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Abstract: In cyber-physical systems, the state information from multiple processes is sent simultaneously to remote estimators through
wireless channels. However, with the introduction of open media such as wireless networks, cyber-physical systems may become
vulnerable to denial-of-service attacks, which can pose significant security risks and challenges to the systems. To better understand
the impact of denial-of-service attacks on cyber-physical systems and develop corresponding defense strategies, several research papers
have explored this issue from various perspectives. However, most current works still face three limitations. First, they only study the
optimal strategy from the perspective of one side (either the attacker or defender). Second, these works assume that the attacker possesses
complete knowledge of the system’s dynamic information. Finally, the power exerted by both the attacker and defender is assumed to be
small and discrete. All these limitations are relatively strict and not suitable for practical applications. In this paper, we addressed these
limitations by establishing a continuous power game problem of a denial-of-service attack in a multi-process cyber-physical system with
asymmetric information. We also introduced the concept of the age of information to comprehensively characterize data freshness. To
solve this problem, we employed the multi-agent deep deterministic policy gradient algorithm. Numerical experiments demonstrate
that the algorithm is effective for solving the game problem and exhibits convergence in multi-agent environments, outperforming other
algorithms.
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1. Introduction

Cyber-physical systems (CPSs) are multidimensional
complex systems which integrate computing, network, and
physical environments [1]. Through the organic integration
and deep collaboration of computing, communication, and
control (3C) technology, they achieve real-time perception,
dynamic control, and information services for large-scale
engineering systems [2]. Nowadays, they are widely applied
in many fields, such as intelligent transportations [3] and
health monitoring [4]. However, in recent years, a series
of cyber attacks targeting CPSs have occurred, which have
caused significant resource and economic losses. Thus, it is
necessary and imperative to put emphasis on CPS security.
A mainstream viewpoint is to study attack methods targeting
CPSs. By studying attack methods, one can observe the
worst performance of the CPSs, and design corresponding
defense strategies to improve system security.

There are many different forms of cyber attacks, such

as DoS attacks [2], false data injection attacks [5], and
man-in-the-middle attacks [6]. Based on the mode of
interference with the system, cyber attacks can be mainly
categorized into three types [7]: confidentiality attacks,
integrity attacks, and availability attacks. Confidentiality
attacks involve eavesdropping on the system without the
capability to interfere. Integrity attacks involve intercepting
and tampering with transmitted data, resulting in significant
damage and imposing strict requirements on the attackers.
Availability attacks aim to disrupt the transmission of the
CPS. Among availability attacks, denial-of-service (DoS)
attacks are some of the most common and feasible, and they
have been widely studied in recent literature [8–10].

In earlier literature [11, 12], the probability of successful
channel transmission under DoS attacks was simplified
as a binary variable, with attackers having only two
options: 1 (attacked) or 0 (not attacked). However, in
practice scenarios, this probability is influenced by many
factors, such as the channel model, transmission power,
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and additional noise. Therefore, recent studies on DoS
attacks have focused not only on identifying which channel
to attack, but also on determining how much power to
allocate to jam the transmission channel and reduce the
probability of a successful transmission. For instance, the
authors in [13] solved the optimal DoS attack allocation for
multi-channel CPS systems with additive Gaussian noise by
solving the Bellman equation under the Markov decision
process (MDP). Meanwhile, [14] considered the DoS
attack allocation strategy from two different perspectives.
However, these approaches are based on a strong assumption
that DoS attackers possess a comprehensive knowledge of
the system, including its model and transmission power,
which may not be realistic in real-world scenarios. In typical
CPS attack scenarios, defenders, acting as system regulators,
should ideally understand the complete dynamics or at least
estimate the state of the system. In contrast, attackers
typically gather information through eavesdropping and
may lack specific knowledge about system dynamics and
transmission power.

Consequently, many studies assume attackers have no
prior knowledge of system states or transmission power
and propose using reinforcement learning (RL) algorithms
to manage uncertainty [15, 16]. For example, [17]
introduced the Q-learning algorithm [18] to work out the
optimal DoS attack strategy on a small scale, while [1]
introduced the double deep Q network (DDQN) algorithm
to calculate optimal DoS attack strategies. Building
on this, the deep deterministic policy gradient (DDPG)
algorithm was introduced to solve the optimal DoS attack
allocation strategy for a multi-process CPS where action
domains are continuous. It should be noted that the
abovementioned papers predominantly focus on attack
strategies from the attacker’s perspective. The strategy
of the defender is either fixed or considered only after
calculating the optimal strategy of the attacker. There
is still a research gap in addressing the game problem
of asymmetric information [19], where both sides make
simultaneous decisions.

In this paper, we consider a multi-channel CPS with
time delays [20] in wireless transmission that involves
a DoS attacker and a defender (referred to as the
smart sensor). At each step, both the attacker and
the defender need to determine how much energy to
allocate to attack each channel within their limited energy
budget. However, neither side possesses knowledge about
the strategy employed by their opponent. Consequently,
the problem at hand can be framed as an asymmetrical

information DoS attack game. We aim to find the Bayesian
Nash equilibrium strategy between the defender and the
attacker. Compared with other existing DoS attack game
studies [21], we not only consider the Bayesian Nash
equilibrium strategy in game problems with asymmetric
information, but also extend the feasible regions of both
sides’ actions to continuous situations, which is more
adoptable in actual systems with different discrete accuracy.

To address the issue of asymmetric information between
the defender and attacker, we employ RL methods.
However, the previously mentioned algorithms such as Q-
learning, DDQN, and DDPG can have significant instability
in the face of complex agents, as any agent in the
environment will be affected by other agents. In this paper,
we study a deep reinforcement learning algorithm called the
multi-agent deep deterministic policy gradient (MADDPG)
to deal with game problems in multi-agent scenarios. By
introducing feasible layers, the algorithm can be applied to
multi-process CPSs.

