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Abstract: In this paper, we investigate the existence of sign-changing and signed solutions for nonlinear elliptic equations driven by
nonlocal integro-differential operators with critical or supercritical nonlinearity. By combining an appropriate truncation argument with
a constrained minimization method and the Moser iteration method, we obtain a sign-changing solution and a signed solution for them
under some suitable assumptions. As a particular case, we drive an existence theorem of sign-changing and signed solutions for the
fractional Laplacian equations with critical or supercritical growth.
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1. Introduction

This paper is devoted to the study of the existence of sign-
changing and signed solutions for the following nonlocal
elliptic equations:−LKu = λ|u|p−2u + f (x, |u|2)u, x ∈ Ω,

u = 0, x ∈ Rn\Ω,
(1.1)

where LK is the integro-differential operator defined as
follows:

LKu(x) =
1
2

∫
Rn

(u(x + y) + u(x − y) − 2u(x))K(y)dy, x ∈ Rn,

here

K : Rn\{0} → (0,+∞)

is a function with the properties that:

(K1) mK ∈ L1(Rn), where

m(x) = min{|x|2, 1};

(K2) There exist γ > 0 and s ∈ (0, 1) such that

K(x) ≥ γ|x|−(n+2s)

for any x ∈ Rn \ {0}.
A typical model for K is given by the singular kernel

K(x) = |x|−(n+2s)

which coincides with the fractional Laplace operator −(−△)s

of the following fractional Laplacian equations(−△)su = λ|u|p−2u + f (x, |u|2)u, x ∈ Ω,

u = 0, x ∈ Rn\Ω,
(1.2)

where

−(−△)su(x) =
1
2

∫
Rn

u(x + y) + u(x − y) − 2u(x)
|y|n+2s dy, x ∈ Rn.

In problems (1.1) and (1.2), the set Ω ⊂ Rn is an open
bounded with Lipschitz boundary, n > 2s, s ∈ (0, 1), λ is a
positive real parameter, p ≥ 2∗ and

2∗ :=
2n

n − 2s

https://www.aimspress.com/journal/mmc
https://dx.doi.org/ 10.3934/mmc.2025001


2

is the fractional critical Sobolev exponent. The nonlinear
term f satisfies the following conditions:

(A1) f ∈ C(Ω̄×R,R), there exist C > 0 and 2 < q < 2∗ such
that

| f (x, t)| ≤ C(1 + |t|
q−2

2 ), ∀ (x, t) ∈ Ω̄ × R;

(A2) lim
t→0

f (x, t) = 0 uniformly in x ∈ Ω̄;

(A3) f (x,t)
t is increasing in |t| > 0 for a.e. x ∈ Ω.

The operator (−△)s can be seen as the infinitesimal
generators of Lévy stable diffusion Processes; see [1] and
the references therein. This operator arises in several areas,
such as biology, chemistry, physics and finance (see [2–4]).
It is easy to see that the integro-differential operator LK is
a generalization of the fractional Laplace operator −(−△)s

(see [5–7]). Moreover, the interest in non-local integro-
differential problems (1.1) goes beyond the mathematical
curiosity. They have impressive applications in different
fields, such as the thin obstacle problem, portfolio
optimization, pricing of financial instruments, phase
transitions, stratified materials, statistical mechanics, fluid
flow, anomalous diffusion, crystal dislocation, deblurring
and denoising of images, and so on, see [8–10]. In
the past few years, a great deal of attention has been
devoted to nonlocal operators of elliptic type, both for their
interesting theoretical structure and in view of concrete
applications, see [11, 12] and the references therein. By the
minimax method, topological degree theory, or constrained
minimization method, many authors obtained the existence
results of nontrivial solutions, positive solutions or sign-
changing solutions of some nonlinear elliptic equations, see
[13–15]. To show their results, the authors always assumed
the nonlinearity f (x, t) involves subcritical or critical growth
and/or f (x, t) satisfies Ambrosetti-Rabinowitz condition.
However, the existence of nontrivial solutions, positive
solutions, negative solutions and sign-changing solutions for
the nonlocal elliptic problem (1.1) with p ≤ 2∗ has been
investigated by using the variational method, fixed-point
index theory, and critical point theorems, see [16–18]. There
are only a few results about the existence and multiplicity of
solutions for (1.1) with p > 2∗. Fortunately, Li et al. [19]
investigated the following fractional Schrödinger equation
with electromagnetic fields and critical or supercritical

nonlinearity:

(−△)s
Au = λ|u|p−2u + f (x, |u|2)u, in Rn,

where (−△)s
A is the fractional magnetic operator with

n > 2s, s ∈ (0, 1), p ≥ 2∗ =
2n

n − 2s
,

and λ is a positive real parameter. When the nonlinearity f

satisfies the Ambrosetti-Rabinowitz condition, they obtained
the existence of a nontrivial solution for the above equation
via truncation argument and the mountain pass theorem.

Motivated by the above works, the main purpose of this
paper is to study the existence of sign-changing and signed
solutions of (1.1) under the conditions (K1), (K2) and (A1)–
(A3). To the best of our knowledge, there are no papers about
the existence of sign-changing and signed solutions for (1.1)
and (1.2) with supercritical growth.

To state our main result, we define the sets X and X0 as

X ={u | u : Rn → R, u |Ω∈ L2(Ω)

and (u(x) − u(y))
√

K(x − y) ∈ L2(R2n \ O)}

and
X0 = {g | g ∈ X and g = 0 a.e. in Rn \Ω},

where u|Ω represents the restriction to Ω of function

u(x),O = (Rn \Ω) × (Rn \Ω).

