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Abstract: China’s manufacturing industry has registered phenomenal development in the past 40
years, which has become the most remarkable aspect of China’s economic miracle. In this article, we
interrogate labor productivity growth mechanisms in that industry during 1998–2007. Specifically, we
assess the relative importance of efficiency, technology, and capital deepening changes in the growth
process. Methodologically, we employ a nonparametric tripartite decomposition while controlling
for technology and ownership heterogeneity using the concept of metafrontier. We find that most of
the productivity growth was driven by capital deepening (125.60%), followed by technology progress
(62.47%), and a small fraction (11.23%) was due to efficiency improvement. We also demonstrate strong
productivity convergence in China’s manufacturing industry, which was driven by technology change
and capital deepening effects. These results suggest that China’s overall industry development benefited
from market mechanism in resource allocation and technology diffusion, but further improvement is
possible. Finally, we point out that China’s industry can still benefit from capital accumulation in the
near future but long-term productivity growth must be based on technology progress.
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1. Introduction

China has achieved phenomenal growth in its industrial sector since the 1980s. From 1980 to 2017,
total industrial value added increased from 603.9 billion to 26.7 trillion RMB, or 43.2 times.1 Nowadays,
the country accounts for 20.9% of the world’s industrial value added, and is the top producer of 220

1Source: National Bureau of Statistics. Industrial value added is in 2015 constant price.
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industrial products.2 The strong industry explains why China is often called the factory of the world.
Against the backdrop of China’s great leap in industrial development was vibrant productivity growth.

From 1980 to 2017, the labor productivity in China’s industry increased 22 times and reached $21,567
per worker, which was far higher than that of middle-income countries ($16,905 per worker) but slightly
lower than that of upper-middle-income countries ($23,427 per worker).3 Although a huge productivity
gap still exists between China and developed economies, data show that China is catching up rapidly.4

Clearly, labor productivity growth is the key to understanding China’s industrial development.
In this article, we interrogate the mechanism of labor productivity growth in China’s manufacturing

industry. We address two research questions. First, what are the driving forces of labor productivity
growth in China’s manufacturing industry? Second, does China’s manufacturing industry exhibit
productivity convergence that is suggested by the neoclassical growth theory and empirical evidence
(Barro and Sala-i-Martin, 1991; Baumol, 1986)? Unfortunately, answers provided by the extant literature
are usually mixed, and sometimes contradictory. Growth decomposition has been widely applied to
investigate China’s regional economic growth, but not its industry (Badunenko and Tochkov, 2010;
Henderson et al., 2007; Unel and Zebregs, 2009).5 These studies usually identify resource accumulation
as the predominant source of labor productivity growth. They also report divergence among Chinese
regions. Regressional analyses using industry data often show a greater role of total factor productivity
(TFP) than factor accumulation in explaining industrial output growth (Brandt et al., 2012; Chen et
al., 2011). These studies also show convergence of TFP among ownership types or across regions
(Berkowitz et al., 2017; Deng and Jefferson, 2011; Jefferson et al., 2008; Lemoine et al., 2015). By
applying the growth decomposition method to analyzing China’s manufacturing industry, we fill the gap
in the literature and we are able to synthesize the seemingly conflicting results from a new perspective.

Methodologically, we follow Kumar and Russell (2002) and decompose labor productivity growth
into efficiency change, technology change, and input change (capital deepening) effects. We employ
data envelopment analysis (DEA) to estimate the potential outputs of a given technology. DEA, first
presented by Charnes et al. (1978) and Banker et al. (1984), is an attractive modeling technique because,
contrary to parametric methods, it does not assume a priori any functional form for the technology.
These assumptions are usually restrictive and not always innocuous.6 As another desirable feature,
DEA enables us to easily decompose TFP growth into efficiency change and technology change (Bos et
al., 2010a). Such a treatment is critical for the various growth decompositions seen in the literature,
including Färe et al. (1994), Kumar and Russell (2002), Henderson and Russell (2005), Badunenko and
Romero-Ávila (2013), Walheer (2018c), and Walheer (2019b).

A distinguishing feature of our study is the incorporation of technology heterogeneity into the analysis.
Theories postulate that economic units choose technologies that match their factor combinations,
resulting in technology clubs (Atkinson and Stiglitz, 1969; Basu and Weil, 1998). Empirically, it has
been shown that technology heterogeneity exists across sectors (Bos et al., 2010a; Molinos-Senante et
al., 2017; Walheer, 2016b, 2018a, 2018b, 2019c), regions (Bos et al., 2010b; Filippetti and Peyrache,
2015; Walheer, 2016b, 2018c, 2019a), and ownership types (Badunenko and Kumbhakar, 2017;

2Source: World Bank Open Data and http://finance.people.com.cn/n1/2019/0920/c1004-31365026.html.
3Source: National Bureau of Statistics and World Bank Open Data.
4Over the 1997–2017 period, the growth rate of labor productivity was 8.1% per annum in China, compared with 1.9% in the European

Union, 2.2% in Japan, and 1.7% in the United States. Data source: World Bank Open Data and author’s own calculations.
5Walheer (2019b) is an exception, but this study is restricted to a limited number of industrial parks.
6See, for example, discussions in Hsieh and Klenow (2009) about the impact of the Cobb-Douglas assumption on their results.
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Elyasiani and Rezvanian, 2002). In the Chinese context, Chen et al. (2011) and Ding et al. (2016)
highlight sectoral difference in China’s industry, whereas Chen and Guariglia (2013) and Guariglia et
al. (2011) emphasize differences across ownership types.

As the second contribution of our study, we incorporate two levels of technology heterogeneity into
the DEA model: one between technology groups and another between ownership types. This is done
by employing the concept of metafrontier developed by Battese and Rao (2002).7 Our treatment is
similar to those of He and Walheer (2019) and Walheer and He (2018). In growth decomposition, the
introduction of the metafrontier implies a further decomposition of each component into a group effect
and heterogeneity component(s). The application of metafrontier techniques in growth decomposition
has received increasing attention in recent years. Examples include Fei and Lin (2016), Filippetti
and Peyrache (2015), Molinos-Senante et al. (2017), Walheer (2019a), and Zhang and Choi (2013).
However, none of these applications considers more than one level of heterogeneity as we do.

Our analyses reveal strong labor productivity growth in China’s manufacturing industry over 1998–
2007. Controlling for technology heterogeneity, we find that most of the productivity growth was
driven by capital deepening (125.60%), followed by technology progress (62.47%). The contribution of
efficiency change was moderate (11.23%) because the room for efficiency improvement was already
small in 1998. We find strong convergence of labor productivity across ownership types and among
medium- and high-tech groups. We show that convergence was driven by technology change and capital
deepening. We demonstrate the importance of heterogeneity components in explaining variations in
the decomposition when using different reference technologies. We then link our study to the recent
literature on China’s productivity growth and synthesize these findings. Finally, we discuss the policy
implications of our results.

The rest of this article is organized as follows. Section 2 introduces the methodology. The data
and summary statistics are shown in Section 3. In Section 4, we present our empirical findings, make
interpretations, and discuss their implications. Section 5 concludes the study.

2. Methodology

Our aim is to suggest a new decomposition of labor productivity growth when technology
heterogeneity between entities (e.g., firms, regions, sectors) is taken into consideration. We first define
the groups and the technologies and introduce our concepts of technical efficiency and technology gap.
Next, we explain how to decompose labor productivity into several parts when entities belong to
different technologies. Finally, we show how our different indicators can be computed by means of
linear programs.

2.1. Groups and technologies

We assume that we observe decision making units (DMUs) from I groups where each group is
composed of Ki types, for i = 1, . . . , I during T time periods.8 Also, we consider that DMUs use P
production factors, captured by xt ∈ RP

+, to produce one output, captured by yt ∈ R+, at time t = 1, . . . ,T .

7The concept of metafrontier is based on the notion of meta-production set by Hayami and Ruttan (1970). We refer the reader to
Battese et al. (2004) and O’Donnell et al. (2008) for more details of the metafrontier methodology.