In addition, we utilize a more comprehensive metric
called age of information (AoI) [22] to characterize the
freshness of information and update the estimated state
(see [23–25]), which is widely studied in the field of
communication recently. However, there is still a lack
of relevant content in the game problem of DoS attacks.
Compared with the definition of the holding time in previous
works [1, 2], the introduction of AoI is effective to deal
with the problem of time delays in CPSs. To demonstrate
the effectiveness of the MADDPG algorithm in DoS attack
game problems within multi-process CPS systems with
time delays, a series of extensive experiments have been
conducted in this paper.

The main contributions of this work are summarized as
follows:

1) In the context of a CPS facing DoS attacks, considering
that DoS attacks are often confused with transmission
delays, we introduces the concept of AoI to more
effectively measure the freshness of the received data.
Compared to prior literature that used the holding
time to describe transmission delays, this paper offers
enhanced estimation accuracy. Consequently, the
findings of our study carry broader applicability and
practical significance in mitigating DoS attacks coupled
with time delays.

2) We establish an asymmetric sensor scheduling game
problem for CPS systems under DoS attacks. In
contrast to the majority of the prior studies, which
focused on optimizing strategies separately for
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attackers and defenders, we address the optimal
problem considering both perspectives simultaneously.
While some studies have explored real-time
asymmetric information DoS attack game issues,
their action spaces were limited to discrete cases
due to methodological constraints. In comparison,
the MADDPG algorithm introduced in our work
can handle not only discrete but also continuous
action settings. It is worth mentioning that we have
incorporated two feasibility layers in the neural
network to restrict network output actions, adapting to
multi-channel CPS systems affected by time delays.

3) We demonstrate the effectiveness of the MADDPG-
based algorithm for this problem through several
illustrative examples, calculating the Bayesian Nash
equilibrium points for different weights and the overall
cumulative discount rewards for the attacker and
defender at each time step.

The remainder of this paper is organized as follows: In
Section 2, the system model and the DoS attack game-
theoretic model are presented. The MADDPG-based
algorithm to the game problem with feasibility layers is
proposed in Section 3. In Sections 4 and 5, simulation results
and the conclusion are provided, respectively.

Notations: N and R denote the sets of natural and real
numbers, respectively. N+ and R+ represent the set of
positive natural numbers and the set of non-negative real
numbers, respectively. Sn

+ is the set of n × n positive
semi-definite matrices. Rn is the n−dimensional Euclidean
space. Rn

+ is the n−dimensional Euclidean space of non-
negative real numbers. For a matrix X, XT, Tr(X), and
|X| stand for the transpose, trace, and determinant of X,
respectively. ∥·∥1 is the l1 norm. The notation E[·] stands
for the expectation of a random variable. N denotes the
standard Gaussian distribution. The spectral radius of a
matrix is ρ(·). Pr(·|·) is the conditional probability. ∇ is
the vector gradient operator. Dim(·) is an abbreviation of
dimension. ReLU(x) = max(0, x). Sigmoid(x) = ex

ex+1 .

2. Problem setup

2.1. System model

As shown in Figure 1, the CPS is composed of discrete
linear time-invariant processes, smart sensors, wireless
channels, a remote estimator, and a DoS attacker. The
dynamics of the i-th process (1 ≤ i ≤ N, i ∈ R+) is given

by:

xk+1,i = Aixk,i + ωk,i, (2.1)

yk,i = Cixk,i + υk,i, (2.2)

where xk,i ∈ R
n and yk,i ∈ R

m are the state and the
measurement of the i-th channel, respectively. The matrices
Ai and Ci are system parameters. The variablesωk,i ∈ R

n and
υk,i ∈ R

m indicate independent and identically distributed
Gaussian noises, with their distributions given as ωk,i ∼

N(0,Σωi ) and υk,i ∼ N(0,Συi ), resepectively, where Σωi ≥ 0
and Συi > 0. The initial state of the i-th process x0,i ∈ R

n

satisfies the Gaussian distribution as x0,i ∼ N(0,Σx0,i ) with
Σx0,i ≥ 0. Suppose that the variables x0,i, ωk,i, and υk,i are
mutually uncorrelated for k ≥ 0. Moreover, we assume that
(Ai,Ci) is observable and (Ai,

√
Σωi ) is controllable [26].

Figure 1. Multi-process system with transmission
delay layout.

Taking the i-th process as an example, at every time step k,
the measurement yk,i is obtained by the smart sensor i, which
then employs a local Kalman filter [27] to estimate the actual
state of the process, represented by x̂s

k,i. The corresponding
estimation error covariance of the sensor is denoted by Ps

k,i,
which is calculated by the following equation:

Ps
k,i = E

[
(xk,i − x̂s

k,i)(xk,i − x̂s
k,i)

T
|y1,i, . . . , yk,i

]
, (2.3)

where
x̂s

0,i = 0 and Ps
0,i = Σx0,i .

Since Ps
k,i converges exponentially to a certain steady state

Pi, we assume that
Ps

k,i = Pi

when k ≥ l, l ∈ N+.
After the i-th sensor calculates the estimation of x̂s

k,i, it
will select transmit power pk,i ∈ R

+ to send x̂s
k,i to the

remote estimator through a wireless transmission channel.
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However, due to the inherent properties and the transmission
medium of the wireless channel, random time delays or
packet loss often occur during the transmission. The time
delay of the i-th channel at every step is denoted by td,i.
A binary variable γk,i is defined to represent whether the
estimated state x̂s

k,i is received successfully or not, as given
by the following equation:

γk,i =

 1, x̂s
k,i is received successfully,

0, otherwise.
(2.4)

The probability of a successful transmission is denoted by:

Pr(γk,i = 1|pk,i, σk,i) = f (pk,i, σk,i), (2.5)

where the scalar σk,i ∈ R
+ is the noise power of the i-th

channel, which follows a Gaussian distribution [13]. The
function

f : R+ × R+ → [0, 1]

is determined by the specific wireless channel model and the
selected modulation approach. Naturally, we suppose that f
increases with pk,i and decreases withσk,i according to [1,9].
That is, x̂s

k,i is more likely to be transmitted successfully to
the remote estimator with higher transmit power and less
channel noise. The above assumption is intuitive and in
accord with many practical communication channel models.

