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Abstract: This paper concerns the dynamics of a stochastic, hybrid delay, one-predator-two-prey model with harvesting and Lévy jumps
in a polluted environment. Under some basic assumptions, sufficient conditions of stochastic persistence in the mean and extinction of
each species are obtained, as well as the existence of optimal harvesting strategy (OHS). Our results show that both time delays and
environmental noises affect the survival state of the species. Moreover, the accurate expressions for the optimal harvesting effort (OHE)
and the maximum of expectation of sustainable yield (MESY) are given. Finally, some numerical simulations are provided to support

our results.
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1. Introduction

The classical Lotka-Volterra model with one predator and
two competing preys under the catch-per-unit-effort (CPUE)

harvesting hypothesis ([1,2]) can be expressed as follows:

x1(0) = x1(0) [ — b — anx () — anxa(t) — azxs(0)],

Xo(t) = x2(8) [r2 — ha = a21 %1 (1) — anxa2(1) — axzx3(1)],

X3(1) = x3(0) [=r3 — h3 + az1x1(1) + azx2(1) — azzx3(0)],

(1.1)
where x;(7) is the population density of species i at time
t, r; and r, are the intrinsic growth rates of two preys, r3
is the mortality rate of the predator, a; denotes the intra-
specific competition rate of species i, a;; and ap; are the
inter-specific competition rates, a3, a3 are the capture rates,
asy, az are the food conversion rates, and h; > 0 is the
harvesting effort of species i (i = 1,2, 3).

On the one hand, “time delays occur so often that to ignore
them is to ignore reality” because any species in nature will
not always react at once to variation on their own population
size or on that of the interacting species, though they will
preferably do so after a time lag [3,4]. Hence, it is crucial to

consider the effect of time delay on the population dynamics,
and incorporating a time delay into ecosystems makes them
much more realistic than those without a time delay [5-7].
On the other hand, the deterministic system has its
limitation in the mathematical modeling of ecosystems
since the parameters involved in the system are unable
of capturing the influence of environmental noises [8].
Hence, it is of a great theoretical and practical significance
to study the effect of environmental noise on the
population dynamics. There are three common types
of environmental noises, namely Gaussian white noise,
telegraph noise, and Lévy noise. Introducing Gaussian white
noises into the corresponding deterministic model is one
common way to characterize environmental noises [9-12].
Additionally, telegraph noise should be taken into account
since parameters in ecosystems often switch because of
environmental changes; for example, the population may
suffer sudden catastrophic shocks [13], the growth rates
of some species often vary according to the changes in
rainfall [14], the growth rates of some species in dry
season are much different from those in rainy season [15],
and these changes can be described by a continuous-time
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Markovian chain with a finite-state space, instead of white
noises [13—15]. Besides, ecosystems may be subject to some
sudden discontinuous environmental perturbations, such as
earthquakes, typhoons, and infectious diseases, which can
be described by Lévy jumps [16-19].

Meanwhile, the environment has been along with the
rapid development of the economy. As more and more
toxic substances and pollutants enter the ecosystem, the
quality of the environment gradually declines, which results
in many species becoming extinct and others on the brink
of extinction [20]. Therefore, the environmental pollution
has become an important problem that the world has to
face [21,22]. In addition, unreasonable capture can easily
lead to species extinction, ecological damage, and so on.
Hence, harvesting is one of the important processes in the
management of population dynamics [23-26]. Motivated
by the above discussions, in this paper, we consider the
dynamics of the following stochastic, hybrid delay, one-
predator-two-prey model with harvesting and jumps in a

polluted environment:

dxi(t) = x1(8) [r1(p(®) = ri1C1(t) = by = D11 (x1)(t)
=D12(x2)(1) = Di3(x3) ()] dr + Si (2, p(0))x:1 (D),
dxa(t) = x2(2) [r2(p(1)) = r22Ca(t) — hy — D1 (x1)(2)
=D (x2)(1) = D3 (x3)()] At + Sa(t, p(1))x2(),
dx3 (1) = x3(1) [-r3(p(1)) — r33C3(1) — h3 + D31(x1)(1)
+D32(x2)(1) = D33(x3)(O] dr + S3(t, p(1))x3(1),
dCi(t) = [kiCi(t) — (g + m) Ci(t)] dt, i =1,2,3,
dCg(t) = [-hCg(t) + u(t)] dt,

(1.2)
where

0

Dji(x)(@) = ajixi(t) + f

—Tji

Xi(t + 0)du ;(0),

Si (1, p(1) = oi(p(0))dW; (1) + fz Yiu, p(O)IN(dt, dpa),

Wi(t) are standard Wiener processes defined on a complete
probability space (Q,7,P) with a filtration {#;},»¢ that
satisfies the usual conditions, p(f) is a continuous time

Markov chain with finite state space

S

{1,2,...,8},

N is a Poisson counting measure with the characteristic
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measure A on a measurable subset
Z C [0, +0)

with
AZ) < +o0

and
N(dt, du) = N(dt, du) — A(dp)dr,

vi(u, p(t)) are bounded functions, J:O xi(t + 6)du;;(6) are
Tji
Lebesgue-Stieltjes integrals, 7;; > 0 are delays,

T = max {Tji} .

i@, 6 € [-1,0] are nondecreasing bounded variation
functions. For other parameters in system (1.2), see [27,
Table 1].

The rest of this paper is arranged as follows. In
Section 2, we study the existence and uniqueness of global
positive solution to systems (1.2). The sufficient conditions
for stochastic persistence in the mean and extinction of
each species are obtained in Section 3. In Section 4,
the sufficient conditions for the existence of the optimal
harvesting strategy (OHS) are established. Furthermore, we
provide the accurate expressions of the optimal harvesting
effort (OHE) and the maximum of expectation of sustainable
yield (MESY). In Section 5, some numerical simulations are
provided to verify the theoretical results. Finally, some brief

conclusions and discussions are shown in Section 6.
2. Existence and uniqueness of global positive solution

In this paper, we have four fundamental assumptions for

system (1.2).