8In our empirical study, a DMU comprises all firms of a certain ownership type within an industrial sector. These DMUs are first
categorized into three technology groups, and then divided into three ownership types.
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We define the technology in terms of output requirement sets. Given our setting, we distinguish
between three levels: a type within a group, a group, and all groups. The output requirement sets are
given as follows:

Pt
ik(x) = {y | x can produce y in type k of group i at time t}, (1)

Pt
i(x) = {y | x can produce y in group i at time t}, (2)

Pt(x) = {y | x can produce y at time t}. (3)

We label Pt
ik(x) the group-type output requirement set, Pt

i(x) the group-specific output requirement
set, and Pt(x) the overall output requirement set. These sets contain the output quantities that can be
produced by the inputs x at time t at different levels. They are related as follows:

Pt
i(x) = Pt

i1(x) ∪ · · · ∪ Pt
iKi

(x), for i = 1, . . . , I, (4)
Pt(x) = Pt

1(x) ∪ · · · ∪ Pt
I(x). (5)

A first implication is the following: Pt
ik(x) ⊆ Pt

i(x) ⊆ Pt(x), for all i, k, and t. Next, Pt
i(x) can be

viewed as the envelopment of Pt
ik(x), and Pt(x) as the envelopment of Pt

i(x). At this point, we remark
that the envelopment is, generally, non-convex (Afsharian and Podinovski, 2008; Huang et al., 2013;
Kerstens et al., 2019; Walheer, 2018a). This will directly impact the computation (see Section 2.5). This
also implies the following:

Pt
i(x) =

{
Pt

11(x) ∪ · · · ∪ Pt
1K1

(x)
}
∪ · · · ∪

{
Pt

I1(x) ∪ · · · ∪ Pt
IKI

(x)
}
. (6)

Thus, Pt(x) represents the meta technology set, i.e., when considering all groups (and thus all types) at
time t.

2.2. Inefficiency and technology gap

We define inefficiency as the ability of DMUs to increase their output when keeping their inputs
constant. To formally define (in)efficiency, we introduce the concept of potential outputs. Intuitively,
potential outputs refer to the maximal output expansion with respect to the frontier of the chosen output
requirement set. Given our technology heterogeneity context, we have three different potential outputs:

yt
ik(x) = max

{
y | y ∈ Pt

ik(x)
}
, (7)

yt
i(x) = max

{
y | y ∈ Pt

i(x)
}
, (8)

yt(x) = max
{
y | y ∈ Pt(x)

}
. (9)

Intuitively, actual output cannot exceed the potential values, which implies that yt
ik (x) ≥ y, yt

i (x) ≥ y,
and yt (x) ≥ y for any DMU of type k in group i whose input-output mix is (x, y) at time t. If the
actual output coincides with the potential output, the output is at its optimal value (with respect to the
reference technology). Moreover, we have, by construction, that yt(x) ≥ yt

i(x) ≥ yt
ik(x) for any x. In

words, potential output with respect to the group-type technology cannot exceed the potential output
with respect to the group-specific technology, which cannot exceed the potential output with respect
to the overall technology. Intuitively, this inequality reflects that the group-type technology sets are
included in the group-specific technology sets, which are themselves included in the overall technology
set.
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A well-established indicator to capture the extent to which output can be raised is the Debreu–Farrell
technical efficiency ratio (Debreu, 1951; Farrell, 1957). For any DMU of type k in group i whose
input-output mix is (x, y) at time t, we define:

et
ik (x, y) =

y
yt

ik (x)
, (10)

et
i (x, y) =

y
yt

i (x)
, (11)

et (x, y) =
y

yt (x)
. (12)

Depending on the reference technology, these three ratios provide three different levels of technical
efficiency: et

ik (x, y) is the group-type technical efficiency, which measures the gap between the actual
output y and the potential output of the technology that is available to type k in group i at time t; et

i (x, y)
is the group-specific technical efficiency, which is relative to the potential output of the group-specific
technology; and et (x, y) is the overall technical efficiency, which is with reference to the potential output
of the overall technology. As discussed previously, the actual output cannot exceed potential outputs, so
the technical efficiency ratios are no greater than unity. When the ratio equals one, the output is at its
maximal value with respect to the reference technology set. When the ratio is smaller than one, output
can, in principle, be increased without increasing the production factors. Moreover, given the ranking
between the potential outputs discussed previously, we also have et

ik (x, y) ≥ et
i (x, y) ≥ et (x, y).

Next, we construct two measurements for the technology difference between the hierarchy levels.
For any input mix x, we define:

gt
ik(x) =

yt
ik(x)

yt
i(x)

, (13)

gt
i(x) =

yt
i(x)

yt(x)
. (14)

gt
ik(x) is the group-type technology gap and gt

i(x) is the group-specific technology gap at time t. That is,
gt

ik(x) captures the technology gap between the technology that is specific to type k and the technology
that is available to group i, whereas gt

i(x) captures the technology gap between the technology that is
specific to group i and the overall technology. Both ratios are smaller than one, which can be seen from
the relationship between the potential outputs, i.e., yt(x) ≥ yt

i(x) ≥ yt
ik(x). A value of one reveals no

technology gap, while a smaller value implies more gaps.
Using our two gap indicators, we can obtain a useful decomposition of potential output with respect

to the group-type technology as follows:

yt
ik(x) = gt

ik(x) × gt
i(x) × yt(x). (15)

Intuitively, there are two gaps between the potential output of the group-type technology yt
ik(x) and

that of the overall technology yt(x): the group-type and the group-specific technology gaps. This is a
direct implication of the three hierarchy levels.

Finally, we notice that the previous equation can be rewritten in terms of efficiency measurements. It
suffices to evaluate (15) at x, then divide both sides by the actual output y:

et (x, y) = gt
ik (x) × gt

i (x) × et
ik (x, y) . (16)
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That is, for any observed DMU, the overall technical efficiency is generally lower than the group-type
technical efficiency, because of the two technology gaps between the hierarchy levels.

2.3. Productivity growth decomposition

Kumar and Russell (2002) suggest a useful decomposition for productivity growth that assumes a
unified technology. To start with, suppose that the input-output mix of a DMU is

(
xb, yb

)
at time b and

(xc, yc) at time c. The ratio of the actual outputs can be expressed as the product of two ratios: that of
technical efficiency ratios and that of potential outputs. That is, we have:9

yc

yb =
ec (xc, yc)
eb (

xb, yb) yc (xc)
yb (

xb) . (17)

The next step is to introduce the counterfactual potential output yc
(
xb

)
, which is the maximum output

for the input mix xb given the technology of time c. Multiplying the right hand side of (17) by yc(xb)
yc(xb) , we

get

yc

yb =
ec (xc, yc)
eb (

xb, yb) yc
(
xb

)
yb (

xb) yc (xc)
yc (xb) = EFF × TECHb × KACCc. (18)

Of the three terms on the right hand side, EFF is the efficiency change when the DMU changes its
input-output mix from

(
xb, yb

)
to (xc, yc). TECHb measures the extent to which the production frontier

shifts outward or inward when evaluated at xb. It captures technology change: TECHb > 1 means
technology progression and TECHb < 1 means technology regression. KACCc measures the change of
the potential output due to the change of the input mix if the technology is fixed at time c. If x is capital
per worker and y is output per worker, as in our case, KACCc captures the effect of capital deepening.
Obviously, both TECHb and KACCc depend on the chosen reference counterfactual yc

(
xb

)
. If we use

the other counterfactual yb (xc), the decomposition becomes

yc

yb =
ec (xc, yc)
eb (

xb, yb) yc (xc)
yb (xc)

yb (
xc

n
)

yb (
xb) = EFF × TECHc × KACCb, (18′)

where TECHc is the technology change effect evaluated at xc and KACCb is the input change effect if
the technology is fixed at time b.

To avoid arbitrary selection of the counterfactual, Kumar and Russell (2002) adopt the “Fisher ideal
index,” which is the geometric mean of (18) and (18′). That is,

yc

yb = EFF ×
√

TECHb × TECHc ×

√
KACCb × KACCc = EFF × TECH × KACC. (19)

2.4. Heterogeneity components

In light of the technology heterogeneity between groups and types, the conventional growth
decomposition (19) is incomplete. In general, the efficiency change, or technology change, or input
change effect will be different when they are evaluated using the group-type concepts. The discrepancy
arises because the technology gaps in (15) and (16) will also change following the change of the

9The subscripts i and k disappear because we assume a unified technology for the moment.
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production sets and the change of the input-output mix. Consequently, each of these effects can be
further decomposed into a group-type counterpart and two heterogeneity components that capture the
change of technology gaps (Filippetti and Peyrache, 2015; Walheer, 2019a).

