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Abstract: In this paper, we investigate the existence of sign-changing and signed solutions for nonlinear elliptic equations driven by
nonlocal integro-differential operators with critical or supercritical nonlinearity. By combining an appropriate truncation argument with
a constrained minimization method and the Moser iteration method, we obtain a sign-changing solution and a signed solution for them
under some suitable assumptions. As a particular case, we drive an existence theorem of sign-changing and signed solutions for the
fractional Laplacian equations with critical or supercritical growth.
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1. Introduction (K3) There existy > 0 and s € (0, 1) such that
. . . . K(x) > ylx~*2)
This paper is devoted to the study of the existence of sign-
changing and signed solutions for the following nonlocal for any x € R" \ {0}.
elliptic equations: A typical model for K is given by the singular kernel

_ —(n+2s)
—Lxu = AufP2u+ f(x,|uP)u, xe€Q, K(x) = |x]

(1.1)
u=0, x € R"\Q, which coincides with the fractional Laplace operator —(—A)°
of the following fractional Laplacian equations
where Lk is the integro-differential operator defined as

follows: (=2)u = AulPu+ fx, luPu, xeQ, (12)
1 u=0, x € RM\Q,
Liuy =5 [ e 3) 4 ute= ) - 2K, xR
2 Jge where
here (=AY u(x) = % f u(x +y) + luTerz— y) — 2u(x) dy, xR,
n y n S

K : R"\{0} — (0, +0)
In problems (1.1) and (1.2), the set Q C R” is an open
is a function with the properties that: bounded with Lipschitz boundary, n > 2s,s € (0,1), 1 is a

(K,) mK € L'(R"), where positive real parameter, p > 2* and

2n
n—2s

* .

m(x) = min{|x|?, 1};
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is the fractional critical Sobolev exponent. The nonlinear
term f satisfies the following conditions:

(A) f € C(QxR,R), there exist C > 0 and 2 < g < 2* such
that

D <CU+T), ¥ (x.0)eQxR;

(A2) 1in3 f(x, 1) = 0 uniformly in x € Q;
1=
(A3) @ is increasing in [¢| > O for a.e. x € Q.

The operator (—A)° can be seen as the infinitesimal
generators of Lévy stable diffusion Processes; see [1] and
the references therein. This operator arises in several areas,
such as biology, chemistry, physics and finance (see [2—4]).
It is easy to see that the integro-differential operator L is
a generalization of the fractional Laplace operator —(—A)*
(see [5-7)).
differential problems (1.1) goes beyond the mathematical

Moreover, the interest in non-local integro-

curiosity. They have impressive applications in different
fields,

optimization,

such as the thin obstacle problem, portfolio
pricing of financial instruments, phase
transitions, stratified materials, statistical mechanics, fluid
flow, anomalous diffusion, crystal dislocation, deblurring
and denoising of images, and so on, see [8-10]. In
the past few years, a great deal of attention has been
devoted to nonlocal operators of elliptic type, both for their
interesting theoretical structure and in view of concrete
applications, see [11, 12] and the references therein. By the
minimax method, topological degree theory, or constrained
minimization method, many authors obtained the existence
results of nontrivial solutions, positive solutions or sign-
changing solutions of some nonlinear elliptic equations, see
[13-15]. To show their results, the authors always assumed
the nonlinearity f(x, t) involves subcritical or critical growth
and/or f(x,t) satisfies Ambrosetti-Rabinowitz condition.
However, the existence of nontrivial solutions, positive
solutions, negative solutions and sign-changing solutions for
the nonlocal elliptic problem (1.1) with p < 2* has been
investigated by using the variational method, fixed-point
index theory, and critical point theorems, see [16—18]. There
are only a few results about the existence and multiplicity of
solutions for (1.1) with p > 2*. Fortunately, Li et al. [19]
investigated the following fractional Schrédinger equation
with electromagnetic fields and critical or supercritical
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nonlinearity:

(=a)su = AulP2u+ f(x,[u)u, inR",

where (—A)j is the fractional magnetic operator with

2n

}’l>2S, SE(O,I), pzz*: ’
n—2s

and A is a positive real parameter. When the nonlinearity f
satisfies the Ambrosetti-Rabinowitz condition, they obtained
the existence of a nontrivial solution for the above equation
via truncation argument and the mountain pass theorem.

