

http://www.aimspress.com/journal/mmc

MMC, 5(2): 193–201.

DOI: 10.3934/mmc.2025014 Received: 27 February 2023 Revised: 08 October 2023 Accepted: 19 November 2023

Published: 29 May 2025

Research article

A Hopf algebra on (0,1)-matrices

Sifan Song and Huilan Li*

School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China

* Correspondence: Email: lihl@sdnu.edu.cn.

Abstract: In this paper, we defined that a conjunction multiplication and an unshuffle comultiplication on the vector space spanned by (0,1)-matrices. Then, we proved that the vector space with these two operations is a bialgebra. In fact, it is a graded connected bialgebra, so it is a Hopf algebra.

Keywords: Hopf algebra; (0,1)-matrix; conjunction multiplication; unshuffle comultiplication

1. Introduction

In 1941, the basic concept of Hopf algebra was first introducted by Hopf to study algebraic topology and the properties of algebraic groups [1]. Milnor, Moore, Chase, and Sweedler gave the explicit definition, basic properties, and common symbols of Hopf algebra in the 1960's [2–4]. In 1979, Joni and Rota used Hopf algebra as a tool to study combinatorial objects [5]. After that, more and more Hopf structures on combinatorial objects were found, such as Hopf algebra on permutations [6, 7], Hopf algebra on posets [8], and Hopf algebras on matroids and graphs [9].

In 1995, Malvenuto and Reutenauer first gave a classical Hopf algebra on permutations by shuffle product m [10]. On this basis, in 2016, Giraudo and Vialette defined the unshuffle coproduct Δ on permutations [11]. In 2020, Zhao and Li derived a new Hopf algebra on permutations with another shuffle product \underline{m}_{G}^{*} from the classical one [12]. In 2020, Aval, Bergeron, and Machacek gave a Hopf algebra on labeled simple graphs with the conjunction product and the unshuffle coproduct without a proof [13]. In 2021, Liu and Li proved that the vector space spanned by permutations with the conjunction product \bullet and the unshuffle coproduct Δ^{*} is a Hopf algebra [14]. In 2023, Dong and Li proved that the vector space spanned by labeled simple graphs with the

conjunction product \diamond and the unshuffle coproduct Δ_* is a Hopf algebra [15].

In fact, matrices are closely related to permutations and graphs. A (0,1)-matrix is a matrix whose entries are all 0 or 1, also called a binary matrix. It is widely used in graph theory [16, 17], combinatorics [18], linear programming [19–21], and computer science [22]. In this paper, we first define a conjunction multiplication and an unshuffle comultiplication on the vector space spanned by (0,1)-matrices. Then, we prove it is a Hopf algebra with these two operations.

This paper is organized as follows: In Section 2, we first recall some basic definitions related to Hopf algebra. Then we define the vector space \mathcal{M} spanned by (0,1)-matrices, the conjunction multiplication \diamond and the unshuffle comultiplication Δ on the vector space. In Section 3, we prove that $(\mathcal{M}, \diamond, \mu)$ is a graded algebra and that $(\mathcal{M}, \Delta, \nu)$ is a graded coalgebra, and the compatibility between the operations \diamond and Δ . Furthermore, $(\mathcal{M}, \diamond, \mu, \Delta, \nu)$ is a Hopf algebra in that \mathcal{M} is graded connected. Lastly, we summarize our main conclusions in Section 4.

2. Preliminaries

2.1. Basic definitions

Here, we recall some basic definitions related to Hopf algebra; see [3] for more details. Let R be a commutative ring and B an R-module.

Define a *multiplication* π : $B \otimes_R B \longrightarrow B$ and a *unit* μ : $R \longrightarrow B$, respectively, satisfying the diagrams in Figure 1, then (B, π, μ) is an R-algebra.

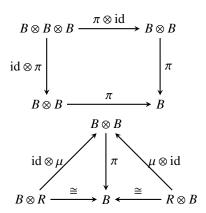
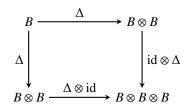


Figure 1. Associative law and unit.