We note that X and X0 are non-empty, since

C2
0(Ω) ⊆ X0

(see [20]). We endows X with the norm defined by

∥g∥X := ∥g∥2 + (
∫
Q

|g(x) − g(y)|2K(x − y)dxdy)
1
2 , (1.3)

where
Q = R2n \ O

(see [21]). Moreover, we can take the function

∥g∥ := (
∫
R2n
|g(x) − g(y)|2K(x − y)dxdy)

1
2 (1.4)

as a norm on X0,which is equivalent to the usual one defined
in (1.3) (see [22]). Also, (X0, ∥ · ∥) is a Hilbert space with a
scalar product given by

(u, v) :=
∫
R2n

(u(x)−u(y))(v(x)−v(y))K(x−y)dxdy,∀ u, v ∈ X0.

(1.5)
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Lemma 1.1. The embedding X0 ↪→ Lν(Rn) is continuous

if ν ∈ [1, 2∗] and compact if ν ∈ [1, 2∗), where u ∈ Lν(Rn)
means u = 0 a.e. in Rn\Ω.

It is well known that there is the best fractional critical
Sobolev constant, such that

S ∗ = inf
u∈X0\{0}

∫
R2n |u(x) − u(y)|2K(x − y)dxdy

(
∫
Rn |u(x)|2∗dx)

2
2∗

. (1.6)

Observing that the energy functional of (1.1) is given by

J(u) =
1
2

∫
R2n
|u(x) − u(y)|2K(x − y)dxdy

−
λ

p

∫
Ω

|u|pdx −
1
2

∫
Ω

F(x, |u|2)dx, u ∈ X0.

To the best of our knowledge, the Sobolev embedding
theorems no longer hold when p > 2∗. On the one
hand, it causes the second integral in J to be divergent,
which makes the functional J cannot be well defined
on X0. On the other hand, it leads to the lack of
compactness in studying problem (1.1). Hence, we cannot
directly use variational methods to prove the existence
of sign-changing and signed solutions.To overcome these
difficulties, we use a new method, which came from the
papers [19, 23]. The main idea of this method is to
reduce the supercritical problem into a subcritical one. In
comparison with previous works, this paper has several new
features. First, we consider the more general nonlinear
term without Ambrosetti-Rabinowitz condition. Second,
the nonlinear term involves supcritical growth. Finally,
the existence of a sign-changing solution and a signed
solution is obtained by combining an appropriate truncation
argument with a constrained minimization method and the
Moser iteration method. The results in this paper generalize
and improve the results in [24–26]]. There have been no
previous studies considering the existence of sign-changing
and signed solutions for problems (1.1) and (1.2) involving
supcritical growth to the best of our knowledge.

The main result of this paper is the following:

Theorem 1.1. Suppose that (K1), (K2), and (A1)–(A3) are

satisfied. Then there exists λ∗ > 0 for any λ ∈ (0, λ∗],
problem (1.1) admits a sign-changing solution and a signed

solution.

Remark 1.1. Comparing with [4, 25, 27], we prove

the existence of sign-changing solutions of (1.1) without

the Ambrosetti-Rabinowitz condition. The results can

be regarded as the complementary work of [4, 25, 27].

Moreover, comparing with [2, 4, 27], we consider the

supercritical fractional Laplace equations. Our results are

new. Therefore, the results of this paper can enrich the

results in the previous papers.

Theorem 1.2. Suppose that (A1)–(A3) are satisfied. Then

there exists λ∗∗ > 0, such that, for any λ ∈ (0, λ∗∗], the

problem (1.2) admits a sign-changing solution and a signed

solution.

This paper is organized as follows: In Section 2, we will
prove the existence of sign-changing and signed solutions
for the truncation problem of (1.1). Section 3 is devoted to
completing the proof of Theorems 1.1 and 1.2.

2. Preliminaries

In this section, we give a truncation argument in order to
overcome the lack of compactness in studying critical and
supercritical growth. Let M > 0 be a constant. For each
λ > 0 and M > 0 fixed, we investigate the existence of sign-
changing and signed solutions for the following truncation
problem: − LKu = λφ(u)u + f (x, |u|2)u, x ∈ Ω,

u = 0, x ∈ Rn\Ω,
(2.1)

where

φ(t) =

|t|
p−2, 0 ≤ |t| ≤ M,

Mp−q|t|q−2, |t| > M.

To investigate (2.1), we define the energy functional

Iλ : X0 −→ R

by

Iλ(u) =
1
2

∫
R2n
|u(x) − u(y)|2K(x − y)dxdy

−
1
2

∫
Ω

F(x, |u|2)dx − λ
∫
Ω

Φ(u)dx, u ∈ X0,

(2.2)

where
Φ(t) =

∫ t

0
φ(τ)τdτ.

Mathematical Modelling and Control Volume 5, Issue 1, 1–14.



4

By (A1) and the standard argument, it is easy to obtain that
Iλ ∈ C1(X0,R) and

⟨I′λ(u), v⟩ =
∫
R2n

(u(x) − u(y))(v(x) − v(y))K(x − y)dxdy

−

∫
Ω

f (x, |u|2)uvdx − λ
∫
Ω

φ(u)uvdx,

(2.3)
where u, v ∈ X0.

Let

u+(x) := max{u(x), 0}, u−(x) := min{u(x), 0},

for any
u = u+ + u− ∈ X0,

we have

∥u∥2 =∥u+∥2 + ∥u−∥2

−

∫
R2n

(u+(x)u−(y) + u−(x)u+(y))K(x − y)dxdy

≥ ∥u+∥2 + ∥u−∥2,

Iλ(u) =Iλ(u+) + Iλ(u−)

−

∫
R2n

(u+(x)u−(y) + u−(x)u+(y))K(x − y)dxdy

≥ Iλ(u+) + Iλ(u−)
(2.4)

and

⟨I′λ(u), u+⟩ =⟨I′λ(u
+), u+⟩ −

∫
R2n

(u+(x)u−(y)

+ u−(x)u+(y))K(x − y)dxdy.

