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Abstract: This paper concerns the dynamics of a stochastic, hybrid delay, one-predator-two-prey model with harvesting and Lévy jumps
in a polluted environment. Under some basic assumptions, sufficient conditions of stochastic persistence in the mean and extinction of
each species are obtained, as well as the existence of optimal harvesting strategy (OHS). Our results show that both time delays and
environmental noises affect the survival state of the species. Moreover, the accurate expressions for the optimal harvesting effort (OHE)
and the maximum of expectation of sustainable yield (MESY) are given. Finally, some numerical simulations are provided to support
our results.
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1. Introduction

The classical Lotka-Volterra model with one predator and
two competing preys under the catch-per-unit-effort (CPUE)
harvesting hypothesis ([1, 2]) can be expressed as follows:

ẋ1(t) = x1(t) [r1 − h1 − a11x1(t) − a12x2(t) − a13x3(t)] ,

ẋ2(t) = x2(t) [r2 − h2 − a21x1(t) − a22x2(t) − a23x3(t)] ,

ẋ3(t) = x3(t) [−r3 − h3 + a31x1(t) + a32x2(t) − a33x3(t)] ,
(1.1)

where xi(t) is the population density of species i at time
t, r1 and r2 are the intrinsic growth rates of two preys, r3

is the mortality rate of the predator, aii denotes the intra-
specific competition rate of species i, a12 and a21 are the
inter-specific competition rates, a13, a23 are the capture rates,
a31, a32 are the food conversion rates, and hi ≥ 0 is the
harvesting effort of species i (i = 1, 2, 3).

On the one hand, “time delays occur so often that to ignore
them is to ignore reality” because any species in nature will
not always react at once to variation on their own population
size or on that of the interacting species, though they will
preferably do so after a time lag [3,4]. Hence, it is crucial to

consider the effect of time delay on the population dynamics,
and incorporating a time delay into ecosystems makes them
much more realistic than those without a time delay [5–7].

On the other hand, the deterministic system has its
limitation in the mathematical modeling of ecosystems
since the parameters involved in the system are unable
of capturing the influence of environmental noises [8].
Hence, it is of a great theoretical and practical significance
to study the effect of environmental noise on the
population dynamics. There are three common types
of environmental noises, namely Gaussian white noise,
telegraph noise, and Lévy noise. Introducing Gaussian white
noises into the corresponding deterministic model is one
common way to characterize environmental noises [9–12].
Additionally, telegraph noise should be taken into account
since parameters in ecosystems often switch because of
environmental changes; for example, the population may
suffer sudden catastrophic shocks [13], the growth rates
of some species often vary according to the changes in
rainfall [14], the growth rates of some species in dry
season are much different from those in rainy season [15],
and these changes can be described by a continuous-time
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Markovian chain with a finite-state space, instead of white
noises [13–15]. Besides, ecosystems may be subject to some
sudden discontinuous environmental perturbations, such as
earthquakes, typhoons, and infectious diseases, which can
be described by Lévy jumps [16–19].

Meanwhile, the environment has been along with the
rapid development of the economy. As more and more
toxic substances and pollutants enter the ecosystem, the
quality of the environment gradually declines, which results
in many species becoming extinct and others on the brink
of extinction [20]. Therefore, the environmental pollution
has become an important problem that the world has to
face [21, 22]. In addition, unreasonable capture can easily
lead to species extinction, ecological damage, and so on.
Hence, harvesting is one of the important processes in the
management of population dynamics [23–26]. Motivated
by the above discussions, in this paper, we consider the
dynamics of the following stochastic, hybrid delay, one-
predator-two-prey model with harvesting and jumps in a
polluted environment:

dx1(t) = x1(t)
[
r1(ρ(t)) − r11C1(t) − h1 −D11(x1)(t)

−D12(x2)(t) −D13(x3)(t)] dt + S1(t, ρ(t))x1(t),

dx2(t) = x2(t)
[
r2(ρ(t)) − r22C2(t) − h2 −D21(x1)(t)

−D22(x2)(t) −D23(x3)(t)] dt + S2(t, ρ(t))x2(t),

dx3(t) = x3(t)
[
−r3(ρ(t)) − r33C3(t) − h3 +D31(x1)(t)

+D32(x2)(t) −D33(x3)(t)] dt + S3(t, ρ(t))x3(t),

dCi(t) =
[
kiCE(t) − (gi + mi) Ci(t)

]
dt, i = 1, 2, 3,

dCE(t) = [−hCE(t) + u(t)] dt,
(1.2)

where

D ji(xi)(t) = a jixi(t) +
∫ 0

−τ ji

xi(t + θ)dµ ji(θ),

Si (t, ρ(t)) = σi(ρ(t))dWi(t) +
∫
Z

γi(µ, ρ(t))Ñ(dt, dµ),

Wi(t) are standard Wiener processes defined on a complete
probability space (Ω,F , P) with a filtration {Ft}t≥0 that
satisfies the usual conditions, ρ(t) is a continuous time
Markov chain with finite state space

S = {1, 2, ..., S } ,

N is a Poisson counting measure with the characteristic

measure λ on a measurable subset

Z ⊆ [0,+∞)

with
λ(Z) < +∞

and
Ñ(dt, dµ) = N(dt, dµ) − λ(dµ)dt,

γ j(µ, ρ(t)) are bounded functions,
∫ 0
−τ ji

xi(t + θ)dµ ji(θ) are
Lebesgue-Stieltjes integrals, τ ji > 0 are delays,

τ = max
{
τ ji

}
,

µ ji(θ), θ ∈ [−τ, 0] are nondecreasing bounded variation
functions. For other parameters in system (1.2), see [27,
Table 1].

The rest of this paper is arranged as follows. In
Section 2, we study the existence and uniqueness of global
positive solution to systems (1.2). The sufficient conditions
for stochastic persistence in the mean and extinction of
each species are obtained in Section 3. In Section 4,
the sufficient conditions for the existence of the optimal
harvesting strategy (OHS) are established. Furthermore, we
provide the accurate expressions of the optimal harvesting
effort (OHE) and the maximum of expectation of sustainable
yield (MESY). In Section 5, some numerical simulations are
provided to verify the theoretical results. Finally, some brief
conclusions and discussions are shown in Section 6.

2. Existence and uniqueness of global positive solution

In this paper, we have four fundamental assumptions for
system (1.2).

Assumption 2.1. [28–30] W1(t), W2(t), W3(t), ρ(t), and N

are mutually independent, and ρ(t) is irreducible with one

unique stationary distribution

π = (π1, π2, ..., πS ) .

Assumption 2.2. [31,32] r j(i) > 0, a jk > 0, and there exist

γ∗j(i) ≥ γ j∗(i) > −1,

such that

γ j∗(i) ≤ γ j(µ, i) ≤ γ∗j(i) (µ ∈ Z), ∀i ∈ S, j, k = 1, 2, 3.
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Hence, for any constant p > 0, there exists C j (p) > 0 such

that

max
i∈S

{∫
Z

[
ln

(
1 + γ j(µ, i)

)]2
λ (dµ)

}
≤ C j(p) < +∞.

Remark 2.1. Assumption 2.2 implies that the intensities of

Lévy jumps are not too big to ensure that the solution will

not explode in a finite time (see, e.g., [10, 18, 19]).