Suppose we observe a DMU of type k in group i. Let’s denote its input-output mix by
(
xt, yt), where

t ∈ {b, c}. Using (16), we can decompose EFF in (18) as follows:

EFF =
ec

ik (xc, yc)

eb
ik

(
xb, yb) gc

ik (xc)

gb
ik

(
xb) gc

i (xc)

gb
i
(
xb) = EFFik × GEFFik × GEFFi. (20)

The first term, EFFik, is the true efficiency change that is based on the group-type technical efficiency.
The second term, GEFFik, is the measured change of the technology gap between the group-type
frontier and the group-specific frontier, whereas GEFFi is the measured change of the technology gap
between the group-specific frontier and the metafrontier. The latter two terms summarize the change
of the overall efficiency due to varying technology gaps between the hierarchy levels. We call them
heterogeneity components.

Next, we disentangle the overall technology change, represented by TECHb in (18), into the group-
type technology change and heterogeneity components. Using (15), we have

TECHb =
yc

ik

(
xb

)
yb

ik

(
xb) gb

ik

(
xb

)
gc

ik

(
xb) gb

i

(
xb

)
gc

i
(
xb) = TECHb

ik × GTECHb
ik × GTECHb

i . (21)

The first term, TECHb
ik, is the change of the group-type technology evaluated at the input mix observed

at time b. The next two terms measure the changes of the technology gaps between the hierarchy levels:
GTECHb

ik for the gap between the group-type frontier and the group-specific frontier whereas GTECHb
i

for the gap between the group-specific frontier and the metafrontier, both evaluated at xb. The caveat
is: the superscripts are in opposite orders in the expressions of the group-type technology change and
the heterogeneity components. Intuitively, there are two ways to achieve overall technology progress
(TECHb > 1): Either there is technology progress at the group-type level (TECHb

ik > 1), or the gaps
between the production frontiers in period c are larger than those in period b, i.e., gc

ik

(
xb

)
< gb

ik

(
xb

)
or

gc
i

(
xb

)
< gb

i

(
xb

)
. The latter statement is equivalent to GTECHb

ik > 1 or GTECHb
i > 1.

In a similar manner, the overall input change effect KACCb in (18′) can be decomposed into the input
change effect of the group-type technology and two heterogeneity components. That is,

KACCb =
yb

ik (xc)

yb
ik

(
xb) gb

ik

(
xb

)
gb

ik (xc)

gb
i

(
xb

)
gb

i (xc)
= KACCb

ik × GKACCb
ik × GKACCb

i . (22)

The first term, KACCb
ik, is the input change effect evaluated with the group-type technology at time b.

The next two terms capture the changes of the technology gaps between the hierarchy levels due to the
change of the input mix, when the technologies are all fixed at time b. Conceptually, if input change
(e.g., capital deepening) increases the overall potential output (KACCb > 1), this can be achieved via
two separate channels. First, the potential output is increased at the group-type level (KACCb

ik > 1).
Second, even if the group-type potential output remains unchanged, as far as the technology gaps are
larger (smaller value) when evaluated at the new input mix (xc), the overall potential output increases.
This explains why xb and xc are placed in different positions in the expressions of KACCb

ik and the two
heterogeneity components.
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If we evaluate (21) at xc instead of xb, we end up with the decomposition of TECHc. Similarly, if we
use the technologies at time c to evaluate the potential outputs and technology gaps in (22), we obtain
the decomposition of KACCc. They are

TECHc = TECHc
ik × GTECHc

ik × GTECHc
i , (21′)

KACCc = KACCc
ik × GKACCc

ik × GKACCc
i . (22′)

With (20–22′), we obtain the following new decomposition:

yc

yb = (EFFik × GEFFik × GEFFi)

× (TECHik × GTECHik × GTECHi)

× (KACCik × GKACCik × GKACCi) . (23)

Decompositions (20–22′) consider two layers of heterogeneity. If we only consider the heterogeneity
between technology groups, we can define the group-specific efficiency change, technology change, and
input change effects as:

EFFi =
ec

i (xc, yc)

eb
i
(
xb, yb) =

ec
ik (xc, yc)

eb
ik

(
xb, yb) gc

ik (xc)

gb
ik

(
xb) , (24)

TECHb
i =

yc
i

(
xb

)
yb

i
(
xb) =

yc
ik

(
xb

)
yb

ik

(
xb) gb

ik

(
xb

)
gc

ik

(
xb) , (25)

KACCb
i =

yb
i (xc)

yb
i
(
xb) =

yb
ik (xc)

yb
ik

(
xb) gb

ik

(
xb

)
gb

ik (xc)
. (26)

It follows that

EFF = EFFi × GEFFi, (27)
TECHb = TECHb

i × GTECHb
i , (28)

KACCb = KACCb
i × GKACCb

i . (29)

The growth decomposition becomes

yc

yb = (EFFi × GEFFi) × (TECHi × GTECHi) × (KACCi × GKACCi) . (30)

2.5. Estimation

Assume that for two time periods b and c, we observe Nik DMUs of type k in group i, where
k = 1, . . . ,Ki and i = 1, . . . , I. For these data, it suffices to estimate the following potential output values
to define all our technical efficiency and technology gap ratios: yt2

ik

(
xt1

)
, yt2

i
(
xt1

)
, and yt2

(
xt1

)
, where

t1, t2 ∈ {b, c} and xt1 is the input mix of one of the Nik DMUs at time t1. Different methods could be used
at this stage. We prefer, given our context, to make use of a nonparametric estimation method. Indeed,
there is no guideline to define the technology (captured by output requirement sets) in the multi-group
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and multi-type context. Moreover, assuming a specific technology structure could bias the results of our
study.

As such, we estimate the potential outputs using a Data Envelopment Analysis (DEA)-based
methodology. DEA, introduced by Charnes et al. (1978), does not assume any functional form for the
technology, but rather reconstructs the technology using the data. Nevertheless, to avoid a trivial
reconstruction and to comply with the common practice, we impose some regularity conditions on the
technology.10 Clearly, stochastic methods could be used as an alternative at this stage, when a
parametric form is specified (Amsler et al., 2017).

With DEA, the three potential outputs can be obtained by means of linear programs. Let us start
with the group-type potential output. For each firm n of type k in group i, let’s denote its input-ouput
mix at time t by

(
xt

ikn, y
t
ikn

)
. For any input mix x, the group-type potential output yt

ik(x) is obtained using
the following linear program:

yt
ik(x) = max

λ1,...,λNik

y

(C-1) y ≤
Nik∑
n=1

λnyt
ikn,

(C-2) x ≥
Nik∑
n=1

λnxt
ikn,

(C-3)
Nik∑
n=1

λn = 1,

(C-4) ∀n = 1, . . . ,Nik : λn ≥ 0,
(C-5) y ≥ 0.

(31)

The other two potential outputs are iteratively estimated as

yt
i(x) = max

k∈{1,...,Ki}
yt

ik(x), (32)

yt(x) = max
i∈{1,...,I}

yt
i(x). (33)

We notice that the production frontiers constructed from yt
i(x) and yt(x) are non-convex in general

(Afsharian and Podinovski, 2008). These estimators have to be interpreted as their theoretical
counterparts.

As a final remark, we point out that, in general, linear programs are very sensitive to the presence of
outliers. Indeed, all the peers are used when computing potential outputs. Fortunately, it is possible
to make the linear programs robust to this issue. Well-established methods, discussed, for example,
in Daraio and Simar (2007), are the order-m (where m can be viewed as a trimming parameter), and
the order-α (analogous to traditional quantile functions) procedures. In words, these procedures use
sub-samples of the observations to compute the potential outputs in the linear programs. As a result, the
estimates are less sensitive to potential issues, i.e., more robust.