Assumption 2.1. [28-30] W, (r), W, (), W5(¢t), p(t), and N
are mutually independent, and p(t) is irreducible with one

unique stationary distribution
= (m,m, ..., Ts).

Assumption 2.2. [31,32] r;(i) > 0, aj > 0, and there exist
Y@ 2y > -1,

such that

Vi) <y i) <v;() (weZ), Yies, jk=1,2,3.
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Hence, for any constant p > 0, there exists C;(p) > 0 such
that

i€S

2
max {fz [ln(l +viu, i))] /l(du)} < Cj(p) < +oo.

Remark 2.1. Assumption 2.2 implies that the intensities of
Lévy jumps are not too big to ensure that the solution will
not explode in a finite time (see, e.g., [10, 18, 19]).

Assumption 2.3.

O<k,~$g,-+m,-, = ],2,3’

sup u(t) < h.

teR,
Remark 2.2. Assumption 2.3 means
0<Cin<1
and
0<Cg(® <1,

which must be satisfied to be realistic because Ci(t) and
Cg(t) are concentrations of the toxicant (i = 1,2, 3) (see [33,
Lemma 2.1]).

Assumption 2.4. The limit of u(t) when t — +co exists, i.e.,

lim u(f) £ u®.

t—+00

Lemma 2.1. [2, Lemma 4.2] If Assumption 2.4 holds, then

ME
lim Cx(t) = —,
>+ h

kiuf

3
lim 77! f Ci(s)ds = —
0

— = _2cE i=1,2,3.
1—+eo @m0

Theorem 2.1. For any initial condition
¢ € C([-7,0LR}),

system (1.2) has a unique global solution on t € [—T,+00)
a.s. Moreover, for any constant p > 0, there exists K;(p) > 0
such that

supE [x/ (0] < Kilp), i=1,2,3.

teR,

Proof. The proof is standard; hence, it is omitted (see
e.g., [34]). O
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3. Stochastic persistence and extinction

Denote
()
Bi() =ri() - - L[%‘(]A 3 = In(1 + y;(u, )] A(dp),
(i=1,2),
a3()
B3() = 3() + + fz[h(ﬂ, ) = In(1 + y3(u, )] A(dw),

S
;= ZniBj(i) ~riiCE (j=1,2),
i=1

s
- Z 7;B3(i) — r33C,

i=1

0
_Zj—hj, Aij=a5j+f

23

dui(0), (i,j=1,2,3),

~.
|

Tij
= Ay 0 0
E=|Z|, A¢o=] 0 A 01,
53 -A31 —An Az
A Ap A
A=Ay Ap Axnl.
—A31 —An Az
Assume that
® = det(A) > 0.

Let Aj be A with column j replaced by E and
® i = det (AJ) .

For A and Ay, denote the complement minor of the (i, j) —
th element by Mg and Msk , respectively (i, j, k = 1,2,3).
Denote

!
X(0) = lim X(f), X(o0) = lim 7! f X(s)ds,
t—+00 t—+0o 0
13 3 !
XT(c0) = lim 77! ( f X, (s)ds, f X5 (s)ds, f X3(s)ds).
1—+00 0 0 0
Lemma 3.1. [35] Denote
_ o fO _
o) = {01 lim %2 = o}.

Suppose
Z(t) € C(Q X [0, +00),R}).

(1) If there exists constant 6o > 0 such that for t > 1,

InZ(#) < 6t = o f Z(s)ds + o(2), 3.1
0

Volume 5, Issue 1, 85-102.



88

then,

!
P
limsup 7™’ f Z(s)ds < —, a.s. (6> 0);
0 o

t—+00

lim Z(#) = 0, a.s. 6<0).

t—+00

(i) If there exist constants 5 > 0 and 6y > 0 such that for

t>1,
13
InZ(1) > 6t — f Z(s)ds + o(?),
then,
d 5
lim inf #~! f Z(s)ds > —, a.s.
0 5

t—+00 0

First, let us consider the following stochastic delay

differential equation (SDDE):

+Sit, pM)Xi(0), (i=1,2),

dCi(1) = [kiCg(t) — (gi + my) Ci(n]dt, i=1,2,3,
dCg(t) = [-hCEg(t) + u(t)] dr.

Lemma 3.2. For system (3.5), the following hold:
(W If 21 <0, 5, <0, then XT(c0) = (0,0,0).
() If 21 <0, 20, Z3+ 428, <0, then

OIf 5, >0 5, <

(Q)If >0 5, <0, E3+A_TiE] > 0, then
- = _ A3z
XT(oo):(—‘,o,A 1(5 + 2l ))

Aq BT

MIf 21>0 5, >0 55+ 945, + 225, <0, then

An A
XT(c0) = (i, =2 )
Ay Axp

Mathematical Modelling and Control

dXi(0) = X;(0) [ri(p@®) — riCi(t) — hi — Di(X)(D)] dt

dX3(1) = X3(t) [-r3(p(1)) — r33C3(0) — h3 + D31 (X))
+D3(X2)(t) — D33(X3)()] df + Sz(t, p()) X3(2),

@If 2,202, >0, _3+ﬂ~ +;‘—;§Ezzo,zhen

I A A
XT(c0) = ( = A3 (HS + A“ Z 4+ A—352)). (3.6)

Ay’ Az 3 2

Proof. Thanks to [34, Lemma 2.3], for j = 1,2,

Xj(®0) = 0 a.s. (E;<0): X;(o) = —’ as. (2;20).

