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Abstract: Analysing the mass of time series data accumulating daily and weekly from the coronavirus 

pandemic has become ever more important as the pandemic has progressed through its numerous 

phases. Econometric techniques are particularly suited to analysing this data and research using these 

techniques is now appearing. Much of this research has focused on short-term forecasting of infections, 

hospital admissions and deaths, and on generalising to stochastic settings compartmental 

epidemiological models, such as the well-known “susceptible (S), infected (I) and recovered or 

deceased (R)”, or SIR, model. The focus of the present paper is rather different, however, in that it 

investigates the changing dynamic relationship between infections, hospital admissions and deaths 

using daily data from England. It does this using two approaches, balanced growth models and 

autoregressive distributed lag/error correction models. It is found that there has been a substantial 

decrease over time in the number of deaths and hospital admissions associated with an increase in 

infections, with patients being kept alive longer, as clinical practice has improved and the vaccination 

program rolled out. These responses may be tracked and monitored through time to ascertain whether 

such improvements have been maintained. 

Keywords: Covid-19; infections, admissions and deaths; England; time series econometrics; balanced 

growth models; autoregressive distributed lag models; error correction 

JEL Codes: C22, I10, I12 

 



39 

 

National Accounting Review                 Volume 4, Issue 1, 38–55. 

1. Introduction 

Since the onset of the Covid-19 pandemic in early 2020 an enormous research effort has been 

underway on the modelling and prediction of various aspects of the pandemic. For accessible reviews 

concentrating on general features of this modelling, see, for example, Vespignani et al. (2020), Poletto 

et al. (2020) and Gnanvi et al. (2021), while for discussion of the growth models widely used for 

predicting Covid-19 infections and deaths, see Tovissodé et al. (2020) and Shen (2020). Central to this 

modelling, the analysis of the mass of time series data accumulating daily and weekly from the 

coronavirus pandemic has become ever more important as the pandemic has progressed through its 

numerous phases. Spiegelhalter and Masters (2021) provide an accessible introduction to such data 

issues, paying particular attention to the evidence emerging from the U.K. 

It is becoming increasingly apparent that econometric techniques are particularly suited to 

analysing this data: see, for example, Li and Linton (2020), Manski and Molinari (2020) and the review 

by Dolton (2021). Much of the research using these techniques has focused on short-term forecasting 

of cases, hospital admissions and deaths, with notable examples being Doornik et al. (2020), Doornik 

et al. (2021) and Harvey et al. (2021). It has also been directed at generalising, to stochastic settings, 

compartmental epidemiological models, such as the well-known “susceptible (S), infected (I) and 

recovered or deceased (R)”, or SIR, model, as in Korolev (2020) and Pesaran and Yang (2021).  

The focus of the present paper is rather different, however, in that we investigate the changing 

dynamic relationship between infections, hospital admissions and deaths using daily data from 

England. Section 2 thus considers the relationship between hospital admissions and subsequent deaths 

and introduces two models that might be useful for this task: the recently proposed balanced growth 

model of Harvey (2020) and the more familiar autoregressive distributed lag/error correction model 

used widely to analyse economic time series (see, for example, Banerjee et al., 1993, for detailed 

development and Mills, 2019, chapters 12 and 14, for a more introductory treatment). Section 3 extends 

the analysis to examining the prior relationship between infections and hospital admissions, while 

Section 4 links the two sets of models together before discussing the advantages and disadvantages of 

the two modelling procedures. 

2. Modelling the relationship between hospital admissions and deaths in England 

Figure 1 shows daily hospital admissions and deaths in England between 19th March 2020 and 

31st October 2021. 1  Both admissions and deaths show pronounced multiple wave patterns with 

admissions obviously leading deaths, but the shifting nature of the relationship between the two series 

is clearly discernible. How might this evolving and dynamic relationship be modelled? Attention is 

focused in this paper on two approaches: balanced growth modelling and the use of autoregressive 

distributed lags. 

2.1. Balanced growth modelling 

Let daily deaths due to Covid-19 in England be denoted 𝑦𝑡, 𝑡 = 1,2, ⋯ , 𝑇 , with their cumulation 

being 𝑌𝑡 = ∑ 𝑦𝑗
𝑡
𝑗=1 , so that the growth rate of daily deaths is 𝑔𝑦,𝑡 = 𝑦𝑡 𝑌𝑡−1⁄ . Similarly, denote daily 

 
1The focus here is on data from England as U.K.—wide hospital admissions rely on different definitions across the home nations. 
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hospital admissions due to Covid-19 by 𝑥𝑡, their cumulation by 𝑋𝑡 = ∑ 𝑥𝑗
𝑡
𝑗=1 , and their growth rate by 

𝑔𝑥,𝑡 = 𝑥𝑡 𝑋𝑡−1⁄ . 