The algebra B is graded if there is a direct sum decomposition $B = \bigoplus_{n=0}^{\infty} B_n$ such that the multiplication of homogeneous elements of degrees m and n is homogeneous of degree m+n, that is, $\pi(B_m \otimes B_n) \subseteq B_{m+n}$, and $\mu(R) \subseteq B_0$.

Define a *comultiplication* $\Delta : B \longrightarrow B \otimes_R B$ and a *counit* $\nu : B \longrightarrow R$, respectively, satisfying the diagrams in Figure 2, then (B, Δ, ν) is an *R-coalgebra*.



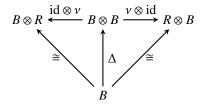


Figure 2. Coassociative law and counit.

The coalgebra B is graded if there is a direct sum decomposition $B=\bigoplus_{n=0}^{\infty}B_n$ such that $\Delta(B_n)\subseteq\bigoplus_{0\leq i\leq n}(B_i\otimes B_{n-i})$ and $\nu(B_n)=0$ if $n\geq 1$.

If *B* is both an *R*-algebra and an *R*-coalgebra, and satisfies one of the following equivalent conditions:

- (1) Δ and ν are algebra homomorphisms,
- (2) π and μ are coalgebra homomorphisms, then we say the algebra and coalgebra structures on B are *compatible* and $(B, \pi, \mu, \Delta, \nu)$ is an R-bialgebra.

If $B = \bigoplus_{n=0}^{\infty} B_n$ is both a graded algebra and a graded coalgebra, and satisfies the compatibility condition, then we say B is a *graded bialgebra*.

If there exists a linear map $\theta: B \longrightarrow B$ satisfying

$$\pi \circ (\theta \otimes id) \circ \Delta = \mu \circ \nu = \pi \circ (id \otimes \theta) \circ \Delta.$$

i.e., the diagram in Figure 3 commutes, then θ is an *antipode*. A bialgebra with an antipode is a *Hopf algebra*.

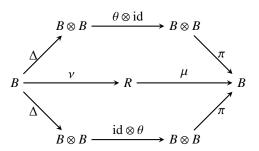


Figure 3. Antipode.

A bialgebra B over a field \mathbb{K} is called *graded connected* if it is graded and satisfies $B_0 = \mathbb{K}1_B$, where \mathbb{K} is a field of characteristic 0. In 2008, Manchon [23] proved that any graded connected bialgebra admits a unique antipode and it is a Hopf algebra.

2.2. The (0,1)-matrices

An $m \times n$ matrix $A = (a_{ij})_{m \times n}$ is called a (0, 1)-matrix if

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \end{pmatrix}_{m \times n},$$

where a_{ij} is either 0 or 1.

Define

$$[n] = \begin{cases} \{1, 2, \dots, n\}, & n > 0, \\ \emptyset, & n = 0, \end{cases}$$

and

$$[i,j] = \begin{cases} \{i,i+1,\ldots,j\}, & i \leq j, \\ \emptyset, & i > j. \end{cases}$$

Let $I = \{i_1, i_2, \ldots, i_k\} \subseteq [s]$, where $i_1 < i_2 < \cdots < i_k \le s$. Similarly, let $J = \{j_1, j_2, \ldots, j_q\} \subseteq [n]$, where $j_1 < j_2 < \cdots < j_q \le n$. We take the i_1^{th} , i_2^{th} , ..., i_k^{th} rows and the j_1^{th} , j_2^{th} , ..., j_q^{th} columns elements of the matrix A; these entries maintain the same row and column relationship, and shrink into a matrix, which is called the *restriction* of A on $A \in I \times I$, denoted by $A_{A \times I}$. We also call $A_{A \times I}$ a *submatrix* of A. For convenience, when $A \in I \times I$, denote $A_{A \times I} \in I$. In particular, $A \in I$ is the *empty matrix* when $A \in I \times I$ is empty, denoted by $A \in I \times I$.