Obviously, the critical points of Iλ are equivalent to the
weak solutions of problem (2.1). Furthermore, if u ∈ X0 is
a solutions of (2.1) and u± , 0 in Ω, then u is called a sign-
changing solution of (2.1). If u ∈ X0 is a solution of (2.1)
and u > 0 (or u < 0) in Ω, then u is called a signed solution
of (2.1).

Next, we consider the minimization problems:

m1 := inf{Iλ(u) : u ∈ M}, m2 := inf{Iλ(u) : u ∈ N}, (2.5)

where

M = {u ∈ N : u± , 0, ⟨I′λ(u), u+⟩ = ⟨I′λ(u), u−⟩ = 0}

and
N = {u ∈ X0 \ {0} : ⟨I′λ(u), u⟩ = 0}.

Theorem 2.1. Suppose that (K1), (K2) and (A1)–(A3) are

satisfied. Then, for each λ > 0,M > 0, problem (2.1) admits

a sign-changing solution u1 ∈ M and a signed solution u2 ∈

N . Furthermore,

Iλ(u1) = inf
M

Iλ(u) > 0, Iλ(u2) = inf
N

Iλ(u) > 0.

In the following, we shall give some properties forM and
N . By (A1) and (A2), we easily see that for any ε > 0, there
exists Cε > 0 such that

| f (x, t2)| ≤ ε +Cε|t|q−2, |F(x, t2)| ≤ ε|t|2 +Cε|t|q (2.6)

for all t ∈ R and 2 < q < 2∗. By (A1)–(A3), we easily deduce
that

1
2

f (x, t)t − F(x, t) be increasing in |t| > 0 for a.e. x ∈ Ω,

f (x, t) be increasing in |t| > 0 for a.e. x ∈ Ω, (2.7)

1
2

f (x, t)t − F(x, t) > 0, F(x, t) > 0, a.e. x ∈ Ω, t ∈ R\{0},

(2.8)

and

lim
|t|→+∞

F(x, t)
t
= lim
|t|→+∞

f (x, t) = +∞, a.e. x ∈ Ω. (2.9)

First, we show that the sets M and N are nonempty
in X0, and then we seek critical points of Iλ by constraint
minimizations onM and N .

Lemma 2.1. Suppose that (K1), (K2) and (A1)–(A3) hold.

(1) If u ∈ X0 with u± , 0, then there exists a unique pair

(αu, βu) ∈ R+ × R+ such that αuu+ + βuu− ∈ M.

(2) If u ∈ X0 \ {0} , then there exists a unique number tu > 0
such that tuu ∈ N and

Iλ(tuu) = max
t≥0

Iλ(tu).

Proof. (1) For fixed u ∈ X0 with

u± , 0,

we claim the existence of αu and βu.

Mathematical Modelling and Control Volume 5, Issue 1, 1–14.
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Set

h1(α, β) =⟨I′λ(αu+ + βu−), αu+⟩

=

∫
R2n

(αu+ + βu−)(x)(αu+(x) − αu+(y))K(x − y)dxdy

−

∫
R2n

(αu+ + βu−)(y)(αu+(x) − αu+(y))K(x − y)dxdy

−

∫
Ω

f (x, |αu+ + βu−|2)|αu+|2dx − λ
∫
Ω

φ(αu+)|αu+|2dx

=α2∥u+∥2 −
∫
Ω

f (x, |αu+|2)|αu+|2dx

− λ

∫
Ω

φ(αu+)|αu+|2dx

− αβ

∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy,

(2.10)
h2(α, β) =⟨I′λ(αu+ + βu−), βu−⟩

=

∫
R2n

(αu+ + βu−)(x)(βu−(x) − βu−(y))K(x − y)dxdy

−

∫
R2n
−(αu+ + βu−)(y)(βu−(x) − βu−(y))K(x − y)dxdy

−

∫
Ω

f (x, |αu+ + βu−|2)|βu−|2dx − λ
∫
Ω

φ(βu−)|βu−|2dx

=β2∥u−∥2 − αβ
∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy

−

∫
Ω

f (x, |βu−|2)|βu−|2dx − λ
∫
Ω

φ(βu−)|βu−|2dx.

(2.11)
By (2.6) and q ∈ (2, 2∗), we can find that

h1(α, α) > 0, h2(α, α) > 0

for a sufficiently small α > 0 and

h1(β, β) < 0, h2(β, β) < 0

for a sufficiently large β > 0. Therefore, there exist 0 < r <

R such that

h1(r, r) > 0, h2(r, r) > 0, h1(R,R) < 0, h2(R,R) < 0.
(2.12)

Taking into account (2.10)–(2.12), we deduce

h1(r, β) > 0, h1(β,R) < 0, ∀β ∈ [r,R]

and
h2(r, α) > 0, h2(α,R) < 0, ∀α ∈ [r,R].

Therefore, there exists some point (αu, βu) with

r < αu, βu < R,

such that
h1(αu, βu) = h2(αu, βu) = 0

by Miranda’s theorem. Thus

αuu+ + βuu− ∈ M.

Next, we prove the uniqueness of the pair (αu, βu).
Case 1. u ∈ M.
Assume u ∈ M, we have

u+ + u− = u ∈ M.