Following Harvey and Kattuman (2020), we initially assume that there is balanced growth 

between daily deaths and hospital admissions lagged 𝑘 days, which implies the regression model. 
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Figure 1. Daily hospital admissions and deaths for England: 19th March 2020–31st October 2021. 

log(𝑔𝑦,𝑡) = 𝛿 + log(𝑔𝑥,𝑡−𝑘) + 휀𝑡  𝑡 = 𝑘 + 1, ⋯ , 𝑇    (1) 

where 휀𝑡 is an error term assumed to independently and identically distributed through time with zero 

mean and variance 𝜎𝜀
2, which is denoted 휀𝑡~ IID(0, 𝜎𝜀

2). The “equilibrium” relationship between the 

two growth rates is given by 

𝑔𝑦,𝑡 = exp(𝛿)𝑔𝑥,𝑡−𝑘         (2) 

Between daily deaths and admissions, 𝑦𝑡 and 𝑥𝑡, the equilibrium is then 

𝑦𝑡 = exp(𝛿)(𝑌𝑡−1 𝑋𝑡−𝑘−1⁄ )𝑥𝑡−𝑘       (3) 

Allowing for a lag structure in the leading admissions series in (1) gives 

log(𝑔𝑦,𝑡) = 𝛿 + ∑ 𝛽𝑗
𝑘
𝑗=ℎ log(𝑔𝑥,𝑡−𝑗) + 휀𝑡      (4) 

where ℎ < 𝑘 and ∑ 𝛽𝑗 = 1, a restriction that may be imposed by rewriting (4) as 

log(𝑔𝑦,𝑡) − log(𝑔𝑥,𝑡−𝑘) = 𝛿 + ∑ 𝛽𝑗 (log(𝑔𝑥,𝑡−𝑗) − log(𝑔𝑥,𝑡−𝑘)) + 휀𝑡
𝑘−1
𝑗=ℎ    (5) 



41 

 

National Accounting Review                 Volume 4, Issue 1, 38–55. 

so that 𝛽𝑘 = 1 − ∑ 𝛽𝑗
𝑘−1
𝑗=ℎ , a restriction that ensures that there is indeed balanced growth. The 

corresponding equilibrium relationship is then  

𝑔𝑦,𝑡 = exp(𝛿) ∏ 𝑔
𝑥,𝑡−𝑗

𝛽𝑗 = exp(𝛿)�̅�𝑥,𝑡−𝑘
𝑘
𝑗=ℎ       (6) 

where �̅�𝑥,𝑡−𝑘 is the weighted geometric mean of 𝑔𝑥,𝑡−ℎ, ⋯ , 𝑔𝑥,𝑡−𝑘. The levels equilibrium is thus 

𝑦𝑡 = exp(𝛿)(𝑌𝑡−1 �̅�𝑡−𝑘−1⁄ )�̅�𝑡−𝑘 = Δ�̅�𝑡−𝑘      (7) 

where �̅�𝑡−𝑘  and �̅�𝑡−𝑘−1  are the corresponding weighted geometric means of 𝑥𝑡−ℎ, ⋯ , 𝑥𝑡−𝑘  and 

𝑋𝑡−1−ℎ, ⋯ , 𝑋𝑡−1−𝑘, respectively. Thus Δ measures the long-run response of deaths to an increase in 

hospital admissions: if daily admissions increase by 100 then deaths will increase by 100Δ after 𝑘 days. 

When the two series are not on the same growth path, the model can be extended by replacing the 

intercept 𝛿 with a stochastic trend: 

log(𝑔𝑦,𝑡) = 𝛿𝑡 + ∑ 𝛽𝑗
𝑘
𝑗=ℎ log(𝑔𝑥,𝑡−𝑗) + 휀𝑡      (8) 

or 

log(𝑔𝑦,𝑡) − log(𝑔𝑥,𝑡−𝑘) = 𝛿𝑡 + ∑ 𝛽𝑗 (log(𝑔𝑥,𝑡−𝑗) − log(𝑔𝑥,𝑡−𝑘)) + 휀𝑡
𝑘−1
𝑗=ℎ   (9) 

where 𝛿𝑡 is defined as 

𝛿𝑡 = 𝛿𝑡−1 − 𝛾𝑡−1 + 휂𝑡  휂𝑡 ~ IID(0, 𝜎𝜂
2)      (10) 

𝛾𝑡 = 𝛾𝑡−1 + 휁𝑡    휁𝑡 ~ IID(0, 𝜎𝜁
2)      (11) 

i.e., 𝛿𝑡 is a random walk with a drift that is itself potentially a random walk. If 𝜎𝜁
2 = 0 then 𝛾𝑡 = 𝛾𝑡−1 

and the drift is constant. On the other hand, if 𝜎𝜂
2 = 0 then 𝛿𝑡 = 2𝛿𝑡−1 − 𝛿𝑡−2 − 휁𝑡−1 and 𝛿𝑡 will tend 

to evolve very smoothly, being known as an integrated random walk, or IRW. The equilibrium 

relationship in (6) is  

𝑔𝑦,𝑡 = exp(𝛿𝑡)�̅�𝑥,𝑡−𝑘         (12) 

so that the dynamic relationship between the two growth rates is given by exp(𝛿𝑡). In terms of daily 

deaths and admissions, 𝑦𝑡 and 𝑥𝑡, we have 

𝑦𝑡 = exp(𝛿𝑡)(𝑌𝑡−1 �̅�𝑡−𝑘−1⁄ )�̅�𝑡−𝑘 = Δ𝑡�̅�𝑡−𝑘      (13) 