If x̂s
k,i is successfully transmitted, the remote estimator

will update its estimated state of the process x̂k,i with x̂s
k,i.

Conversely, if x̂s
k,i is not obtained by the remote estimator,

it will predict the current estimated state x̂k,i according to
the previous estimated state x̂k−1,i. The remote estimator
utilizes a feedback channel to send an acknowledgment
(ACK) signal back to the sensor, indicating whether x̂s

k,i has
been successfully transmitted (γk,i = 1 or 0).

2.2. Definition and impact of AoI

In order to better capture the impact of data timeliness, we
introduce a definition, i.e., AoI, which is widely employed in
the field of communication. It characterizes the information
age (denoted by ∆n) of the most recent packet received by
the remote estimator. It is calculated by

∆n = n − Tn,

where Tn is the most recent generation time of the latest
received packet and n is the current time [22]. For the i-
th process, denote ∆k,i as its AoI at time step k. Therefore,
the updates of ∆k,i and x̂k,i, as well as the estimation error

covariance Pk,i of its remote estimator can be summarized
as the following equations:

∆k,i =

 0, γk,i = 1,
∆k−1,i + 1, otherwise,

(2.6)

x̂k,i =

 x̂s
k,i, γk,i = 1,

Ai x̂k−1,i = A∆k,i

i x̂s
k−∆k,i
, otherwise,

(2.7)

Pk,i =

 Pi, γk,i = 1,
hi(Pk−1,i) = hi

∆k,i (Pi), otherwise,
(2.8)

where function hi : Sn
+ → S

n
+ is defined as follows:

hi(X) = AiXAi
T + Σwi . (2.9)

According to the proof in [28], we can get

Tr(hi(Pi)) ≥ Tr(Pi).

In other words, a larger ∆k,i results in a larger trace of the
estimation error covariance Tr(Pk,i).

By introducing AoI, the systems are able to determine,
to some extent, whether the time delay in the transmission
channel is caused by a DoS attacker or by the transmission
channel itself. We will discuss it in detail in the subsequent
chapters.

2.3. DoS attack optimization problem

The objective of the attacker is to attack the transmission
channels. At each time step k, the attacker exerts attack
power aki ∈ R

+ as additional noise into the i-th channel,
resulting in the following probability equation:

Pr(γk,i = 1|pk,i, σk,i, ak,i) = f (pk,i, σk,i + ak,i). (2.10)

When ak,i is large, there is a higher probability of
transmission failure for the estimated state, resulting in a
relatively larger estimation error covariance Pk,i and poor
system performance. However, injecting attack power is
costly and restricted, which forces the attacker to make a
trade-off between attack performance and cost. In other
words, the attacker should increase the estimation error
covariance with potentially low cost. Assume that the
attacker can eavesdrop the ACK signal from the feedback
channels and the estimation error covariance from the
transmission channels. Without loss of the generality,
suppose the attack begins at time step k = 1. Then, from
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the attacker’s perspective, the attacker needs to consider the
following optimization problem:

max
a1,a2,...

E(
+∞∑
k=1

βk−1[ωATr(Pk) − βA(1 − ωA)∥ak∥1])

s.t. ak ∈ R
N
+ , ∥ak∥1 ≤ a, k ∈ N+, k → ∞,

(2.11)

where Pk represents a diagonal matrix composed of the
covariance of the estimation error for each process, given
by:

Pk = diag{Pk,1, Pk,2, · · · , Pk,N}. (2.12)

In addition,

ak = [ak,1, . . . , ak,i, . . . , ak,N]T

represents the attack power at time step k for N channels
in which ak,i is the attack power of the i-th channel, and
ωA ∈ [0, 1] represents a weight that measures the trade-off
between the attack performance and the attack cost. The
positive constants a and βA represent the upper bound for
total attack power in a time step and the cost of the allocation
per unit of attack power, respectively.

The variable β ∈ [0, 1) is the discount rate. To prevent
the objective function from tending to infinity regardless of
the selected attack policy, similar to [29], we assume that
E(Tr(Pk)) is bounded. Additionally, for each i, we assume
that

ρ2(Ai) > 1/β.

2.4. Game-theoretic model

In the presence of a DoS attack, each sensor needs to
take defensive measures. Assuming that each sensor has
the capability to inject defense power pk,i to make the
transmission more likely to succeed, such as increasing the
transmission power at an additional cost to reduce noise, the
problem becomes a game between both sides (the defender
and the attacker). With this in mind, from the perspective of
the defender, we focus on optimizing the defender’s power,
i.e.,

max
p1,p2,...

E(
+∞∑
k=1

−βk−1[ωDTr(Pk) − βD(1 − ωD)∥pk∥1])

s.t. pk ∈ R
N
+ , ∥pk∥1 ≤ p, k ∈ N+,

(2.13)

where
pk = [pk,1, . . . , pk,i, . . . , pk,N]T

is the defense power at time step k for N channels in which
pk,i is the defense power of the i-th channel, ωD represents

a weight measuring defense performance and defense cost.
The positive constants p and βD are the upper bound for
the total defense power in a time step and the cost of the
allocation per unit of defense power, respectively. Therefore,
we can describe our game theoretic model by considering
the following optimization problem:

Problem 1. Game-theoretic framework between a defender
and an attacker under DoS attack.

For the attacker,

max
a1,a2,...

E(
+∞∑
k=1

βk−1[ωATr(Pk) − βA(1 − ωA)∥ak∥1])

s.t. ak ∈ R
N
+ , ∥ak∥1 ≤ a, k ∈ N+, k → ∞.

(2.14)

For the defender,

max
p1,p2,...

E(
+∞∑
k=1

−βk−1[ωDTr(Pk) − βD(1 − ωD)∥pk∥1])

s.t. pk ∈ R
N
+ , ∥pk∥1 ≤ p, k ∈ N+, k → ∞.