AJ'J
3.7
(3.3) By Ito’s formula,
InX() =81- Ay f X(s)ds
0
=T1(X1)(®)
+ =T 22(X2)(0) +o(t),
T31(X1)(0) + T32(X2)(#) — T33(X3)(0)
(3.8)
where
In X (?)
InX(?) = [In X»(2) |,
In X3(r)
1
oty =0()]|1
1
[ Xi(s)ds
f X(s)ds = | [ Xp(s)ds |,
[ X3(s)ds

0
Tji(Xi)(l):f in(S)deﬂji(H)
o
[ xeoasiuo.
=Tji t+6

Case 1: E; < 0, E; < 0. Based on system (3.8), for
VYee (0,1)and t > 1,

InX3() <(BEz +&)t—ass f X5(s)ds, 3.9)
0

which implies that X3(c0) = 0, a.s.
Case 2: Z; <0, Z, > 0. Consider the following SDDE:

dX;(t) = X;(t) [ri(p(1)) — riiCi(t) — h; — Di(X;)(®)] dt
+ Silt, PONXi(D), (i = 1,2),
dX3(1) =Xa(1) [-r3(0(1)) — r33C3(0) — h3 + D31 (X1)(®)
+D3(X2)(1) — asXa(0)] dt + Ss(t, p(1) X3(0),
dCi(r) = [kCp(1) = (gi +my) Ci(D)] dr, i =1,2,3,

dCx(t) = [-hCr(t) + u()] dr.
(3.10)
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Thanks to the comparison theorem for SDDE,
X3(1) < X3(0),

a.s. By Itd’s formula,

— A (e
In X;3(7) = (53 + A—”EZ) t—ax f X()ds + o).
0

2
(3.11)
In view of Lemma 3.1, for an arbitrary y > 0,
!
lim ¢! f Xi(s5)ds =0, a.s. (i = 1,2,3). (3.12)
t—+00 —y

According to (3.12) and system (3.8),

A !
In X5(f) = (53 + ﬁaz)t—A33f X5(s)ds + o(r). (3.13)
Ay 0

Thanks to Lemma 3.1, we obtain the desired assertions (b)
and (¢).

Case 3: E; >0, B, < 0. By Ito’s formula,

— A T
In X5(r) = (53 + A—“EI) t— a33f X5(5)ds + o(2).
11 0

(3.14)
Thanks to Lemma 3.1, (3.12) is true for an arbitrary y > 0.

Therefore,

!
In X5(f) = (53 +As :—1‘1) t—As fo X3(s)ds + o(t).
(3.15)
According to Lemma 3.1, we obtain the desired assertions
(d) and (e).
Case 4: E; > 0, Z, > 0. By Ito’s formula,

A t o
+ ﬁaz) t—as f X5(s)ds + o(t).
Ax 0
(3.16)
Based on Lemma 3.1, (3.12) is also true for an arbitrary

v > 0. Thus,

— Az
In X5(¢) =(E3 + —E
An

A A !
1n X5(9) =(33 + 3= 4 ﬁ&)t—@f X;(s)ds + o(?).
A Axn 0
(3.17)
From Lemma 3.1, we obtain the desired assertions (f) and
(9)- o

Lemma 3.3. System (1.2) satisfies the following:

limsup ' Inxi(1) <0, as. (i=1,2,3).

t—+00

Mathematical Modelling and Control

Proof. From Lemma 3.2, system (3.5) satisfies the

following:

lim ' InX;(t) =0, as. (i=1,2,3).

t—+00

By the stochastic comparison theorem, we obtain the desired

assertion. O

Theorem 3.1. For system (1.2), the following holds:
WIf 21 <0,E; <0, then

xT(c0) = (0,0,0).

(i) If E1 <0, 5 >0, M >0, then

_ M?lz M?lz
xT(c0) = (0, ) ]
MY MY,

(itt) If 2120, Ep <0, My > 0, then

@[ @3

XT(Oo)z( 22 0 22].
0" 170

M, M,

(i) If 2120, 5, >0, M?

c) :
5 20, M3 <0, M) <0, then

22 —

XT(c0) = (:—111,0, o).

W If 5120520, M >0, My <0, M} <0, then

=)
5 _’0 .
Ap )

xT(o0) = (0

) If E1 20,520 M <0, M5 200,>0(=1,2),

03 <0, My, >0, M5? >0, then
0 0,
m — (M33 33 0]
® b @ b .
M33 M33
i) If 1 >0, 8, >0, M >0, MY <0, M <0,
M2 >0,0;>0(=1,2,3), then

(3.18)

XT(o0) = (%, Z %).

(i) If 21 20,2, 20, M <0, 0, <0, M{’ > 0, then

T —
X (OO) - (09 e ° o) ]

11 11

() If E120,5 20, M2 >0 0,<0, My >0, then

32 =
— (M) My
xT(c0) = (M—ijo o ]
22 22
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Proof. Thanks to Lemma 3.2, for Vy > 0,

!
lim 77! f xi(s)ds =0, as. (i=1,2,3). (3.19)
1—+00 t—y
By It6’s formula,
3
Inx(¢r) = Ef — Af x(s)ds + o(t). (3.20)
0

Case (i): E; <0, Ey < 0. From Lemma 3.2 (a),
xT(e0) = (0,0,0).

Case (i) 1 < 0, Ep > 0, MY

x1(o0) = 0, a.s. Compute the following:

> 0. From Lemma 3.2,

i3

Az Inxo(f) + Axp In x3(¢) = M?lsl - MIG)I x3(s5)ds + o(?).

(3.21)
Thanks to Lemma 3.1, we deduce the following:
t Ml@lz
iminf ¢! > 22
1&‘2}2“ fo‘ x3(s)ds > YR a.s. 3.22)

11

Based on systems (3.20) and (3.22), for Ye € (0, 1) and
t>1,

©,

In x,(¢) < [A22 M1®l
Mll

+ 5] t—Ax»n f x2(s)ds, (3.23)
0

which implies
0,

d M
limsup ¢! f xo(s)ds < — R
pr 2(s) e

1—+00 11

a.s. (3.24)

Based on Egs (3.20) and (3.24), for Ve € (0, 1) and # > 1,

(3]

Inx3(¢) < [A33 MIG:
Mll

+ 8] t—Asz f X3(S)ds, (325)
0

which implies
03

d M
lim su t"fx s)ds < 11,
p ) 3(5) e

—+00 11

a.s. (3.26)

Combining (3.22) with (3.26) yields

03
11
®?
11

x3(00) =

Mathematical Modelling and Control

a.s. Based on systems (3.20) and (3.26), for Ve € (0, 1) and
t>1,

0,

M I3
In xo(t) > (Azz—‘@l —s)t—Azz f x(s)ds,  (3.27)
My 0

which implies
0

‘ M
liminft"fx s)ds > —L,
; 2(s) e

t—+00
11

Combining (3.24) with (3.28) yields

(3.28)

a.s.