We obtain
⟨I′λ(u), u+⟩ = ⟨I′λ(u), u−⟩ = 0,

that is∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy

−

∫
R2n

(u+(x) − u+(y))2K(x − y)dxdy

= −

∫
Ω

f (x, |u+|2)|u+|2dx + λ
∫
Ω

φ(u+)|u+|2dx

(2.13)

and ∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy

−

∫
R2n

(u−(x) − u−(y))2K(x − y)dxdy

= −

∫
Ω

f (x, |u−|2)|u−|2dx + λ
∫
Ω

φ(u−)|u−|2dx.

(2.14)

Now we prove that there exists a unique pair

(αu, βu) = (1, 1),

such that
αuu+ + βuu− ∈ M.

If there exists another pair (α̃u, β̃u) such that

α̃uu+ + β̃uu− ∈ M,

then we obtain

α̃uβ̃u

∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy − α̃2
u∥u
+∥2

= −

∫
Ω

f (x, |α̃uu+|2)|α̃uu+|2dx − λ
∫
Ω

φ(α̃uu+)|α̃uu+|2dx

(2.15)
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and

α̃uβ̃u

∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy − β̃2
u∥u
−∥2

= −

∫
Ω

f (x, |β̃uu−|2)|β̃uu−|2dx − λ
∫
Ω

φ(β̃uu−)|β̃uu−|2dx.

(2.16)

Assume that 0 < α̃u ≤ β̃u, by using (2.15), we deduce

α̃2
u(∥u+∥2 −

∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy)

≤

∫
Ω

f (x, |α̃uu+|2)|α̃uu+|2dx + λ
∫
Ω

φ(α̃uu+)|α̃uu+|2dx.

Multiply the above inequality by α̃−2
u , we obtain

∥u+∥2 −
∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy

≤

∫
Ω

f (x, |α̃uu+|2)|u+|2dx + λ
∫
Ω

φ(α̃uu+)|u+|2dx.

(2.17)

Putting together (2.17) and (2.13), we have∫
Ω

( f (x, |α̃uu+|2) − f (x, |u+|2))|u+|2dx

+ λ

∫
Ω

(φ(α̃uu+) − φ(u+))|u+|2dx ≥ 0.
(2.18)

Since φ(t) is increasing in t > 0, combining (2.7) and (2.18),
we obtain

1 ≤ α̃u ≤ β̃u.

Similarly, by (2.16), it results∫
Ω

( f (x, |β̃uu−|2) − f (x, |u−|2))|u−|2dx

+ λ

∫
Ω

(φ(β̃uu−) − φ(u−))|u−|2dx ≤ 0,

which implies β̃u ≤ 1. Then, combining

1 ≤ α̃u ≤ β̃u,

we have
α̃u = β̃u = 1.

Case 2. u <M.
(1) Assume u < M, then there exists a pair (αu, βu) such

that
αuu+ + βuu− ∈ M.

If there exists another pair (α̂u, β̂u) such that

α̂uu+ + β̂uu− ∈ M.

Set
w := αuu+ + βuu−

and
ŵ := α̂uu+ + β̂uu−,

we have

α̂u

αu
w+ +

β̂u

βu
w− = α̂uu+ + β̂uu− = ŵ ∈ M.

Since w ∈ M, we have

αu = α̂u and βu = β̂u.

So, there exists a unique pair (αu, βu) such that

αuu+ + βuu− ∈ M.

(2) For t > 0, let

h(t) = Iλ(tu) =
t2

2

∫
R2n
|u(x) − u(y)|2K(x − y)dxdy

−
1
2

∫
Ω

F(x, |tu|2)dx − λ
∫
Ω

Φ(tu)dx.

By (2.6) and Lemma 1.1, for ε > 0 sufficiently small we
have

h(t) ≥
t2

4
∥u∥2 −C1(Cε + λC0)tq∥u∥q,

where
C0 =

1
q

Mp−q.

Since q > 2, we obtain that h(t) > 0 for t > 0 small. From
the Eq (2.9), we easily get that h(t) → −∞ as t → +∞.
Hence h has a positive maximum at

t = tu > 0.

Therefore, h′(tu) = 0 and tuu ∈ N . Obviously, h′(t) = 0 is
equivalent to

∥u∥2 =
∫
Ω

f (x, |tu|2)|u|2dx + λ
∫
Ω

φ(tu)|u|2dx. (2.19)

From (2.7), the right side of (2.19) is increasing for t > 0.
As a consequence, there exists a unique number tu > 0 such
that (2.19) holds. The uniqueness of tu is proved, and

Iλ(tuu) = max
t≥0

Iλ(tu).

□
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Lemma 2.2. Suppose that (K1), (K2), and (A1)–(A3) hold.

(1) If

⟨I′λ(u), u±⟩ ≤ 0

for fixed u ∈ X0 with u± , 0, then there exists a unique pair

(αu, βu) ∈ (0, 1] × (0, 1],

such that

⟨I′λ(αuu+ + βuu−), αuu+⟩ = ⟨I′λ(αuu+ + βuu−), βuu−⟩ = 0.

(2) If

⟨I′λ(u), u⟩ ≤ 0

for fixed u ∈ X0 \ {0} , then there exists a unique number

tu ∈ (0, 1] such that

⟨I′λ(tuu), tuu⟩ = 0.

Proof. We only prove Lemma 2.2 (1); the proof of
Lemma 2.3 (2) is analogous. □

For fixed u ∈ X0 with u± , 0, by Lemma 2.1, we obtain
that there exist a unique pair (αu, βu) such that

αuu+ + βuu− ∈ M.

Assume that αu ≥ βu > 0. In addition,

α2
u(∥u+∥2 −

∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy)

≥ α2
u∥u
+∥2 − αuβu

∫
R2n

u−(x)u+(y)K(x − y)dxdy

− αuβu

∫
R2n

u−(y)u+(x)K(x − y)dxdy

=

∫
Ω

f (x, |αuu+|2)|αuu+|2dx + λ
∫
Ω

φ(αuu+)|αuu+|2dx.