Motivated by the above works, the main purpose of this
paper is to study the existence of sign-changing and signed
solutions of (1.1) under the conditions (K1), (K>) and (A;)—
(A3). To the best of our knowledge, there are no papers about
the existence of sign-changing and signed solutions for (1.1)
and (1.2) with supercritical growth.

To state our main result, we define the sets X and X, as

X={ulu: R" > R, ulqe L*(Q)
and (u(x) — u(y)) VK(x —y) € LAR* \ 0))

and
Xo={glgeXandg=0 ae. inR"\Q}

where u|q represents the restriction to Q of function
u(x),0 = R"\ Q) x R"\ Q).
We note that X and X are non-empty, since
C3(Q) C Xo

(see [20]). We endows X with the norm defined by

llgllx = llgll2 + (fa 1800 — gO)PK(x = y)dxdy)?,  (1.3)
where
Q=R™\0
(see [21]). Moreover, we can take the function
llgll == ( fR . lg(x) — gIPK(x — y)dxdy)? (1.4

as anorm on Xy, which is equivalent to the usual one defined
in (1.3) (see [22]). Also, (Xp,|| - ||) is a Hilbert space with a

scalar product given by

(u,v) := fR 2n(Lt(JC)—bt(y))(V(x)—V(y))K (x=y)dxdy,¥ u,v € Xj.
(1.5)
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Lemma 1.1. The embedding Xy — L'(R") is continuous
if v € [1,2*] and compact if v € [1,2"), where u € L"(R")

means u = 0 a.e. in R"\Q.

It is well known that there is the best fractional critical

Sobolev constant, such that

o e ) — uOIP K - y)dxdy

S =
ueXo\(0) (o (O dx)

(1.6)

Observing that the energy functional of (1.1) is given by
1
Tw =3 [ ) = uG)PKC = yydxdy
R n

1 1
-= f lulPdx — = f F(x, [u)dx, ue Xo.
P Jo 2 Jo

To the best of our knowledge, the Sobolev embedding
theorems no longer hold when p > 2*. On the one
hand, it causes the second integral in J to be divergent,
which makes the functional J cannot be well defined
On the other hand, it leads to the lack of

compactness in studying problem (1.1). Hence, we cannot

on Xj.

directly use variational methods to prove the existence
of sign-changing and signed solutions.To overcome these
difficulties, we use a new method, which came from the
papers [19, 23].
reduce the supercritical problem into a subcritical one. In

The main idea of this method is to

comparison with previous works, this paper has several new
features. First, we consider the more general nonlinear
term without Ambrosetti-Rabinowitz condition. Second,
the nonlinear term involves supcritical growth. Finally,
the existence of a sign-changing solution and a signed
solution is obtained by combining an appropriate truncation
argument with a constrained minimization method and the
Moser iteration method. The results in this paper generalize
and improve the results in [24-26]]. There have been no
previous studies considering the existence of sign-changing
and signed solutions for problems (1.1) and (1.2) involving
supcritical growth to the best of our knowledge.

The main result of this paper is the following:

Theorem 1.1. Suppose that (K;), (K3), and (A1)—(A3) are
satisfied. Then there exists 1. > 0 for any 1 € (0, 4,],
problem (1.1) admits a sign-changing solution and a signed

solution.
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Remark 1.1. Comparing with [4, 25, 27], we prove
the existence of sign-changing solutions of (1.1) without
the Ambrosetti-Rabinowitz condition.  The results can
be regarded as the complementary work of [4, 25, 27].
Moreover, comparing with [2, 4, 27], we consider the
supercritical fractional Laplace equations. Our results are
new. Therefore, the results of this paper can enrich the

results in the previous papers.

Theorem 1.2. Suppose that (A1)—(A3) are satisfied. Then
there exists A.. > 0, such that, for any A € (0, A..], the
problem (1.2) admits a sign-changing solution and a signed

solution.

This paper is organized as follows: In Section 2, we will
prove the existence of sign-changing and signed solutions
for the truncation problem of (1.1). Section 3 is devoted to
completing the proof of Theorems 1.1 and 1.2.