10In particular, we assume that the output-requirement sets satisfy free disposal of outputs, and are compact (Färe and Primont, 1995).
Also, refer to O’Donnell et al. (2008) and Huang et al. (2013) for more detail about the estimation of technology gap ratios. Finally, we
point out that imposing regularity conditions is weaker than relying on a parametric specification for the technology/production function.
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3. Data and descriptive statistics

Our study uses the China Industry Survey (CIS) dataset, which is a firm-level dataset prepared by the
National Bureau of Statistics of China. It comprises more than 555,000 distinct firms and spans the
years 1998–2007, providing over two million observations. The CIS dataset provides rich information
about each firm, including industrial classification, ownership structure, and inputs and outputs. Because
of its comprehensiveness and wide coverage, the CIS dataset is highly visible among recent studies on
China’s industry (Brandt et al., 2012; Chen and Guariglia , 2013; Hsieh and Klenow, 2009; Yu, 2015).

Considering technology heterogeneity, we divide the sample into industrial sectors and then by
ownership types. In compliance with the national standard of economic classification (GB/T 4754),
each firm in the CIS dataset receives a four-digit industry classification code, with which we define
30 sectors. On the basis of the classification of technology intensities made by the Organization for
Economic Cooperation and Development (OECD), we re-group the sectors into three technology groups:
low-tech, medium-tech, and high-tech.11 The industrial sectors and their technology classification are
presented in Table S1 of the supplementary material. The CIS dataset defines 29 registration types based
on ownership and organization structure. To focus on the ownership structure, we summarize them into
three types: state-owned, private-owned, and foreign-owned.12 Because the registration information
is often ambiguous about control rights and sometimes misleading (Hsieh and Song, 2015), we adopt
a two-step procedure to determine a firm’s ownership type. In step one, a firm is defined as state-
(private-, or foreign-) owned if the majority of the registered capital is owned by the state and collective
organization (private persons, or foreigners). If step one is indeterminate, the registration type is used to
determine the ownership type as far as it is unambiguous about control rights.13

We consider a very simple setting with two production factors: capital and labor. The corresponding
output variable is industrial value added. This simple setting, which dates to Solow (1956), is highly
visible in empirical studies (Brandt et al., 2012; Chen and Guariglia , 2013; Kumar and Russell, 2002).
Although the CIS dataset provides information on labor input, capital input and value add are reported
in nominal values. We follow the procedure of Brandt et al. (2012) to convert capital stock from original
purchasing prices to real values. We also use their sector-specific output deflator to convert value added
into real terms.14

After removing incomplete firm-level observations, we end up with 496,642 distinct firms and a total
of 1,862,703 observations. In Table 1, we present the summary statistics of the three ownership types
and the three technology groups for years 1998, 2003, and 2007.

The total firm numbers are 79.2–85.3% of those reported by the China Statistical Yearbook, whereas
the aggregate employment numbers are 73.9–80.8% of the yearbook values. These indicate good

11The OECD classification can be found at http://www.oecd.org/sti/ind/48350231.pdf. We remove art ware and other manufacturing
(code range 4211–4290) from the sample because the technology intensity of this sector is undefined. We also remove tobacco
manufacturing (code range 1610–1690) because this sector is dominated by state-owned firms. Both sectors are small compared to others.

12Many studies also define a fourth ownership type: collective ownership. Firms are collective-owned if they are under control of
collective organizations, such as government bureaus and communes. Therefore, collective ownership is conceptually similar to state
ownership. Empirically, collective- and state-owned firms are found to be similar in many aspects (Chen and Guariglia , 2013; Guariglia
et al., 2011; Walheer and He, 2018). To simplify our hierarchy structure, we merge collective ownership into state ownership.

13Firms registered as state-owned enterprises, state-owned partnerships, state-owned limited liability companies, collective enterprises,
and collective partnerships are defined as state-owned; firms registered as sole proprietorships, private partnerships, private limited liability
companies, and private joint-stock companies are defined as private-owned; firms registered as (wholly) foreign-owned are defined as
foreign-owned.

14We refer the reader to Brandt et al. (2014) for more detail.
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Table 1. Descriptive statistics by ownership type and technology intensity.
Year State Private Foreign Low-tech Medium-tech High-tech Aggregate

Firm number (percentages for sub categories)
1998 58.42 27.57 14.01 38.54 55.08 6.37 130668
2003 26.30 55.24 18.46 37.51 55.74 6.75 167461
2007 10.20 70.69 19.12 36.06 57.17 6.77 287312

Employment (percentages for sub categories)
1998 68.81 18.53 12.66 32.82 60.03 7.15 45789757
2003 38.72 37.54 23.74 35.70 54.85 9.46 45708566
2007 20.07 47.96 31.97 35.20 52.47 12.33 63599564

Capital per worker
1998 80.75 46.77 107.90 55.42 90.07 78.76 77.89
2003 132.96 63.00 108.31 65.18 122.97 107.14 100.84
2007 202.91 86.39 123.09 76.78 152.85 115.86 121.51

Value added per worker
1998 25.96 32.05 56.64 27.66 30.08 53.65 30.97
2003 64.04 60.04 92.41 48.94 74.53 115.57 69.27
2007 136.52 111.09 127.16 86.23 135.46 161.43 121.33

Units: persons for total employment and 1,000 RMB per person for capital per worker and value added per worker. We report sample
means for capital per worker and value added per worker.

coverage of our dataset despite the fact that we dropped two sectors. Judging by employment, the
share of state-owned firms declined rapidly from 68.8% to 20.1%, whereas that of private firms and
foreign-owned firms increased sharply. This dramatic change can be explained by China’s FDI-friendly
industrial policy after 1992 and the massive enterprise reform launched in 1997 (Hsieh and Song, 2015;
Zhang and Song, 2001). Although the majority of the firms are found in the low-tech and medium-tech
sectors, there has been a dramatic increase in the employment share of the high-tech group.

Overall, we observe substantial capital deepening in China’s manufacturing industry. The average
capital-labor ratio increased from 77,890 RMB per person to 121,510 RMB per person, i.e., a 56%
increase, yet this is not comparable to the increase in labor productivity, which is 292%. Capital
intensity and labor productivity are markedly different between ownership types and technology groups.
Foreign ownership, which was the most capital intensive in 1998, was overtaken by state ownership in
2007. Similarly, the productivity advantage of foreign ownership vanished in 2007. Capital deepening
was strong among medium- and high-tech firms, but to a much less extent for low-tech firms. The
productivity gap was reduced between low- and high-tech firms but increased for low-tech firms. Thus,
we observe productivity convergence across ownership types but mixed result between technology
groups.

Our formal analysis is based on aggregate data at the sector-ownership level. That is, all firms
belonging to an ownership type in a two-digit sector is aggregated into a single production unit. This
aggregation strategy is based on two considerations. First, DEA is sensitive to outliers and extreme
values. Because we observe very large and very small firms at the same time, a firm-level analysis
will impair the reliability of the entire set of estimates. Second, growth decomposition investigates the
performance change of DMUs over time, which requires a balanced panel. However, the CIS dataset is
highly unbalanced, with unusually high entry/exit rates in certain years (Brandt et al., 2014). Therefore,
aggregation is a necessary strategy to overcome this data problem. As we have 27 two-digit sectors and
three ownership types, we end up with a total of 81 production units.
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4. Application

We investigate the sources of labor productivity growth in China’s manufacturing industry, while
distinguishing between different technology groups and ownership types. In Section 4.1, we first report
the labor productivity growth for different technology groups and ownership types and demonstrate
unconditional convergence. Then, we present the tripartite decomposition with reference to different
technology concepts and highlight the role of heterogeneity components in synthesizing these results. It
is shown that whether we consider technology heterogeneity or not has a large impact on the estimated
effects and may change the convergence patterns of the individual effects. These results serve as the
basis for the discussion in Section 4.2, where we link our results to the findings in the literature and
discuss policy implications.

4.1. Results

Productivity convergence To take a first look at the growth pattern, we report the average labor
productivity in 1998 and 2007 as well as the average labor productivity growth rate in Table 2.15

Table 2. Labor productivity growth per ownership and technology group.