0,
—— _ ¥
Xp(00) = R
11
a.s.
Case (iii): E; > 0, B, < 0, M%‘ > 0. From Lemma 3.2,

X(c0) = 0, a.s. Compute the following:

x1(s)ds + o(t).

(3.29)
Thanks to Lemmas 3.1 and 3.3, we deduce the following:

AszInxi(f) — A3 Inxs3(1) = Myt — M3,

¢ M®1
lim sup ! f x1(s)ds < —2;, a.s. (3.30)
t—+00 0 M22

Based on systems (3.20) and (3.30), for Ve € (0,1) and
t>1,

03

In x3(t) < (A33 Mzé
M22

+ 8) t—As; f x3(s)ds, (3.31)
0

which implies

f 0;
lim su t_lfx‘(s)dsg 22, a.s. (3.32)
t—>+oop 0 } Mg)z

Based on Eqs (3.20) and (3.32), for Ve € (0, 1) and ¢ > 1,

M®l 3
Inx;(r) > (An—z(; —a)t—Anf x(s)ds,  (3.33)
My, 0
which implies
t M
liminft_lfxl(s)dsz —Zé, a.s. (3.34)
t—+00 0 ]‘422

Combining (3.30) with (3.34) yields
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a.s. Based on systems (3.20) and (3.34), for Ve € (0,1) and Thanks to Lemma 3.1, we deduce
t>1, ' =
liminf ¢! f xi(s)ds > —=, a.s. (3.43)
;3 ! t—+00 0 Al
Inx3(f) = [A33 2 - 8]t—A33 f x3(s)ds,  (3.35)
” 0 Combining (3.40) with (3.43) yields
which implies (o) = Er ’
1
t O3
liminf 7! f x3(s)ds > Mzé , as. (3.36) as.
t—+00
‘ 2 Case (0): 2y 2 0,5, > 0, MY > 0, M%) < 0, M < 0.
Combining (3.32) with (3.36) yields Based on system (3.20), we compute the following:
M% Az Inxi(t) — Az In x2(2)
x3(00) = —=-, ¢ : (3.44)
2 = Myt - M3, f xy(s)ds — M f x3(s)ds + o).
0 0
a.s.

Gase (i0): Z; > 0, 5, > 0, Mg)z > 0, M% <0, M% <0. By Lemma 3.3, for Ve € (0, 1) and ¢ > 1,

!

AnInxi (1) < (M3 + &)t — M3 f xi(s)ds. (349
; 0

Based on system (3.20), we compute the following:
(3.37) which implies x;(c0) = 0, a.s. Based on system (3.20), for

ArrInxy (1) — Az Inx((2)
! !
=M%t — M3, f x2(s)ds — M3 f x3(s)ds + o). Vee (0, 1yand > 1,
0 0
!
By Lemma 3.3, for Ve € (0, 1) and £ > 1, Inxa() < (Ep + €)1 — Any f o(s)ds. (3.46)
0
!
AnInxy(r) < (M3 + &)t - M, f xy(s)ds,  (3.38) Thanks to Lemma 3.1, we deduce
! =
which implies x,(c0) = 0, a.s. Based on system (3.20), for limsup ™' f X2(s)ds < ;—222, a.s. (3.47)
t—+00 0
Vee(0,1)and > 1,
Substituting xj(c0) = 0 and (3.47) into system (3.20), for
3
Inx (@) < (5 +£)t—A11f x;(s)ds. (3.39) Yee (0, Dandz> 1,
0 O t
11
In x3(t) < ( + 8] t—As; f x3(s)ds, (3.48)
Ay 0

(3.40) which implies x3(c0) = 0, a.s. Substituting x;(c0) = 0 and

Thanks to Lemma 3.1, we deduce
x3(c0) = 0 into system (3.20), for Ve € (0,1) and # > 1,

d =
lim sup t_lf x1(s)ds < i, a.s.
t—+00 0 All
Substituting x,(c0) = 0 and (3.40) into system (3.20), for ;
Vee(0,1)and > 1, Inxy(t) > (B —e)t— Ay f xp(s)ds. (3.49)
0
M ‘
2, 8) f— Ass f B(s)ds, 3.41) Thanks to Lemma 3.1, we deduce
0 ' =
liminf ! f x(s)ds > ==, a.s. (3.50)
t—+00 0 Axn

Inx3(¢) <
’ [An

Combining (3.47) with (3.50) yields
=)

which implies x3(c0) = 0, a.s. Substituting x,(c0) = 0 and
Xp(00) = —,
: Ay

x3(00) = 0 into system (3.20), for Ve € (0, 1) and t > 1,

Inx (1) > (E; —e)t—Aq; f x1(s)ds. (3.42)
0
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a.s.