2. Preliminaries

In this section, we give a truncation argument in order to
overcome the lack of compactness in studying critical and
supercritical growth. Let M > 0 be a constant. For each
A > 0and M > 0 fixed, we investigate the existence of sign-
changing and signed solutions for the following truncation

problem:

— Lxu = Ao + f(x, |uP)u, xe€Q,

2.1
u= O’ X € Rn\Q,
where
P2, 0<f<M,
e1) =
MP=I1)972, |t > M.
To investigate (2.1), we define the energy functional
IL: Xo—R
by
1 2
Li(w) =5 |, lee(x) — u(y)I"K(x — y)dxdy
B (2.2)

1
- = f F(x,|u)dx — A f O(u)dx, u € Xo,
2 Q Q

where

D) = f e(T)rdr.
0
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4

By (A)) and the standard argument, it is easy to obtain that
I, € CI(X(),R) and

L), v) = L | () = u@)x) = vONK(x = y)dxdy

—ff(x, Iulz)uvdx—/lfgo(u)uvdx,
Q ol

where u, v € Xj.
Let

(2.3)

ut(x) := max{u(x),0}, u (x):= min{u(x),0},

for any

u=u"+u €Xo,
we have
el > =llee* | + o™ 11
- fR @) + (@t (K (x = y)dxdy
> [l I+l I,
Lw) =Lw) + Li(u)
- fR W)+ (O (DK~ ydady

> L")+ Lu)
(2.4)

and

(L), u™y =™, u") - f . (u* (xu™(y)
R n
+u”()ut (y)K(x — y)dxdy.

Obviously, the critical points of I, are equivalent to the
weak solutions of problem (2.1). Furthermore, if u € X is
a solutions of (2.1) and u* # 0 in Q, then u is called a sign-
changing solution of (2.1). If u € X is a solution of (2.1)
and u > 0 (or u < 0) in €, then u is called a signed solution
of (2.1).

Next, we consider the minimization problems:
my = 1inf{l(u) : ue M}, my :=inf{l(u) : ue N}, (2.5)
where

M={ueN:u +0, w,u") =T wu),u")=0}

and
N ={u € Xo\ {0} : (I} (w),u)y = 0}.

Mathematical Modelling and Control

Theorem 2.1. Suppose that (K), (K;) and (A1)—(A3) are
satisfied. Then, for each A > 0, M > 0, problem (2.1) admits
a sign-changing solution uy € M and a signed solution u, €

N. Furthermore,
Li(uy) = i/I\l/(fI/l(u) >0, Lu)= i}I;l/fI/l(u) > 0.

In the following, we shall give some properties for M and
N.By (A)) and (A,), we easily see that for any & > 0, there
exists C, > 0 such that

lf(x, )] < &+ Celtl?2, |F(x, )| < eltl® + Celtl?  (2.6)

forallz e Rand 2 < g < 2*. By (A1)—(A3), we easily deduce
that

1
Ef(x, 1t — F(x,t) be increasing in [t| > 0 for a.e. x € Q,
f(x,1) be increasing in |¢f| > 0 for a.e. x € Q, 2.7

%f(x, Ht—F(x,t) >0, F(x,t)>0, a.e. xeQ, teR\{0},
(2.8)
and

F(x,1)

|t

Ilim f(x, 1) = 00, ae.xe Q. (2.9)
—+00

|| —>+00 t

First, we show that the sets M and N are nonempty
in Xy, and then we seek critical points of I, by constraint

minimizations on M and N.

Lemma 2.1. Suppose that (K), (K>) and (A1)—(A3) hold.

(1) If u € Xo with u* # 0, then there exists a unique pair
(ay,Bu) € Ry X R, such that a,u™ + B,u” € M.

(2) If u € Xo \ {0}, then there exists a unique number t, > 0
such that t,u € N and
I,(t,u) = max I,(tu).
20
Proof. (1) For fixed u € Xy with
us # 0,

we claim the existence of @, and §3,,.

Volume 5, Issue 1, 1-14.



Set
hi(a,B) = (au” + Bu”), au™)

= fR (o + Bur)(x)(e* (x) = au” (¢)K(x = y)dxdy
- [ (@ + B0 () = an 6K = )y
- fg Fx, o™ + BuPlaut Pdx — A fg o(au)|au* Pdx
=a? || - fQ SOl Plau* Pdx
-2 f o(auhlau*Pdx
Q

—ap fR 2”(M_(x)u+(y) +u” (Yut ()K(x — y)dxdy,
(2.10)
ha(a, B) =(Ii(au™ + Bu”), fu”)

= fR (™ + Bun)(x)(Bu”(x) = fu” (K (x = y)dxdy
- fR o + BuT)()(Bu(x) = fu” (K (x = y)dxdy
- fQ G, laut + BuP)|BuPdx — A fg @(Bu7)|Bu Pdx
=Bl I* - a8 fR U ) + (T (0)K (x = y)dxdy
- [ et P = [ o g P