Example 2.1. The matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

is a 4×7 (0,1)-matrix. We have

$$A_{\{1,2\}\times\{1,2,7\}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

and

$$A_{[3]} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Let $M_n = \{A|A = (a_{ij}), \text{ an } n \times n \ (0,1)\text{-matrix}\}$ and \mathcal{M}_n be the vector space spanned by M_n over a field \mathbb{K} of characteristic 0, for any non-negative integer n. For example,

$$\begin{split} M_2 &= \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \\ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}. \end{split}$$

In particular, $M_0 = \{\epsilon\}$ and $\mathcal{M}_0 = \mathbb{K}M_0$. Denote

$$M = \bigcup_{n=0}^{\infty} M_n$$
 and $M = \bigoplus_{n=0}^{\infty} M_n$.

Let $I = \{i_1, i_2, \dots, i_n\}$ be a set of positive integers where $i_1 < i_2 < \dots < i_n$. Define a mapping st_I from I to [|I|] by $\operatorname{st}_I(i_a) = a$ for $1 \le a \le n$, and call it the *standardization* of I. For x, y in I, $\operatorname{st}_I(x) < \operatorname{st}_I(y)$ if and only if x < y. Sometimes, we omit the subscript of the standardization when the set is obvious. Let T be a subset of I, then $\operatorname{st}_I(T) = \{\operatorname{st}_I(x) | x \in T\}$.

2.3. Conjunction multiplication and unshuffle comultiplication

In this section, we construct a conjunction multiplication and an unshuffle comultiplication on the vector space spanned by (0,1)-matrices.

Definition 2.1. *Define the* conjunction multiplication \diamond *on* \mathcal{M} *by*

$$A \diamond B = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

for A in M_m and B in M_n , and the unit μ from \mathbb{K} to \mathcal{M} by $\mu(1) = \epsilon$.

Example 2.2. For
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

(1), we have

and

$$B \diamond C = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Here, we color the entries in $A \diamond B$ restricted to A red and to B blue. Similarly, we color the entries in $B \diamond C$ restricted to B blue and to C green.

Definition 2.2. Define the unshuffle comultiplication Δ on M by

$$\Delta(A) = \sum_{I \subseteq [n]} A_I \otimes A_{[n] \setminus I},$$

for $A = (a_{ij})$ in M_n , and the counit ν from \mathcal{M} to \mathbb{K} by

$$\nu(A) = \begin{cases} 1, & A = \epsilon, \\ 0, & otherwise. \end{cases}$$

In particular, $\Delta(\epsilon) = \epsilon \otimes \epsilon$.

Remark 2.1. We will prove that Δ satisfies coassociativity in Theorem 3.2.

Example 2.3. For
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, we **Example 3.1.** For $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$

have

$$\Delta(A) = \epsilon \otimes \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
$$+ \begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$+ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \otimes \epsilon$$

and

$$\Delta(B) = \epsilon \otimes \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$+ \begin{pmatrix} 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \otimes \epsilon.$$

3. Main theorem

Theorem 3.1. The vector space M with the conjunction multiplication \diamond and the unit μ is a graded algebra.

Proof. For any A in M_m , B in M_n , and C in M_k , we have

$$(A \diamond B) \diamond C = \begin{pmatrix} A & 0_{m \times n} \\ 0_{n \times m} & B \end{pmatrix} \diamond C$$

$$= \begin{pmatrix} A & 0_{m \times n} & 0_{m \times k} \\ 0_{n \times m} & B & 0_{n \times k} \\ 0_{k \times m} & 0_{k \times n} & C \end{pmatrix}$$
$$= A \diamond \begin{pmatrix} B & 0_{n \times k} \\ 0_{k \times n} & C \end{pmatrix}$$
$$= A \diamond (B \diamond C).$$

So, \diamond is associative. It is easy to prove that the μ is a unit. Then $(\mathcal{M}, \diamond, \mu)$ is an algebra. Obviously, by the definitions of \diamond and μ , we have $\mathcal{M}_m \diamond \mathcal{M}_n \subseteq \mathcal{M}_{m+n}$ for $m, n \geq 0$ and $\mu(\mathbb{K}) \subseteq \mathcal{M}_0$. So $(\mathcal{M}, \diamond, \mu)$ is a graded algebra.