(2.15)

Remark 1. At each time step k, both the defender and the
attacker select their power levels pk and ak, respectively,
to impact the transmission channel based on their previous
knowledge of the ACK signal. Unlike the research in [29],
which demands full knowledge of the channel model and
transmission power of the sensor for the attacker, both
sides only require the ACK signal and the estimation error
covariance received in the previous time step.

There are two challenges in solving this game-theoretic
optimization problem. First, both sides lack information
about the power allocation chosen by their opponent in
the current time step, making it become an incomplete
information dynamic game problem. Second, the power
allocation for both sides is a vector of N dimensions in a
continuous domain, leading to an infinite number of feasible
choices.

3. MADDPG-based DoS attack and defend power
design in a multi-channel process system

We intend to utilize deep reinforcement learning to solve
Problem 1. Before introducing our method, we will first
establish an MDP framework for Problem 1.

3.1. MDP formulation

The MDP is defined by a tuple (S,A,P, r, β), where S
represents the state space,A denotes the action space,

P : S ×A × S → [0, 1]
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is the transition probability function,

r : S ×A × S → R

is the reward function, and β ∈ [0, 1) is the discount rate. For
Problem 1, the elements of the MDP model are as follows:

• State space S: Since the defender and the attacker only
have the previous state information, the state at time
step k is defined as

∆k−1 = [∆k−1,1,∆k−1,2, · · · ,∆k−1,N]T ∈ RN
+ .

The state space includes all possible vectors, where all
components ∆k−1,1,∆k−1,2, · · · ,∆k−1,N are non-negative
real numbers.

Remark 2. The state here represents the information for
the defender and attacker to design the power allocation,
which is different from the state of the dynamic systems (2.1)
and (2.2).

• Action space A: The global action of the allocation
of attack and defense power at time step k is a set
of all possible choices of 2N-dimension vectors which
concatenates defense power pk and attack power ak

denoted by
Ok = [(pk)T, (ak)T]

with
0 ≤ ∥pk∥1 ≤ p

and
0 ≤ ∥ak∥1 ≤ a.

• Transition function P: The transition function is
denoted by:

P = Pr(∆k |∆k−1, pk, ak) =
N∏

i=1

Pr
i
, (3.1)

where

Pr
i
=


f (pk,i, σk,i + ak,i), ∆k,i = 0,
1 − f (pk,i, σk,i + ak,i), ∆k,i = ∆k−1,i + 1,
0, otherwise.

(3.2)
For simplicity, we assume that these N transmission
channels are independent in the simulation. However,
if this assumption does not hold and there is
mutual interference between transmission channels, the
corresponding function f will be replaced by:

f (pk,i, σk,i + ak,i +
∑N

j=1, j,i
ED

i j pk, j +
∑N

j=1, j,i
EA

i jak, j),
(3.3)

where ED
i j pk, j and EA

i jak, j are the correlation coefficients
of the defender and the attacker, respectively.
Nevertheless, our learning-based method is suitable for
both situations because it does not require either the
defender or the attacker to possess any knowledge of
the transition function.
• Reward: The one-step reward is defined as:

(1) For the defender:

rD(∆k−1, pk,∆k) = −ωDTr(Pk) − βD(1 − ωD)∥pk∥1.

(3.4)
(2) For the attacker:

rA(∆k−1, ak,∆k) = ωATr(Pk) − βA(1 − ωA)∥ak∥1. (3.5)

We denote the stationary strategies of the attacker and the
defender as two functions which map the state δk−1 to the
power ak and pk as

πA : S → A, πA ∈ ΠA

and
πD : S → A, πD ∈ ΠD,

respectively, where ΠA and ΠD are the policy spaces that
include all feasible stationary strategies of the attacker
and the defender. Problem 1 can be converted into the
consideration of the stationary strategies for the MDP
model [30] as follows:

Problem 2. For the attacker:

max
πA∈ΠA

E(
∞∑

k=1

βk−1rA(∆k−1, πA(∆k−1),∆k)). (3.6)

For the defender:

max
πD∈ΠD

E(
∞∑

k=1

−βk−1rD(∆k−1, πD(∆k−1),∆k)). (3.7)

Remark 3. Denote π∗D ∈ ΠD and π∗A ∈ ΠA as
the optimal strategies for the defender and the attacker,
respectively. Based on [31], the existence of the stationary
and deterministic optimal strategy can be proved. Define the
Q-value function QπD (∆, p) and QπA (∆, a) of the MDP under
the strategies πD and πA, respectively, as:

QπA (∆, a) = E(rA(∆0, a1,∆1)

+

∞∑
k=2

βk−1rA(∆k−1, πA,∆k)|∆0 = ∆, a1 = a),
(3.8)
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QπD (∆, p) = E(rD(∆0, p1,∆1)

+

∞∑
k=2

βk−1rD(∆k−1, πD,∆k)|∆0 = ∆, p1 = p),
(3.9)

where ∆0 is the initial state. The functions QπA (∆, a)
and QπD (∆, p) represent the expected cumulative reward of
∆ when the attacker and defender take actions a and p,
respectively, and follow their strategies πA and πD in the
subsequent steps. Similarly, the optimal Q-value functions
for the attacker and defender under their respective optimal
strategies are denoted as Qπ

∗
A (∆, a) and Qπ

∗
D (∆, p). According

to [31], if the state space and the action space are sufficiently
small and discrete, Qπ

∗
A (∆, a) and Qπ

∗
D (∆, p) can be obtained

easily by value iteration or policy iteration algorithms [32]
when the tuple (S,A,P, r, β) is accessible.

However, in Problem 2, there still exists three problems.
One is that the action space is continuous, which leads to
infinite strategies. Another one is that neither side has any
knowledge of their opponent’s actions. The last one is that
the transition function P is determined by actions ak and
pk of both sides, which means each side must consider
their opponent’s action when selecting their own action.
In the following subsection, we present a MADDPG-based
power allocation design algorithm that efficiently solves
these challenges.