Assumption 2.3.

0 < ki ≤ gi + mi, i = 1, 2, 3,

sup
t∈R+

u(t) ≤ h.

Remark 2.2. Assumption 2.3 means

0 ≤ Ci(t) < 1

and

0 ≤ CE(t) < 1,

which must be satisfied to be realistic because Ci(t) and

CE(t) are concentrations of the toxicant (i = 1, 2, 3) (see [33,

Lemma 2.1]).

Assumption 2.4. The limit of u(t) when t → +∞ exists, i.e.,

lim
t→+∞

u(t) ≜ uE .

Lemma 2.1. [2, Lemma 4.2] If Assumption 2.4 holds, then

lim
t→+∞

CE(t) =
uE

h
,

lim
t→+∞

t−1
∫ t

0
Ci(s)ds =

kiuE

(gi + mi)h
≜ CE

i , i = 1, 2, 3.

Theorem 2.1. For any initial condition

ϕ ∈ C
(
[−τ, 0],R3

+

)
,

system (1.2) has a unique global solution on t ∈ [−τ,+∞)

a.s. Moreover, for any constant p > 0, there exists Ki(p) > 0
such that

sup
t∈R+
E

[
xp

i (t)
]
≤ Ki(p), i = 1, 2, 3.

Proof. The proof is standard; hence, it is omitted (see
e.g., [34]). □

3. Stochastic persistence and extinction

Denote

Bi(·) = ri(·) −
σ2

i (·)
2
−

∫
Z

[
γi(µ, ·) − ln(1 + γi(µ, ·))

]
λ(dµ),

(i = 1, 2) ,

B3(·) = r3(·) +
σ2

3(·)
2
+

∫
Z

[
γ3(µ, ·) − ln(1 + γ3(µ, ·))

]
λ(dµ),

Σ j =

S∑
i=1

πiB j(i) − r j jCE
j , ( j = 1, 2) ,

Σ3 = −

S∑
i=1

πiB3(i) − r33CE
3 ,

Ξ j = Σ j − h j, Ai j = ai j +

∫ 0

−τi j

dµi j(θ), (i, j = 1, 2, 3) ,

Ξ =


Ξ1

Ξ2

Ξ3

 , A0 =


A11 0 0
0 A22 0
−A31 −A32 A33

 ,

A =


A11 A12 A13

A21 A22 A23

−A31 −A32 A33

 .
Assume that

Θ = det(A) > 0.

Let Aj be A with column j replaced by Ξ and

Θ j = det
(
Aj

)
.

For A and Ak, denote the complement minor of the (i, j) −
th element by MΘi j and MΘk

i j , respectively (i, j, k = 1, 2, 3).
Denote

X(∞) = lim
t→+∞

X(t), X(∞) = lim
t→+∞

t−1
∫ t

0
X(s)ds,

XT(∞) = lim
t→+∞

t−1
(∫ t

0
X1(s)ds,

∫ t

0
X2(s)ds,

∫ t

0
X3(s)ds

)
.

Lemma 3.1. [35] Denote

o(t) =
{

f (t) | lim
t→+∞

f (t)
t = 0

}
.

Suppose

Z(t) ∈ C(Ω × [0,+∞),R+).

(i) If there exists constant δ0 > 0 such that for t ≫ 1,

ln Z(t) ≤ δt − δ0

∫ t

0
Z(s)ds + o(t), (3.1)
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then,
lim sup

t→+∞
t−1

∫ t

0
Z(s)ds ≤

δ

δ0
, a.s. (δ ≥ 0) ;

lim
t→+∞

Z(t) = 0, a.s. (δ < 0) .
(3.2)

(ii) If there exist constants δ > 0 and δ0 > 0 such that for

t ≫ 1,

ln Z(t) ≥ δt − δ0

∫ t

0
Z(s)ds + o(t), (3.3)

then,

lim inf
t→+∞

t−1
∫ t

0
Z(s)ds ≥

δ

δ0
, a.s. (3.4)

First, let us consider the following stochastic delay
differential equation (SDDE):

dXi(t) = Xi(t)
[
ri(ρ(t)) − riiCi(t) − hi −Dii(Xi)(t)

]
dt

+ Si(t, ρ(t))Xi(t), (i = 1, 2),

dX3(t) = X3(t)
[
−r3(ρ(t)) − r33C3(t) − h3 +D31(X1)(t)

+D32(X2)(t) −D33(X3)(t)] dt + S3(t, ρ(t))X3(t),

dCi(t) =
[
kiCE(t) − (gi + mi) Ci(t)

]
dt, i = 1, 2, 3,

dCE(t) = [−hCE(t) + u(t)] dt.
(3.5)

Lemma 3.2. For system (3.5), the following hold:

(a) If Ξ1 < 0, Ξ2 < 0, then XT(∞) = (0, 0, 0) .
(b) If Ξ1 < 0, Ξ2 ≥ 0, Ξ3 +

A32
A22
Ξ2 < 0, then

XT(∞) =
(
0,
Ξ2

A22
, 0

)
.

(c) If Ξ1 < 0, Ξ2 ≥ 0, Ξ3 +
A32
A22
Ξ2 ≥ 0, then

XT(∞) =
(
0,
Ξ2

A22
, A−1

33

(
Ξ3 +

A32

A22
Ξ2

))
.

(d) If Ξ1 ≥ 0, Ξ2 < 0, Ξ3 +
A31
A11
Ξ1 < 0, then

XT(∞) =
(
Ξ1

A11
, 0, 0

)
.

(e) If Ξ1 ≥ 0, Ξ2 < 0, Ξ3 +
A31
A11
Ξ1 ≥ 0, then

XT(∞) =
(
Ξ1

A11
, 0, A−1

33

(
Ξ3 +

A31

A11
Ξ1

))
.

(f) If Ξ1 ≥ 0, Ξ2 ≥ 0, Ξ3 +
A31
A11
Ξ1 +

A32
A22
Ξ2 < 0, then

XT(∞) =
(
Ξ1

A11
,
Ξ2

A22
, 0

)
.

(g) If Ξ1 ≥ 0, Ξ2 ≥ 0, Ξ3 +
A31
A11
Ξ1 +

A32
A22
Ξ2 ≥ 0, then

XT(∞) =
(
Ξ1

A11
,
Ξ2

A22
, A−1

33

(
Ξ3 +

A31

A11
Ξ1 +

A32

A22
Ξ2

))
. (3.6)

Proof. Thanks to [34, Lemma 2.3], for j = 1, 2,

X j(∞) = 0 a.s.
(
Ξ j < 0

)
; X j(∞) =

Ξ j

A j j
, a.s.

(
Ξ j ≥ 0

)
.

(3.7)
By Itô’s formula,

ln X(t) =Ξ t − A0

∫ t

0
X(s)ds

+


−T11(X1)(t)
−T22(X2)(t)

T31(X1)(t) + T32(X2)(t) − T33(X3)(t)

 + o(t),

(3.8)
where

ln X(t) =


ln X1(t)
ln X2(t)
ln X3(t)

 ,

o(t) = o(t)


1
1
1

 ,
∫

X(s)ds =


∫

X1(s)ds∫
X2(s)ds∫
X3(s)ds

 ,
T ji(Xi)(t) =

∫ 0

−τ ji

∫ 0

θ

Xi(s)dsdµ ji(θ)

−

∫ 0

−τ ji

∫ t

t+θ
Xi(s)dsdµ ji(θ).