Thus, an increase of 100 in hospital admissions will lead to an increase of 100Δ𝑡 deaths in the 

following 𝑘 days and this long run response will shift through time. As Harvey (2020) shows, this 

model may be arrived at by assuming that deaths and admissions follow Gompertz processes separated 

by 𝑘 days, but such an assumption is not necessary. 

Equation (9) may be fitted by casting it into state space form and employing the Kalman filter. 

Estimation is carried out by maximum likelihood using the predictive error decomposition and the 
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estimates of 𝛿𝑡 used to compute the Δ𝑡 series shown in Figures 3 and 7 below are the “smoothed” 

estimates, obtained by running the Kalman filter first forwards from 𝑡 = 𝑘 + 1 to 𝑡 = 𝑇 and then 

backwards from 𝑡 = 𝑇 to 𝑡 = 𝑘 + 1. Mills (2019, chapter 17) provides an introductory discussion to 

state space modelling and Harvey (1989) is the classic exposition. A value for the lag 𝑘 must be 

obtained before estimation can be undertaken. This lag could be selected by considering the basic 

model (9) with ℎ = 0, setting 𝑘 to an initial value 𝑘𝑚𝑎𝑥 and then running the regression (9) for 𝑘 =

𝑘𝑚𝑎𝑥 , 𝑘𝑚𝑎𝑥 − 1, 𝑘𝑚𝑎𝑥 − 2, ⋯, the sequence stopping when �̂�𝑘 is significant at some pre-chosen level 

of significance. Alternatively, clinical considerations may suggest an appropriate value for 𝑘  and 

indeed ℎ, and this simpler approach is also investigated. A further refinement may be to select only a 

subset of the lagged regressors log(𝑔𝑥,𝑡), ⋯ , log(𝑔𝑥,𝑡−𝑘) , thus determining ℎ  and including only 

significant lags. This may be done, for example, by using a stepwise least squares algorithm or other 

sequential testing procedure. The balanced growth assumption may be checked by including 

log(𝑔𝑥,𝑡−𝑘) (or, indeed, any other lag) in (9) and testing for its significance. 

2.2. ARDL modelling 

An autoregressive distributed lag (ARDL) model linking deaths and admissions may be specified 

in general as 

𝑦𝑡 = 𝜙0 + ∑ 𝜙𝑖𝑦𝑡−𝑖 + ∑ 휃𝑖𝑥𝑡−𝑖 + 𝑢𝑡
𝑛
𝑖=0

𝑚
𝑖=1       (14) 

where 𝑢𝑡~ IID(0, 𝜎𝑢
2) is an error term. Typically, the lag lengths 𝑚 and 𝑛 will be unknown and must 

be determined from the data. An algebraically equivalent but often more convenient form of this 

ARDL(𝑚, 𝑛) model, particularly for model specification and inference, is the error correction model 

(ECM)2 

∇𝑦𝑡 = 𝑎0 + ∑ 𝑎𝑖∇𝑦𝑡−𝑖 + ∑ 𝑏𝑖∇𝑥𝑡−𝑖 − 𝑐(𝑦𝑡−1 − 𝑑𝑥𝑡−1)𝑛−1
𝑖=0

𝑚−1
𝑖=1 + 𝑢𝑡    (15) 

where ∇ is the difference operator defined such that ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 and where the coefficients of (14) 

and (15) are linked by the set of relationships 

𝜙0 = 𝑎0 

𝜙1 = 1 + 𝑎1 − 𝑐 

𝜙𝑖 = 𝑎 − 𝑎𝑖−1  𝑖 = 2, ⋯ , 𝑚 − 1 

𝜙𝑚 = −𝑎𝑚−1          (16) 

휃0 = 𝑏0 

휃1 = 𝑏1 − 𝑏0 + 𝑐𝑑 

휃𝑖 = 𝑏𝑖 − 𝑏𝑖−1   𝑖 = 2, ⋯ , 𝑛 − 1 

휃𝑛 = −𝑏𝑛−1 

 

 
2Banerjee et al (1993) sets out and analyses in detail the algebraic equivalencies existing between the ARDL and ECM 

formulations. It should be emphasised that the recasting of (14) as (15) is a purely algebraic transformation and is not 

predicated on any particular statistical properties of the data.  With integrated data, cointegration leads from an ARDL to 

an ECM via Granger’s representation theorem (see Engle and Granger, 1987). The series here are not integrated, as may 

be demonstrated from standard unit root tests, and so we are in a stationary world in which the ECM (15) is simply a more 

convenient representation for our purposes than the ARDL (14). 
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The error correction term is 𝑦𝑡−1 − 𝑑𝑥𝑡−1 , which embodies the long-run, or equilibrium, 

relationship 𝑦 = 𝑑𝑥  between deaths and admissions, with 𝑑  being termed the long-run or total 

multiplier. An increase in hospital admissions of 100, say, will eventually increase deaths by 100𝑑. 