(2.20)

Since
⟨I′λ(u), u+⟩ ≤ 0,

it holds

∥u+∥2 −
∫
R2n

(u−(x)u+(y) + u−(y)u+(x))K(x − y)dxdy

≤

∫
Ω

f (x, |u+|2)|u+|2dx + λ
∫
Ω

φ(u+)|u+|2dx.

(2.21)

Therefore (2.20) and (2.21) lead to∫
Ω

( f (x, |αuu+|2) − f (x, |u+|2))|u+|2dx

+ λ

∫
Ω

(φ(αuu+) − φ(u+))|u+|2dx ≤ 0.

By (2.7), we have αu ≤ 1. Thus, 0 < βu ≤ αu ≤ 1.

Lemma 2.3. For fixed u ∈ X0 with u± , 0, then (αu, βu)
obtained in Lemma 2.2 is the unique maximum point of the

function

Θ : R+ × R+ → R,

where

Θ(α, β) = Iλ(αu+ + βu−).

Proof. By Lemma 2.1, it yields that (αu, βu) is the unique
critical point of Θ in R+ × R+. By (2.9), we can see that

Θ(α, β)→ −∞

uniformly as

|(α, β)| → +∞,

then we can prove that there is no maximum point on the
boundary of (R+,R+). If we suppose that there exists β̄ ≥ 0
such that (0, β̄) is a maximum point of Θ. Since

Θ(α, β̄) =
1
2

∫
R2n

(αu+(x) + β̄u−(x) − αu+(y) − β̄u−(y))2K(x − y)dxdy

−
1
2

∫
Ω

F(x, |αu+ + β̄u−|2)dx − λ
∫
Ω

Φ(αu+ + β̄u−)dx

is an increasing function of α for α sufficiently small, the
pair (0, β̄) cannot be a maximum point of Θ in R+ × R+. □

Lemma 2.4. Suppose that (K1), (K2) and (A1)–(A3) hold,

then

(1)

m1 = inf
u∈X0 ,
u±,0

max
α≥0,β≥0

Iλ(αu+ + βu−)

and

m2 = inf
u∈X0\{0}

max
t≥0

Iλ(tu).

(2) m1 > 0 and m2 > 0 can be achieved respectively.

Proof. (1) By Lemmas 2.1 and 2.3, it is easy to see that

m1 = inf
u∈X0 ,
u±,0

max
α≥0,β≥0

Iλ(αu+ + βu−)

Mathematical Modelling and Control Volume 5, Issue 1, 1–14.



8

and
m2 = inf

u∈X0\{0}
max

t≥0
Iλ(tu).

(2) For u ∈ M, we obtain

⟨I′λ(u), u⟩ = 0.

By (2.6), for any ε > 0 sufficiently small, we have

Iλ(u) =
1
2
∥u∥2 −

1
2

∫
Ω

F(x, |u|2)dx − λ
∫
Ω

Φ(u)dx

≥
1
2
∥u∥2 −

ε

2

∫
Ω

|u|2dx −
Cε
2

∫
Ω

|u|qdx − λC0

∫
Ω

|u|qdx

≥
1
2
∥u∥2 −

C2ε

2
∥u∥2 −C3∥u∥q

=
1
2

(1 −C2ε)∥u∥2 −C3∥u∥q.

Taking

ε =
1

2C2
,

then for sufficiently small ρ > 0 where

S ρ := {u ∈ X0 : ∥u∥ = ρ},

we can know
inf
u∈S ρ

Iλ(u) > 0.

For u ∈ M, there exists t > 0 such that tu ∈ S ρ. From
Lemmas 2.1 and 2.3, we obtain

max
α≥0,β≥0

Iλ(αu+ + βu−) ≥ Iλ(tu+ + tu−) = Iλ(tu) ≥ inf
u∈S ρ

Iλ(u).

Therefore,

m1 := inf
u∈X0 ,
u±,0

max
α≥0,β≥0

Iλ(αu+ + βu−) ≥ inf
u∈S ρ

Iλ(u) > 0.

Let
{un} ⊂ M

be such that
Iλ(un)→ m,

then we claim that {un} is bounded. By contradiction, we
may suppose that ∥un∥ → ∞ as n→ ∞. Let

ωn =
un

∥un∥
,

then ωn ∈ X0 and ∥ωn∥ = 1. Passing to a subsequence if
necessary, we may assume that there exists ω ∈ X0 such that

ωn ⇀ ω in X0, ωn → ω in Lr(Rn), where 2 ≤ r < 2∗, ωn →

ω a.e. in Rn.

If ω , 0, then |Ω,| > 0, where

Ω, = {x ∈ Rn, ω(x) , 0}.

In view of

lim
n→∞

un(x)
∥un∥

= lim
n→∞
ωn(x) = ω(x) , 0, x ∈ Ω,.

So

|un(x)| → ∞, x ∈ Ω,.

Noting that

m1 + o(1) = I(un)

=
1
2
∥un∥

2 −
1
2

∫
Ω

F(x, |un|
2)dx − λ

∫
Ω

Φ(un)dx,

we have

0←
m1 + o(1)
∥un∥

2 =
1
2
−

1
2

∫
Ω

F(x, |un|
2)

∥un∥
2 dx − λ

∫
Ω

Φ(un)
∥un∥

2 dx,

consequently,

1 =
∫
Ω

F(x, |un|
2)

|un|
2 |ωn|

2dx + 2λ
∫
Ω

Φ(un)
∥un∥

2 dx + o(1)

≥

∫
Ω,

F(x, |un|
2)

|un|
2 |ωn|

2dx + o(1).