(2.11)
By (2.6) and ¢q € (2,2%), we can find that

h(a,a) >0, ha,a)>0
for a sufficiently small @ > 0 and

h@B.p) <0, hB.p) <0

for a sufficiently large 8 > 0. Therefore, there exist 0 < r <
R such that

hi(r,r) >0, ho(r,r) >0, hi(R,R) <0, hy(R,R)<0.
(2.12)

Taking into account (2.10)—(2.12), we deduce
h(r,B) >0, hi(B,R) <0, YB € [r,R]

and
hy(r,a) > 0, hy(a,R) <0, Ya € [r,R].

Therefore, there exists some point (a,, ,) with

r<ayPuy <R,

Mathematical Modelling and Control

such that
hl(au,ﬁu) = h2(amﬂu) =0

by Miranda’s theorem. Thus
au’ +Bu e M.

Next, we prove the uniqueness of the pair (@, 5,).
Case 1. ue M.

Assume u € M, we have
-
uw+u =ue M.

‘We obtain
(L), u™y = Ly(w),u") =0,

that is

|6+ oK = sy

- | @) - ut ()’ K(x - y)dxdy (2.13)
RZn

=- f FC Pt Pdx + /lf ouHlu*Pdx

Q Q
and

fR 0w () + O (DK (x = y)dady

- f (u (x) - u_(y))zK(x — y)dxdy (2.14)
RZ"

=- f FColu Pl Pdx + A f @)l [Pdx.
Q Q
Now we prove that there exists a unique pair
(@uBu) = (1, 1),

such that
au +Bu e M.

If there exists another pair (@, B,,) such that
aut + B e M,
then we obtain
&P fR . W Ot (y) + u” (u* (0K (x = y)dxdy — alu*|?
== fg fOlaut Pla,utPdx - A fg p(@,u*)|au' Pdx

(2.15)
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and
By fR zn(u_(x)u+(y) +u” (Yu (x)K(x — y)dxdy — B2|lu”|?

=—ff(x, I/?uu‘lz)lﬁuu‘lzdx—/lfw(ﬁuu‘)lﬁuu‘lzdm
Q Q
(2.16)

Assume that 0 < &, < 3, by using (2.15), we deduce

a1 - fR () + u” ()" (K (x — y)dxdy)

< fg Fx, laut Plaut Pdx + 4 fg P(a,u")a,ut P dx.
Multiply the above inequality by &2, we obtain

1P = [ G 0) + 0 K5 )y
< f SO laut Pl Pdx + A f o(@,u")u*Pdx.
Q Q
(2.17)

Putting together (2.17) and (2.13), we have

f (f e aut ) = fOx, ut ) ut Pdx

“ (2.18)

+4 f (p(au®) — e )|u*dx > 0.
Q

Since ¢(t) is increasing in ¢ > 0, combining (2.7) and (2.18),
we obtain
1 < &u < :éu'

Similarly, by (2.16), it results
fQ (fO Bu™ ) = fx ™ P)lu™Pdlx
+4 fQ (@Buu™) = pu))lu™Pdx < 0,
which implies 38, < 1. Then, combining
1 < @y <P,

we have
@, =B.=1

Case 2. u ¢ M.
(1) Assume u ¢ M, then there exists a pair (a,,[,) such
that
aut +pu e M.

Mathematical Modelling and Control

If there exists another pair (&, B.) such that

aut +pu € M.

Set
. + -
wi=aquu +Buu
and
W= aqut + B,
we have

N R
Zwt+ &w’
al{ BH

Since w € M, we have

=aqut +pu =we M

a, =&, and B, =/§’M.
So, there exists a unique pair (a,,8,) such that
au’ +Bu € M.

(2) Fort > 0, let

2
ho = Iy(t) =5 fR (o) — u)PK (x = y)dxdy

1
- = f F(x,|tuP)dx — A f O(tu)dx.
2 Ja o

By (2.6) and Lemma 1.1, for £ > 0 sufficiently small we

have 5
H0) = Sl - C1(Ce + ACo Al
where
Co = Laara,
q

Since g > 2, we obtain that i(¢) > O for # > 0 small. From
the Eq (2.9), we easily get that h(f) — —oco as t — +oo.

