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Abstract: In this paper, the existence of nonoscillatory solutions for a class of higher-order nonlinear differential equations is
investigated. Notably, the equations are of mixed neutral type with a forcing term, which distinguished the equations in this paper
from the existing ones and made the qualitative analysis of the solution more complicated. By means of the Schauder-Tychonoff fixed
point theorem and inequality techniques, some new sufficient conditions for the existence of nonoscillatory solutions were established.
The results in this paper improved and generalized some known results in the existing works. Finally, an example was given to illustrate
the effectiveness of the proposed method.
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1. Introduction

The study of the oscillatory and non-oscillatory properties
of solutions is of great significance in mathematics, physics,
and engineering. Oscillatory solutions can describe many
natural and social phenomena, such as the oscilltion of
mechanical systems, the propagation of electromagnetic
waves, and oscillations in circuits. Nonoscillatory solutions
typically represent the steady-state behavior of a system,
such as the DC steady-state in a circuit, the equilibrium
state of chemical reactions, etc. In control theory, the
oscillation of a system can be used to determine its
stability. Nonoscillatory solutions usually correspond to the
asymptotic stable state of the system, which is crucial for
understanding the long-term behavior of the system.

In recent years, the qualitative properties of differential
equations [1–3]. Specifically, the work [1] investigated the
global dynamics of the Lotka-Volterra systems with anti-
symmetric interactions. Authors in [2] cinsidered a class
of survival red blood cells model with time-varying delays
and impulsive effects. The authors in [3] discussed some

basic properties of solutions to fractional hybrid q-difference
equations. Additionally, [4] studied the feedback control for
uncertain nonlinear systems, that is, the global stabilization
via adaptive event-triggered output feedback. As one of
the fundamental properties of equations, the oscillation
and non oscillation have received increasing attention from
scholars (half-linear equations in [5], quasilinear equations
in [6, 7], and nonlinear in [8, 9]). Differential equations with
forcing terms are used as powerful tools to describe many
physical and practical problems, such as classical oscillator
in chaotic phenomena, periodic orbit extraction, nonlinear
mechanical oscillators, and prediction of diseases [10–12].
The oscillation and other complex behaviours of various
differential equations have been widely investigated (see the
works [13–15]). Specifically, Oscillation and nonoscillation
of solutions of a second-order nonlinear ordinary differential
equation was discussed in [13]. The authors in [14]
considered a class of fractional partial differential equations
with damping term subject to Robin and Dirichlet boundary
value conditions. In [15], complicated behaviors of
a delay differential equation are explored through the
Euler discretization method. Mixed neutral differential
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equations find numerous applications in natural sciences and
technology (see [16, 17]), but they have specific properties
that make their study difficult in aspects of ideas and
techniques. These difficulties explain the relatively small
number of results about this kind of differential equation,
especially the higher order mixed neutral delay differential
equations with forcing terms. Some related papers can be
found in [18–20] and the references cited therein.

Specifically, in 2005, Zhang et al. [18] investigated the
existence of nonoscillatory solutions for the first order
neutral delay differential equations with variable coefficients

[x(t) + P(t)x(t − τ)]′ + Q1(t)x(t − σ1) − Q2(t)x(t − σ2) = 0,

where t ≥ t0. Some sufficient conditions were obtained by
means of contraction mapping principle. In 2007, Zhou [19]
studied the existence of nonoscillatory solutions for the
second order nonlinear neutral delay differential equations

[
r(t) (x(t) + P(t)x(t − τ))′

]′
+

m∑
i=1

Qi(t) fi(x(t − σi)) = 0,

where t ≥ t0. Some new sufficient conditions for the
existence of nonoscillatory solutions for the above equations
were obtained by means of the Krasnoselskiis fixed point
theorem. In 2015, Candan [20] discussed the existence of
nonoscillatory solutions for higher order delay differential
equations with the forcing term[

r(t)x(n)(t)
](m)
+ f (t, x(t)) = g(t), t ≥ t0.

By the method of Schauder’s fixed point theorem, the author
derived some new sufficient conditions that are complements
and extensions of the previous papers. All papers
above were concerned with the existence of nonoscillatory
solutions for neutral differential equations or higher order
equations with delay. The only paper that considered the
existence of nonoscillatory solutions for mixed neutral delay
differential equations is [21]. Candan considered a class of
first order mixed neutral delay differential equations

d
dt

[x(t) + P1(t)x(t − τ1) + P2(t)x(t + τ2)]

+ Q1(t)x(t − σ1) − Q2(t)x(t + σ2) = 0.

The author obtained some new sufficient conditions for the
existence of nonoscillatory solutions by means of Banach
contraction mapping principle.

