor contributes more to output than equipment? Is labor 

really more productive than equipment? 

The predictions in Table 5 suggest that the answer could be positive. I use the model to calculate 11 

hypothetical production scenarios (Scenarios A to K). While the costs to structures, inventories, and land 

are held constant, I adjust labor cost and equipment and IPP cost in a way that answers the question. Labor 

cost decreases progressively from Scenario A to Scenario K. I reverse the cost progression to show 

equipment and IPP cost increasing progressively from Scenario A to Scenario K. In each scenario, total 

cost does not change. Through this simple demonstration, predicted output increases from Scenario A to 

Scenario D and then decreases to Scenario K. This trend will show a curved line when predicted output is 

plotted on a graph.4 Productivity would rise, reach a peak, and finally fall. 

 
4 A deeper cost analysis of total costs, marginal costs, total revenues, marginal revenues, profit, and output would generate 

various cost curves. These cost curves serve to identify points at which a firm can make key decisions to operate (e.g., breakeven 

point and efficiency or optimization). 
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A firm that chooses to spend progressively more on equipment and IPP and less on labor might not 

produce increasing output. On the other hand, a firm that spends too much on labor and too little on 

equipment and IPP could fall short of producing the maximum number of goods and services possible. 

Based on the calculations shown in Table 5, the optimal level of production would be a point at which the 

amount spent on equipment is moderately less than the amount spent on labor. This level of production 

translates to employing more workers and fewer machines. 
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Table 5. Predicted outputs of different production scenarios from a high-cost labor scenario to a low-cost one. 

Scenario Eqp.–Labor 

Ratio 

Labor 

Cost ($) 

Eqp. & IPP 

Cost ($) 

Structures 

Cost ($) 

Inventories 

Cost ($) 

Land 

Cost ($) 

Total 

Cost ($) 

Predicated 

Output ($) 

Percent 

Diff. (%) 

A 0.33 150 50 20 5 10 235 679 189 

B 0.43 140 60 20 5 10 235 694 195 

C 0.54 130 70 20 5 10 235 702 199 

D 0.67 120 80 20 5 10 235 704 200 

E 0.82 110 90 20 5 10 235 701 198 

F 1.00 100 100 20 5 10 235 692 195 

G 1.22 90 110 20 5 10 235 679 189 

H 1.50 80 120 20 5 10 235 661 181 

I 1.86 70 130 20 5 10 235 637 171 

J 2.33 60 140 20 5 10 235 607 158 

K 3.00 50 150 20 5 10 235 571 143 

Note: Production scenarios are hypothetical, representing a progression from very high labor cost (Scenario A) to very low labor cost (Scenario K). The 

dollar amounts of input costs are theoretical with no reference to a particular scale of operations. In theory, the scenarios could be for a single firm seeking 

to adjust its internal organization or for numerous firms seeking similar adjustments to their operations on average. The costs of structures, inventories, and 

land are held constant, so that the effect on output can be clearly observed by changes to labor cost and equipment and IPP cost. Predicted output is calculated 

using the regression model shown in Equation (2). Source: Author’s calculation based on the regression model in Table 4. 
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Comparing the model’s proportion of labor and equipment with empirical data (see Table 2) suggests 

that most NAICS industries were labor intensive with relatively small utilization of equipment. The 

situation was particularly acute in the service-related industries, where labor’s share of the total cost far 

outweighed that of equipment and IPP cost. Over the first two decades of the twenty-first century, 12 out 

of 19 industries had a mean equipment–labor cost ratio from as low as 0.04 to as high as 0.38. Construction, 

wholesale trade, retail trade, and transportation and warehousing had low capital intensity. Industries with 

the lowest equipment–labor cost ratio were NAICS 61, NAICS 55, NAICS 62, and NAICS 81, all of 

which provide some kind of service. Table 1 shows that these service-related industries had a very high 

mean labor cost and a very low mean equipment and IPP cost. Industries with very low capital intensity 

included educational services and health care and social assistance. 

In contrast, few industries appeared to operate at a point at which the model suggests to be an optimal 

level. NAICS 11 (agriculture), NAICS 31–33 (manufacturing), and NAICS 52 (finance and insurance) 

had a labor cost that was moderately higher than equipment and IPP cost. These industries invested in 

machines and yet maintained levels of workers. 

The wide difference in the equipment–labor ratio between manufacturing and service-related 

industries underscores how differently labor can be applied across industries. Baumol (1967) explained 

how labor is perceived in its role to produce products (e.g., automobiles, chairs, and shirts) on one hand 

and to deliver services (e.g., education, health care, and hospitality) on the other.5 The contrasting results 

of shares of labor and capital confirm findings described in previous studies examining economic growth 

in the United States from 1948 to 2001 (Nordhaus, 2006) and in the European Union from 1995 to 2016 

(Pariboni and Tridico, 2020). 

5. Discussion 

The regression model suggests that there needs to be a conscious balance in using capital and labor 

resources. A firm has to find a proportion of machines and workers that can reach maximum output. The 

number of workers should not be reduced to such a low point where machines dominate the production 

environment. Too much capital intensity might be unproductive. On the other side of the equation, too 

much labor intensity would not be productive either. A firm should not have a very low number of 

machines and a very high number of workers. An optimal level would be an environment where machines 

and workers are implemented in a balanced and strategic way. 