3.2. MADDPG algorithm

In order to deal with the large state space and the
continuous action space, a deep learning-based algorithm
is introduced, which utilizes the deep neural networks
(DNNs) to parameterize the Q-value function. We divide the
introduction of the MADDPG algorithm into several parts,
i.e., the actor-critic algorithm, the replay buffer, double
DNNs, and the updating rules.

3.2.1. Actor-critic algorithm

The actor-critic algorithm [33] is composed of two DNNs,
i.e., actor and critic. It is the foundation of the MADDPG-
based power allocation design algorithm. The actor contains
a policy network whose structure is given by Figure 2. The
input of the network is the state ∆ (∆ is a time-varying
variable, denoted as

∆(k) = ∆k,

where k represents the time step). Through several hidden
layers such as activation function layers and fully connected
layers, it outputs the corresponding action (p or a). The critic

network includes an evaluation network which is shown in
Figure 3. It is responsible for estimating the Q-value of the
tuple (∆,O) (O is also a time-varying variable similar to ∆)
under the current strategy π(πD and πA). The inputs of the
critic are composed of three components, the state ∆, the
action generated from the actor, and the estimation of other
agents’ actions.

Figure 2. Policy network architecture of the actor.

Figure 3. Evaluation network architecture of the
critic.

Since the MADDPG algorithm takes into account the
actions of other agents when considering the action of one
agent, it needs to integrate the Q-value function and the
actions of the multiple agents. Denote the centralized action-
value function for the agent i as

Qπi = (∆,O) = (∆, (p, a)),

where the inputs are the actions of all agents and the state
information.

Remark 4. Notice that there only exists two agents (the
defender and the attacker) in Problem 1, and we define
the defender and the attacker as agent 1 and agent 2,
respectively (naturally, we set the number of agents as n=2).
Correspondingly, denote

r1 = rD, r2 = rA, rk = [r1, r2], α1 = p, α2 = a

for notational simplicity.
We denote the parameters of the policy network in the

actor and the evaluation network in the critic of the i-th agent
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as θµi and θQ
i , respectively. Thus the output of the policy

network is given by:

αi = µθµi (∆) = FaL ◦ FcL ◦ · · · ◦ Fa1 ◦ Fc1 (∆), (3.10)

where ◦ is the compound operation of functions,

Fci (x) = θωi x + θbi , i = 1, 2.

The parameters ωi and θbi are the weights and biases.
The form of Fai is determined by the selection of each
activation function. The variable L represents the number of
hidden layers. Similarly, denote the output of the evaluation
network as:

QθQi (∆,O) = F′aL
◦F′cL

◦ · · · ◦F′a1
◦F′c1 (∆,O), (3.11)

where the inputs are the state and the actions of all agents.

3.2.2. The replay buffer and double DNNs

Before giving the updating rules, we introduce two
techniques that the MADDPG algorithm utilizes to increase
the stability of the algorithms, namely, the replay buffer and
double DNNs:

• Replay buffer: In MADDPG, the tuple (∆k−1,Ok,∆k, rk)
obtained at time step k is stored in a buffer with a
fixed size B. If the number of stored tuples exceeds
B, the oldest one will be replaced by the newest one.
In the updating progress, a mini batch of tuples from
the replay buffer is sampled randomly to calculate the
corresponding gradient and error. The introduction of
the replay buffer solves the problem of the sequential
correlation of data as long as the replay buffer B is large
enough.
• Double DNNs: Based on DDPG, MADDPG also

employs two DNNs, i.e., an online network and a target
network in both the actor and the critic networks. The
structures of these two DNNs are the same, but their
updating rules of the parameters are quite different.
For the two online networks, the parameters θµi and θQ

i
are updated at every time step k. For the two target
networks, the parameters θµ

′

i and θQ′

i are softly updated
by the following rules:

θ
µ′

i ← τθ
µ
i + (1 − τ)θµ

′

i ,

θQ′

i ← τθ
Q
i + (1 − τ)θQ′

i ,
(3.12)

where 0 < τ ≪ 1 is a small update rate, also
known as the filter parameter. The soft updating

rules are employed to enhance the stability of the
learning performance as the target network gradually
synchronizes with the online network. The relationship
between the online network and the target network is
shown in Figure 4.

Figure 4. DNNs in the actor and the critic.

3.2.3. The updating rules

Different from the DDPG algorithm [34], the MADDPG
algorithm incorporates the estimation information from
other agents into the critic network of each agent. This is
done to eliminate the assumption of knowing the accurate
information of other agents and address the issue that the
Q-function is dependent on the actions of all agents. Each
agent i needs to maintain an approximation whose parameter
is denoted by µ̂ j

θi
(where θ represents the parameter of

the approximation. For simplicity, the above variable is
denoted by µ̂ j

i ) to the actual policy by µ j for the j-th agent.
This approximation is learned by maximizing the natural
logarithm of the probability of agent j’s action, with an
entropy regularizer, and the loss function L of the critic is
as follows:

L(θ j
i ) = −E∆ j,α j [log µ̂ j

i (α j|∆ j) + λHe(µ̂ j
i )], (3.13)

where He represents the entropy of the policy distribution,
the symbol λ denotes the coefficient for entropy
regularization, while λHe(µ̂ j

i ) refers to the aforementioned
term for entropy regularization. Thus the estimated Q-value
of the target network of the critic ŷ can be calculated as
follows:

ŷ = ri + γQi
µ
′

(∆
′

, µ̂
′1
i (∆1), . . . , µ

′i
i (∆i), . . . , µ̂

′n
i (∆n)), (3.14)

where µ̂
′ j
i is the target network for the approximate action

µ̂
j
i , j , i. Therefore, the whole updating rules are given by:

(1) Critic update (evaluation network update): for agent
j, j ∈ {1, 2},

L(ϕ j
i ) = −E∆ j,a j [log µ̂ j

i (a j|∆ j) + λHe(µ̂ j
i )],

ŷ = ri + γQi
µ
′

(∆
′

, µ̂
′1
i (∆1), . . . , µ

′i
i (∆i), . . . , µ̂

′n
i (∆n)).