Example 3.1. For
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, we have

Lemma 3.1. Assume I is a set of positive integers, $J \subseteq I$ and $K = \operatorname{st}_I(J)$. Then

$$\operatorname{st}_K(\operatorname{st}_I(i)) = \operatorname{st}_I(i),$$

for any i in J.

Proof. Denote $I = \{i_1, i_2, ..., i_n\}$ and $J = \{i_{j_1}, i_{j_2}, ..., i_{j_t}\}$, where $t \le n$. Suppose $i_1 < i_2 < \cdots < i_n$ and $1 \le j_1 < i_2 < \cdots < j_t \le n$. Obviously, $\mathrm{st}_J(i_{j_m}) = m$, $K = \mathrm{st}_I(J) = m$

 $\{j_1, j_2, \dots, j_t\}$, and $\operatorname{st}_K(j_m) = m$ for any $i_{j_m} \in J$, where $1 \leq \{1, 2, 4\}$. We have $m \leq t$. Then

$$\operatorname{st}_K(\operatorname{st}_I(i_{j_s})) = \operatorname{st}_K(j_s) = s = \operatorname{st}_J(i_{j_s}),$$

for any $1 \le s \le t$.

Example 3.2. If $I = \{3, 5, 7, 8, 9\}$ and $J = \{3, 7, 8\}$, then $st_J(3) = 1, st_J(7) = 2, st_J(8) = 3, st_I(3) = 1, st_I(7) = 3, and <math>st_I(8) = 4$. So $K = st_I(\{3, 7, 8\}) = \{1, 3, 4\}$. Futhermore, $st_K(st_I(3)) = 1, st_K(st_I(7)) = 2, st_K(st_I(8)) = 3$.

Lemma 3.2. Assume $A = (a_{ij})_{n \times n}$ is a (0,1)-matrix, $J \subseteq I \subseteq [n]$ and $K = \operatorname{st}_I(J)$. Then

$$(A_I)_K = A_I$$
.

Proof. For convenience, we denote A_I as B and $(A_I)_K$ as C, where $B = (b_{ij})$ for $i, j \in [|I|]$ and $C = (c_{ij})$ for $i, j \in [|J|]$. Besides, let $A_J = D = (d_{ij})$. Obviously, C and D are both $|J| \times |J|$ (0,1)-matrices. We just need to show that for each i, j in [|J|], $c_{ij} = d_{ij}$. For c_{ij} in C, there must exist i'' and j'' in K such that $\operatorname{st}_K(i'') = i$ and $\operatorname{st}_K(j'') = j$. Therefore $b_{i''j''} = c_{ij}$. Meanwhile, there must exist i' and j' in J such that $\operatorname{st}_I(i') = i''$ and $\operatorname{st}_I(j') = j''$, therefore $b_{i''j''} = a_{i'j'}$, $\operatorname{st}_K(\operatorname{st}_I(i')) = i$, and $\operatorname{st}_K(\operatorname{st}_I(j')) = j$. By Lemma 3.1, $\operatorname{st}_J(i') = i$ and $\operatorname{st}_J(j') = j$, then $a_{i'j'} = d_{ij}$. Therefore $c_{ij} = d_{ij}$. So

$$(A_I)_K = A_J$$
.

Example 3.3. For

$$I = \{2, 3, 4, 6, 7, 9\}$$
 and $J = \{2, 3, 6\}$, then $K = st_I(J) =$

and

$$(A_I)_K = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

On the other hand,

$$A_J = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Theorem 3.2. The vector space M with the unshuffle comultiplication Δ and the counit v is a graded coalgebra.