Technology intensity Ownership Labor productivity Labor productivity Labor productivity
1998 2007 growth

low

state 25.41 104.48 309.69
private 31.32 93.96 197.93
foreign 52.87 106.91 91.43

all 36.53 101.78 199.68

medium

state 29.34 134.81 387.67
private 35.37 127.13 270.50
foreign 66.39 190.30 179.22

all 43.70 150.75 279.13

high

state 34.03 124.13 326.86
private 49.74 153.02 236.81
foreign 80.78 184.99 126.06

all 54.85 154.05 229.91

all

state 28.26 121.27 349.14
private 35.32 116.49 237.19
foreign 62.48 155.74 137.55

all 42.02 131.17 241.29

Units: 1,000 RMB per person for labor productivity and percent for productivity growth. We report the cumulative growth rates over
1998–2007, i.e.,

(
y2007/y1998 − 1

)
× 100%. We average over all production units in the corresponding category to obtain these values.

Judging by the overall average, the labor productivity of China’s manufacturing industry grew
241.29% over the 1998–2007 period. We observe a clear pattern of labor productivity catching up
between ownership types. In 1998, within each technology group and on average, foreign ownership
had the absolute advantage in labor productivity, whereas state ownership was the least productive.
Although all three ownership types experienced phenomenal productivity growth, state ownership was
the clear winner in terms of speed, followed by private ownership. Eventually, the productivity gap
almost vanished within the low-tech group, and dwindled substantially for the other two technology
groups. Remarkably in 2007, with the exception of the high-tech group, state ownership outperformed
private ownership on all grounds. By then, foreign ownership was still the leader, but the productivity

15The values for all 81 production units are reported in Table S2 of the supplementary material.
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advantage had been substantially reduced.
In 1998, according to the average numbers, the high-tech group was the most productive and the

low-tech group the least. Over 1998–2007, labor productivity growth was much higher for the medium-
tech group than the high-tech group. As a result, the productivity gap between the medium- and
high-tech groups virtually disappeared in 2007, although the latter maintained their leading position.
The productivity growth of the low-tech group, however, was the lowest among the three technology
groups.

The above comments reveal convergence of labor productivity between ownership types. They also
suggest convergence between the medium- and high-tech groups, but divergence between the low-tech
group and the rest of the industry. There remains to establish the overall growth pattern when pooling
the data together. Following Kumar and Russell (2002), Henderson and Russell (2005), and Walheer
(2018c), we plot the cumulative growth rate of labor productivity (in percent) against labor productivity
in 1998 (in 1,000 RMB per person) along with the GLS regression line for all 81 production units in
Figure 1. The t-value for the slope coefficient is also displayed.
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Figure 1. Labor productivity growth versus labor productivity in 1998.

Figure 1 clearly indicates convergence of labor productivity in China’s manufacturing industry. That
is, in addition to convergence among ownership types, we demonstrate that convergence also holds when
the industry is further divided into sectors within ownership types, i.e., when considering heterogeneity
in the sectoral dimension. The latter result has never been documented in the literature. In light of the
sluggish productivity growth in the low-tech group, our result also shows that the converging force
between ownership types dominated the divergent force of the low-tech group.

Efficiency change Our next step is to identify the driving force of the convergence pattern. In Table
3, we present the efficiency change effect with reference to different technology concepts: the meta
technology (EFF), which assumes the same technology for all production units; the group-specific
technologies (EFFi), which assume heterogeneity across technology groups but not over ownership
types; and the group-type technologies (EFFik), which assume full heterogeneity. We also present the
heterogeneity components in (20), which are GEFFi and GEFFik.16 Next, in Figure 2 we plot the three

16The full results for all 81 production units are reported in Table S3 of the supplementary material.
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efficiency change effects (in percent) against labor productivity in 1998 (in 1,000 RMB per person) for
all 81 production units and report the GLS t-values for the slope coefficients.

Table 3. Growth decomposition: the efficiency change effect.
Technology Ownership y1998 EFF EFFi EFFik GEFFi GEFFikintensity

low

state 25.41 36.48 26.01 -3.89 8.09 32.64
private 31.32 42.53 21.57 13.73 16.83 7.58
foreign 52.87 12.51 11.51 7.54 2.48 4.88

all 36.53 30.51 19.69 5.79 9.13 15.03

medium

state 29.34 15.27 9.13 0.84 4.45 8.08
private 35.37 53.83 21.56 10.28 28.41 13.01
foreign 66.39 33.45 31.52 30.41 2.57 1.44

all 43.70 34.18 20.73 13.84 11.81 7.51

high

state 34.03 77.01 55.62 39.61 9.13 17.58
private 49.74 26.54 20.00 20.00 4.96 0.00
foreign 80.78 10.92 9.61 0.00 1.01 9.61

all 54.85 38.15 28.41 19.87 5.03 9.06

all

state 28.26 30.77 21.17 3.22 6.45 19.14
private 35.32 46.19 21.39 12.76 21.09 9.35
foreign 62.48 22.42 20.93 17.72 2.36 3.75

all 42.02 33.13 21.16 11.23 9.97 10.75

Note: y1998 represents output per worker in 1998 (unit: 1,000 RMB per person). EFF and related variables are evaluated over the

1998–2007 period and converted into cumulative growth rates (unit: percent). That is, EFF =

(
e2007(x2007 ,y2007)
e1998(x1998 ,y1998) − 1

)
× 100%, and

similarly for the others. We average over all production units in the corresponding category to obtain these values.

Judging by EFFik, the overall efficiency change is quite small (11.23%), indicating sluggish efficiency
improvement when the production units are benchmarked against the group-type frontiers. Private firms
improved their technical efficiency in all three technology groups. Foreign-owned firms improved their
efficiency strongly in the medium-tech group but to a less extent in the low-tech group. Overall, the
efficiency improvement by these two ownership types were moderate. For state ownership, efficiency
improvement is only seen in the high-tech group and very weak in average.

At this stage, we want to investigate why efficiency change was generally weak, and especially so
for state ownership. We offer two explanations. First, if the efficiency levels were already high in 1998,
then we cannot expect any strong improvement afterwards. Second, poor initial efficiency level could
coexist with weak efficiency change. To find out which argument is true, we present the efficiency levels
in Table 4.

The figures clearly support the first explanation. In almost all categories, EFFik is large in Table 3
only if e1998

ik is relatively low in Table 4. Note that the average efficiency level for state ownership was
already 0.912 in 1998, which leaves little room for further improvement. This explains why efficiency
change was particularly low for state ownership. It is also clear that the efficiency levels of most
categories were quite close to unity in 2007. Thus, future efficiency improvement is even more difficult.
The second explanation only works for state ownership in the low-tech group, for which the efficiency
level was low in 1998, and the subsequent efficiency change negative.

The three measures of efficiency change are linked by the heterogeneity components GEFFik and
GEFFi through (20). As we explained there, GEFFik measures the extent to which the observed
technology gap between the production frontiers of the ownership (lower level) and the technology
group (upper level) has closed up, whereas GEFFi measures the gap-closing rate between the group
frontier (low level) and the meta frontier (upper level). Stronger technology progress at the lower level
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(a) EFF versus y1998.
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(b) EFFi versus y1998.

t = 0.19

-5
0

0
50

10
0

15
0

C
ha

ng
e 

in
 e

ffi
ci

en
cy

20 40 60 80 100 120
Output per worker in 1998

(c) EFFik versus y1998.

Figure 2. Efficiency change versus labor productivity in 1998.

Table 4. Technical efficiency in 1998 and 2007.
Technology intensity Ownership e1998

ik e2007
ik

low

state 0.893 0.861
private 0.839 0.942
foreign 0.874 0.923

all 0.869 0.909

medium

state 0.950 0.951
private 0.914 0.991
foreign 0.764 0.942

all 0.876 0.961

high

state 0.818 0.997
private 0.827 0.975
foreign 1.000 1.000

all 0.882 0.991

all

state 0.912 0.919
private 0.874 0.969
foreign 0.835 0.940

all 0.874 0.943

Note: We average over all production units in the corresponding category to obtain these values.
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or favorable input change is needed to reduce these gaps.
The positive numbers of the heterogeneity components indicate industry wide gap-closing between

the production frontiers at different hierarchy levels. Consequently, the efficiency change effect becomes
much stronger when the production units are benchmarked against the group frontier (EFFi) or the meta
frontier (EFF). If measured by EFF, the average efficiency change (33.13%) is three times as large as
the average EFFik. We point out that the difference between these estimates should not be interpreted as
a bias. Instead, it reflects a difference in interpretation: If we use the meta frontier as the reference, then
technology gaps become part of the efficiency measure.