(3.15)
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(2) Actor update (policy network update):

θ
µ
i ← θ

µ
i + ∇θ

µ
i
J,

∇θµi
J ≈

1
S

∑
j

∇θµi
µθµi (∆ j

i )

× ∇αi QθQi (∆ j, α
j
1, · · · , αi, · · · , α

j
n)|αi=µθµi

(∆ j
i ),

(3.16)

where S is the size of mini-batch samples, and ∇θµi J denotes
the update estimated through policy gradients.

The module of the MADDPG algorithm based on the
actor-critic network is shown in Figure 5. The MADDPG
algorithm for solving Problem 2 is given in Algorithm 1.

Figure 5. Framework of the MADDPG-based
DoS attack game problem.

However, there still exists some other problems. For
example, consider the scenario where the remote estimator
receives a data packet with an AoI that is older than the
one received in the previous time step due to transmission
channel time delays. In other words, when

∆k > ∆k−1 + 1, ∆k−1 , 0,

which means the data packet received at time step k − 1
was more recently generated. In this case, Algorithm 1
may directly overlook the problem and utilize the older data,
resulting in a degradation of performance.

Remark 5. For Algorithm 1, it would be very easy to replace
the AoI with the definition of holding time [1] without
affecting the algorithm’s results, as the one-step reward and
generated actions at every time step are the same. However,
this still does not solve the abovementioned problem of the
freshness of data. In other words, for Algorithm 1, using the
definition of holding time and the definition of AoI to derive
the algorithm will lead to the same results. In subsequent
experimental comparisons, we will consider Algorithm 1 to
be representative of the algorithm derived from the holding
time.

Algorithm 1: MADDPG-based DoS attack game-
theoretic power design.

1 For the given system, set the number of agents n, the
number of episodes M, and the maximum iteration
number Itermax, respectively.

2 Set the maximum power p and a. Set the size of replay
buffer B and the size of mini-batch S , respectively. Set a
discount rate γ as well as the weight of the reward
function ωD and ωA.

3 For each agent i:
4 Initialization: The filter parameter τ, the noise decay rate
αη, the actor network µθµi , and the critic network Q

θ
Q
i

with

weights θµi and θQ
i , respectively. The target actor network

µ
θ
µ′

i
and target critic network Q

θ
Q′
i

with weights θµ
′

i = θ
µ
i

and θQ′

i = θ
Q
i , respectively.

5 for episode = 1 to M do
6 Initialization: State ∆0 = [∆0,1,∆0,2, . . . ,∆0,N].
7 for Iter = 1 to Itermax do
8 Generate the exploration noise ei ∼ NN(0, η).
9 Select the defense power and attack power

α1 = p = µθµ1 (∆p) + e1, α2 = a = µθµ2 (∆a) + e2.
10 p← max(0,min(p, p)),
11 a← max(0,min(a, a)).
12 Attack the system with power a and defend the

system with power p, and then collect the next
state ∆′ and the one-step reward r.

13 Store the tuple (∆,O, r,∆′) in the replay buffer B.
14 ∆← ∆′.
15 for agent i = 1 to n do
16 Sample a random mini-batch of S samples

(∆ j,O j, r j,∆′ j) from B. Then obtain the local
state estimation ∆ j

l for every agent l.
17 Set

y j = r j
i + γQθQ′i

(∆′ j, µ′1, · · · , µ
′
n)|
µ′ l=µθµi

′ (∆ j
l ).

18 Update the critic network by minimizing the

loss: L(θµi ) = 1
n

∑
j

(y j − Q
θ

Q
i

(∆ j, µ
j
1, · · · , µ

j
n))

2
.

19 Update the actor network by the sampled
policy gradient:

∇θµi
J ≈

1
S

∑
j

∇θµi
µθµi

(∆ j
i )×

∇αi QθQi
(∆ j, α

j
1, · · · , αi, · · · , α

j
n)|
αi=µθµi

(∆ j
i ).

20 end
21 Update target network parameters for each agent i:

22
θ
µ′

i ← τθ
µ
i + (1 − τ)θµ

′

i ,

θQ′

i ← τθ
Q
i + (1 − τ)θQ′

i .
23 η← αηη.
24 end
25 end
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3.3. Feasibility layers for the received AoI and power
constraint

As mentioned in the previous section, measures should be
taken to deal with the problem caused by time delays. This is
solved by modifying the received state ∆ with the following
rules:

∆k,i =

 ∆k,i, ∆k,i ≤ ∆k−1,i + 1,
∆k−1,i + 1, otherwise.

(3.17)

In addition, notice that the power chosen during the
process is calculated by the policy gradient with an
exploration noise, which may sometimes be beyond the
feasible domain. Thus, two feasibility layers are added to
our MADDPG algorithm. The layers have three functions:

(1) Decide the freshness of the current data by AoI.
(2) Map the infeasible actions to the feasible ones.
(3) Make the action provided by the actor network be, as

much as possible within the feasible domain by adding a
penalty term to the reward function.

In our new algorithm, the feasibility layers are added after
the network receiving the state as well as the actor network
outputting the actions, resepectively. We choose the scale
mapping as the method to generate the feasible action, which
is as follows:

α1,i =

 α1,i, ∥pk∥1 ≤ p,
p × pk,i

∥pk∥1
, i = 1, . . . ,N, ∥pk∥1 > p,

(3.18)

and

α2,i =

 α2,i, ∥ak∥1 ≤ a,
a × ak,i

∥ak∥1
, i = 1, . . . ,N, ∥ak∥1 > a,

(3.19)

where α1,i and α2,i represent the i-th component of the
vectors α1 and α2, respectively.