The speed at which the increase in deaths approaches the total multiplier depends on 𝑐, the speed 

of adjustment parameter. The smaller is 𝑐, the faster the speed of adjustment and the quicker the total 

multiplier is arrived at. The actual time path of adjustment depends upon the lag coefficients 𝜓𝑖 in the 

distributed lag 

𝑦𝑡 = 𝜓0 + ∑ 𝜓𝑖𝑥𝑡−𝑖
∞
𝑖=0         (17) 

where 

𝜓𝑖 = ∑ 𝜙𝑗
min(𝑖,𝑚)
𝑗=1 𝜓𝑖−𝑗 + 휃𝑖  0 ≤ 𝑖 ≤ 𝑛     (18) 

𝜓𝑖 = ∑ 𝜙𝑗
min(𝑖,𝑚)
𝑗=1 𝜓𝑖−𝑗  𝑖 > 𝑛 

This result is most easily obtained by utilising the lag operator 𝐵, defined such that 𝐵𝑗𝓏𝑡 ≡ 𝓏𝑡−𝑗 

(note that the difference operator introduced in (15) may then be written as ∇= 1 − 𝐵). This allows 

(14), on ignoring the error term as we are only interested in the systematic dynamics here, to be written 

as 

𝜙(𝐵)𝑦𝑡 = 𝜙0 + 휃(𝐵)𝑥𝑡       (19) 

where the lag polynomials 𝜙(𝐵) and 휃(𝐵) are defined as  

𝜙(𝐵) = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑚𝐵𝑚       (20) 

휃(𝐵) = 휃0 + 휃1𝐵 + ⋯ + 휃𝑛𝐵𝑛        (21) 

Equation (19) can then be expressed as  

𝑦𝑡 = 𝜙−1(𝐵)𝜙0 + 𝜙−1(𝐵)휃(𝐵)𝑥𝑡 = 𝜓0 + 𝜓(𝐵)𝑥𝑡     (22) 

where 

𝜓0 = 𝜙0 (1 − 𝜙1 − ⋯ − 𝜙𝑚)⁄         (23) 

𝜓(𝐵) = 𝜙−1(𝐵)휃(𝐵) 

Thus, the lag coefficients in (18) are obtained by equating coefficients of powers of 𝐵 in 𝜓(𝐵)𝜙(𝐵) =

휃(𝐵). The total multiplier is then given by the sum of these lag coefficients, i.e., 𝑑 = ∑ 𝜓𝑖
∞
𝑖=1  and the 

increase in deaths after 𝑙 days is given by the 𝑙th interim multiplier 𝑑𝑙 = ∑ 𝜓𝑖
𝑙
𝑖=1    𝑙 =

1, 2, ⋯ which will converge to 𝑑 as 𝑙 increases, i.e., 𝑑𝑙 → 𝑑 as 𝑙 → ∞. 

2.3. Fitting balanced growth and ARDL/ECM models to the relationship between hospital admissions 

and deaths in England  

The logarithms of the growth rates of daily hospital admissions and subsequent deaths between 

21st March 2020 and 31st October 2021 are shown in Figure 2. The series are evidently not on the same 

growth path so that a model of the form (9) rather than (5) is clearly required. Both clinical 
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considerations and exploratory sequential testing along the lines suggested in section 2.1 above suggest 

setting ℎ = 0, thus allowing for the death of some patients on the day of their admission to hospital, 

and 𝑘 = 7, so that there is a one week delay between hospital admission and death.  

Column (1) of Table 1 reports estimates of (9) with 휃log(𝑔𝑥,𝑡−7) included as an additional term. 

If 휃 is non-zero then balanced growth does not hold: with this term included,  

𝛽7 = 1 − ∑ 𝛽𝑗 + 휃6
𝑗=0          (24) 
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Figure 2. Logarithms of growth rates in daily deaths and admissions in England: 21st 

March 2020–31st October 2021. 

Table 1. Estimates of (9) for daily hospital admissions and deaths in England: 21st March 

2020–31st October 2021; standard errors in parentheses ( ); prob-values in brackets [ ]. 