Hence 4 has a positive maximum at
t=t,>0.

Therefore, h'(t,) = 0 and f,u € N. Obviously, #’'(f) = 0 is
equivalent to

llul? = fg FOx, [P |uldx + A fg e(tluldx.  (2.19)

From (2.7), the right side of (2.19) is increasing for ¢ > 0.
As a consequence, there exists a unique number ¢, > 0 such

that (2.19) holds. The uniqueness of ¢, is proved, and

I (t,u) = max I,(tu).
>0
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Lemma 2.2. Suppose that (K), (K>), and (A1)—(A3) hold.

(1) 1f
L), uy<0

for fixed u € Xo with u* # 0, then there exists a unique pair
(@, Bu) € (0,11 % (0, 1],

such that
I(auu™ + Buu), auu’y = (Iauu” +Buu),Buu) = 0.

(2)1If
(Iw),uy <0

for fixed u € Xo \ {0}, then there exists a unique number
t, € (0, 1] such that

I (tu), tyuy = 0.

Proof. We only prove Lemma 2.2 (1); the proof of

Lemma 2.3 (2) is analogous. m]

For fixed u € Xy with u* # 0, by Lemma 2.1, we obtain

that there exist a unique pair («,, 3,) such that
aut +pu e M.

Assume that @, > £, > 0. In addition,

0P = [ o) + 0 (K = ydxay)
Rz’l
> I - [ o GKC= yddy
RZn

- @, fRzn u”(Mut (x)K(x — y)dxdy

= f FOx N Pl P + 4 f e Px.
Q Q
(2.20)

Since
(I, u™) <0,

it holds
e IP - f (W (u* () + u” (" (K (x = y)dxdy
R2n
< f flxlut Pl Pdx + 2 f @l Pdx.
Q Q

2.21)

Mathematical Modelling and Control

Therefore (2.20) and (2.21) lead to

fﬂ (Fx ™) = £Ox lut P)lut Pdx
+4 f (plau®) — put)|utPdx < 0.
Q

By (2.7), we have @, < 1. Thus, 0 < 8, < @, < 1.

Lemma 2.3. For fixed u € Xy with u* # 0, then (a,,,)
obtained in Lemma 2.2 is the unique maximum point of the
function

®:R*xXR" - R,

where
O(a,B) = Ii(au™ + Bu").

Proof. By Lemma 2.1, it yields that («,,8,) is the unique
critical point of @ in R* X R*. By (2.9), we can see that

O(a,f) — —oo

uniformly as

(@, B)l = +o0,

then we can prove that there is no maximum point on the
boundary of (R*,R*). If we suppose that there exists 8 > 0

such that (0, 8) is a maximum point of ®. Since

_ 1 _ _
0@ =5 [ (@) + B () = au’ () = Bu ()K= y)ddy

1 _ _
- = f F(x,|au® +/3u_|2)dx -A f O(au® + Bu”)dx
2 Ja Q

is an increasing function of « for @ sufficiently small, the

pair (0, 8) cannot be a maximum point of @ in R* x R*. O

Lemma 2.4. Suppose that (K;), (K») and (A1)—(A3) hold,
then

(1)

my = inf max L(au" +Bu”
! ueXo. @>0,620 /1( '8 )
ut#0

and

inf max [,(tu).
ueXo\0} >0 altu)

mp =
(2) my > 0 and my > 0 can be achieved respectively.

Proof. (1) By Lemmas 2.1 and 2.3, it is easy to see that

my = inf max Liau® +pu”)
1EXy. 020,520
ut#0
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and

inf max [(tu).
ueXp\{0} =0 /1( )

my =
(2) For u € M, we obtain
I(w),u) = 0.

By (2.6), for any & > O sufficiently small, we have

L(u) = l||u||2—l f F(x, lu?)dx — 1 f O(u)dx
2 Q Q

2
> Ll - 2 fQ Pz~ fg ulfdx - AC fg Juttdx
> Sl = Nl = Cllle
= 201 = Coelul? = Csllal
Taking .
£= 00

then for sufficiently small p > 0 where
Sp = (ueXo: llul = pl,
we can know
inf I;(u) > 0.
ues,
For u € M, there exists t > 0 such that ru € S,. From