Proof. Obviously, the empty matrix ϵ satisfies

$$(\Delta \otimes \mathrm{id}) \circ \Delta(\epsilon) = \epsilon \otimes \epsilon \otimes \epsilon = (\mathrm{id} \otimes \Delta) \circ \Delta(\epsilon).$$

For any $A = (a_{ij})$ in M_n , where $n \ge 1$, we have

$$(\Delta \otimes \mathrm{id}) \circ \Delta(A) = (\Delta \otimes \mathrm{id}) \left(\sum_{I \subset [n]} A_I \otimes A_{[n] \setminus I} \right). \tag{3.1}$$

Denote A_I by B, then

$$\Delta(B) = \sum_{K \subseteq ||I||} B_K \otimes B_{[|I|] \setminus K}. \tag{3.2}$$

Let *J* as a subset in *I* such that $\operatorname{st}_I(J) = K$, then $\operatorname{st}_I(I \setminus J) = [|I|] \setminus K$. By Lemma 3.2, we have

$$(A_I)_K = A_J$$

and

$$(A_I)_{[|I|]\setminus K}=A_{I\setminus J}.$$

Since K in (3.2) traverses all subsets of [|I|], the corresponding J also traverses all subsets of I. Then (3.2) can be rewritten as

$$\sum_{J\subseteq I} A_J \otimes A_{I\setminus J}.\tag{3.3}$$

Then (3.1) can be rewritten as

$$\sum_{I \subset [n], J \subset I} A_J \otimes A_{I \setminus J} \otimes A_{[n] \setminus I}. \tag{3.4}$$

Since I and J are arbitrary, (3.4) can be rewritten as

Similarly, we can get that $(id \otimes \Delta) \circ \Delta(A)$ is also equal to (3.5). Then Δ satisfies coassociativity. It is easy to prove that ν is a counit. So $(\mathcal{M}, \Delta, \nu)$ is a coalgebra. Obviously, by the definition of Δ and ν , we have $\Delta(\mathcal{M}_n) \subseteq \bigoplus_{0 \le i \le n} (\mathcal{M}_i \otimes \mathcal{M}_{n-i})$ and $\mu(\mathcal{M}_n) = 0$ for n > 0. So $(\mathcal{M}, \Delta, \nu)$ is a graded coalgebra.

Next we prove the compatibility between the conjunction multiplication and the unshuffle comultiplication.

Lemma 3.3. Let $A = (a_{ij})_{m \times m}$, $B = (b_{ij})_{n \times n}$, $I \subset [m]$, and $J \subseteq [m+1, m+n]$. Then

$$(A \diamond B)_{I \cup I} = A_I \diamond B_{I'}, \tag{3.6}$$

where $J' = \text{st}_{[m+1,m+n]}(J)$.

Proof. Denote $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Obviously,

$$C_{[m]} = A \text{ and } C_{[m+1,m+n]} = B.$$
 (3.7)

Since $I \subset [m]$ and $J \subseteq [m+1, m+n]$, $\max\{I\} < \min\{J\}$. Then

$$C_{I\cup J} = \begin{pmatrix} C_I & 0 \\ 0 & C_J \end{pmatrix}.$$

By the definition of &.

$$(A \diamond B)_{I \cup J} = C_I \diamond C_J. \tag{3.8}$$

Obviously, $I = \operatorname{st}_{[m]}(I)$. Due to $J' = \operatorname{st}_{[m+1,m+n]}(J)$ and Lemma 3.2, we have

$$(C_{[m]})_I = C_I, (C_{[m+1,m+n]})_{J'} = C_J.$$

By (3.7), we have

$$A_I = C_I, \quad B_{I'} = C_{J \times J}.$$

Then (3.8) can be rewritten as (3.6), i.e.,

$$(A \diamond B)_{I \cup I} = A_I \diamond B_{I'}$$
.