Therefore, by Fatou’s lemma and (2.9), we have

1 ≥ lim inf
n→∞

∫
Ω,

F(x, |un|
2)

|un|
2 |ωn|

2dx

≥

∫
Ω,

lim inf
n→∞

F(x, |un|
2)

|un|
2 |ωn|

2dx→ +∞,

which is a contradiction.

If ω ≡ 0, then ωn → 0 in Lr(Rn). So,∫
Ω

F(x, |sωn|
2)dx→ 0 for all s ∈ R.

So, by Lemma 2.1, we have

m1 + 1 ≥ Iλ(un) ≥ Iλ(sωn)

=
1
2

s2 −
1
2

∫
Ω

F(x, |sωn|
2)dx − λ

∫
Ω

Φ(sωn)dx

→
1
2

s2.

Mathematical Modelling and Control Volume 5, Issue 1, 1–14.



9

Taking
s >
√

2(m1 + 1),

it is a contradiction. Thus, {un} is bounded in X0. By
Lemma 1.1, up to a subsequence, we can assume that

u±n ⇀ u±1 in X0,

u±n → u±1 in Lr(Rn), 2 ≤ r < 2∗,

u±n → u±1 a.e. in Ω.

(2.22)

In addition, (A1), (A2), and Lemma 1.1 lead to

lim
n→∞

∫
Ω

f (x, |u±n |
2)|u±n |

2dx =
∫
Ω

f (x, |u±1 |
2)|u±1 |

2dx,

lim
n→∞

∫
Ω

F(x, |u±n |
2)dx =

∫
Ω

F(x, |u±1 |
2)dx.

(2.23)

Since un ∈ M, then

⟨I′λ(un), u±n ⟩ = 0,

that is

∥u+n ∥
2 −

∫
R2n

(u−n (x)u+n (y) + u−n (y)u+n (x))K(x − y)dxdy

=

∫
Ω

f (x, |u+n |
2)|u+n |

2dx + λ
∫
Ω

φ(u+n )|u+n |
2dx

(2.24)

and

∥u−n ∥
2 −

∫
R2n

(u−n (x)u+n (y) + u−n (y)u+n (x))K(x − y)dxdy

=

∫
Ω

f (x, |u−n |
2)|u−n |

2dx + λ
∫
Ω

φ(u−n )|u−n |
2dx.

(2.25)

Thanks to (2.6), (2.24), and (2.25), we have

∥u±n ∥
2 =

∫
Ω

f (x, |u±n |
2)|u±n |

2dx + λ
∫
Ω

φ(u±n )|u±n |
2dx

≤ ε

∫
Ω

|u±n |
2dx +Cε

∫
Ω

|u±n |
qdx + λC0

∫
Ω

|u±n |
qdx

≤ εC2∥u±n ∥
2 +C4∥u±n ∥

q.

Choose
ε =

1
2C2
.

Thus, there exists a constant δ > 0 such that

∥u±n ∥
2 ≥ δ.

By applying (2.24) and (2.25) again, we deduce that

δ ≤ ∥u±n ∥
2 ≤ ε

∫
Ω

|u±n |
2dx + (Cε + λC0)

∫
Ω

|u±n |
qdx.

Since {un} is bounded, by Lemma 1.1, there is

C5 > 0, C6 > 0,

such that
δ ≤ εC5 +C6

∫
Ω

|u±n |
qdx.

Picking

ε =
δ

2C5
,

we have ∫
Ω

|u±n |
qdx ≥

δ

2C6
. (2.26)

By (2.22) and (2.26), we have∫
Ω

|u±1 |
qdx ≥

δ

2Cε
.

Thus,
u±1 , 0.

By Lemma 2.1, there exists

αu βu > 0

such that
ū1 := αu1 u+1 + βu1 u−1 ∈ M.

Next, we aim to prove that

αu1 = βu1 = 1.

Putting together (2.22), (2.24) and Fatou’s lemma, we
deduce

∥u+1 ∥
2 −

∫
R2n

(u−1 (x)u+1 (y) + u−1 (y)u+1 (x))K(x − y)dxdy

≤

∫
Ω

f (x, |u+1 |
2)|u+1 |

2dx + λ
∫
Ω

φ(u+1 )|u+1 |
2dx.

(2.27)
By (2.27) and Lemma 2.1, we have

αu1 ≤ 1.

In the similar way, we can obtain

βu1 ≤ 1.

Mathematical Modelling and Control Volume 5, Issue 1, 1–14.



10

By (2.7), it follows that

m1 ≤Iλ(ū1) = Iλ(ū1) −
1
4
⟨I′λ(ū1), ū1⟩

=
1
4
∥ū1∥

2 + λ

∫
Ω

(
1
4
φ(ū1)|ū1|

2 − Φ(ū1))dx

+
1
2

∫
Ω

(
1
2

f (x, |ū1|
2)|ū1|

2 − F(x, |ū1|
2))dx

=
1
4
∥ū1∥

2 + λ

∫
Ω

(
1
4
φ(αu1 u+1 )|αu1 u+1 |

2 − Φ(αu1 u+1 ))dx

+
1
2

∫
Ω

(
1
2

f (x, |αu1 u+1 |
2)|αu1 u+1 |

2 − F(x, |αu1 u+1 |
2))dx

+
1
2

∫
Ω

(
1
2

f (x, |βu1 u−1 |
2)|βu1 u−1 |

2 − F(x, |βu1 u−1 |
2))dx

+ λ

∫
Ω

(
1
4
φ(βu1 u−1 )|βu1 u−1 |

2 − Φ(βu1 u−1 ))dx

≤
1
4
∥ū1∥

2 +
1
2

∫
Ω

(
1
2

f (x, |u+1 |
2)|u+1 |

2 − F(x, |u+1 |
2))dx

+
1
2

∫
Ω

(
1
2

f (x, |u−1 |
2)|u−1 |

2 − F(x, |u−1 |
2))dx

+ λ

∫
Ω

(
1
4
φ(u+1 )|u+1 |

2 − Φ(u+1 ))dx

+ λ

∫
Ω

(
1
4
φ(u−1 )|u−1 |

2 − Φ(u−1 ))dx

≤ lim inf
n→∞

[Iλ(un) −
1
4
⟨I′λ(un), un⟩]

=m1.