Case 1: Ξ1 < 0, Ξ2 < 0. Based on system (3.8), for
∀ε ∈ (0, 1) and t ≫ 1,

ln X3(t) ≤ (Ξ3 + ε) t − a33

∫ t

0
X3(s)ds, (3.9)

which implies that X3(∞) = 0, a.s.
Case 2: Ξ1 < 0, Ξ2 ≥ 0. Consider the following SDDE:

dXi(t) = Xi(t)
[
ri(ρ(t)) − riiCi(t) − hi −Dii(Xi)(t)

]
dt

+ Si(t, ρ(t))Xi(t), (i = 1, 2),

dX̃3(t) =X̃3(t)
[
−r3(ρ(t)) − r33C3(t) − h3 +D31(X1)(t)

+D32(X2)(t) − a33X̃3(t)
]

dt + S3(t, ρ(t))X̃3(t),

dCi(t) =
[
kiCE(t) − (gi + mi) Ci(t)

]
dt, i = 1, 2, 3,

dCE(t) = [−hCE(t) + u(t)] dt.
(3.10)
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Thanks to the comparison theorem for SDDE,

X3(t) ≤ X̃3(t),

a.s. By Itô’s formula,

ln X̃3(t) =
(
Ξ3 +

A32

A22
Ξ2

)
t − a33

∫ t

0
X̃3(s)ds + o(t).

(3.11)
In view of Lemma 3.1, for an arbitrary γ > 0,

lim
t→+∞

t−1
∫ t

t−γ
Xi(s)ds = 0, a.s. (i = 1, 2, 3). (3.12)

According to (3.12) and system (3.8),

ln X3(t) =
(
Ξ3 +

A32

A22
Ξ2

)
t − A33

∫ t

0
X3(s)ds + o(t). (3.13)

Thanks to Lemma 3.1, we obtain the desired assertions (b)
and (c).

Case 3: Ξ1 ≥ 0, Ξ2 < 0. By Itô’s formula,

ln X̃3(t) =
(
Ξ3 +

A31

A11
Ξ1

)
t − a33

∫ t

0
X̃3(s)ds + o(t).

(3.14)
Thanks to Lemma 3.1, (3.12) is true for an arbitrary γ > 0.
Therefore,

ln X3(t) =
(
Ξ3 + A31

Ξ1

A11

)
t − A33

∫ t

0
X3(s)ds + o(t).

(3.15)
According to Lemma 3.1, we obtain the desired assertions
(d) and (e).

Case 4: Ξ1 ≥ 0, Ξ2 ≥ 0. By Itô’s formula,

ln X̃3(t) =
(
Ξ3 +

A31

A11
Ξ1 +

A32

A22
Ξ2

)
t − a33

∫ t

0
X̃3(s)ds + o(t).

(3.16)
Based on Lemma 3.1, (3.12) is also true for an arbitrary

γ > 0. Thus,

ln X3(t) =
(
Ξ3 +

A31

A11
Ξ1 +

A32

A22
Ξ2

)
t − A33

∫ t

0
X3(s)ds + o(t).

(3.17)
From Lemma 3.1, we obtain the desired assertions (f) and
(g). □

Lemma 3.3. System (1.2) satisfies the following:

lim sup
t→+∞

t−1 ln xi(t) ≤ 0, a.s. (i = 1, 2, 3).

Proof. From Lemma 3.2, system (3.5) satisfies the
following:

lim
t→+∞

t−1 ln Xi(t) = 0, a.s. (i = 1, 2, 3).

By the stochastic comparison theorem, we obtain the desired
assertion. □

Theorem 3.1. For system (1.2), the following holds:

(i) If Ξ1 < 0, Ξ2 < 0, then

xT(∞) = (0, 0, 0) .

(ii) If Ξ1 < 0, Ξ2 ≥ 0, MΘ3
11 > 0, then

xT(∞) =

0, MΘ2
11

MΘ11

,
MΘ3

11

MΘ11

 .
(iii) If Ξ1 ≥ 0, Ξ2 < 0, MΘ3

22 > 0, then

xT(∞) =

 MΘ1
22

MΘ22

, 0,
MΘ3

22

MΘ22

 .
(iv) If Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ32 ≥ 0, MΘ2

33 ≤ 0, MΘ3
22 ≤ 0, then

xT(∞) =
(
Ξ1

A11
, 0, 0

)
.

(v) If Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ31 ≥ 0, MΘ1
33 ≤ 0, MΘ3

11 ≤ 0, then

xT(∞) =
(
0,
Ξ2

A22
, 0

)
.

(vi) If Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ31 ≤ 0, MΘ32 ≥ 0, Θi > 0 (i = 1, 2),
Θ3 < 0, MΘ1

33 ≥ 0, MΘ2
33 ≥ 0, then

xT(∞) =

 MΘ1
33

MΘ33

,
MΘ2

33

MΘ33

, 0

 .
(vii) If Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ13 ≥ 0, MΘ23 ≤ 0, MΘ31 ≤ 0,

MΘ32 ≥ 0, Θi > 0 (i = 1, 2, 3), then

xT(∞) =
(
Θ1

Θ
,
Θ2

Θ
,
Θ3

Θ

)
. (3.18)

(viii) If Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ31 ≤ 0, Θ1 < 0, MΘ3
11 > 0, then

xT(∞) =

0, MΘ2
11

MΘ11

,
MΘ3

11

MΘ11

 .
(ix) If Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ32 ≥ 0, Θ2 < 0, MΘ3

22 > 0, then

xT(∞) =

 MΘ1
22

MΘ22

, 0,
MΘ3

22

MΘ22

 .
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Proof. Thanks to Lemma 3.2, for ∀γ > 0,

lim
t→+∞

t−1
∫ t

t−γ
xi(s)ds = 0, a.s. (i = 1, 2, 3). (3.19)

By Itô’s formula,

ln x(t) = Ξt − A
∫ t

0
x(s)ds + o(t). (3.20)

Case (i): Ξ1 < 0, Ξ2 < 0. From Lemma 3.2 (a),

xT(∞) = (0, 0, 0) .

Case (ii): Ξ1 < 0, Ξ2 ≥ 0, MΘ3
11 > 0. From Lemma 3.2,

x1(∞) = 0, a.s. Compute the following:

A32 ln x2(t) + A22 ln x3(t) = MΘ3
11 t − MΘ11

∫ t

0
x3(s)ds + o(t).