Case (vi): E; > 0,5, > 0, M§, <0, MY > 0,0; >0
(where i = 1,2), @3 < 0, Mgy > 0, M52 > 0. Compute the
following:

M Inx;(f) — M%) In x2(f) + M3 In x5(2)
[
=0t- ®f x1(s)ds + o(p),
0

(3.51)
M3, In xa(f) — M, In x1(£) — M In x3(1)

[
= 0Ot — @f x(s)ds + o(7).
0
According to Lemmas 3.1 and 3.3 and (3.51), we obtain

15
0;
limsupt_lf xi(s)ds < R a.s. (i=1,2). (3.52)
0

t—+00

According to (3.52) and system (3.20), for Ve € (0,1) and
t>1,

/
Inx3(7) < (A33% + S)I— Asz f x3(s)ds, (3.53)
0

which implies x3(c0) = 0, a.s. Compute the following:

! i3
Inx;(t) = 51t — Ay f xl(s)ds—Algf xp8ds + o(1),
0 0

! !
In x5 (1) = Ext — Ay f x1(s)ds — Ay f xpsds + o(1).
0 0
(3.54)

Based on system (3.54), we compute the following:

!
ApInx(t) - AppInxo(1) = My)t — My f x1(s)ds + (),
’ ~Jo

!

A Inx(f) = Ay Inx (1) = Myt = MYy | xa(s)ds + o().
(3.55)
By Lemma 3.3, for Ve € (0,1) and # > 1,

!
ApInx (t) < (M) + &)t — M3, f x1(s)ds + o(p),
0

!
Applnx(r) < (M% + s) t— M% f x1(s)ds + o(?).
0

(3.56)
In view of Lemma 3.1, we deduce
N M3,
lim sup ¢ x1(s)ds < —, a.s.,
—+00 0 M33
o (3.57)
. -1 ' M33
limsup ¢ X(s)ds < —=, a.s.
t—+00 0 M33

Mathematical Modelling and Control

According to systems (3.54) and (3.57), for Ye € (0, 1) and
t>1,

MY '
33
In x, (1) > (Azz o S)I— A f xp(s)ds,
Mz, 0

o (3.58)
M !
Inx1(t) > (A11—35 - s)t—A“ f x1(s)ds,
M 0
which implies
¢ M2
liminfr™ | x(s)ds > —=, a.s.,
t—+00 0 M%
o (3.59)
! M 1
lim inf /7! f xi(s)ds > —3(;’, a.s.
t—+0c0 0 M33
Combining (3.57) with (3.59) yields
©;
xi(o0) = =2,
33
as. (i=1,2).
Case (vit): Z; > 0, 2, > 0, M% >0, Mg <0, Mg’l <0,
M?Z >0,0; >0(@G = 1,2,3). Based on system (3.20), we

compute the following:

M Inx;(t) — M3y In x2(£) + My In x3(2)
(3.60)

!
= 031 — @f x3(s)ds + o(t).
0
Thanks to (3.60) and Lemmas 3.1 and 3.3, we derive

(3.61)

!
C]
liminf 7! f x3(s)ds > —, a.s.
1—>+00 0 @
Compute the following:
M Inx;(£) = M3 In x2(f) + M3, In x3(2)
!

=0r- @f x1(s)ds + o(t),

0

(3.62)
M3, In x(1) — M, In x1(f) — M3 In x5(t)

=0yt — ®f xp(s)ds + o(t).
0

According to Lemmas 3.1 and 3.3 and (3.62), we obtain

!
0,
1imsupt_1fxi(s)dss R as. (i=1,2). (3.63)
0

t—+00

According to (3.63) and system (3.20), for Ye € (0, 1) and
t>1,

!
In x3(7) < (A33% + 8) t—As; f x3(s)ds, (3.64)
0
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which implies

(3.65)

a.s.

!
®
lim sup ! f x3(s)ds < —3,
0 (©]

t—+00

Combining (3.61) with (3.65) yields

X3(00) = 6’

a.s. Based on Eqgs (3.63) and (3.65), and system (3.20), for
Vee (0,1)and > 1,

OF !
In x;(¢) > (Ail'6 - 8) r- A,‘,‘f xi(s)ds (i=1,2), (3.66)
0
which implies

liminf 7!

t—+00

l .
f xi(s)ds > %, as. (i=1,2). (3.67)
0 ®

Combining (3.63) with (3.67) yields

Xi(c0) = —,

]
as. (i=1,2).
Cases (viif): Z; > 0, Z, > 0, MY < 0, My} > 0,0 < 0.
From Lemma 3.1 and system (3.62), we obtain x;(c0) = 0,

a.s. Based on system (3.20), we compute the following:
! !
In x,(t) = Ext — Ay f x(s)ds — Axs f x3(s)ds + o(p),
0 0

! !
In x3(t) = Est + Az f x(s)ds — Asz f x3(s)ds + o(p).
0 0
(3.68)

Based on system (3.68), we obtain the following:

!
AszInxo(f) — AxzInx3(f) = M?lzt - M?l f x(s5)ds + o(p),
0

!

Ax Inx;(f) + Az Inxo(f) = M?ft - M?l x3(s)ds + o(7).

(3.69)
Thanks to Lemma 3.1 and system (3.69), we obtain
1 M
lim sup ! f xp(s)ds < Ml®l , a.s.,
—+0o0 0 11 (3 70)
f 03 ’
. -1 11
11tr_1)1+101<1’ft j(; x3(s)ds > IYCh a.s.

11
Based on system (3.68) and (3.70), for Ve € (0, 1) and ¢ > 1,

O3

In x3(r) < [A33 M1®1
Mll

+s)—A33f x3(s)ds, 3.71)
0

Mathematical Modelling and Control

which implies

f 0;
limsup £~} f x3(s)ds < —4 ,
pre 3(5) e

t—+00 1

a.s. (3.72)

Combining (3.70) with (3.72) yields

O3
11
o
11

x3(00) =

a.s. Based on system (3.68) and (3.72), for Ve € (0, 1) and
t>1,

©)

Inx(1) > [Azz Mg
Ml 1

+ S] — Ay f .XQ(S)dS, (373)
0

which implies
0,

' M
liminft_lfx s)ds > —L4
; 2(s) e

t—+00
11

(3.74)

a.s.

Combining (3.70) with (3.74) yields

©)
Mll

©
M]l

Xp(00) =

a.s.