Then we have
αu1 = βu1 = 1.

Therefore, we have that

u1 = ū1 ∈ M and I(u1) = m1.

This completes the proof. □

The proof for m2 is analogous.

Proof. From Lemma 2.4, we get that

u1 ∈ M and Iλ(u1) = m1 > 0.

Similar to the discussion of the last step of Theorem 1.2
in [22], we can obtain that

u1 = u+1 + u−1

is a critical point of Iλ on X0 and u1 is a sign-changing
solution of (2.1). Similarly, we can obtain u2 ∈ N is a
nontrivial solution of (2.1) and

Iλ(u2) = m2 > 0.

Thanks to u±1 , 0, by Lemma 2.2, there exists a unique
number αu+1 > 0 such that αu+1 u+1 ∈ N . Similarly, there is
a unique number βu−1 > 0 such that βu−1 u−1 ∈ N . Therefore,
by (2.3), (2.4), and Lemma 2.5, we have

0 < 2m2 ≤ Iλ(αu+1 u+1 ) + Iλ(βu−1 u−1 )

≤ Iλ(αu+1 u+1 + βu−1 u−1 ) ≤ Iλ(u+1 + u−1 )

= m1,

that is, 0 < m2 < m1. It follows that m2 > 0 cannot be
achieved by a sign-changing function; thus, u2 ∈ N is a
signed solution of (2.1). □

3. Proof of main results

In this section, we devote ourselves to completing the
proof of Theorems 1.1 and 1.2. From the truncation
argument in Section 2, we can see that if the solutions u1

and u2 of (2.1) satisfy

∥ui∥∞ ≤ M, i = 1, 2.

Then u1 ∈ X0 is a sign-changing solution of (1.1), and u2 ∈

X0 is a signed solution of (1.1). For convenience, for each
λ > 0,M > 0 fixed, we let

gλ,M(x, t) = f (x, |t|2)t + λφ(t)t,

Gλ,M(x, t) =
∫ t

0
gλ,M(x, τ)dτ =

1
2

F(x, |t|2) + λΦ(t).
(3.1)

Lemma 3.1. Let u1 and u2 be a sign-changing solution and

a signed solution of problem (2.1), respectively; then there

exists a constant K > 0 independent of λ,M > 0 such that

∥u1∥ ≤ K and ∥u2∥ ≤ K.

Proof. From (2.8), we have

f (x, |t|2)|t|2 ≥ 2F(x, |t|2) a.e. x ∈ Ω, t ∈ R\{0}. (3.2)

And as

φ(t)t2 ≥ qΦ(t), t ∈ R\{0}. (3.3)

Together with (3.1)–(3.3), we have

gλ,M(x, t)t ≥ θGλ,M(x, t) a.e. x ∈ Ω, t ∈ R\{0}, (3.4)
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where

θ = min{4, q} > 2.

By (3.4), we have

θm1 ≥ θIλ(u1) − ⟨I′λ(u1), u1⟩

= (
θ

2
− 1)∥u1∥

2 +

∫
Ω

(gλ,M(x, u1)u1 − θGλ,M(x, u1))dx

≥ (
θ

2
− 1)∥u1∥

2.

So, there exists a constant K1 > 0 independent of λ,M > 0
such that

∥u1∥ ≤ K1.

Similarly, we obtain

θm2 ≥ θIλ(u2) − ⟨I′λ(u2), u2⟩

= (
θ

2
− 1)∥u2∥

2 +

∫
Ω

(gλ,M(x, u2)u2 − θGλ,M(x, u2))dx

≥ (
θ

2
− 1)∥u2∥

2.

So, there exists a constant K2 > 0 independent of λ,M > 0
such that

∥u2∥ ≤ K2.

Taking

K = min{K1,K2},

then

∥ui∥ ≤ K, i = 1, 2.

This completes the proof. □

Lemma 3.2. Let u1 and u2 be a sign-changing solution and

a signed solution of problem (2.1), respectively, then there

exists a constant B > 0 independent on λ and M such that

∥ui∥∞ ≤ B(1 + λ
1

2∗−q M
p−q

2∗−q ), i = 1, 2.

We only prove Lemma 3.2 for u1, the proof for u2 is
analogous.

Proof. For L > 0 and β > 1, set

ζ(t) = tt2(β−1)
L and Γ(t) =

∫ t

0
(ζ′(τ))

1
2 dτ, ∀ t ∈ R,

where

tL = min{t, L}.

It is easy to obtain that

(a − b)[ζ(a) − ζ(b)] ≥ |Γ(a) − Γ(b)|2, ∀a, b ∈ R (3.5)

and

Γ(t) ≥
1
β

ttβ−1
L , ∀t ∈ R. (3.6)

Recall that
uL = min{u1, L}.

It is easy to see that

|u1u2(β−1)
L | ≤ L2(β−1)u1

and
ζ(u1) ∈ X0.