Theorem 3.3. $(\mathcal{M}, \diamond, \mu, \Delta, \nu)$ is a bialgebra.

Proof. To prove this, we need to prove the following properties:

- (1) $\nu(A \diamond B) = \nu(A)\nu(B)$, for any A, B in M.
- (2) $\Delta(A \diamond B) = \Delta(A) \diamond \Delta(B)$, for any A, B in M.

That is, the comultiplication Δ and the counit ν are algebra homomorphisms. When $A = \epsilon$ and $B = \epsilon$, $\nu(A \diamond B) = \nu(\epsilon) = 1$ and $\nu(A)\nu(B) = 1$. So $\nu(A \diamond B) = \nu(A)\nu(B)$. When $A = \epsilon$ or $B = \epsilon$, for convenience, let $A = \epsilon$ and $B \in M_n$, for n > 0. Then $\nu(A \diamond B) = \nu(B) = 0$ and $\nu(A)\nu(B) = 0$. So $\nu(A \diamond B) = \nu(A)\nu(B)$. When $A = (a_{ij})_{m \times m}$ and $B = (b_{ij})_{n \times n}$ are non-empty matrices, we denote

$$C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}. \tag{3.9}$$

Then $\nu(A \diamond B) = \nu(C) = 0$ and $\nu(A)\nu(B) = 0$. So $\nu(A \diamond B) = \nu(A)\nu(B)$. From the above analysis, ν is an algebra homomorphism.

Next, prove (2). From (3.9), have

$$\Delta(C) = \sum_{I \subseteq [m+n]} C_I \otimes C_{[m+n] \setminus I}. \tag{3.10}$$

Denote $I_{11} = I \cap [m]$, $I_{12} = I \cap [m+1, m+n]$, $I_{21} = ([m+n] \setminus I) \cap [m]$ and $I_{22} = ([m+n] \setminus I) \cap [m+1, m+n]$. Furthermore, denote $\operatorname{st}_{[m+1, m+n]}(I_{12}) = J_{12}$ and denote $\operatorname{st}_{[m+1, m+n]}(I_{22}) = J_{22}$. By Lemma 3.3,

$$C_I = C_{I_{11} \cup I_{12}} = A_{I_{11}} \diamond B_{J_{12}},$$

since $I_{11} \subseteq [m]$, $I_{12} \subseteq [m+1, m+n]$ and $J_{12} = \operatorname{st}_{[m+1, m+n]}(I_{12})$. Similarly,

$$C_{[m+n]\setminus I} = C_{I_{21}\cup I_{22}} = A_{I_{21}} \diamond B_{J_{22}},$$

since $I_{21} \subseteq [m]$, $I_{22} \subseteq [m+1, m+n]$ and $J_{22} = \operatorname{st}_{[m+1, m+n]}(I_{22})$. Then (3.10) can be rewritten as

$$\sum_{I \subseteq [m+n]} A_{I_{11}} \diamond B_{J_{12}} \otimes A_{I_{21}} \diamond B_{J_{22}}. \tag{3.11}$$

Obviously, when I traverses all subsets of [m + n], I_{11} and I_{21} traverse all disjoint subsets of [m], I_{12} and I_{22} traverse all disjoint subsets of [m + 1, m + n], and meanwhile J_{12} and J_{22} travese all disjoint subsets of [n].

Then we rewrite (3.11) as

$$\left(\sum_{\substack{I_{11} \cap I_{21} = \emptyset \\ I_{11} \cup I_{21} = [m]}} A_{I_{11}} \otimes A_{I_{21}}\right) \diamond \left(\sum_{\substack{J_{12} \cap J_{22} = \emptyset \\ J_{12} \cup J_{22} = [n]}} B_{J_{12}} \otimes B_{J_{22}}\right). \tag{3.12}$$

By the definition of Δ , (3.12) is equal to

$$\Delta(A) \diamond \Delta(B)$$
.