Furthermore, a penalty term λDID or λAIA is added to the
reward function to motivate the actor network to generate
feasible actions as: for the defender,

r1(∆k−1, pk,∆k) = −ωDTr(Pk) − βD(1 − ωD)∥pk∥1 − λDID.

(3.20)
For the attacker,

r2(∆k−1, ak,∆k) = ωATr(Pk)−βA(1−ωA)∥ak∥1−λAIA, (3.21)

where
ID = max(0, ∥pk∥1 − p)

and
IA = max(0, ∥ak∥1 − a)

are the infeasible parts of the given actions of the agents. The
variables λD ∈ R

+ and λA ∈ R
+ represent the penalty weights

of ID and Ia, respectively. The scale mapping method
described in (3.18) and (3.19) is reasonable and has little
influence on Problem 2. First, the feasible action generated
by the networks does not change. If the generated action
exceeds the feasible domain, the reward will obviously
decrease with a great penalty term, which causes the agent
to reduce the attempts to take action that exceeds the
feasible domain. Therefore, our MADDPG-based algorithm
becomes Algorithm 2.

4. Simulation results

4.1. Environment setting

We consider a cyber-physical system that involves two
processes with transmission delay. Here the parameters
of the system are given by Table 1, where “No.” is an
abbreviation for numbers. The transmission delay is set as

td,i ∈ {0, 1, 2}, i = 1, 2.

Table 1. Multi-process system parameters.
Processes Ai Ci Σωi Συi σi

i = 1 1.1 1.2 0.8 0.6 0.8
i = 2 1.1 1.0 0.9 0.9 1.0

Assume the model of the wireless transmission channel
is an AWGN channel [29]. Thus, the probability function f
in (2.5) is denoted by:

f (ps
i,k, p

a
i,k) = 1 − 2g(

√
δs ps

i,k

δa pa
i,k + σ

2
i

), i = 1, . . . ,N, (4.1)

where

g(x) =
(

1
√

2π

) ∫ ∞

x
exp(−v2/2)dv.

The variable σ2
i represents the white noise power of the i-

th channel, and the positive parameters δs and δa represent
the performance characterization of specific transmission
channels under DoS attack and defense. We assume that the
upper bound of the state of each process is 9 to ensure at least
one successful transmission within a limited number of time
steps, in other words, when AoI exceeds 9, the transmission
will definitely succeed at the next time step. This assumption
has a negligible influence on the problem, as proved in [21].
The maximum power of the defender and attacker is set as
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Algorithm 2: Feasible MADDPG-based DoS attack
game-theoretic power design.

1 Set n, M, Itermax, p, a, γ, ωD, ωA, S , and B.
2 For each agent i:
3 Initialization: τ, αη, µθµi , Q

θ
Q
i

with weights θµi and θQ
i ,

respectively. µ
θ
µ′

i
and Q

θ
Q′
i

with weights θµ
′

i = θ
µ
i and

θQ′

i = θ
Q
i , respectively. The penalty terms λA and λD.

4 for episode = 1 to M do
5 Initialization: state ∆0 = [∆0,1,∆0,2, . . . ,∆0,N].
6 for Iter = 1 to Itermax do
7 for j = 1 to N do
8 if ∆′j > ∆ j + 1 then
9 ∆

′

j = ∆ j + 1.
10 end
11 end
12 Generate the exploration noise ei ∼ NN(0, η).
13 Select the defense power and attack power

p = µθµi (∆p) + e1, a = µθµi (∆a) + e2,
14 p← max(0,min(p, p)), a← max(0,min(a, a)).
15 if ∥a∥1 > a then
16 Calculate α2 by (3.19), IA = max(0, ∥a∥1 − a),

a = α2.
17 end
18 if ∥p∥1 > p then
19 Calculate α1 by (3.18), ID = max(0, ∥p∥1 − p),

p = α1.
20 end
21 Attack the system with power a and defend the

system with power p, and then collect the next
state ∆′ and the one-step reward r = [rD, rA].

22 rD ← rD − λDID, rA ← rA − λAIA.
23 Store (∆,O, r,∆′) in the replay buffer B.
24 ∆← ∆′.
25 for agent i = 1 to n do
26 Sample a random mini-batch of S samples

(∆ j,O j, r j,∆′ j) from B. Then obtain the local
state estimation ∆ j

l for every agent l.
27 Set

y j = r j
i + γQθQ′i

(∆′ j, µ′1, · · · , µ
′
n)|
µ′ l=µθµi

′ (∆ j
l ).

28 Update the critic network by minimizing the

loss: L(θµi ) = 1
S

∑
j

(y j − Q
θ

Q
i

(∆ j, µ
j
1, · · · , µ

j
n))

2
.

29 Update the actor network by the sampled
policy gradient:

∇θµi
J ≈

1
S

∑
j

∇θµi
µθµi

(∆ j
i )×

∇αi QθQi
(∆ j, α

j
1, · · · , αi, · · · , α

j
n)|
αi=µθµi

(∆ j
i ).

30 end
31 Update target network parameters for each agent i:
32 θ

µ′

i ← τθ
µ
i + (1 − τ)θµ

′

i , θ
Q′

i ← τθ
Q
i + (1 − τ)θQ′

i .
33 η← αηη.
34 end
35 end

p = 10 and a = 10, respectively. The discount rate is set as
β = 0.9. The network parameters of the MADDPG-based
game algorithm are summarized in Table 2, and the learning
parameters are displayed in Table 3. All simulations were
run on a computer with Intel i7-10875H and 16 GB RAM.