 (1) (2) 

𝛽0 0.057 (0.069) [0.408] 0 

𝛽1 −0.071 (0.072) [0.323] 0 

𝛽2 0.327 (0.068) [0.000] 0.364 (0.048) [0.000] 

𝛽3 0.039 (0.072) [0.593] 0 

𝛽4 0.148 (0.068) [0.030] 0.168 (0.052) [0.001] 

𝛽5 −0.063 (0.076) [0.406] 0 

𝛽6 0.185 (0.072) [0.010] 0.201 (0.061) [0.001] 

휃 −0.129 (0.083) [0.118] 0 

𝜎𝜂 0.000 (3.497) [0.999] 0 

𝜎𝜁  0.002 (0.001) [0.000] 0.002 (0.000) [0.000] 

𝜎𝜀 0.212 (0.004) [0.000] 0.213 (0.004) [0.000] 
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Several of the coefficients are estimated to be insignificantly different from zero, including 휃, so 

that balanced growth is confirmed. Column (2) of Table 1 reports the estimates of the model with 

𝛽0, 𝛽1, 𝛽3, 𝛽5  and 휃  all restricted to be zero on using a 10% significance level; the remaining 

coefficients are all significantly positive (𝛽7 is calculated to be 0.267 (0.057)). It is also found that 

𝜎𝜂
2 = 0, so that 𝛿𝑡 will be a smoothly evolving IRW. Figure 3 shows the resulting estimate of Δ𝑡, the 

response of deaths to an increase in hospital admissions, calculated using the geometric mean 

�̅�𝑡−8 = 𝑋𝑡−3
0.364𝑋𝑡−5

0.168𝑋𝑡−7
0.201𝑋𝑡−8

0.267       (25) 

and it is indeed seen to evolve smoothly. 95% confidence interval upper and lower bounds for Δ𝑡 are 

also shown, and these indicate that Δ𝑡 is indeed estimated precisely. 

Δ𝑡 reaches a maximum at 0.38 on 27th April 2020, just under three weeks after the peak in daily 

deaths. There are further local maxima of 0.28 on 5th December 2020 and 0.31 on 26th December 2020, 

both occurring during the second wave of deaths in late 2020/early 2021. Δ𝑡 reaches a minimum of 

0.06 on 9th June 2021, the previous minimum being 0.13 on 10th August 2020, and at the end of October 

2021 it stood at 0.15. This suggests that, while Δ𝑡 is positively related to the number of daily deaths, 

its magnitude has been declining relative to the number of deaths as clinical practice has improved 

over the course of the pandemic and the vaccination program has been rolled out. The long run 

response of deaths to an increase of 100 in hospital admissions has fallen from a maximum of 37 deaths 

(95% confidence interval (34, 40)) during the first wave of the pandemic in April 2020, to around 30 

(27, 33) during the second wave at the turn of the year and down to just 6 (5, 7) by the summer of 

2021, although this had increased to 15 (13, 17) by the end of October. 
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Figure 3. Estimated response Δ𝑡 for deaths in England, 30th March 2020–31st October 

2021, with 95% confidence interval upper and lower bounds. 
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ARDL/ECM models were developed to characterise the relationship between daily deaths and 

admissions for the complete sample period to 31st October 2021 and for two sub-periods, the first 

ending on 31st January 2021, the second beginning on 1st February 2021, the “break point” being chosen 

to reflect the increasing vaccination uptake at this point. The models, estimated by nonlinear least 

squares, were initially selected using the AIC information criteria with insignificant coefficients (at 

the 10% level) then being sequentially removed to obtain a parsimonious ECM specification. Details 

of the chosen specifications are given in Table 2. HAC standard errors are shown in parentheses to 

accommodate any remaining autocorrelation and heteroskedasticity in the residuals. The most notable 

features of the models are the much lower estimate of the equilibrium parameter 𝑑 in the second  

sub-period than in the first, which is accompanied by a much larger estimate of 𝑐. Note that the 

estimates of these parameters are all highly significant and, in terms of goodness of fit, the model for 

the second sub-period has much the superior performance, with a higher 𝑅2 and a lower equation 

standard error than the model for the first sub-period. 

The time paths of the interim multipliers 𝑑𝑙 for the two sub-periods are shown in Figure 4. The 

paths have been smoothed to ensure that they are monotonically non-declining, since the number of 

deaths that follow a given increase in hospital admissions cannot fall with time! With �̂� =

0.328 (0.035) in the first sub-period ending on 31st January 2021, an increase of 100 in hospital 

admissions will therefore eventually lead to a further 33 deaths (95% confidence interval (26, 40)). 

From Figure 4 it is seen that approximately 95%  of these deaths (31)  occur within 14  days of 

admission to hospital. 

.00

.05

.10

.15

.20

.25

.30

.35

5 10 15 20 25 30 35 40 45 50 55 60

smoothed interim multipliers for first sub-period

smoothed interim multiplers for second sub-period

i

i

0.328

0.164

 

Figure 4. Time paths of interim multipliers for deaths calculated from ECMs. 
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Table 2. ECM estimates of the relationship between deaths and hospital admissions: 

standard errors in parentheses ( ); prob-values in brackets [ ]. 