The result for GEFFik shows that state-ownership was able to substantially close up their technology
gaps with respect to the low- and high-tech group frontiers (large GEFFik). Thus, they receive much
higher scores in EFFi than EFFik in these groups and in general. The same is true for private ownership
of the medium-tech group. Next, when we consider GEFFi, we find that private ownership successfully
reduced the gap between the group frontier and the meta frontier in low- and medium-tech groups.
Consequently they score much higher in EFF than EFFi. The same is true of state ownership in the
high-tech group. Remarkably, the heterogeneity components are almost always the smallest for foreign
ownership.

When we contrast EFFik with y1998, a negative correlation is only seen in the high-tech group but
not in the others. Actually, they show a positive correlation when the figures are averaged at the
group level or by ownership. These observations explain Figure 2c: Efficiency change measured by
EFFik does not contribute to labor productivity convergence at all. The previous discussion shows that
categories with lower labor productivity in 1998 (i.e., state-low-tech, state-high-tech, private-low-tech,
and private-medium-tech) receive higher scores in the heterogeneity components, which boosts up their
efficiency change when the latter is measured by EFFi or EFF. Thus, the heterogeneity components
generate a permutation effect on EFFi and EFF: In almost all cases, private ownership beats foreign
ownership in efficiency change, and in three cases, state ownership also beats private ownership. These
explain why we observe significant convergence of efficiency change in Figures 2a and 2b. Clearly, the
reduced technology gaps of the low-productivity categories contribute to these convergence patterns.

In conclusion, when benchmarked against the group-type production frontiers, the efficiency change
was quite small in magnitude and barely contributed to labor productivity convergence. This happened
because the efficiency levels were already high in 1998. In reference to group frontiers or the meta
frontier, efficiency change becomes much larger and exhibits convergence. These are due to the shrinking
technology gaps between the hierarchy levels, which prevailed all categories but were unbalanced.

Technology change Next, we examine the role played by technology change. As above, in Table 5,
we first present our three measures of the technology change effect. They are the overall technology
change effect (TECH), which is benchmarked against the meta technology and ignores technology
heterogeneity, the group-specific technology change effect (TECHi), which is benchmarked against the
group-specific technologies and assumes heterogeneity between technology groups only, and the group-
type technology change effect (TECHik), which is benchmarked against the group-type technologies and
assumes full heterogeneity. There, we also report the heterogeneity components, which are GTECHi and
GTECHik.17 To assess the impact of technology change on labor productivity convergence, in Figure 3
we generate the scatter plots for the technology change measures (in percent) versus labor productivity

17The full results for all 81 production units are presented in Table S4 of the supplementary metarial.
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in 1998 (in 1,000 RMB per person) for all 81 production units. GLS regression lines and t-values are
shown therein.

Table 5. Growth decomposition: the technology change effect.
Technology Ownership y1998 TECH TECHi TECHik GTECHi GTECHikintensity

low

state 25.41 82.53 92.94 130.94 -3.36 -9.70
private 31.32 46.14 45.73 52.09 -0.24 -3.99
foreign 52.87 76.17 67.64 42.75 8.87 18.94

all 36.53 68.28 68.77 75.26 1.76 1.75

medium

state 29.34 61.23 45.18 66.91 8.56 -0.80
private 35.37 41.66 35.65 38.41 5.11 -0.24
foreign 66.39 89.25 77.93 66.11 5.73 7.42

all 43.70 64.05 52.92 57.14 6.46 2.13

high

state 34.03 51.82 57.39 48.70 -4.27 8.34
private 49.74 41.08 44.13 36.22 -2.05 6.24
foreign 80.78 30.41 30.77 30.88 -0.23 -0.09

all 54.85 41.10 44.10 38.60 -2.18 4.83

all

state 28.26 68.86 65.99 90.97 2.28 -3.41
private 35.32 43.42 40.70 43.74 2.13 -1.05
foreign 62.48 77.38 68.50 52.68 6.35 11.28

all 42.02 63.22 58.40 62.47 3.59 2.27

Note: y1998 represents output per worker in 1998 (unit: 1,000 RMB per person). TECH and related variables are evaluated over the

1998–2007 period and converted into cumulative growth rates (unit: percent). That is, TECH =

(√
y2007(x1998)
y1998(x1998)

y2007(x2007)
y1998(x2007) − 1

)
× 100%,

and similarly for the others. We average over all production units in the corresponding category to obtain these values.

The numbers reported for TECHik indicate strong technology progress in all technology groups and
for all ownership types. According to the average in the last row, labor productivity grew 62.47% as a
result of pure technology progress, which originated from the “bottom” of the technology hierarchy.
Note that this effect is 4.5 times stronger than that of efficiency change identified in Table 3, when both
concepts are defined with reference to the group-type production frontiers. Distinguishing between
ownerships, we find that technology progress was much stronger for state ownership, which is true
within technology groups and on average. Private ownership outperformed foreign ownership in the
low- and high-tech groups. According to the group averages, technology progress was strongest in
the low-tech group and weakest in the high-tech group. In conjugation with the rankings of y1998, the
observations made here suggest convergence in technology progress, i.e., less productive categories
in 1998 achieved higher rates of technology growth afterwards. This conjecture is readily justified by
Figure 3c. Thus, when considering the group-type technologies, technology progress contributed to
labor productivity growth and the convergence of labor productivity at the same time.

The two heterogeneity components GTECHik and GTECHi capture gap closing/widening between
production frontiers at different hierarchy levels. These effects are generated by the movement of the
production frontiers, whereas the impact of input change has been purged out. A positive value indicates
expansion of the technology gap with respect to the upper-level production frontier and a negative value
represents closing up of the gap. Judging by the average values, which are 2.27% for GTECHik and
3.59% for GTECHi, the technology gaps widened out only slightly. That is, on average, the group-type
frontiers, the group frontiers, and the meta frontier shifted out almost uniformly. This explains why the
three measures of the technology change effect are highly similar.

According to the values of GTECHik and GTECHi, state ownership closed (expanded) their
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(a) TECH versus y1998.
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(b) TECHi versus y1998.
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(c) TECHik versus y1998.

Figure 3. Technology change versus labor productivity in 1998.

technology gaps with respect to the upper-level production frontier more (less) than private ownership,
and private ownership closed (expanded) their technology gaps more (less) than foreign ownership.
These relationships are true in most cases. Thus, GTECHik and GTECHi tend to drive down (raise)
TECHi and TECH more (less) for state ownership than for private ownership. The same is true when
we compare private ownership and foreign ownership. Thus, the heterogeneity components generate a
permutation effect on TECHi and TECH: They often reduce the technology change effect for categories
that were less productive in 1998. Consequently, in Figures 3a and 3b, the negative relationship
between the technology change effect and labor productivity in 1998 virtually disappears.

To sum up, we observe unbalanced change in the technology gaps between the hierarchical technology
frontiers. State ownership reduced their technology gaps with respect to the group frontiers and the
meta frontier, but the opposite is true of foreign ownership. Although the average technology change
effect is insensitive to the choice of the reference technology, the latter does affect the convergence
pattern of the former.

Capital deepening Finally, we present the results for the capital deepening effect. As above, we
present the three measures of the capital deepening effect along with the heterogeneity components in
Table 6. The overall capital deepening effect, KACC, is based on the meta technology and assumes
the same technology for all production units. The group-specific capital deepening effect, KACCi, is
based on group-specific technologies and assumes heterogeneity between technology groups only. The
group-type capital deepening effect, KACCik, is based on group-type technologies and assumes full
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heterogeneity. The heterogeneity components are GKACCi and GKACCik.18 We also investigate the
convergence of capital deepening in Figure 4, where we plot the three capital deepening effects (in
percent) against labor productivity in 1998 (in 1,000 RMB per person) along with the GLS regression
lines for all 81 production units.