Choose ζ(u1) as a test function in (2.3), combining (3.5)
and (3.6), we conclude

1
β2 ∥u1uβ−1

L ∥
2 ≤ ∥Γ(u1)∥2

≤

∫
R2n

[u1(x) − u1(y)][ζ(u1(x)) − ζ(u1(y))]K(x − y)dxdy

≤

∫
R2n

[u1(x) − u1(y)]u1u2(β−1)
L (x)K(x − y)dxdy

−

∫
R2n

[u1(x) − u1(y)]u1u2(β−1)
L (y)K(x − y)dxdy

=

∫
Ω

gλ,M(x, u1)u1u2(β−1)
L dx,

(3.7)

which gives ∫
Ω

gλ,M(x, u1)u1u2(β−1)
L dx ≥ 0.

By (2.6), for any ε > 0, there exists Cε > 0 such that

|gλ,M(x, t)| ≤ ε|t| +Cε(1 + λMp−q)|t|q−1. (3.8)

Let
ωL(u1) = u1uβ−1

L ,

by (3.7) and (3.8) and Hölder’s inequality, it holds that

1
β2 ∥ωL(u1)∥2

≤ Cε(1 + λMp−q)(
∫
Ω

|ui(x)|2
∗

dx)
q−2
2∗ (
∫
Ω

|ωL|
2tdx)

1
t

+ ε

∫
Ω

|ωL|
2dx,

(3.9)

Mathematical Modelling and Control Volume 5, Issue 1, 1–14.



12

where
q − 2

2∗
+

1
t
= 1.

It is obvious that 2t ∈ (2, 2∗).
Together with Lemma 1.1 and (1.6), we have

S ∗|u1|
2
2∗ ≤ ∥u1∥

2. (3.10)

Therefore, by (3.9) and (3.10), we obtain

|ωL|
2
2∗ ≤ C7β

2[|ωL|
2
2 + (1 + λMp−q)|u1|

q−2
2∗ |ωL|

2
2t],

where C7 > 0. Letting L→ ∞,

|u1|
2β
β2∗ ≤ C7β

2[|u1|
2β
2β + (1 + λMp−q)|u1|

q−2
2∗ |u1|

2β
2βt]

≤ C8β
2[1 + (1 + λMr−q)|u1|

q−2
2∗ ]|u1|

2β
2βt.

Thus

|u1|β2∗ ≤ C
1

2β

8 β
1
β [1 + (1 + λMp−q)|u1|

q−2
2∗ ]

1
2β |u1|2βt.

Let
α =

2∗

2t
,

then α > 1. Taking β = α, we have

|u1|α2∗ ≤ C
1

2α
8 α

1
α [1 + (1 + λMp−q)|u1|

q−2
2∗ ]

1
2α |u1|2∗ .

Taking β = α2, we have

|u1|α22∗ ≤ C
1

2α2

8 α
2
α2 [1 + (1 + λMp−q)|u1|

q−2
2∗ ]

1
2α2 |u1|2∗α.

Therefore, we have

|u1|α22∗ ≤ C
1

2α+
1

2α2

8 α
1
θ +

2
θ2 [1 + (1 + λMp−q)|u1|

q−2
2∗ ]

1
2α+

1
2α2 |u1|2∗ .

Taking β = αi, i ∈ N, we have

|u1|αi2∗ ≤ C

i∑
m=1

1
2αm

8 α

i∑
m=1

m
θm [1 + (1 + λMp−q)|u1|

q−2
2∗ ]

i∑
m=1

1
2αm
|u1|2∗ .

Letting i→ ∞, we can know that

|u1|∞ ≤ C
1

2(α−1)

8 α
α

(α−1)2 [1 + (1 + λMp−q)|u1|
q−2
2∗ ]

1
2(α−1) |u1|2∗ .

(3.11)

Finally, by (3.10) and Lemma 3.1, there exists C9 > 0 such
that

|u1|2∗ ≤ C9.

Therefore, it follows from (3.11) and

α =
2∗ − q + 2

2
,

there exists a constant B > 0 independent on λ and M, such
that

|u1|∞ ≤ B(1 + λ
1

2∗−q M
p−q

2∗−q ).

This completes the proof. □

Proof of Theorem 1.1. By Lemma 3.2, there exists a
positive constant B independent on λ and M such that

∥ui∥∞ ≤ B(1 + λ
1

2∗−q M
p−q

2∗−q ), i = 1, 2.

Thus, for large M > 0, we can choose small λ∗ > 0 such that

∥u1∥∞ ≤ M and ∥u2∥∞ ≤ M

for all λ ∈ (0, λ∗]. By Theorem 2.1, problem (1.1) admits a
sign-changing solution and a signed solution for λ ∈ (0, λ∗].

This completes the proof. □

Proof of Theorem 1.2. We take

K(x) = |x|−(N+2s),

then it is obvious that K(x) satisfies the conditions (K1), (K2)
and problem (1.1) turns into problem (1.2). By using [4,
Lemma 5], we can obtain that

X0 ⊆ Hs(Rn).

Thus, the assertion of Theorem 1.2 follows from
Theorem 1.1. □

4. Conclusions

In this study, we have investigated the existence of
sign-changing and signed solutions for nonlinear elliptic
equations driven by nonlocal integro-differential operators
with critical or supercritical nonlinearity. The main idea
of this paper is to reduce the supercritical problem into
a subcritical one. In comparison with previous works,
this paper has several new features. First, we consider
the more general nonlinear term without Ambrosetti-
Rabinowitz condition. Second, the nonlinear term involves
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supcritical growth. Finally, the existence of a sign-changing
solution and a signed solution is obtained by combining
an appropriate truncation argument with a constrained
minimization method and the Moser iteration method.
In the future, our work will focus on the existence of
normalized solutions to the nonlinear elliptic equations
driven by nonlocal integro-differential operators with critical
or supercritical nonlinearity.
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