Cases (ix): E; > 0,5, > 0, MY, > 0, My > 0,0, < 0.
By Lemma 3.1 and system (3.62), x;(c0) = 0, a.s. Based on
system (3.20), we obtain the following:

15 15
Inx;(¢) = E1I—A11f xl(s)ds—Algf x3(s)ds + o(1),
0 0

3 !
In x3(¢) = E31 + A3 f x1(s)ds — Az f x3(s)ds + o(?).
0 0
(3.75)
Thanks to system (3.75), we compute the following:

!
Ay Inxi (1) = Az Inxs (1) = Moyt — MS f x1(s)ds + o(?),
0

!
AiInxs(t) + Az Inx () = M%t - M%f x3(s)ds + o(1).
0

(3.76)
From Lemma 3.1 and system (3.76), we obtain
' M
limsupt_lf x1(s)ds < i, a.s.,
—+00 0 1‘422 77
) 1o (3.77)
liminf 7! f x3(s)ds > 2; , a.s.
t—+00 0 A]‘l22
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Based on Eqs (3.75) and (3.77), for Ve € (0, 1) and £ > 1,

03

In x3(¢) < [A33 Mzé
M22

+ 8) - A33 f )C3(S)dS, (378)
0

which implies

! 03

. -1 M22
limsup ¢ x3(s)ds < —=-, a.s. 3.79)

f—>+00 0 M22

Combining (3.77) with (3.79) yields

03
22
@ 9
22

x3(00) =

a.s. Based on system (3.75) and (3.79), for Ve € (0, 1) and
t>1,

M®1 t
Inx(f) > |Aj—= +&|-A; | x(s)ds,  (3.80)
M? 0
22
which implies
t M
liminf ! f xi(s)ds > —22, a.s. (3.81)
t—+o00 0 [\422
Combining (3.77) with (3.81) yields
0,
xi(00) = —=,
22
a.s. The proof is completed. O

4. Optimal harvesting strategy

Now, let us consider the optimal harvesting problem of

system (1.2). Denote the following:
H= (o, hy)" €eR3 & h e R, (i=1,2,3).

Our goal is to find the OHE H* such that (i) all species are

not extinct and (ii) the expectation of sustained yield
Y (H) = lim E[H'x()|
t—+00

is maximal. Denote the following:

2M°, - (M?2 + Mg) M®, + M,
D= —(M?Z+M§’1) 2M8, —(M%—Mg) .
MO+ M - (M% - Mg) 2M2,

Mathematical Modelling and Control

Let
=(2,%,%)", A= (A lAl, 1A3DT,

where Aj is A with column j replaced by X. Thanks to
Cramer’s Rule, if [D| # 0, then

DH=A
has a unique solution which is given by
T _
H; = (h}.hy. i) = D[ (Dy].ID2|. D3]

where Dj is D with column j replaced by A (j = 1,2, 3).

Theorem 4.1. Define the following:

1
Y*(H) = ——H'DH + H'A.
2

) If
Eiln=n: 20, Ealpy=n; 20,
(0] ® ® ®
M7 20, My; <0, M3, <0, My, > 0and

0;(Hp) .7 > 0 (1= 1,2,3),
( )HOE]R+ . (4.1)
AM M3, - (M, + M) >0, ID| >0,

then the OHS exists. Moreover,
H" = H,

and
MESY = 07'Y* (H").
(i1) If one of the following conditions holds, then the OHS
does not exist:
(D) Eilny=n; <0 o0r Ealpy=p; <0;
Eiln=n = 0, Ezlpy=pz > 0 and one of the following
(2) Eilpy=h; = 0, Enlpy=py; = 0 and he followi
conditions holds:
2.1 M2 >0, M%M]:hj,hz:h; <0, M%'m:h?,h;:h; <0;
(2.2) M, > 0, M3 = o=ty < O M7 iy < O;
23) M < 0, MY > 0, Mylh—pm-r, > O,
M =i = 2 0, Ojl=pg; > 0 (i = 1,2), Oslun; < 0;
(2.4) M, <0, M} ==, > 0, Orlp-p; < 0
(2.5) M3, >0, M%|h1:h;,h3:h; >0, Olp=n; < 0;
(3) Hy ¢ RY;
2
(4)ID| < 0 or 4MO, M3, — (M, + M) < 0.
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Proof. According to [36, Theorem 3.1.1], (x(¢), p(£))" has

the following invariant measure:
v(-x-) €RI xS,

From [37, Theorem 3.1], v(- X -) is unique. Thanks to [38,
Theorem 3.2.6], v (- X -) is ergodic. Hence,

x;(c0) = i f v (d6y,d6s,d6s, k), a.s. (i=1,2,3).
= 4.2)
Let
ﬂz{He@El > 0,5, > 0,M% >0, M <0,
M$ <0,M$ 20,0, >0 (i=1,23)}.
From (vit) in Theorem 3.1, for every H € U, we have
xT(c0) = (%, %, %) a.s. 4.3)
This completes the proof. O

Proof of (). U + 0. Based on (4.3), for every
HeU, H'x(co)=07'Y"(H).

Let o(- X -) be the stationary probability density of
system (1.2); then,

S
Y(H) = lim E [H"x(1)] =Z f H 00 (0,k)d0. (4.4)

Based on (4.1),
definite. Thus, Y*(H) has a unique maximum and the unique

the Hessian matrix —D is a negative

maximum value point of Y*(H) is
* * * T
= (h}.h3.h3) .

This completes the proof. O

Proof of (it). From Theorem 3.1, we only prove that if the
following condition holds, then the OHS does not exist (i.e.,
prove (4)):

—_ —_ ® ®
2, 20,5 >0,M%>0,M% <0,

M9 <0,M% >0,0,>0, (i=1,2,3),

322 (4.6)

2
ID| < 0 or 4M{, M3, — (M, + M5))” < 0.

—ZM?1 < 0 implies that —D is not a positive semidefinite.

System (4.6) indicates that —D is not a negative semidefinite.