Table 6. Growth decomposition: the capital deepening effect.
Technology Ownership y1998 KACC KACCi KACCik GKACCi GKACCikintensity

low

state 25.41 102.26 106.97 132.92 -0.84 -10.12
private 31.32 50.96 72.05 74.83 -9.93 -1.84
foreign 52.87 4.66 10.55 36.79 -3.78 -16.90

all 36.53 52.63 63.19 81.51 -4.85 -9.62

medium

state 29.34 264.85 280.54 310.66 -7.86 0.83
private 35.37 79.10 132.05 147.94 -20.78 -6.75
foreign 66.39 26.64 33.61 46.05 -6.63 -7.41

all 43.70 123.53 148.73 168.22 -11.76 -4.44

high

state 34.03 87.93 79.69 130.96 0.94 -17.53
private 49.74 86.34 91.49 102.01 -2.42 -5.56
foreign 80.78 63.48 64.54 74.86 -0.76 -7.29

all 54.85 79.25 78.57 102.61 -0.75 -10.13

all

state 28.26 178.95 187.51 218.28 -4.02 -5.67
private 35.32 68.44 103.10 113.05 -14.32 -4.62
foreign 62.48 21.78 27.65 45.48 -4.82 -11.26

all 42.02 89.72 106.09 125.60 -7.72 -7.18

Note: y1998 represents output per worker in 1998 (unit: 1,000 RMB per person). KACC and related variables are evaluated over the

1998–2007 period and converted into cumulative growth rates (unit: percent). That is, KACC =

(√
y1998(x2007)
y1998(x1998)

y2007(x2007)
y2007(x1998) − 1

)
× 100%,

and similarly for the others. We average over all production units in the corresponding category to obtain these values.

As above, we start our analysis with KACCik, the measure for the capital deepening effect based on
the group-type technology. Judging by the overall average, which is 125.60%, this effect is twice as
large as the efficiency change effect. According to this figure, China’s manufacturing would be able
to increase its labor productivity by 125.60% times through capital deepening alone, even if there had
been zero efficiency or technology improvement. Clearly, capital deepening was the main driver for
productivity growth. The magnitude of this effect is quite large for state ownership, usually twice as
large as that of private ownership, and almost four times larger than that of foreign ownership. This
pattern reminds us of Table 1. There we find much more rapid growth in the capital-labor ratio among
domestic firms, which explains the stronger effects observed here.

Because the capital deepening effect is always the strongest for state ownership and the weakest for
foreign ownership, if we relate this to the productivity rankings, a negative correlation between KACCik

and y1998 emerges. Thus, we do observe convergence of the capital deepening effect across ownership
types. At the group level, however, the low-tech group not only had the lowest labor productivity in
1998, but also the smallest KACCik value, which suggests divergence. This pattern looks highly similar
to what we saw in Table 2. It turns out that the converging force is stronger than the divergence force
when pooling all production units together: Figure 4c depicts a negative relationship between KACCik

and y1998 that is highly significant.
The heterogeneity components GKACCik and GKACCi capture the change in technology gaps when

the upper- and lower-level production frontiers are held constant but the input mix is allowed to change.
18The full results for all 81 production units are presented in Table S5 of the supplementary material.
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(c) KACCik versus y1998.

Figure 4. Capital deepening versus labor productivity in 1998.

A positive value means a widening gap with reference to the upper-level production frontier, whereas
a negative value implies that the gap has narrowed. Table 6 shows that the technology gaps between
the hierarchy levels have been closing up for almost all categories. Judging by the average values,
which are −7.18% for GKACCik and −7.72% for GKACCi, the average technology gap between the
hierarchy levels were narrowed as a result of capital deepening. This explains why the capital deepening
effect becomes smaller when the group or meta technology is used as benchmark. We point out that
the heterogeneity components are not negligible in the current case. The average capital deepening
effect along the meta frontier (KACC) is almost 30% smaller than that along the group-type frontiers
(125.60% versus 89.72%).

Between technology groups or ownership types, the heterogeneity components GKACCik and
GKACCi do not display any particular pattern similar to what was observed in Tables 3 and 5.
Consequently, the permutation effect on KACCi and KACC is generally missing.19 This explains why
the convergence pattern portrayed by Figure 4c is barely altered when we switch to KACCi and KACC
(Figures 4a and 4b).

To conclude, the capital deepening effect played the dominant role in labor productivity growth.
It also strongly contributed to labor productivity convergence. Capital deepening resulted in smaller
technology gaps between the hierarchy levels for almost all categories. Although the heterogeneity
components are moderately large, they do not alter the qualitative results.

19We point out that GKACCik is quite large in size for state ownership in the high-tech group and foreign ownership in the low-tech
group, which reduces KACCi substantively for these categories. The same is true of GKACCi on private ownership in the medium-tech
group.
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4.2. Summary and discussion

We summarize our findings as follows:
First, China’s manufacturing industry experienced vigorous labor productivity growth over the 1998–

2007 period. On average, the growth rate was 241.29%. Productivity growth was highly unbalanced
across technology groups or ownership types. It exhibited a strong convergence pattern between
ownership types and between the medium- and high-tech groups. However, the productivity gap
between the low-tech group and the rest of the industry widened out. Overall, we observe strong
convergence in labor productivity in China’s manufacturing industry between sectors and ownership
types.

Second, depending on the reference production frontier, productivity growth due to efficiency change
was 11.23–33.13%. The measured effect is stronger when benchmarked against the group frontiers or
the meta frontier because the observed technology gaps between the hierarchical levels shrank over time.
With reference to the group-type technologies, there was little efficiency change among state-owned
firms and the low-tech group, but less productive categories usually benefited more from the gap-closing
effects. Efficiency change contributed to productivity convergence only if measured by the group
technologies or the meta technology.

Third, the measured technology change effect, which ranges between 58.40–63.22%, is less sensitive
to the choice of the reference technology. On average, the technology gaps between the hierarchy
levels expanded very little (2.27% and 3.59%). At the group-type level, the technology change effect
was stronger among less productive categories (e.g., 90.97% for state ownership and 75.26% for the
low-tech group). At higher levels, however, the more productive categories often benefited more from
the expansion of technology gaps. The technology change effect exhibits convergence only at the
group-type level.

Fourth, capital deepening was the major driver of productivity growth and convergence. With
reference to the group-type technologies, productivity growth due to capital deepening was 125.60%.
Because capital deepening also narrowed down the technology gaps between the hierarchy levels, it
is smaller when measured by the group technologies (106.09%) or the meta technology (89.72%).
Capital deepening narrowed down technology gaps on almost all fronts and this effect outweighs the
gap expansion effect brought by technology change. Convergence is seen in all three measures of the
capital deepening effect.

At this stage, we want to contrast our results with the relevant findings in the literature. First, our
DEA-based tripartite decomposition highlights capital deepening as the most important single factor
for labor productivity growth. This finding is consistent with Henderson et al. (2007) and Badunenko
and Tochkov (2010), although they study Chinese regions. Regressional analysis of China’s industry,
however, emphasizes the importance of TFP in explaining output growth (Brandt et al., 2012; Chen et
al., 2011). We think the difference can be reconciled on the following grounds. One, the growth mode of
the overall economy may differ from that of the manufacturing sector. In fact, our decomposition assigns
far more importance to efficiency change and technology change than studies on regional economies.20

Second, if we interpret TFP change as the composite effect of efficiency change and technology change
(Bos et al., 2010a; Henderson and Russell, 2005), our estimates suggest a TFP growth rate similar

20If we ignore technology heterogeneity, as most studies do, then our efficiency change, technology progress, and capital deepening
effects are 33.13%, 63.22%, and 89.72%, respectively. These numbers are 17.2%, 6.0%, and 101.5% in Henderson et al. (2007) and
−8.18%, 6.82%, and 55.56% in Badunenko and Tochkov (2010).
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to what has been estimated for China’s industry using regressional methods.21 Third, following the
previous interpretation, our results do show that TFP contributed more than capital accumulation to
labor productivity growth.22

Second, our analyses reveal strong convergence of labor productivity, which is quite clear across
ownership types. Similarly, Berkowitz et al. (2017), Hsieh and Song (2015), and Jefferson et al. (2008)
all find TFP convergence across ownership types. In a broader sense, our findings are also consistent
with those of Deng and Jefferson (2011) and Lemoine et al. (2015), who show convergence of industrial
labor productivity across regions. These findings, however, are at odds with studies of China’s regional
economic development. Badunenko and Tochkov (2010) and Henderson et al. (2007) study per capita
GDP growth among Chinese provinces using decomposition methods that are very similar to ours. Their
results show divergence over 1998–2003 and 1990–2000, which was mainly driven by efficiency change
and technology change.23 In a similar study, Chen et al. (2009) study TFP growth among Chinese
provinces. Their decomposition also demonstrates a divergence pattern driven by efficiency change and
technology change. This apparent conflict is solved by Rodrik (2013), who argues that the manufacturing
industry should exhibit unconditional convergence because this industry produces tradable goods and
faces fierce competition domestically and abroad. Consequently, firms are under constant pressure to
upgrade their operations and remain competitive. It follows that resource reallocation and technology
transfer are easier to take place, resulting in productivity convergence. In contrast, the rest of the
economy (agriculture and service) is locked to the local market, which means the mechanisms for
convergence do not function properly. This explains why the economy as a whole usually fails to exhibit
convergence.