Therefore,

$$\Delta(A \diamond B) = \Delta(A) \diamond \Delta(B).$$

So $(\mathcal{M}, \diamond, \mu, \Delta, \nu)$ is a bialgebra.

Corollary 3.1. $(\mathcal{M}, \diamond, \mu, \Delta, \nu)$ is a Hopf algebra.

Proof. By Theorems 3.1–3.3, $(\mathcal{M}, \diamond, \mu, \Delta, \nu)$ is a graded connected bialgebra. So it is a Hopf algebra.

Example 3.4. For
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, we have

$$\Delta \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \\
= \Delta \begin{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\
= \epsilon \otimes \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \\
+ \begin{pmatrix} 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
+ \begin{pmatrix} 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \\
+ \begin{pmatrix} 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\
+ \begin{pmatrix} 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\
+ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
+ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\
+ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{aligned}
&+ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \otimes (0) + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \otimes (1) \\
&+ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \otimes (1) + \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \otimes \epsilon \\
&= (\epsilon \diamond \epsilon) \otimes \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right) \\
&+ ((1) \diamond \epsilon) \otimes \left(\begin{pmatrix} 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right) \\
&+ ((1) \diamond \epsilon) \otimes \left(\begin{pmatrix} 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right) \\
&+ (\epsilon \diamond (0)) \otimes \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond (1) \right) \\
&+ (\epsilon \diamond (1)) \otimes \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond (0) \right) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \epsilon \otimes \left(\epsilon \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right) \\
&+ ((1) \diamond (0)) \otimes ((1) \diamond (1)) \\
&+ ((1) \diamond (0)) \otimes ((1) \diamond (1)) \\
&+ ((1) \diamond (0)) \otimes ((1) \diamond (1)) \\
&+ ((1) \diamond (0)) \otimes ((1) \diamond (1)) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond (0) \otimes (\epsilon \diamond (1)) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond (1) \otimes (\epsilon \diamond (0)) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond (1) \otimes (\epsilon \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \diamond \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond (1) \otimes ((1) \diamond \epsilon) \\
&+ \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \otimes ((1) \diamond$$

$$\diamond \left(\epsilon \otimes \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \end{pmatrix} + \begin{pmatrix} 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \epsilon \right)$$

$$= \Delta \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right) \diamond \Delta \left(\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right).$$

4. Conclusions

Let \mathcal{M} be the vector space spanned by (0,1)-matrices. First, we define the conjunction multiplication \diamond and the unshuffle comultiplication Δ on \mathcal{M} . Then we prove that the conjunction multiplication \diamond satisfies associativity and the unshuffle comultiplication Δ satisfies coassociativity, i.e., $(\mathcal{M}, \diamond, \mu)$ is an algebra and $(\mathcal{M}, \Delta, \nu)$ is a coalgebra. Lastly, we prove the compatibility between \diamond and Δ , and $(\mathcal{M}, \diamond, \mu, \Delta, \nu)$ is a graded connected bialgebra. So $(\mathcal{M}, \diamond, \mu, \Delta, \nu)$ is a Hopf algebra. Therefore, the family of combinatorial Hopf algebras has a new member on (0,1)-matrices.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 11701339 and 12071265).

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- H. Hopf, Über die topologie der Gruppen-Mannigfaltigkeiten und ihrer verallgemeinerungen, In: Selecta Heinz Hopf, Berlin, Heidelberg: Springer, 1964. https://doi.org/10.1007/978-3-662-25046-4_9
- J. W. Milnor, J. C. Moore, On the structure of Hopf algebras, Ann. Math., 81 (1965), 211–264. https://doi.org/10.2307/1970615