Hence, —D is indefinite. Thus, Y*(H) does not exist at the

extreme point. Therefore, the OHE does not exist. m]

5. Examples and numerical simulations

5.1. Example 1

In this section, we will introduce some examples to

validate the theoretical results. Let

Tji =12, pu;(6) (s i) = v,

sin ¢

(]
=M,

= AZ) =1, u(t)=0.3+0.057, h=0.5.
Note that system (1.2) has a unique ergodic invariant Denote
measure v(- X -), and that there exists a one-to-one .
Param(i)
correspondence between o(- X ) and v(- X -). We deduce
the following: meoog hiomp opn g2 oz ooy
s s =lr2 & h m pn pn p3 02 Y2
Zf HTGQ(H,k)d9=Zf H0v(d6, k). 4.5) rs3o g hs omz opm opn opzz 03 s
=1 VR =1 VR
and
Thanks to (4.2)—(4.5), we deduce the following: rnookoan an ai
Param(i) =\ ks any an ans |-
_e-ly
Y(H) = 07 Y (H). 3 k3 a3 ax  axn
Solving Let
dr') _ o Param(1)
dH
yields 01 01 01 03 01 01 01 01 0.1
={0.1 02 01 02 01 01 01 01 0.1
T
(h*fh;h§) = |D|™' (Dy4], |D,l, D3))T . 01 02 01 02 01 01 01 01 o0.1
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subject to

x1(0) = 0.8¢%, x(0) = 0.6e%, x3(8) =0.3¢’, 9e[-1n2,0].

Case 1.
0.1 02 02 01 o0.1
Param(1)={0.1 0.1 0.1 0.1 0.1}.
02 03 0.1 0.1 0.1
Then,
=, =-0.0397, =, =-0.0247.

From Theorem 3.1 (i), all
Figure 1).

species are extinctive (see

pr—)
e ;1) |

z3(t)

0 50 100 150 200

Time

250 300 350 400

Figure 1. The solution to system (1.2) with
Param(1) and Param(1), which represents that all

species in Case 1 are extinctive.

Case 2.
01 02 02 01 o0.1
Param(2) =103 0.1 0.1 0.1 0.1].
0.1 01 0.1 03 0.1
Then, Z; = -0.0397, £, = 0.1753, Mf)f = 0.0277.

From Theorem 3.1 (ii), x; is extinctive, while x, and x3 are

persistent in the mean (see Figure 2) and

1»1()2 1»[()3
xT(c0) = (o, o —o ] = (0,0.8000,0.3687), a.s.
1 11

(5.1)

Mathematical Modelling and Control

0 50

100 150 200

Time

250 300 350 400

Figure 2. The solution to system (1.2) with
Param(1) and Param(2), which represents that
both x; and x3 are persistent in the mean in Case 2,

while x; is extinctive.

Case 3.
04 01 02 01 0.1
Param(3)=10.1 0.1 0.1 0.1 0.1].
0.1 01 04 01 0.1

Then, E; = 0.2753, E, = —0.0247, My, = 0.0677. From
Theorem 3.1 (iii), x, is extinctive, while x; and x3 are

persistent in the mean (see Figure 3) and

(C]} 03
xT(c0) = [—2; ,0, 2; ) =(0.7143,0,0.6449), a.s.
M22 22

(5.2)

18r

16

141

1.2

Ty
\_

0 50

0.

3

0.4

0.2

0

100 150 200

Time

250 300 350 400

Figure 3. The solution to system (1.2) with
Param(1) and Param(3), which represents that
both x; and x3 are persistent in the mean in Case 3,

while x; is extinctive.
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Case 4.

03 0.1 01 0.1 0.1
Param(4)={02 0.1 0.1 02 0.2].
01 01 01 01 02

Then, E; = 0.0753, E, = 0.1753, M = 0.0150, M2 =
-0.0150, M%‘ = —=0.0074. From Theorem 3.1 (iv), x; is
persistent in the mean, while x, and x3 are extinctive (see

Figure 4) and

xT(c0) = (%,o, o) = (1.1687,0,0), a.s. (5.3)

—y

-
—
—=
=
_——

0 50 o 100 150 200 250 300 350 400
Time

Figure 4. The solution to system (1.2) with

Param(1) and Param(4), which represents that x;

is persistent in the mean in Case4, while x, and

X3 are extinctive.

Case 5.

02 01 03 03 0.1
Param(5) =02 0.1 0.1 02 0.1].
01 01 01 01 02

Then, Z; = 0.0753, E, = 0.0753, Mg)l = 0.0150, M%‘ =
—-0.0075, M?f = —0.0449. From Theorem 3.1 (v), x; is

persistent in the mean, while x; and x3 are extinctive (see

Figure 5) and
XT(00) = (o, = o) = (0,0.3012,0), a.s. (5.4)
A

Mathematical Modelling and Control

N

0 50 100 150 200 250 300 350 400

Time
Figure 5. The solution to system (1.2) with
Param(1) and Param(5), which represents that x;
is persistent in the mean in Case 5, while x; and

X3 are extinctive.

Let

Param(2)

0r o1 01 03 03 01 01 01 0.1
=101 02 01 02 02 01 01 01 0.1
01 02 01 02 01 03 01 01 0.1

subject to x1(f) = 0.8, x2(6) = 0.6e’, x3(6) = 0.3¢%, 9 €
[-1n2,0].

Case 6.

04 02 01 01 0.1
Param(6) ={04 0.1 0.1 0.2 0.1}.
01 03 01 01 0.1

Then, E; = 0.2603, Z, = 0.2753, M?l = -0.0150, Mg’z =
0.0075, ®; = 0.0068, ®, = 0.0048, ®3 = —5.1889 x 107%,
M2 =0.0238, M2 = 0.0168. From Theorem 3.1 (vi), x|
and x, are persistent in the mean, while x3 is extinctive (see

Figure 6) and

M@)] M®2
xT(c0) = [—3; " ,0] =(0.7317,0.5159,0), a.s.
33 33

(5.5)
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0 50 100 150 200 250 300 350 400

Time
Figure 6. The solution to system (1.2) with

Param(2) and Param(6), which represents that
both x; and x; are persistent in the mean in Case 6,

while x3 is extinctive.