(3.21)
Thanks to Lemma 3.1, we deduce the following:

lim inf
t→+∞

t−1
∫ t

0
x3(s)ds ≥

MΘ3
11

MΘ11

, a.s. (3.22)

Based on systems (3.20) and (3.22), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x2(t) ≤

A22
MΘ2

11

MΘ11

+ ε

 t − A22

∫ t

0
x2(s)ds, (3.23)

which implies

lim sup
t→+∞

t−1
∫ t

0
x2(s)ds ≤

MΘ2
11

MΘ11

, a.s. (3.24)

Based on Eqs (3.20) and (3.24), for ∀ε ∈ (0, 1) and t ≫ 1,

ln x3(t) ≤

A33
MΘ3

11

MΘ11

+ ε

 t − A33

∫ t

0
x3(s)ds, (3.25)

which implies

lim sup
t→+∞

t−1
∫ t

0
x3(s)ds ≤

MΘ3
11

MΘ11

, a.s. (3.26)

Combining (3.22) with (3.26) yields

x3(∞) =
MΘ3

11

MΘ11

,

a.s. Based on systems (3.20) and (3.26), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x2(t) ≥

A22
MΘ2

11

MΘ11

− ε

 t − A22

∫ t

0
x2(s)ds, (3.27)

which implies

lim inf
t→+∞

t−1
∫ t

0
x2(s)ds ≥

MΘ2
11

MΘ11

, a.s. (3.28)

Combining (3.24) with (3.28) yields

x2(∞) =
MΘ2

11

MΘ11

,

a.s.
Case (iii): Ξ1 ≥ 0, Ξ2 < 0, MΘ3

22 > 0. From Lemma 3.2,
x2(∞) = 0, a.s. Compute the following:

A33 ln x1(t) − A13 ln x3(t) = MΘ1
22 t − MΘ22

∫ t

0
x1(s)ds + o(t).

(3.29)
Thanks to Lemmas 3.1 and 3.3, we deduce the following:

lim sup
t→+∞

t−1
∫ t

0
x1(s)ds ≤

MΘ1
22

MΘ22

, a.s. (3.30)

Based on systems (3.20) and (3.30), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x3(t) ≤

A33
MΘ3

22

MΘ22

+ ε

 t − A33

∫ t

0
x3(s)ds, (3.31)

which implies

lim sup
t→+∞

t−1
∫ t

0
x3(s)ds ≤

MΘ3
22

MΘ22

, a.s. (3.32)

Based on Eqs (3.20) and (3.32), for ∀ε ∈ (0, 1) and t ≫ 1,

ln x1(t) ≥

A11
MΘ1

22

MΘ22

− ε

 t − A11

∫ t

0
x1(s)ds, (3.33)

which implies

lim inf
t→+∞

t−1
∫ t

0
x1(s)ds ≥

MΘ1
22

MΘ22

, a.s. (3.34)

Combining (3.30) with (3.34) yields

x1(∞) =
MΘ1

22

MΘ22

,
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a.s. Based on systems (3.20) and (3.34), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x3(t) ≥

A33
MΘ3

22

MΘ22

− ε

 t − A33

∫ t

0
x3(s)ds, (3.35)

which implies

lim inf
t→+∞

t−1
∫ t

0
x3(s)ds ≥

MΘ3
22

MΘ22

, a.s. (3.36)

Combining (3.32) with (3.36) yields

x3(∞) =
MΘ3

22

MΘ22

,

a.s.

Case (iv): Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ32 ≥ 0, MΘ2
33 ≤ 0, MΘ3

22 ≤ 0.
Based on system (3.20), we compute the following:

A11 ln x2(t) − A21 ln x1(t)

=MΘ2
33 t − MΘ33

∫ t

0
x2(s)ds − MΘ32

∫ t

0
x3(s)ds + o(t).

(3.37)

By Lemma 3.3, for ∀ε ∈ (0, 1) and t ≫ 1,

A11 ln x2(t) ≤
(
MΘ2

33 + ε
)

t − MΘ33

∫ t

0
x2(s)ds, (3.38)

which implies x2(∞) = 0, a.s. Based on system (3.20), for
∀ε ∈ (0, 1) and t ≫ 1,

ln x1(t) ≤ (Ξ1 + ε) t − A11

∫ t

0
x1(s)ds. (3.39)

Thanks to Lemma 3.1, we deduce

lim sup
t→+∞

t−1
∫ t

0
x1(s)ds ≤

Ξ1

A11
, a.s. (3.40)

Substituting x2(∞) = 0 and (3.40) into system (3.20), for
∀ε ∈ (0, 1) and t ≫ 1,

ln x3(t) ≤

 MΘ3
22

A11
+ ε

 t − A33

∫ t

0
x3(s)ds, (3.41)

which implies x3(∞) = 0, a.s. Substituting x2(∞) = 0 and
x3(∞) = 0 into system (3.20), for ∀ε ∈ (0, 1) and t ≫ 1,

ln x1(t) ≥ (Ξ1 − ε) t − A11

∫ t

0
x1(s)ds. (3.42)

Thanks to Lemma 3.1, we deduce

lim inf
t→+∞

t−1
∫ t

0
x1(s)ds ≥

Ξ1

A11
, a.s. (3.43)

Combining (3.40) with (3.43) yields

x1(∞) =
Ξ1

A11
,

a.s.
Case (v): Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ31 ≥ 0, MΘ1

33 ≤ 0, MΘ3
11 ≤ 0.

Based on system (3.20), we compute the following:

A22 ln x1(t) − A12 ln x2(t)

= MΘ1
33 t − MΘ33

∫ t

0
x2(s)ds − MΘ31

∫ t

0
x3(s)ds + o(t).

(3.44)

By Lemma 3.3, for ∀ε ∈ (0, 1) and t ≫ 1,

A22 ln x1(t) ≤
(
MΘ1

33 + ε
)

t − MΘ33

∫ t

0
x1(s)ds. (3.45)

which implies x1(∞) = 0, a.s. Based on system (3.20), for
∀ε ∈ (0, 1) and t ≫ 1,

ln x2(t) ≤ (Ξ2 + ε) t − A22

∫ t

0
x2(s)ds. (3.46)

Thanks to Lemma 3.1, we deduce

lim sup
t→+∞

t−1
∫ t

0
x2(s)ds ≤

Ξ2

A22
, a.s. (3.47)

Substituting x1(∞) = 0 and (3.47) into system (3.20), for
∀ε ∈ (0, 1) and t ≫ 1,

ln x3(t) ≤

 MΘ3
11

A22
+ ε

 t − A33

∫ t

0
x3(s)ds, (3.48)

which implies x3(∞) = 0, a.s. Substituting x1(∞) = 0 and
x3(∞) = 0 into system (3.20), for ∀ε ∈ (0, 1) and t ≫ 1,

ln x2(t) ≥ (Ξ2 − ε) t − A22

∫ t

0
x2(s)ds. (3.49)

Thanks to Lemma 3.1, we deduce

lim inf
t→+∞

t−1
∫ t

0
x2(s)ds ≥

Ξ2

A22
, a.s. (3.50)

Combining (3.47) with (3.50) yields

x2(∞) =
Ξ2

A22
,
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a.s.
Case (vi): Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ31 ≤ 0, MΘ32 ≥ 0, Θi > 0

(where i = 1, 2), Θ3 < 0, MΘ1
33 ≥ 0, MΘ2

33 ≥ 0. Compute the
following:

MΘ11 ln x1(t) − MΘ21 ln x2(t) + MΘ31 ln x3(t)

= Θ1t − Θ
∫ t

0
x1(s)ds + o(t),

MΘ22 ln x2(t) − MΘ12 ln x1(t) − MΘ32 ln x3(t)

= Θ2t − Θ
∫ t

0
x2(s)ds + o(t).