Lemmas 2.1 and 2.3, we obtain

max Lj(au”™ +Bu”) > Li(tu™ + tu”) = I(tu) > inf 1 (u).
@=0,8>0 ues,

Therefore,

my = inf max Ij(eu’ + Bu~) > inf I;(u) > 0.
uixoo. 20,80 u€s,
u=#

Let
{u, c M

be such that

I/l(un) - m’

then we claim that {«,} is bounded. By contradiction, we

may suppose that ||u,|| = oo as n — oco. Let

Un

W, =
]l

then w, € Xy and |lw,|| = 1. Passing to a subsequence if
necessary, we may assume that there exists w € X, such that

Mathematical Modelling and Control

w, = win Xy, w, » win L'(R"), where 2 < r < 2*, w, —
wa.e. in R".
If w # 0, then [Q.| > 0, where

Q. ={xeR" w(x) # 0}

In view of

Un(X)

=00 |[ugy|

= lim w,(x) = w(x) # 0, x € Q.

So

[up ()] — 00, x € Q.

Noting that

my + o(1) = I(u,)

1 1
= —luall* - 5 f F(x,luy|)dx — A f D(u,)dx,
2 2 Jo o
we have
m+o(l) 1 1 f F(x, |ug|*) f D(uy,)
Lo | =2 g - dx,
[let|? 2 2Ja lualP o llualP?
consequently,
F(x, luy|? D(u,
1:[L“2|)|wn|2dx+mf Wn) g+ o(1)
o |l Q llunll

Fx, Jua*)

p lwnl?dx + 0(1).

zf
Q.

Therefore, by Fatou’s lemma and (2.9), we have

F » n2
1 > liminf f Pkl pax
n—=e Jo, |14,
F(x, un|)

lim inf lwn?dx — +c0,

n—oo

zf
Q.

which is a contradiction.
If w =0, then w,, — 0in L"(R"). So,

|un|2

f F(x,|sw,/))dx — 0 forall seR.
Q

So, by Lemma 2.1, we have

mp + 1> I/l(un) > 1,1(S0.)n)
1 1
= —5*— = f F(x, |sw,/)dx — /lf O(sw,)dx
2 2 Jo o

1o

— =5,
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Taking
s> A2(m; + 1),

Thus, {u,} is bounded in Xj.

Lemma 1.1, up to a subsequence, we can assume that

it is a contradiction. By

+ + .
u,, — uj in Xo,

u, > uyin L'(R"),2<r<2",

(2.22)

+

u, - uj a.e.in Q.

In addition, (A;), (A,), and Lemma 1.1 lead to
lim f FO P utPdx = f FCx, P utPdx,
n—o0 Q Q

lim f F(x, utP)dx = f F(x, [uf1")dx.
n—oo Q Q

Since u, € M, then

(2.23)

). = 0,
that is
P - f w5 ) + 1 (e (DK (x — y)dxdy
RZn

- f FOu Pl Pdx + 2 f o) Pdx
Q Q
(2.24)

and
1P = [ 0600+ 1,005 DK 5= )y

- f FOx L P Pdx + 2 f @iy Pdx.
Q Q
(2.25)

Thanks to (2.6), (2.24), and (2.25), we have
lu]* = f FO P utPdx + A f PuD)uzdx
Q Q
<e f |t dx + C. f uZ|?dx + ACy f |udx
Q Q Q
< eCollut|* + Cyllu ]|,

Choose |

:2_6‘2'

Thus, there exists a constant 6 > 0 such that

&

ut|* > 6.

Mathematical Modelling and Control

By applying (2.24) and (2.25) again, we deduce that

6 < |luf|* < 8f |t Pdx + (C. + /lCo)f lus|9dx.
o Q

Since {u,} is bounded, by Lemma 1.1, there is

C5 > 0, C6 > O,
such that
0<eCs+ C6f |u,f|qu.
Q
Picking
0
&= —,
2Cs
we have

5
f il > 5 (2.26)
Q

By (2.22) and (2.26), we have
1

T1dx > .

fgl”l' S ToN

up #0.

Thus,

By Lemma 2.1, there exists
ay, Bu>0

such that

o + _
iy = ay uy + By u; €M

Next, we aim to prove that
ay, =Py, = 1.