 31st March 2020– 

31st October 2021 

31st March 2020–31st January 

2021 

1st February 2021– 

31st October 2021 

𝑐 −0.052 (0.014) [0.000] −0.056 (0.020) [0.005] −0.181 (0.020) [0.000] 

𝑑 0.308 (0.025) [0.000] 0.328 (0.035) [0.000] 0.164 (0.010) [0.000] 

𝑎0 −3.080 (1.052) [0.004] −2.925 (1.369) [0.033] −3.679 (0.846) [0.000] 

𝑎1 −0.438 (0.056) [0.000] −0.374 (0.055) [0.000] −0.549 (0.078) [0.000] 

𝑎2 −0.344 (0.055) [0.000] −0.400 (0.068) [0.000] −0.346 (0.068) [0.000] 

𝑎3 – – −0.263 (0.093) [0.005] 

𝑎4 – – −0.339 (0.092) [0.000] 

𝑎5 0.119 (0.054) [0.028] – – 

𝑎6 0.108 (0.064) [0.095] – – 

𝑎7 0.091 (0.053) [0.089] – 0.107 (0.058) [0.067] 

𝑎8 – – 0.141 (0.062) [0.024] 

𝑎9 – – 0.193 (0.079) [0.015] 

𝑎10 – – – 

𝑎11 – – −0.110 (0.061)[0.075] 

𝑏0 0.055 (0.012) [0.000] 0.056 (0.013) [0.000] 0.043 (0.018) [0.015] 

𝑏1 0.041 (0.013) [0.002] 0.034 (0.016) [0.029] 0.036 (0.019) [0.068] 

𝑏2 – – – 

𝑏3 – – – 

𝑏4 – – 0.036 (0.017) [0.041] 

𝑏5 0.027 (0.015) [0.069] 0.041 (0.015) [0.008] – 

𝑏6 0.030 (0.014) [0.030] 0.041 (0.010) [0.000] – 

𝑏7 0.027 (0.015) [0.067] 0.042 (0.013) [0.002] – 

𝑏8 0.031 (0.016) [0.058] 0.037 (0.015) [0.011] – 

𝑏9 0.060 (0.015) [0.000] 0.076 (0.016) [0.000] −0.047 (0.022) [0.034] 

𝑏10 0.058 (0.012) [0.000] 0.062 (0.013) [0.000] – 

𝑏11 0.050 (0.013) [0.000] 0.065 (0.015) [0.000] – 

𝑅2 0.469 0.512 0.597 

𝜎𝑢 17.91 20.80 11.13 

𝑇 580 307 273 

𝑚 8 3 12 

𝑛 12 12 10 

In contrast, for the second sub-period beginning on 1st February 2021, �̂� = 0.164 (0.010), so that 

now an increase of 100 in hospital admissions eventually leads to just 16 further deaths (95% 

confidence interval (14, 18)). Moreover, only 69% of these deaths (11) occur within 14 days of 

admission to hospital. It would thus appear that, as the vaccination programme was rolled out along 

with other improvements in clinical practice, so the hospital death rate was more than halved with 

patients being kept alive for longer. 
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3. Modelling the relationship between Covid-19 cases and hospital admissions 

As well as the linkage from hospital admissions to deaths, there is also the prior link from testing 

positive (i.e., becoming infected) for Covid-19 to admission into hospital. This has become particularly 

important to analyse since the roll-out of the vaccination program in the U.K: is there evidence that 

vaccination has “broken the link between cases and admissions”, as has been stated several times by 

the government? To investigate whether this is indeed the case, we analyse English data on daily 

positive cases and hospital admissions from 1st September 2020 to 31st October 2021, as shown in 

Figure 5. Earlier data have been excluded both because of the limited extent of testing during the early 

months of the pandemic and the hiatus in cases and admissions during the summer months of 2020.  
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Figure 5. Positive cases and hospital admissions for England: 1st September 2020–31st 

October 2021. 

We first fit balanced growth models to the logarithms of hospital growth, 𝑔𝑥,𝑡, and case growth, 

𝑔𝑤,𝑡 = 𝑤𝑡 𝑊𝑡−1⁄ , where 𝑤𝑡 and 𝑊𝑡 are daily and cumulative cases, respectively. These logarithms are 

shown in Figure 6. From both clinical considerations and exploratory sequential testing a lag of 𝑘 =

14 was chosen, along with ℎ = 1. 

Estimates of the balanced growth Equation (9) are shown in Table 3 after the elimination of 

insignificant coefficients. Here 𝜎𝜂 > 0 so that, with both 𝜎𝜁 and 𝛾𝑡 estimated to be very small, ∇𝛿𝑡 ≈

휂𝑡, a driftless random walk. The consequent Δ𝑡 series, estimated under the assumption of balanced 

growth (which is questionable here since 휃 appears to be significantly negative: 휃̂ = −0.321 (0.064)), 

is shown in Figure 7, along with 95% confidence interval upper and lower bounds. These show that 

Δ𝑡 is estimated extremely precisely. The trend in Δ𝑡 values is generally upwards until the middle of 

February 2021, reaching a maximum of 0.12 (95% confidence interval (11, 13)) on 12th December 

2020 (i.e., an additional 120 hospital admissions result from an increase of 1000 positive test cases), 

after which it turns down, reaching a minimum of 0.02 (0.019, 0.021) on 21st July 2021 (20 additional 

admissions from an increase of 1000 cases), and was still around this value at the end of October. This 
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suggests that there is indeed evidence that the rollout of the vaccination program has had an impact on 

the relationship between cases and subsequent hospital admissions. 
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Figure 6. Logarithms of growth rates in daily cases and admissions in England: 1st 

September 2020–31st October 2021. 