(3.51)

According to Lemmas 3.1 and 3.3 and (3.51), we obtain

lim sup
t→+∞

t−1
∫ t

0
xi(s)ds ≤

Θi

Θ
, a.s. (i = 1, 2). (3.52)

According to (3.52) and system (3.20), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x3(t) ≤
(
A33
Θ3

Θ
+ ε

)
t − A33

∫ t

0
x3(s)ds, (3.53)

which implies x3(∞) = 0, a.s. Compute the following:
ln x1(t) = Ξ1t − A11

∫ t

0
x1(s)ds − A12

∫ t

0
x2sds + o(t),

ln x2(t) = Ξ2t − A21

∫ t

0
x1(s)ds − A22

∫ t

0
x2sds + o(t).

(3.54)
Based on system (3.54), we compute the following:

A22 ln x1(t) − A12 ln x2(t) = MΘ1
33 t − MΘ33

∫ t

0
x1(s)ds + o(t),

A11 ln x2(t) − A21 ln x1(t) = MΘ2
33 t − MΘ33

∫ t

0
x2(s)ds + o(t).

(3.55)
By Lemma 3.3, for ∀ε ∈ (0, 1) and t ≫ 1,

A22 ln x1(t) ≤
(
MΘ1

33 + ε
)

t − MΘ33

∫ t

0
x1(s)ds + o(t),

A11 ln x2(t) ≤
(
MΘ2

33 + ε
)

t − MΘ33

∫ t

0
x1(s)ds + o(t).

(3.56)
In view of Lemma 3.1, we deduce

lim sup
t→+∞

t−1
∫ t

0
x1(s)ds ≤

MΘ1
33

MΘ33

, a.s.,

lim sup
t→+∞

t−1
∫ t

0
x2(s)ds ≤

MΘ2
33

MΘ33

, a.s.

(3.57)

According to systems (3.54) and (3.57), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x2(t) ≥

A22
MΘ2

33

MΘ33

− ε

 t − A22

∫ t

0
x2(s)ds,

ln x1(t) ≥

A11
MΘ1

33

MΘ33

− ε

 t − A11

∫ t

0
x1(s)ds,

(3.58)

which implies
lim inf

t→+∞
t−1

∫ t

0
x2(s)ds ≥

MΘ2
33

MΘ33

, a.s.,

lim inf
t→+∞

t−1
∫ t

0
x1(s)ds ≥

MΘ1
33

MΘ33

, a.s.

(3.59)

Combining (3.57) with (3.59) yields

xi(∞) =
MΘi

33

MΘ33

,

a.s. (i = 1, 2).
Case (vii): Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ13 ≥ 0, MΘ23 ≤ 0, MΘ31 ≤ 0,

MΘ32 ≥ 0, Θi > 0 (i = 1, 2, 3). Based on system (3.20), we
compute the following:

MΘ13 ln x1(t) − MΘ23 ln x2(t) + MΘ33 ln x3(t)

= Θ3t − Θ
∫ t

0
x3(s)ds + o(t).

(3.60)

Thanks to (3.60) and Lemmas 3.1 and 3.3, we derive

lim inf
t→+∞

t−1
∫ t

0
x3(s)ds ≥

Θ3

Θ
, a.s. (3.61)

Compute the following:

MΘ11 ln x1(t) − MΘ21 ln x2(t) + MΘ31 ln x3(t)

= Θ1t − Θ
∫ t

0
x1(s)ds + o(t),

MΘ22 ln x2(t) − MΘ12 ln x1(t) − MΘ32 ln x3(t)

= Θ2t − Θ
∫ t

0
x2(s)ds + o(t).

(3.62)

According to Lemmas 3.1 and 3.3 and (3.62), we obtain

lim sup
t→+∞

t−1
∫ t

0
xi(s)ds ≤

Θi

Θ
, a.s. (i = 1, 2). (3.63)

According to (3.63) and system (3.20), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x3(t) ≤
(
A33
Θ3

Θ
+ ε

)
t − A33

∫ t

0
x3(s)ds, (3.64)
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which implies

lim sup
t→+∞

t−1
∫ t

0
x3(s)ds ≤

Θ3

Θ
, a.s. (3.65)

Combining (3.61) with (3.65) yields

x3(∞) =
Θ3

Θ
,

a.s. Based on Eqs (3.63) and (3.65), and system (3.20), for
∀ε ∈ (0, 1) and t ≫ 1,

ln xi(t) ≥
(
Aii
Θi

Θ
− ε

)
t − Aii

∫ t

0
xi(s)ds (i = 1, 2), (3.66)

which implies

lim inf
t→+∞

t−1
∫ t

0
xi(s)ds ≥

Θi

Θ
, a.s. (i = 1, 2). (3.67)

Combining (3.63) with (3.67) yields

xi(∞) =
Θi

Θ
,

a.s. (i = 1, 2).
Cases (viii): Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ31 ≤ 0, MΘ3

11 > 0, Θ1 < 0.
From Lemma 3.1 and system (3.62), we obtain x1(∞) = 0,
a.s. Based on system (3.20), we compute the following:

ln x2(t) = Ξ2t − A22

∫ t

0
x2(s)ds − A23

∫ t

0
x3(s)ds + o(t),

ln x3(t) = Ξ3t + A32

∫ t

0
x2(s)ds − A33

∫ t

0
x3(s)ds + o(t).

(3.68)
Based on system (3.68), we obtain the following:

A33 ln x2(t) − A23 ln x3(t) = MΘ2
11 t − MΘ11

∫ t

0
x2(s)ds + o(t),

A22 ln x3(t) + A32 ln x2(t) = MΘ3
11 t − MΘ11

∫ t

0
x3(s)ds + o(t).

(3.69)
Thanks to Lemma 3.1 and system (3.69), we obtain

lim sup
t→+∞

t−1
∫ t

0
x2(s)ds ≤

MΘ2
11

MΘ11

, a.s.,

lim inf
t→+∞

t−1
∫ t

0
x3(s)ds ≥

MΘ3
11

MΘ11

, a.s.

(3.70)

Based on system (3.68) and (3.70), for ∀ε ∈ (0, 1) and t ≫ 1,

ln x3(t) ≤

A33
MΘ3

11

MΘ11

+ ε

 − A33

∫ t

0
x3(s)ds, (3.71)

which implies

lim sup
t→+∞

t−1
∫ t

0
x3(s)ds ≤

MΘ3
11

MΘ11

, a.s. (3.72)

Combining (3.70) with (3.72) yields

x3(∞) =
MΘ3

11

MΘ11

,

a.s. Based on system (3.68) and (3.72), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x2(t) ≥

A22
MΘ2

11

MΘ11

+ ε

 − A22

∫ t

0
x2(s)ds, (3.73)

which implies

lim inf
t→+∞

t−1
∫ t

0
x2(s)ds ≥

MΘ2
11

MΘ11

, a.s. (3.74)

Combining (3.70) with (3.74) yields

x2(∞) =
MΘ2

11

MΘ11

,

a.s.

Cases (ix): Ξ1 ≥ 0, Ξ2 ≥ 0, MΘ32 ≥ 0, MΘ3
22 > 0, Θ2 < 0.