Putting together (2.22), (2.24) and Fatou’s lemma, we

deduce

[ f @y (Du; (v) + uy )uy (D)K (x = y)dxdy
R2n

< f SOt Pl Pdx + 2 f @(ud)ut Pdx.
Q Q
2.27)
By (2.27) and Lemma 2.1, we have

a, <1
In the similar way, we can obtain

ﬂul <L

Volume 5, Issue 1, 1-14.
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By (2.7), it follows that

1
my <) = (i) - Z(Iﬁ(ﬁl),ﬁl)

— P + 2 [ et - o)
+ % fQ (%f(x,lﬁﬂz)lﬁllz = F(x, | *)dx

= J1lP +.1 [ Gt o 7P = @i
+5 [ Groulawut o uiP - FoxlaufPdx
+5 [ GO B P = O B P
#0 [ GetB B = OB

<qImlf + 5 [ G AP = Pl P
+ % fg(%f(x, lay Pl P = F (e, luy ))dx
# [ Gl - o s
# 2 [ Gt - o

1
<liminf[ 7 (u,) - Z(I,Il(un)7 Un))
=mj.

Then we have
ay, =ﬂu1 =1.

Therefore, we have that
uy =i €M and I(uy) = my.
This completes the proof. O
The proof for m; is analogous.
Proof. From Lemma 2.4, we get that
up € M and ILi(uy) =my > 0.

Similar to the discussion of the last step of Theorem 1.2

in [22], we can obtain that
up = uf +uy

is a critical point of I; on Xy and u; is a sign-changing
solution of (2.1). Similarly, we can obtain u, € N is a

nontrivial solution of (2.1) and

I)(uz) =my > 0.

Mathematical Modelling and Control

Thanks to uf # 0, by Lemma 2.2, there exists a unique
number a,; > 0 such that (lu;uf € N. Similarly, there is
a unique number B,; > 0 such that B,-u; € N. Therefore,
by (2.3), (2.4), and Lemma 2.5, we have

0 < 2my < Li(a,uy) + L(Bu-uy)
< I,l(a'ul+bt;r +Buuy) < L(ui +uy)

:m15

that is, 0 < my < my. It follows that m, > 0 cannot be
achieved by a sign-changing function; thus, u; € N is a

signed solution of (2.1). |
3. Proof of main results

In this section, we devote ourselves to completing the
proof of Theorems 1.1 and 1.2. From the truncation
argument in Section 2, we can see that if the solutions u;

and u, of (2.1) satisfy

Then u; € Xj is a sign-changing solution of (1.1), and u, €
Xy is a signed solution of (1.1). For convenience, for each
A>0,M > 0 fixed, we let

gam(x, 1) = fx, 1)+ Ap(Dt,
4 1 X 3.1
Gam(x,1) = f (% DT = ZF(x, i) + A0().
0

Lemma 3.1. Let u; and u, be a sign-changing solution and
a signed solution of problem (2.1), respectively; then there

exists a constant K > 0 independent of A, M > 0 such that
llugll < K and |lusll < K.

Proof. From (2.8), we have

FO NP = 2F(x, 117 ae.xeQ, teR\{0}). (3.2)
And as
o) = qd(t), € R\{0). (3.3)
Together with (3.1)—(3.3), we have
gaam(x, 0t > 0G y(x,t) ae xeQ, teR\{0}, (3.4)
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where

6 = min{4, g} > 2.
By (3.4), we have
Omy > 61 (u1) — (L3 (ur), ur)
0
= (5 = Dlfus]* + f(g/l,M(X,m)Ml —0G (X, up))dx
Q

0
(5 - Dl .

So, there exists a constant K; > 0 independent of 4, M > 0
such that
[l |l < K.

Similarly, we obtain
Omy > 01, (uz) — (I} (u2), us)
0
= (5 = Dllual* + f(gA,M(X, up)uy — 0Gy pm(x, un))dx
Q
0
2 (5 = Dl

So, there exists a constant K, > 0 independent of A, M > 0
such that

lluzll < K.
Taking
K = mil’l{Kl,Kz},
then
lluill < K, i=1,2.
This completes the proof. O

Lemma 3.2. Let u; and u; be a sign-changing solution and
a signed solution of problem (2.1), respectively, then there

exists a constant B > 0 independent on A and M such that
1 p=q .
llullo < BA+ATTM70), i=1,2.

We only prove Lemma 3.2 for u;, the proof for u, is

analogous.

Proof. For L >0and g > 1, set

(=" and T() = f ((t)dr, VieR,
0

where
t; = min{z, L}.

Mathematical Modelling and Control

It is easy to obtain that

(a-Db)L@) - {B)] = T(@)-T®h)P, Va,beR (3.5)
and
RO énﬁ“, VieR. (3.6)
Recall that

uy = min{uy, L}.