Case 7.
08 02 04 0.1 0.1
Param(7) ={0.7 0.1 0.1 04 0.2].
02 03 04 01 05

Then, E; = 0.6603, Z, = 0.5753, MY, = 0.1525, M%), =
-0.0700, MY, = —0.0300, MY, = 0.1075, ©; = 0.1463,
®, = 0.1041, ®3 = 0.0638. From Theorem 3.1 (vii), all

species are persistent in the mean (see Figure 7) and

01 0, 0
©' 00

xT(c0) = ( ) =(0.9144,0.6505,0.3989) a.s.

(5.6)

‘lMlllmihhll

02 T
0

1 1 1 1 1
0 50 100 150 200 250 300 350 400

Time
Figure 7. The solution to system (1.2) with

Param(2) and Param(7), which represents that all

species in Case 7 are persistent in the mean.
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Case 8.
02 02 03 01 02
Param(8)=(03 0.1 0.1 0.1 0.1}.
0.1 03 01 02 0.1

Then, Z; = 0.0603, &, = 0.1753, M?l = —0.0150, M?ﬁ =
0.0232, ®; = —0.0109. From Theorem 3.1 (viii), x; is
extinctive, while x, and x3 are persistent in the mean (see

Figure 8) and

@)2 @3
xT(o0) = [o, —_u ) = (0,0.8600,0.3087), a.s.
M7 M

(5.7)

0 50 100 150 200 250 300 350 400
Time
Figure 8. The solution to system (1.2) with

Param(2) and Param(8), which represents that x,
and x3 are persistent in the mean in Case 8, while

X1 18 extinctive.

Let
Param(3)
01 01 01 03 02 01 01 01 0.1
={0.1 02 01 02 01 01 01 0.1 0.1
01 02 01 02 01 01 01 01 o0.1

subject to x1(8) = 0.8¢, x,(0) = 0.6¢’, x3(8) = 0.3¢%, 9 €

[-1n2,0].
Case 9.
04 02 01 0.1 0.1
Param(9) =102 0.1 0.1 0.1 0.1].
0.1 03 03 01 0.1

Then, E; = 0.2603, Z, = 0.0753, M% = 0.0075, M% =
0.0141, ®, = —0.0086. From Theorem 3.1 (ix), x; and x3 are
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persistent in the mean, while x, are extinctive (see Figure 9) and

and
M®1 03
x(c0) = (—2@2 0, —= ] = (0.9364,0,0.4869) a.s. (5.8)
M
22 22

0 50 100 150 200 250 300 350 400
Time
Figure 9. The solution to system (1.2) with
Param(3) and Param(9), which represents that x;
and x3 are persistent in the mean in Case 9, while

X, 1S extinctive.

5.2. Example 2

In this example, we will consider the effect of a time delay
on the stochastic persistence in the mean and extinction of

the species. Let 7j; = Inw, w;i(0) = we?, yi(u, i) = y;@),

AZ) =1, u(r) = 0.3 +0.05%2 s = 0.5. Denote

Param(i)

g homp oun up g o

=lr2 g h m p pp s 02
33 & hy m3 uz p3m w03
and
 n ko oan an a3
Param(i) =|r, k» ay ax» axl|.
r3 ks a3 aym  asn
Let
—_
Param(1)

0r o1 01 03 02 02 01 0.1
=|01 02 01 02 03 01 01 0.1
0r 02 01 02 01 01 01 0.1

Mathematical Modelling and Control

Param(1) =

04 0.1
04 0.1

0.1

0.45
0.45
0.1

02 0.1
02 05
0.1 0.1

subject to x1(f) = 0.8¢%, x2(6) = 0.6e’, x3(8) = 0.3¢%, 0 €

[-1nw,O0].

Case 10. w = 2. Then, E;
= 02125, MY

= 0.2753, 5, = 0.2753,
= -0.0138, M2 = -0.0823. From

Theorem 3.1 (iv), x; is persistent in the mean, while x, and

x3 are extinctive (see Figure 10) and

Case 11. w = 3. Then, &

XT(c0) = (;—10

0) =(0.5006,0,0), a.s. (5.9)
1

12

w=2 — ) ()
[
3(t)

<z (t) >

Ml

Figure 10. The solution to system (1.2) with
Param(1), Param(l) and 7; = In2, which
represents that x; is persistent in the mean in

Case 10, while x, and x5 are extinctive.

= 0.2753, 5, = 0.2753,
= 0.1444, MY = -0.0184, M?? = —0.0140. From

Theorem 3.1 (v), x; and x3 are extinctive, while x, is

persistent in the mean (see Figure 11) and

XT(00) = (o, ﬁ,o) = (0,1.0324,0), as.  (5.10)
Ay
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0 100 260 360 460 560 600
Time

Figure 11. The solution to system (1.2) with

Param(1), Param(l) and 7; = In3, which

represents that both x; and x3 are extinctive in

Case 11, while x; is persistent in the mean.

From Figures 10 and 11, we observe that time delay can

change the survival state of the species.

6. Conclusions and discussion

In this paper, we studied a stochastic, hybrid delay, one-
predator-two-prey model with harvesting and jumps in a
polluted environment.
Theorems 3.1 and 4.1.
conditions for a stochastic persistence in the mean and

The main results are presented in

Theorem 3.1 provides sufficient

extinction of each species. Theorem 4.1 obtains sufficient
conditions for the existence of an OHS and gives the explicit
forms of the OHE and MESY. Our results reveal that a time
delay can change the survival state of the species.

Some topics deserve further investigation. For example,
it is interesting to study the existence of a stationary
distribution for system (1.2) with Markov switching and
On the other hand, one

can propose and study some more realistic but complex

infinite distributed time delays.

models with different functional responses and impulsive

perturbations. We leave these investigations for future work.
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