These findings have rich policy implications. First, the convergence patterns identified in this article
suggest that the market forces were functioning properly in China’s manufacturing industry. That is,
capital intensity increased in low-productivity sectors and ownership types, where the marginal return
was higher (Figure 4c), and technology spillover took place between high-tech and low-tech categories
(Figure 3c). We remark that other researchers also provide concrete evidence on improved resource
allocation and technology spillover.24 Overall, China’s marketization reforms has successfully boosted
labor productivity and reduced disparity in the manufacturing industry.

Nevertheless, we believe resource allocation between the ownership types can be further improved.
Domestic firms were far more reliant on capital accumulation than foreign-owned firms, whereas
state-owned firms were far more capital-thirsty than indigenous private firms (Table 6). The fast capital
accumulation among private firms is justifiable, because their capital intensity has been the lowest

21Ignoring technology heterogeneity again, our estimates suggest that cumulative TFP growth was 117.29% during 1998–2007, or
9.00% per annum. In comparison, Brandt et al. (2012) estimate that the annual TFP growth rate was 7.96% during the same period,
whereas Jefferson et al.’s ( 2008) estimate is 9.39%. These numbers are much higher than the TFP growth rates estimated for Chinese
regions (Chen et al., 2009; Brandt and Zhu , 2010), which provides further evidence that the growth mode of the overall economy differs
from that of the manufacturing sector.

22That is, cumulative TFP growth was 117.29% whereas the capital deepening effect was 89.72% when we ignore technology
heterogeneity. In comparison, Brandt et al. (2012) estimate that TFP growth contributed to 57% of the output growth in China’s
manufacturing industry, and the remaining 43% was due to factor accumulation. Nevertheless, we remark that our decomposition is not
directly comparable to theirs.

23Unel and Zebregs (2009) perform a similar analysis using much earlier data (1978–1998), their analysis produces a convergence
pattern only after the much stronger growth in coastal provinces and the effect of foreign direct investment have been controlled.

24Regarding resource reallocation, both Brandt et al. (2012) and Ding et al. (2016) emphasize firm turnover, which is especially true
of state ownership (Jefferson et al., 2008). In addition, Hsieh and Song (2015) point out that state-owned firms successfully reduced
redundant labor. For channels of technology spillover, Xu and Sheng (2012) highlight the role of foreign-owned firms, whereas He and
Walheer (2019) identify additional sources: high-tech sectors, private ownership, and exporting firms.
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(Table 1). However, capital accumulation among state-owned firms seems to contradict the principle
of optimal resource allocation, because they were already the most capital intensive in 2003, and they
further increased their advantage in 2007. Thus, mechanisms that channel more capital to indigenous
private firms may generate an additional boost to the overall performance of China’s manufacturing
industry.

Second, the main driver of productivity growth in China’s manufacturing industry is capital deepening.
Badunenko and Tochkov (2010) and Henderson et al. (2007) question the sustainability of this growth
mode.25 We point out that although the capital intensity of China’s manufacturing industry almost
quadrupled during 1998–2007 (Table 1), it was only 8.3–15% of those of the developed economies.26

On the basis of these figures, China’s manufacturing industry can maintain another fifteen years’ high
growth by means of capital deepening alone.

Third, technology change played a far more important role in productivity growth than efficiency
change.27 This, though, does not mean that China’s manufacturing did a poor job in improving
technical efficiency or efficiency change could be a potential source of future labor productivity growth.
Overall, efficiency growth was weak simply because there was little room for improvement. Our result
suggests that the ultimate source of labor productivity growth in China’s manufacturing industry must
be technology progress. The only exception seems to be state ownership in the low-tech group, for
which efficiency change could play a more important role than in other categories.

Finally, we express our concerns about the low-tech group. Initial labor productivity and subsequent
productivity growth were both the lowest among this group, suggesting divergence (Table 2). According
to the tripartite decomposition, the low productivity growth was mainly caused by the efficiency
regression of state ownership (Table 3) and the low level of capital accumulation among all three
ownership types (Table 6). Remarkably, the low-tech group also features the lowest capital intensity
throughout the study period (Table 1). In the language of Bos et al. (2010a), the low-tech group may
belong to a different technology club. Measures to improve technical efficiency, especially among
state-owned firms, and policies that encourage capital accumulation may help the low-tech group to
achieve higher labor productivity growth and narrow the gap with the rest of the manufacturing industry.

5. Conclusion

In this article, we employ DEA to analyze labor productivity growth in China’s manufacturing
industry during 1998–2007. Methodologically, we employ the concept of metafrontier to control
for technology heterogeneity across technology groups and ownership types when performing the
tripartite decomposition. We highlight the importance of controlling for heterogeneity when making
interpretations and explain how different decomposition results can be linked by the heterogeneity
components.

25This growth mode is typical of the Asian Tigers, but very different from that of the OECD countries, where technology change is
often found to play an equally important role (Kumar and Russell, 2002; Henderson and Russell, 2005; Badunenko and Romero-Ávila,
2013; Walheer, 2016a, 2016b).

26As of 2007, the manufacturing capital intensity was 210,566 USD per person in the United States, 22 million Yen per person in Japan,
and 106,779 Euro per person in EU12. Source: OECD Stan Dataset and authors’ own calculations. Values are in 2010 prices. EU12 does
not include Spain and Portugal because of missing data in capital stock.

27This conclusion is based on comparing EFFik in Table 3 to TECHik in Table 5. According to our previous discussions, they are
appropriate measure for pure efficiency change and technology progress, because each production unit is contrasted with the potential
output of the technology group it belongs to. In comparison, EFFi and EFF contains the technology progress of the lower-level technology
relative to the upper-level technology, whereas TECHi and TECH reflect the technology progress of the upper-level frontiers.
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Our main finding is twofold. First, capital deepening was the most important single factor for labor
productivity growth, followed by technology progress, but the contribution from efficiency change was
moderate. Second, labor productivity exhibited strong unconditional convergence during the study
period, which was driven by capital deepening and technology change. However, we also observe
increasing disparity between the low-tech group and the rest of the industry.

The results fill two gaps in the empirical literature. We point out that researchers have different views
about the relative importance of technology progress and factor accumulation in explaining China’s
productivity growth because they use different data and technology measures. We also emphasize that
the intrinsic difference between the manufacturing industry and the aggregate economy is the key to
understanding the convergence and divergence patterns found in the literature.

Our policy recommendations are as follows: First, although market forces seem to be effective
in allocating resources and creating technology spillovers in China’s manufacturing industry, further
improvements are possible. Second and third, we point out that China’s industry can rely on capital
accumulation in the short run, but the source of long-term productivity growth must be technology
progress. Finally, we call for policy intervention in the low-tech sectors.

Before concluding, we would like to point out a few limitations of the study. First, due to data
limitation, our decomposition does not consider human capital, which has been found to be an important
source of productivity growth (Badunenko and Romero-Ávila, 2013; Henderson and Russell, 2005;
Walheer, 2016a). Thus, our estimates could be biased.28 Second, our categorization of technology
groups is based on an exogenous criterion which is time-invariant. Endogenously determined dynamic
regimes, as modeled by Bos et al. (2010a) and Bos et al. (2010b), may more accurately model the
technology differences between industrial sectors and bring new insights to the analysis. Finally, we
must acknowledge that the Kumar-Russell style decomposition has its own limitations. That is, it
cannot separate the effect of entry and exit from aggregate productivity growth, or study the effect
of resource reallocation within sectors. Regressional methods are advantageous in answering these
questions (Brandt et al., 2012; Ding et al., 2016).
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