By Lemma 3.1 and system (3.62), x2(∞) = 0, a.s. Based on
system (3.20), we obtain the following:


ln x1(t) = Ξ1t − A11

∫ t

0
x1(s)ds − A13

∫ t

0
x3(s)ds + o(t),

ln x3(t) = Ξ3t + A31

∫ t

0
x1(s)ds − A33

∫ t

0
x3(s)ds + o(t).

(3.75)
Thanks to system (3.75), we compute the following:


A33 ln x1(t) − A13 ln x3(t) = MΘ1

22 t − MΘ22

∫ t

0
x1(s)ds + o(t),

A11 ln x3(t) + A31 ln x1(t) = MΘ3
22 t − MΘ22

∫ t

0
x3(s)ds + o(t).

(3.76)
From Lemma 3.1 and system (3.76), we obtain


lim sup

t→+∞
t−1

∫ t

0
x1(s)ds ≤

MΘ1
22

MΘ22

, a.s.,

lim inf
t→+∞

t−1
∫ t

0
x3(s)ds ≥

MΘ3
22

MΘ22

, a.s.

(3.77)
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Based on Eqs (3.75) and (3.77), for ∀ε ∈ (0, 1) and t ≫ 1,

ln x3(t) ≤

A33
MΘ3

22

MΘ22

+ ε

 − A33

∫ t

0
x3(s)ds, (3.78)

which implies

lim sup
t→+∞

t−1
∫ t

0
x3(s)ds ≤

MΘ3
22

MΘ22

, a.s. (3.79)

Combining (3.77) with (3.79) yields

x3(∞) =
MΘ3

22

MΘ22

,

a.s. Based on system (3.75) and (3.79), for ∀ε ∈ (0, 1) and
t ≫ 1,

ln x1(t) ≥

A11
MΘ1

22

MΘ22

+ ε

 − A11

∫ t

0
x1(s)ds, (3.80)

which implies

lim inf
t→+∞

t−1
∫ t

0
x1(s)ds ≥

MΘ1
22

MΘ22

, a.s. (3.81)

Combining (3.77) with (3.81) yields

x1(∞) =
MΘ1

22

MΘ22

,

a.s. The proof is completed. □

4. Optimal harvesting strategy

Now, let us consider the optimal harvesting problem of
system (1.2). Denote the following:

H = (h1, h2, h3)T ∈ R3
+ ⇔ hi ∈ R+ (i = 1, 2, 3).

Our goal is to find the OHE H∗ such that (i) all species are
not extinct and (ii) the expectation of sustained yield

Y (H) = lim
t→+∞

E
[
HTx(t)

]
is maximal. Denote the following:

D =


2MΘ11 −

(
MΘ12 + MΘ21

)
MΘ13 + MΘ31

−
(
MΘ12 + MΘ21

)
2MΘ22 −

(
MΘ23 − MΘ32

)
MΘ13 + MΘ31 −

(
MΘ23 − MΘ32

)
2MΘ33

 .

Let
Σ = (Σ1,Σ2,Σ3)T , ∆ = (|∆1| , |∆2| , |∆3|)T ,

where ∆j is A with column j replaced by Σ. Thanks to
Cramer’s Rule, if |D| , 0, then

DH = ∆

has a unique solution which is given by

H∗0 =
(
h∗1, h

∗
2, h
∗
3

)T
= |D|−1 (|D1| , |D2| , |D3|)T ,

where Dj is D with column j replaced by ∆ ( j = 1, 2, 3).

Theorem 4.1. Define the following:

Y∗(H) = −
1
2

HTDH +HT∆.

(i) If

Ξ1|h1=h∗1 ≥ 0, Ξ2|h2=h∗2 ≥ 0,

MΘ13 ≥ 0, MΘ23 ≤ 0, MΘ31 ≤ 0, MΘ32 ≥ 0 and

Θi

(
H∗0

)
|H∗0∈R

3
+

> 0 (i = 1, 2, 3),

4MΘ11MΘ22 −
(
MΘ12 + MΘ21

)2
> 0, |D| > 0,

(4.1)

then the OHS exists. Moreover,

H∗ = H∗0

and

MESY = Θ−1Y∗ (H∗) .

(ii) If one of the following conditions holds, then the OHS
does not exist:

(1) Ξ1|h1=h∗1 < 0 or Ξ2|h2=h∗2 < 0;

(2) Ξ1|h1=h∗1 ≥ 0, Ξ2|h2=h∗2 ≥ 0 and one of the following

conditions holds:

(2.1) MΘ32 ≥ 0, MΘ2
33 |h1=h∗1,h2=h∗2 ≤ 0, MΘ3

22 |h1=h∗1,h3=h∗3 ≤ 0;

(2.2) MΘ31 ≥ 0, MΘ1
33 |h1=h∗1,h2=h∗2 ≤ 0, MΘ3

11 |h2=h∗2,h3=h∗3 ≤ 0;

(2.3) MΘ31 ≤ 0, MΘ32 ≥ 0, MΘ1
33 |h1=h∗1,h2=h∗2 ≥ 0,

MΘ2
33 |h1=h∗1,h2=h∗2 ≥ 0, Θi|H=H∗0 > 0 (i = 1, 2), Θ3|H=H∗0 < 0;

(2.4) MΘ31 ≤ 0, MΘ3
11 |h2=h∗2,h3=h∗3 > 0, Θ1|H=H∗0 < 0;

(2.5) MΘ32 ≥ 0, MΘ3
22 |h1=h∗1,h3=h∗3 > 0, Θ2|H=H∗0 < 0;

(3) H∗0 < R
3
+;

(4) |D| < 0 or 4MΘ11MΘ22 −
(
MΘ12 + MΘ21

)2
< 0.
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Proof. According to [36, Theorem 3.1.1], (x(t), ρ(t))T has
the following invariant measure:

ν(· × ·) ∈ R3
+ × S.

From [37, Theorem 3.1], ν(· × ·) is unique. Thanks to [38,
Theorem 3.2.6], ν (· × ·) is ergodic. Hence,

xi(∞) =
S∑

k=1

∫
R3
+

θiν (dθ1, dθ2, dθ3, k) , a.s. (i = 1, 2, 3).

(4.2)
Let

U =

{
H ∈ R3

+ |Ξ1 ≥ 0,Ξ2 ≥ 0,MΘ13 ≥ 0,MΘ23 ≤ 0,

MΘ31 ≤ 0,MΘ32 ≥ 0,Θi > 0 (i = 1, 2, 3)
}
.

From (vii) in Theorem 3.1, for every H ∈ U, we have

xT(∞) =
(
Θ1

Θ
,
Θ2

Θ
,
Θ3

Θ

)
, a.s. (4.3)

This completes the proof. □

Proof of (i). U , ∅. Based on (4.3), for every

H ∈ U, HTx(∞) = Θ−1Y∗ (H) .

Let ϱ(· × ·) be the stationary probability density of
system (1.2); then,

Y (H) = lim
t→+∞

E
[
HTx(t)

]
=

S∑
k=1

∫
R3
+

HTθϱ (θ, k) dθ. (4.4)

Note that system (1.2) has a unique ergodic invariant
measure ν(· × ·), and that there exists a one-to-one
correspondence between ϱ(· × ·) and ν(· × ·). We deduce
the following:

S∑
k=1

∫
R3
+

HTθϱ(θ, k)dθ =
S∑

k=1

∫
R3
+

HTθν(dθ, k). (4.5)

Thanks to (4.2)–(4.5), we deduce the following:

Y(H) = Θ−1Y∗(H).