The results of this study align with prior ones. As described in the introduction, firms would 

reconfigure their labor structure through a different organizational scheme. With increased investments in 

capital resources, firms would not eliminate all workers. They would retrain (upskill) a number of workers 

or hire new workers as determined by new skills required to meet the demands of new machines. This 

kind of organization has held across manufacturing from the nineteenth century to the present day. In this 

study, I confirm the organizational reconfiguration with the equipment–labor cost ratio. 

 
5 Baumol advanced a tenuous argument to claim that labor is a means in certain activities to produce a good, while in other 

activities, labor is the end goal (Baumol, 1967, page 416). Recent technological advances may prove that productivity in 

administrative support, education, food services, and health care can be increased with the use of machines. Baumol’s argument 

should be revisited given how much technology has progressed over the decades to solve problems in carrying out service-

related jobs and tasks. 
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The use of Uechi’s production equation to measure output and changes to labor and equipment 

demonstrates the importance of including other cost factors beyond the conventional labor and capital 

measures. Further analysis would show that evaluating labor and equipment alone generates a biased 

model in favor of capital. The inclusion of more defined capital resources redistributes the level of 

contribution more evenly across the variables. Additional variables in the equation lead to a more accurate 

representation of production. Moreover, defining variables with a greater degree of specificity is key. This 

finding is aligned with Levhari and Sheshinski’s conclusion. It also disproves the conclusion that an OLS 

regression produces biased coefficients in a production function; prior research advanced such a 

conclusion based on using an equation with only two input variables (Van Biesebroeck, 2007). Indeed, 

Van Biesebroeck shows how using only labor and capital can produce biased results. Uechi’s conceptual 

underpinnings of the production equation produces a regression model that is remarkedly robust. 

On the topic of particular input costs, structures cost could be broken up into two or more asset 

categories or reexamined to see if specific types of structures fit better in another asset category. Results 

show large variability in this category. Structures is a broad category that includes specific types that both 

directly and indirectly contribute to output. Buildings and other facilities would contribute indirectly to 

output. Certain structures such as radio towers, transmission lines, and conveyance systems would 

contribute directly to output. Some structures could be categorized under equipment. With a large share 

of structures cost, the mining and utilities industries could be using large-scale machinery, which could 

be interpreted as either structures or equipment. The correlation result indicates a strong relationship 

between structures cost and equipment cost. Refining the structures asset category will provide clarity. As 

such, a narrowly defined structures category should produce a tighter pattern when comparing it against 

gross output in a scatter diagram. 

6. Conclusions 

Latest advances in technology raises the specter of the century-old debate on labor versus capital. 

Can robots and advanced computer software produce greater output than what workers can do? If labor is 

required, what is the optimal mix of workers and machines? 

This paper addressed the foregoing questions by analyzing the economic fundamentals of input and 

output. In the case of the United States, I examined two decades of labor and capital costs and gross output 

to evaluate production in 19 private-sector industries. I collected data suitable to test Uechi’s production 

equation for the purpose of assessing macroeconomic growth and capital intensity. Given available public 

data, Uechi’s equation had to be adjusted to incorporate categories that differed in name. Nonetheless, the 

new production equation proves flexible in making accommodations while adhering to the concept for 

which the equation is intended to solve. 

A lesson learned Is the need to have more input cost variables specifically defined to capture the 

production environment. Simply evaluating production by two categories alone—labor and capital—is 

not sufficient. Doing so could produce a biased model. A more accurate representation can be 

economically produced with additional cost factors. 

Applying Uechi’s equation in modified form produced an OLS regression model, which can explain 

changes to labor, equipment, and other capital resources in the U.S. economy. Prior microeconomic 

studies of specific industries support the predicted outputs of the model. The regression model predicts 

that output would gradually decrease after a certain point when a firm spends progressively more on 
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equipment and less on labor. Increasingly growing capital intensity might not be optimal. Investing more 

in labor is preferable. A firm does not necessarily need to invest so much in equipment to produce 

maximum output. Even if it does, a firm needs to employ a number of workers—presumably to operate 

and repair the purchased machines. 

To answer the question: can labor be totally replaced by equipment? According to the model, the 

answer is no. Labor continues to play a role in production. Applied in proper proportion—neither too 

much nor too little—labor can be effective in producing maximum output. 

7. Further research 

Will the results of this study hold with the use of firm-level data? A subsequent inquiry should be 

undertaken to answer the question. The present account was limited to analyzing sectoral cost and output 

data in the aggregate. A future, deeper project should analyze not just total input costs but the quantities 

and composition of labor and capital and the breakdown of gross output. It should also analyze the various 

types of workers, machines, and other resources that contribute to output. Not only would a future study 

confirm or refute this one’s results, it could produce additional insights into what specific types of 

occupations and equipment should be used in production. Including such specificity of labor and capital 

in the equation would show which resources are and which are not in demand. Further research that uses 

firm-level data would result in a better understanding of the flows of employment between industries 

affected by changes to capital resources. 

With that said, a caveat needs to be expressed. A greater degree of specificity imposes challenges on 

sampling all industries in a national economy. It might be difficult to apply all the input variables and 

produce coherent results where substantial heterogeneity exists. This is not to say that it cannot be done. 

The research design needs to be carefully thought through in structuring firm-level data across diverse 

industries and firms. An alternate approach is to apply Uechi’s production equation in a specific sector 

where firms implement similar machines to produce similar products. This narrow design on a single 

industry would be easier to carry out, especially when the research goal is centered on microeconomics. 
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