Table 2. Network parameters.
Parameters Policy Network Evaluation Network
No. of inputs Dim(∆) Dim(∆)+Dim(O)
No. of hidden layers 3 2
No. of nodes in hidden layer 1 64 64
No. of nodes in hidden layer 2 64 64
No. of nodes in hidden layer 3 Dim(α) ×

No. of outputs Dim(α) 1
Activation function 1 ReLU ReLU
Activation function 2 ReLU ReLU
Activation function 3 Sigmoid ×

Table 3. Learning parameters.
Parameters n M Itermax p a γ λa λD τ αη B S
Value 2 103 200 10 10 0.95 10 10 0.01 0.999 104 10

4.2. Result presentation

The performance of the attackers and defenders is
measured by the cumulative discounted reward and the
mutual Bayesian Nash equilibrium strategy under different
states. We set the initial weights

ωA = ωD = 0.8

with
βA = 0.48, βD = 0.67,

and the experimental results are shown in Figure 6. After 100
episodes, it can be observed that the cumulative discounted
rewards for both the attacker and defender reached a
relatively stable stage.
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Figure 6. Attacker and defender performance
with βA = 0.48 and βD = 0.67 in two different
processes in Table 1.
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The attacker’s cumulative discounted reward fluctuated
around 0 to 20, while the defender’s cumulative discounted
reward fluctuated around -20 to 0.

Based on the neural networks that have been recently
updated, their Bayesian Nash equilibrium strategies can be
calculated as shown in Figures 7 and 8, where each scatter
point in the figure represents the optimal power allocation
under its corresponding state (∆1,∆2) (the x-axis and y-
axis correspond to the states of process 1 and process 2,
respectively, while the legend provides precise values). The
reason that both the attacker and defender chose to focus on
process 1 instead of process 2 is determined by the settings
of the system parameters.
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Figure 7. Attacker’s optimal strategy with βA =

0.48 and βD = 0.67 in two different processes in
Table 1.
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Figure 8. Defender’s optimal strategy with βA =

0.48 and βD = 0.67 in two different processes in
Table 1.

After conducting the simulation with

βA = 0.48 and βD = 0.67,

we change the power discount rate with

βA = 0.55 and βD = 0.68

in two identical processes as in Process 2 in Table 1. The
corresponding results are shown in Figures 9–11. From
the attacker’s prospective (Figure 10), it tends to spare
little power to attack the channel when the state is (0, 0).
However, if the state is not (0, 0), the attacker will put most
of their emphasis on attacking channel 1. The optimal
strategy of the defender is much more complex than the
attacker’s. We present it in Figure 11 and show a part of
the optimal strategies in Table 4. Affected by the attacker’s
attack strategy, the defender also pays higher attention to
channel 1.
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Figure 9. Attacker and defender performance
with βA = 0.55 and βD = 0.68 in the two same
processes as in Process 2 in Table 1.
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Figure 10. Attacker’s optimal strategy with βA =

0.55 and βD = 0.68 in the two same processes as
in Process 2 in Table 1.
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Figure 11. Defender’s optimal strategy with βA =

0.55 and βD = 0.68 in the two same processes as
in Process 2 in Table 1.

Table 4. Part of the optimal strategies of the
defender in Figure 11.

∆2 ≥ ∆1 or (∆1,∆2) = (3, 2) (∆1,∆2) = (6, 0) (∆1,∆2) = (6, 1) (∆1,∆2) = (6, 2)
(6.18 − 6.26, 2.65 − 2.75) (0.19, 9.52) (0.41, 8.71) (0.96, 7.81)
(∆1,∆2) = (6, 3) (∆1,∆2) = (6, 4) (∆1,∆2) = (6, 5) (∆1,∆2) = (6, 6)
(2.47, 6.33) (4.04, 4.96) (4.86, 3.98) (5.36, 3.18)

When the AoI of channel 2 is bigger than the one of
channel 1 (except for the state (0, 0)), the optimal strategy
is around (6.18–6.26, 2.65–2.75). In addition, if the AoI
of channel 1 is fixed, the defender’s power allocation to
channel 1 will increase as the AoI of channel 2 increases. To
show that the strategies obtained by Algorithm 2 are optimal,
we compare the optimal strategy of the defender with other
strategies when the attacker’s strategy is fixed as the one
derived from Algorithm 2 in Figure 12.
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Figure 12. Defender’s cumulative discounted
reward with different strategies.

From Figure 12, it can be seen that the defender’s
cumulative discounted reward under the optimal strategy is
obviously more than the ones under other fixed strategies. In
addition, we compare the optimal strategy to the one derived
by Algorithm 1 to show the effectiveness of the feasibility
layers in CPSs with time delays. Although Algorithm 1

employs AoI as a state definition, it does not take into
account that AoI is a variable used to measure the freshness
of data. In essence, there is not much difference between AoI
and other definitions (for example, holding time). Therefore,
the discounted cumulative rewards for the defender are not
as good as those of Algorithm 2. Therefore, the optimality
of the strategy derived by Algorithm 2 is obvious.

It is worth noting that, in practical scenarios, such
results are relatively rare. Due to the characteristics of
different channels, both attackers and defenders tend to
have a focus on allocating energy in one channel, which
leads to the optimal action near (p or a, 0) or (0, p or a).
What is more, when ωA and ωD reduce, the weight of
cost in the reward formulas (3.20) and (3.21) of both
sides will correspondingly increase, leading them to reduce
the injecting energy to the channel rather than focus on
increasing (or reducing) the estimated error covariance.
Therefore, in practical applications, the setting of the
weights and power discount rates may be extremely
important.

In addition, compared with other learning-based methods
in existing literature (such as DQN, DDQN, DDPG, etc.),
our method can be applied to multi-agent environments
with asymmetric information. However, other mentioned
algorithms may easily fail to converge due to the complexity
and variability of the multi-agent environments.

5. Conclusions

We considered a learning-based game-theoretic DoS
attack problem with continuous power in a multi-process
CPS with random time delays of transmission channels. In
order to deal with the challenges posed by a multi-agent
environment with asymmetric information and continuous
attack and defense power, we provided a MADDPG-based
algorithm with two feasible layers, which is suitable for the
above situation, and is able to reach an optimal Bayesian
Nash equilibrium. In future work, we will introduce
various types of attacks into our research on game theory
problems. We will consider not only cyber attacks targeting
transmission channels but also attacks aimed at other parts
of the networks.
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