Solving
dY∗(H)

dH
= 0

yields (
h∗1, h

∗
2, h
∗
3

)T
= |D|−1 (|D1| , |D2| , |D3|)T .

Based on (4.1), the Hessian matrix −D is a negative
definite. Thus, Y∗(H) has a unique maximum and the unique
maximum value point of Y∗(H) is

H∗ =
(
h∗1, h

∗
2, h
∗
3

)T
.

This completes the proof. □

Proof of (ii). From Theorem 3.1, we only prove that if the
following condition holds, then the OHS does not exist (i.e.,
prove (4)):

Ξ1 ≥ 0,Ξ2 ≥ 0,MΘ13 ≥ 0,MΘ23 ≤ 0,

MΘ31 ≤ 0,MΘ32 ≥ 0,Θi > 0, (i = 1, 2, 3),

|D| < 0 or 4MΘ11MΘ22 −
(
MΘ12 + MΘ21

)2
< 0.

(4.6)

−2MΘ11 < 0 implies that −D is not a positive semidefinite.
System (4.6) indicates that −D is not a negative semidefinite.
Hence, −D is indefinite. Thus, Y∗(H) does not exist at the
extreme point. Therefore, the OHE does not exist. □

5. Examples and numerical simulations

5.1. Example 1

In this section, we will introduce some examples to
validate the theoretical results. Let

τ ji = ln 2, µ ji(θ) = µ jieθ, γ j(µ, i) = γ j(i),

λ(Z) = 1, u(t) = 0.3 + 0.05
sin t

t
, h = 0.5.

Denote

Param(i)

=


r11 g1 h1 m1 µ11 µ12 µ13 σ1 γ1

r22 g2 h2 m2 µ21 µ22 µ23 σ2 γ2

r33 g3 h3 m3 µ31 µ32 µ33 σ3 γ3


and

Param(i) =


r1 k1 a11 a12 a13

r2 k2 a21 a22 a23

r3 k3 a31 a32 a33

 .
Let

Param(1)

=


0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1


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subject to

x1(θ) = 0.8eθ, x2(θ) = 0.6eθ, x3(θ) = 0.3eθ, θ ∈ [− ln 2, 0].

Case 1.

Param(1) =


0.1 0.2 0.2 0.1 0.1
0.1 0.1 0.1 0.1 0.1
0.2 0.3 0.1 0.1 0.1

 .
Then,

Ξ1 = −0.0397, Ξ2 = −0.0247.

From Theorem 3.1 (i), all species are extinctive (see
Figure 1).
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Figure 1. The solution to system (1.2) with
Param(1) and Param(1), which represents that all
species in Case 1 are extinctive.

Case 2.

Param(2) =


0.1 0.2 0.2 0.1 0.1
0.3 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.3 0.1

 .

Then, Ξ1 = −0.0397, Ξ2 = 0.1753, MΘ3
11 = 0.0277.

From Theorem 3.1 (ii), x1 is extinctive, while x2 and x3 are
persistent in the mean (see Figure 2) and

xT(∞) =

0, MΘ2
11

MΘ11

,
MΘ3

11

MΘ11

 = (0, 0.8000, 0.3687) , a.s.

(5.1)
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Figure 2. The solution to system (1.2) with
Param(1) and Param(2), which represents that
both x2 and x3 are persistent in the mean in Case 2,
while x1 is extinctive.

Case 3.

Param(3) =


0.4 0.1 0.2 0.1 0.1
0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.4 0.1 0.1

 .
Then, Ξ1 = 0.2753, Ξ2 = −0.0247, MΘ3

22 = 0.0677. From
Theorem 3.1 (iii), x2 is extinctive, while x1 and x3 are
persistent in the mean (see Figure 3) and

xT(∞) =

 MΘ1
22

MΘ22

, 0,
MΘ3

22

MΘ22

 = (0.7143, 0, 0.6449) , a.s.

(5.2)
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Figure 3. The solution to system (1.2) with
Param(1) and Param(3), which represents that
both x1 and x3 are persistent in the mean in Case 3,
while x2 is extinctive.
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Case 4.

Param(4) =


0.3 0.1 0.1 0.1 0.1
0.2 0.1 0.1 0.2 0.2
0.1 0.1 0.1 0.1 0.2

 .
Then, Ξ1 = 0.0753, Ξ2 = 0.1753, MΘ32 = 0.0150, MΘ2

33 =

−0.0150, MΘ3
22 = −0.0074. From Theorem 3.1 (iv), x1 is

persistent in the mean, while x2 and x3 are extinctive (see
Figure 4) and

xT(∞) =
(
Ξ1

A11
, 0, 0

)
= (1.1687, 0, 0) , a.s. (5.3)
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Figure 4. The solution to system (1.2) with
Param(1) and Param(4), which represents that x1

is persistent in the mean in Case 4, while x2 and
x3 are extinctive.

Case 5.

Param(5) =


0.2 0.1 0.3 0.3 0.1
0.2 0.1 0.1 0.2 0.1
0.1 0.1 0.1 0.1 0.2

 .
Then, Ξ1 = 0.0753, Ξ2 = 0.0753, MΘ31 = 0.0150, MΘ1

33 =

−0.0075, MΘ3
11 = −0.0449. From Theorem 3.1 (v), x2 is

persistent in the mean, while x1 and x3 are extinctive (see
Figure 5) and

xT(∞) =
(
0,
Ξ2

A22
, 0

)
= (0, 0.3012, 0) , a.s. (5.4)
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Figure 5. The solution to system (1.2) with
Param(1) and Param(5), which represents that x2

is persistent in the mean in Case 5, while x1 and
x3 are extinctive.

Let

Param(2)

=


0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.1 0.3 0.1 0.1 0.1

 ,

subject to x1(θ) = 0.8eθ, x2(θ) = 0.6eθ, x3(θ) = 0.3eθ, θ ∈
[− ln 2, 0].

Case 6.

Param(6) =


0.4 0.2 0.1 0.1 0.1
0.4 0.1 0.1 0.2 0.1
0.1 0.3 0.1 0.1 0.1

 .

Then, Ξ1 = 0.2603, Ξ2 = 0.2753, MΘ31 = −0.0150, MΘ32 =

0.0075, Θ1 = 0.0068, Θ2 = 0.0048, Θ3 = −5.1889 × 10−4,
MΘ1

33 = 0.0238, MΘ2
33 = 0.0168. From Theorem 3.1 (vi), x1

and x2 are persistent in the mean, while x3 is extinctive (see
Figure 6) and

xT(∞) =

 MΘ1
33

MΘ33

,
MΘ2

33

MΘ33

, 0

 = (0.7317, 0.5159, 0) , a.s.

(5.5)
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Figure 6. The solution to system (1.2) with
Param(2) and Param(6), which represents that
both x1 and x2 are persistent in the mean in Case 6,
while x3 is extinctive.

Case 7.