Table 3. Estimates of (9) for daily positive tests and hospital admissions in England: 1st 

September 2020–31st October 2021; standard errors in parentheses ( ); prob-values in 

brackets [ ]. 

 value 

𝛽1 0.086 (0.024) [0.000] 

𝛽2 0 

𝛽3 0.108 (0.018) [0.000] 

𝛽4 0 

𝛽5 0.118 (0.025) [0.000] 

𝛽6 0.150 (0.029) [0.000] 

𝛽7 0.094 (0.029) [0.001] 

𝛽8 0.053 (0.023) [0.020] 

𝛽9 0.096 (0.020) [0.000] 

𝛽10 0 

𝛽11 0 

𝛽12 0.045 (0.025) [0.073] 

𝛽13 0.067 (0.031) [0.031] 

𝛽14 0.183 (0.028) [0.000] 
𝜎𝜂 0.046 (0.004) [0.000] 
𝜎𝜁  0.001 (0.0006) [0.061] 

𝜎𝜀 0.054 (0.003) [0.000] 

휃 −0.321 (0.064) [0.000] 
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Figure 7. Estimated response Δ𝑡 for hospital admissions in England, 11th September 2020 

–31st October 2021, with 95% confidence interval lower bounds. 

ARDL/ECM models were fitted to the sub-periods 1st September 2020–31st January 2021 and 1st 

February–31st October 2021, with the resulting estimates and statistics shown in Table 4. The estimate 

of the long-run parameter 𝑑 is 0.087 (0.006) in the early period but just 0.027 (0.001) in the later period, 

i.e., up to the end of January 2021 an increase of 1000 positive test cases ultimately led to 87 (95% 

confidence interval (75, 99)) additional hospital admissions, whereas from February such an increase 

led to only an additional 27 (95% confidence interval (25, 29)) admissions. The estimate of the speed 

of adjustment parameter, 𝑐, on the other hand, has remained almost the same across the two periods, 

just increasing from 0.103 to 0.118. Again, the fit of the second sub-period model is vastly superior to 

that of the first. 

The interim multipliers for admissions are plotted in Figure 8. In the period up to the end of 

January 2021, approximately 85% of hospital admissions occur within 28 days of a positive test. In 

contrast, for the second sub-period beginning on 1st February 2021, only 79% of these admissions 

occur within 28 days of a positive test. It would thus appear to be clear that, as the vaccination 

programme was rolled out, along with other improvements in medical practice, so fewer people were 

admitted to hospital. 
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Table 4. ECM estimates of the relationship between hospital admissions and cases; 

standard errors in parentheses ( ); prob-values in brackets [ ]. 

 9th September 2020–31st October 

2021   

9th September 2020–31st 

January 2021 

1st February 2021–31st  

October 2021 

𝑐 −0.010 (0.005) [0.071] −0.103 (0.020) [0.000] −0.118 (0.016) [0.000] 

𝑑 0.038 (0.014) [0.006] 0.087 (0.006) [0.000] 0.027 (0.001) [0.000] 

𝑎0 − − − 

𝑎1 −0.241 (0.035) [0.000] −0.198 (0.095) [0.038] −0.488 (0.049) [0.000] 

𝑎2 − − −0.236 (0.064) [0.000] 

𝑎3 −0.178 (0.066) [0.007] –0.287 (0.088) [0.001] −0.351 (0.086) [0.000] 

𝑎4 – −0.121 (0.068) [0.075] −0.117 (0.059) [0.050] 

𝑎5 − – – 

𝑎6 0.131 (0.031) [0.000] – − 

𝑎7 0.304 (0.046) [0.000] 0.294 (0.121) [0.017] 0.213 (0.061) [0.001] 

𝑎8 0.265 (0.024) [0.000] 0.254 (0.088) [0.005] 0.110 (0.057) [0.055] 

𝑎9 − −0.230 (0.081) [0.005] − 

𝑎10 0.128 (0.051) [0.013] – – 

𝑎11 0.115 (0.049) [0.020] – −0.129 (0.065) [0.050] 

𝑎12 −0.134 (0.037) [0.000] −0.234 (0.094) [0.014] 0.152 (0.049) [0.002] 

𝑏0 0.003 (0.000) [0.000] 0.005 (0.001) [0.001] 0.002 (0.001) [0.001] 