It is easy to see that
|u1ui('8_l)| < 26Dy,

and
{(uy) € Xo.

Choose {(u;) as a test function in (2.3), combining (3.5)

and (3.6), we conclude
1
B
< [0 = O = Cn OVIK G~y
R2n

Nyl 1P < TP

< [e1(x) — ul(y)]ului(ﬁ_l)(x)l((x — y)dxdy
R2n
- [0 = w0 )K= sy
R2n

28-1
=fg/1,M(x,u1)u1uL(ﬁ dx,
Q

3.7
which gives
ng/LM(x, ul)ului(ﬁfl)dx > 0.
By (2.6), for any & > 0, there exists C, > 0 such that
lgam(x, ] < elt] + Co(1 + AMP~)|r|~". (3.8)
Let
wr(m) = ulbfi_l,
by (3.7) and (3.8) and Holder’s inequality, it holds that
P
< o1+ AMP)( fQ (P dn)' ( fg jwP'dx)’ (3.9)

+8f|w,_|2dx,
Q
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where

2% t
It is obvious that 2r € (2, 2%).
Together with Lemma 1.1 and (1.6), we have

S*furl3. < lugl*. (3.10)

Therefore, by (3.9) and (3.10), we obtain

lwi 3 < CoBllwr} + (1 + AMP g3 |wy 1,
where C7 > 0. Letting L — oo,

il < CoB* [l 3 + (1 + AMP =)y 5,

< CyB°[1 + (1 + AM™ )l |2 N 3,

Thus
1
lurlga: < CEBFIL + (1 + AMP Nty 521 |y g

Let
2*

Z:
then o > 1. Taking 8 = @, we have

£ 1 _ 2. L
lurlazs < Cg" v [1+ (1 + AMP™ Dy |27712 uy |-
Taking 8 = o, we have
! P=4y(,, 192152
li1lo22r < C3 @ [1 + (1 + AMP™D)uy [, "122 |ug|rvq-
Therefore, we have
s 1 2 _ o L
lirlgzze < CF 2 @0 2 [1+ (1 + AMP™D)uy [£721%5 57 fuy -

Taking 8 = &, i € N, we have

i
i

Xom oy s
ltloiz < C7 @™ T 1+ (1 + AMP ™)1 (g e

Letting i — oo, we can know that

1 @
rloo < CT @@ 2 [1 4+ (1 + AMP™)uty 42175 fuy -
(3.11)

Finally, by (3.10) and Lemma 3.1, there exists Cy > 0 such
that

luilo- < Co.

Mathematical Modelling and Control

Therefore, it follows from (3.11) and

2" —q+2
= ——"-,
2
there exists a constant B > 0 independent on A and M, such
that

luleo < B(1 + A7 MF0),
This completes the proof. O

Proof of Theorem 1.1. By Lemma 3.2,

positive constant B independent on A and M such that

there exists a

ltlleo < BA+ AT MF0), i=1,2.

Thus, for large M > 0, we can choose small A, > 0 such that
lluillo <M and |lusllo < M

for all A € (0, A.]. By Theorem 2.1, problem (1.1) admits a
sign-changing solution and a signed solution for 4 € (0, A.].

This completes the proof. O

Proof of Theorem 1.2. We take
K(x) =[x~

then it is obvious that K(x) satisfies the conditions (K}), (K>)
and problem (1.1) turns into problem (1.2). By using [4,

Lemma 5], we can obtain that
Xy € H)[RY).

Thus,
Theorem 1.1. O

the assertion of Theorem 1.2 follows from

4. Conclusions

In this study, we have investigated the existence of
sign-changing and signed solutions for nonlinear elliptic
equations driven by nonlocal integro-differential operators
with critical or supercritical nonlinearity. The main idea
of this paper is to reduce the supercritical problem into
a subcritical one. In comparison with previous works,
this paper has several new features. First, we consider
the more general nonlinear term without Ambrosetti-

Rabinowitz condition. Second, the nonlinear term involves
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supcritical growth. Finally, the existence of a sign-changing
solution and a signed solution is obtained by combining
an appropriate truncation argument with a constrained
minimization method and the Moser iteration method.
In the future, our work will focus on the existence of
normalized solutions to the nonlinear elliptic equations
driven by nonlocal integro-differential operators with critical

or supercritical nonlinearity.
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