Param(7) =


0.8 0.2 0.4 0.1 0.1
0.7 0.1 0.1 0.4 0.2
0.2 0.3 0.4 0.1 0.5

 .
Then, Ξ1 = 0.6603, Ξ2 = 0.5753, MΘ13 = 0.1525, MΘ23 =

−0.0700, MΘ31 = −0.0300, MΘ32 = 0.1075, Θ1 = 0.1463,
Θ2 = 0.1041, Θ3 = 0.0638. From Theorem 3.1 (vii), all
species are persistent in the mean (see Figure 7) and

xT(∞) =
(
Θ1

Θ
,
Θ2

Θ
,
Θ3

Θ

)
= (0.9144, 0.6505, 0.3989) a.s.

(5.6)

0 50 100 150 200 250 300 350 400

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 7. The solution to system (1.2) with
Param(2) and Param(7), which represents that all
species in Case 7 are persistent in the mean.

Case 8.

Param(8) =


0.2 0.2 0.3 0.1 0.2
0.3 0.1 0.1 0.1 0.1
0.1 0.3 0.1 0.2 0.1

 .
Then, Ξ1 = 0.0603, Ξ2 = 0.1753, MΘ31 = −0.0150, MΘ3

11 =

0.0232, Θ1 = −0.0109. From Theorem 3.1 (viii), x1 is
extinctive, while x2 and x3 are persistent in the mean (see
Figure 8) and

xT(∞) =

0, MΘ2
11

MΘ11

,
MΘ3

11

MΘ11

 = (0, 0.8600, 0.3087) , a.s.

(5.7)
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Figure 8. The solution to system (1.2) with
Param(2) and Param(8), which represents that x2

and x3 are persistent in the mean in Case 8, while
x1 is extinctive.

Let

Param(3)

=


0.1 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1


subject to x1(θ) = 0.8eθ, x2(θ) = 0.6eθ, x3(θ) = 0.3eθ, θ ∈
[− ln 2, 0].

Case 9.

Param(9) =


0.4 0.2 0.1 0.1 0.1
0.2 0.1 0.1 0.1 0.1
0.1 0.3 0.3 0.1 0.1

 .
Then, Ξ1 = 0.2603, Ξ2 = 0.0753, MΘ32 = 0.0075, MΘ3

22 =

0.0141,Θ2 = −0.0086. From Theorem 3.1 (ix), x1 and x3 are
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persistent in the mean, while x2 are extinctive (see Figure 9)
and

xT(∞) =

 MΘ1
22

MΘ22

, 0,
MΘ3

22

MΘ22

 = (0.9364, 0, 0.4869) a.s. (5.8)
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Figure 9. The solution to system (1.2) with
Param(3) and Param(9), which represents that x1

and x3 are persistent in the mean in Case 9, while
x2 is extinctive.

5.2. Example 2

In this example, we will consider the effect of a time delay
on the stochastic persistence in the mean and extinction of
the species. Let τ ji = lnω, µ ji(θ) = µ jieθ, γ j(µ, i) = γ j(i),
λ(Z) = 1, u(t) = 0.3 + 0.05 sin t

t , h = 0.5. Denote

˜Param(i)

=


r11 g1 h1 m1 µ11 µ12 µ13 σ1 γ1

r22 g2 h2 m2 µ21 µ22 µ23 σ2 γ2

r33 g3 h3 m3 µ31 µ32 µ33 σ3 γ3


and

˜Param(i) =


r1 k1 a11 a12 a13

r2 k2 a21 a22 a23

r3 k3 a31 a32 a33

 .
Let

˜Param(1)

=


0.1 0.1 0.1 0.3 0.2 0.2 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.3 0.1 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1



and

˜Param(1) =


0.4 0.1 0.45 0.2 0.1
0.4 0.1 0.45 0.2 0.5
0.1 0.1 0.1 0.1 0.1


subject to x1(θ) = 0.8eθ, x2(θ) = 0.6eθ, x3(θ) = 0.3eθ, θ ∈
[− lnω, 0].

Case 10. ω = 2. Then, Ξ1 = 0.2753, Ξ2 = 0.2753,
MΘ32 = 0.2125, MΘ2

33 = −0.0138, MΘ3
22 = −0.0823. From

Theorem 3.1 (iv), x1 is persistent in the mean, while x2 and
x3 are extinctive (see Figure 10) and

xT(∞) =
(
Ξ1

A11
, 0, 0

)
= (0.5006, 0, 0) , a.s. (5.9)
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Figure 10. The solution to system (1.2) with
˜Param(1), ˜Param(1) and τ ji = ln 2, which

represents that x1 is persistent in the mean in
Case 10, while x2 and x3 are extinctive.

Case 11. ω = 3. Then, Ξ1 = 0.2753, Ξ2 = 0.2753,
MΘ31 = 0.1444, MΘ1

33 = −0.0184, MΘ3
11 = −0.0140. From

Theorem 3.1 (v), x1 and x3 are extinctive, while x2 is
persistent in the mean (see Figure 11) and

xT(∞) =
(
0,
Ξ2

A22
, 0

)
= (0, 1.0324, 0) , a.s. (5.10)
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Figure 11. The solution to system (1.2) with
˜Param(1), ˜Param(1) and τ ji = ln 3, which

represents that both x1 and x3 are extinctive in
Case 11, while x2 is persistent in the mean.

From Figures 10 and 11, we observe that time delay can
change the survival state of the species.

6. Conclusions and discussion

In this paper, we studied a stochastic, hybrid delay, one-
predator-two-prey model with harvesting and jumps in a
polluted environment. The main results are presented in
Theorems 3.1 and 4.1. Theorem 3.1 provides sufficient
conditions for a stochastic persistence in the mean and
extinction of each species. Theorem 4.1 obtains sufficient
conditions for the existence of an OHS and gives the explicit
forms of the OHE and MESY. Our results reveal that a time
delay can change the survival state of the species.

Some topics deserve further investigation. For example,
it is interesting to study the existence of a stationary
distribution for system (1.2) with Markov switching and
infinite distributed time delays. On the other hand, one
can propose and study some more realistic but complex
models with different functional responses and impulsive
perturbations. We leave these investigations for future work.
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jumps, Math. Methods Appl. Sci., 45 (2022), 5184–5214.
https://doi.org/10.1002/mma.8101

12. Q. Yang, X. Zhang, D. Jiang, Dynamical behaviors
of a stochastic food chain system with Ornstein-
Uhlenbeck process, J. Nonlinear Sci., 32 (2022), 34.
https://doi.org/10.1007/s00332-022-09796-8

13. X. Yu, S. Yuan, T. Zhang, Persistence and ergodicity of
a stochastic single species model with Allee effect under
regime switching, Commun. Nonlinear Sci., 59 (2018),
359–374. https://doi.org/10.1016/j.cnsns.2017.11.028

14. M. Liu, X. He, J. Yu, Dynamics of a stochastic
regime-switching predator-prey model with harvesting
and distributed delays, Nonlinear Anal., 28 (2018), 87–
104. https://doi.org/10.1016/j.nahs.2017.10.004

15. M. Liu, Y. Zhu, Stationary distribution and ergodicity
of a stochastic hybrid competition model with
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noise in a polluted environment, Phys. A, 477 (2017),
20–33. https://doi.org/10.1016/j.physa.2017.02.019

19. Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi,
Stochastic mutualism model with Lévy jumps,
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