𝑏1 − −0.005 (0.002) [0.009] − 

𝑏2 – – – 

𝑏3 0.003 (0.001) [0.005] – –0.002 (0.001) [0.077] 

𝑏4 – – −0.002 (0.001) [0.003] 

𝑏5 0.004 (0.001) [0.000] − −0.002 (0.001) [0.020] 

𝑏6 0.005 (0.001) [0.008] − – 

𝑏7 0.004 (0.001) [0.003] − 0.002 (0.001) [0.016] 

𝑏8 0.005 (0.002) [0.004] 0.003 (0.001) [0.044] – 

𝑏9 0.002 ± 0.001 − – 

𝑏10 − − 0.002 (0.001) [0.089] 

𝑅2 0.445 0.442 0.628 

𝜎𝑢 72.71 112.37 33.18 

𝑇 419 146 273 

𝑚 13 13 13 

𝑛 10 9 11 
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Figure 8. Time paths of interim multipliers for admissions in England calculated from ECMs. 

4. Conclusions 

Given the “causal structure” inherent in the relationship between cases, hospital admissions and 

deaths, the models in Sections 2 and 3 may be linked together. If the equilibrium responses from the 

balanced growth models are now denoted Δ𝑦,𝑡 and Δ𝑥,𝑡, to use an obvious extension of notation, then 

the response of deaths to an increase in cases is given by the product Δ𝑦,𝑡 × Δ𝑥,𝑡−7  to ensure an 

appropriate timing match-up, and this series is shown in Figure 9.3 This product reached a maximum 

of 33 deaths per thousand cases on 18th December 2020 (95% confidence interval (28, 38)) and by the 

end of October 2021 had declined to just 3 (2, 4). 

Similarly, denoting 𝑑𝑥 and 𝑑𝑦 as the total multipliers from the ARDL/ECM models, with 𝑑𝑥,𝑙 and 

𝑑𝑦,𝑙 being the accompanying interim multipliers, then the products 𝑑𝑥 × 𝑑𝑦 and 𝑑𝑥,𝑙 × 𝑑𝑦,𝑙 provide the 

total multiplier and set of interim multipliers for the response of deaths to an increase in cases, these 

being shown for the two sub-periods in Figure 10. The total multipliers are 28 deaths per thousand 

cases (95% confidence interval (18, 38)) for the first sub-period and 4 (3, 5) for the second, both 

consistent with the balanced growth estimates. 

Both modelling approaches provide a consistent story: as clinical practice has evolved and the 

vaccination program rolled out, so there has been a substantial decline in hospital admissions and 

subsequent deaths for a given level of infection. Are there grounds for preferring one approach over 

the other? Each have their advantages and disadvantages.  

 

 
3Using (7) we have 𝑦𝑡 = ∆𝑦,𝑡𝑥𝑡−7 and 𝑥𝑡 = ∆𝑥,𝑡𝑤𝑡−14, so that 𝑦𝑡 = ∆𝑦,𝑡∆𝑥,𝑡−7𝑤𝑡−21. 
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Figure 9. Estimated response Δ𝑦,𝑡 × Δ𝑥,𝑡−7 expressed as deaths per thousand cases, with 

95% confidence interval upper and lower bounds. 
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Figure 10. Time paths of interim multipliers 𝑑𝑥,𝑙 × 𝑑𝑦,𝑙  with total multipliers 𝑑𝑥 × 𝑑𝑦 , 

expressed as deaths per thousand cases. 

Balanced growth models have the advantage of providing a time varying equilibrium response 

which can therefore be tracked through time. They have the disadvantages of requiring balanced 

growth to hold, which might not be the case, and a fixed adjustment period dependent on the setting 

of the lag 𝑘. Their specification is also very precise with little flexibility in the setup and, moreover, 

estimation requires specialised software. ARDL/ECM models, on the other hand, have greater 



54 

 

National Accounting Review                 Volume 4, Issue 1, 38–55. 

flexibility in their specification and may be estimated by routine regression software. The adjustment 

to the long-rum response is freely estimated rather than fixed but the multiplier is not time varying, 

with evolving relationships having to be investigated through fitting the models over sub-periods of 

the data, which have to be selected by the investigator or by using break-point procedures and tests, 

such as those developed by Bai and Perron (1998). Given the limited time period available and the 

clear waves in the data, we have chosen not to follow this latter route here. However, as more data 

becomes available, and particularly given the more recent wave of the pandemic associated with the 

omicron variant, formal testing for break-points would be a useful extension of the ECM modelling 

approach. Given these competing benefits and drawbacks, it would thus seem sensible to keep an open 

mind and to use both models to track the behaviour of key Covid variables through time. 

While this paper has focused on the relationship between infections, hospital admissions and 

deaths in England for the period of the pandemic up to the end of October 2021, it is clear that the 

models may be used for similar data from other countries and time periods. They may also be used for 

data on infections, admissions and deaths disaggregated into age groups and regions, if such data are 

available, as it is for England, where such research is ongoing. 
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