- 3. M. E. Sweedler, *Hopf algebras*, New York: W. A. Benjamin, 1969.
- 4. S. U. Chase, M. E. Sweedler, *Hopf algebras* and *Galois theory*, Berlin: Springer, 1969. https://doi.org/10.1007/BFb0101433
- S. A. Joni, G. C. Rota, Coalgebras and bialgebras in combinatorics, *Stud. Appl. Math.*, 61 (1979), 93–139. https://doi.org/10.1002/sapm197961293
- Y. Vargas, Hopf algebra of permutation pattern functions, *Discrete Math. Theor. Comput. Sci.*, 2014, 839–850. https://doi.org/10.46298/dmtcs.2446
- M. Aguiar, F. Sottile, Cocommutative Hopf algebras of permutations and trees, *J. Algebr. Comb.*, 22 (2005), 451–470. https://doi.org/10.1007/s10801-005-4628-y
- 8. R. Ehrenborg, On posets and Hopf algebras, *Adv. Math.*, **119** (1996), 1–25. https://doi.org/10.1006/aima.1996.0026
- 9. W. R. Schmitt, Incidence Hopf algebras, *J. Pure Appl. Algebra*, **96** (1994), 299–330. https://doi.org/10.1016/0022-4049(94)90105-8
- 10. C. Malvenuto, C. Reutenauer, Duality between quasi-symmetrical functions and the Solomon descent algebra, *J. Algebra*, **177** (1995), 967–982. https://doi.org/10.1006/jabr.1995.1336
- Giraudo, S. Vialette, Algorithmic and unshuffling algebraic aspects of permutations, Theor. Comput. Sci., 729 (2018),20-41. https://doi.org/10.1016/j.tcs.2018.02.007
- 12. M. Zhao, H. Li, A pair of dual Hopf algebras on permutations, *AIMS Math.*, **6** (2021), 5106–5123. https://doi.org/10.3934/math.2021302
- 13. J. C. Aval, N. Bergeron, J. Machacek, New invariants for permutations, orders and graphs, Adv. Appl. Math., 121 (2020), 102080. https://doi.org/10.1016/J.AAM.2020.102080
- M. Liu, H. Li, A Hopf algebra on permutations arising from super-shuffle product, *Symmetry*, 13 (2021), 1010. https://doi.org/10.3390/SYM13061010
- J. Dong, H. Li, Hopf algebra of labeled simple graphs, *Open J. Appl. Sci.*, **13** (2023), 120–135. https://doi.org/10.4236/ojapps.2023.131011

- 16. X. Huang, Q. Huang, On regular graphs with four distinct eigenvalues, *Linear Algebra Appl.*, **512** (2017), 219–233. https://doi.org/10.1016/j.laa.2016.09.043
- 17. D. M. Cardoso, O. Rojo, Edge perturbations graphs with cluster: adjacency, Laplacian on and signless Laplacian eigenvalues, Linear Algebra Appl., 512 (2017),113-128. https://doi.org/10.1016/j.laa.2016.09.031
- R. A. Brualdi, H. J. Ryser, *Combinatorial matrix theory*, New York: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9781107325708
- 19. J. S. Borrero, C. Gillen, O. A. Prokopyev, A simple technique to improve linearized reformulations of fractical (hyperbolic) 0-1 programming problems, *Oper. Res. Lett.*, 44 (2016), 479–486. https://doi.org/10.1016/j.orl.2016.03.015
- 20. A. P. Punnen, P. Sripratak, D. Karapetyan, The bipartite unconstrained 0-1 quadratic programming problem: polynomially solvable cases, *Discrete Appl. Math.*, **193** (2015), 1–10. https://doi.org/10.1016/j.dam.2015.04.004
- 21. B. Soylu, Heuristic approaches for biojective mixed 0-1 integer linear programming problems, *Eur. J. Oper. Res.*, **245** (2015), 690–703. https://doi.org/10.1016/j.ejor.2015.04.010
- 22. S. Zhang, P. Lin, K. Wang, Construction of binary shift dual codes, *J. Jiangxi Univ. Sci. Technol.*, **37** (2016).
- D. Manchon, Hopf algebras in renormalisation, *Handbook Algebra*, 5 (2008), 365–427. https://doi.org/10.1016/S1570-7954(07)05007-3

AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)