However, there was no related result for the higher order
mixed neutral delay differential equations. In order to
make up for this, in this paper, we consider the existence
of nonoscillatory solutions for the following higher order
nonlinear mixed neutral delay differential equations[

a(t) (z(t))(n)
](m)
+q1(t) f (t, x(t))−q2(t)g(t, x(t)) = h(t), (1.1)

where

z(t) = x(t) + p1(t)x(t − τ1) − p2(t)x(t + τ2), t ∈ [t0,∞).

We will assume that the following conditions hold
throughout this paper.

(H1) For any t ∈ [t0,∞),∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
h(u)duds < ∞, (1.2)∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
q1(u)duds < ∞ (1.3)

and ∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
q2(u)duds < ∞. (1.4)

(H2) f and g are continuous and

0 <
f (t, u)

u
≤ k1, 0 <

g(t, u)
u
≤ k2

for any u , 0, where k1 and k2 are two positive constants.
(H3) a(t) ∈ C([t0,∞), (0,∞)), h(t) ∈ C([t0,∞),R),

pi(t), qi(t) ∈ C([t0,∞), [0,∞)), τi > 0, and 0 < pi(t) ≤ pi, pi

are positive constants with

p1 + p2 < 1, i = 1, 2.

In fact, higher order delay differential equations with
forcing terms have practical applications in many scientific
and engineering fields. For example, in control theory,
time-delay differential equations are commonly used to
describe the dynamic behavior of control systems with time
delays. The forcing term can represent the external input
signal or control action, and these equations are used to
analyze and design the aircraft auto drive system and robot
control system. In neuroscience, time-delay differential
equations can be used to simulate the propagation of action
potentials in neurons, and the forcing term can represent
external stimuli or interactions in neural networks. In
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mechanical systems, time-delay differential equations can
describe vibration systems with friction and damping, and
forcing terms can represent external forces or disturbances.

In these applications, time delay and forcing terms are
both very important factors as they can significantly affect
the dynamic behavior and stability of the system. For
example, time delay can cause oscillations or instability in
the system, while forcing terms can cause changes in the
system’s response. Therefore, studying high-order delay
differential equations with forcing terms is essential for
understanding and predicting the behavior of these systems.

The main work of this paper can be described as
follows: First, we investigate a new class of higher order
nonlinear mixed neutral delay differential equations with
forcing terms, which is a direct generalization of previous
papers. Second, the sufficient conditions for the existence
of nonoscillatory solutions are weaker than the ones in the
references. Specifically, the nonlinear terms do not need to
be monotonic and are not required to satisfy the Lipschitz
condition.

The following are the contributions of this paper:
(1) A typical class of differential equations are

investigated. Specifically, the nonlinear differential
equations considered are not only of high order but also with
mixed neutral delay and forcing terms.

(2) A weaker sufficient condition for the existence of
nonoscillatory solution has been obtained by Schauder-
Tychonoff fixed point theorem and inequality techniques.

This paper is structured as follows: In Section 2, we
introduce some necessary notations, lemmas and definitions.
Section 3 is fully dedicated to addressing the main results of
the paper. In the last section, an example is given to illustrate
our results.

2. Preliminaries

In this section, we will present some necessary knowledge
of the definition, the notations, and Schauder-Tychonoff
fixed point theorem.

Lemma 2.1. [22] (Schauder-Tychonoff fixed point theorem)

Let X be a locally convex space, K ⊂ X be nonempty and

convex, S ⊂ K, and S be compact. Given a continuous map

F: K → S , then there exists x̃ ∈ S such that

F(x̃) = x̃.

Let Ω be the set of continuous and bounded functions on
[t0,∞) with supremum norm. Thus, Ω is a complete metric
space.

As usual, a solution is called oscillatory if it is neither
eventually positive nor eventually negative. Otherwise, it is
said to be nonoscillatory.

3. Main results

We are now in a position to state and prove our main
results according to the Schauder-Tychonoff fixed point
theorem.

Theorem 3.1. Suppose that conditions (H1)–(H3) hold.

Then, there exists a bounded nonoscillatory solution for

Eq (1.1).

Proof. Denote the subset X1 of Ω and the map F1: X1 → Ω

by

X1 = {x ∈ Ω | M1 ≤ x(t) ≤ M2, t ≥ t0}

and

(F1x)(t)

=



α +
(−1)n+m

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

(s − t)n−1(u − s)m−1

a(s)
×
(
h(u) − q1(u) f (u, x(u)) + q2(u)g(u, x(u)

)
duds

−p1(t)x(t − τ1) + p2(t)x(t + τ2), t ≥ t1,

(F1x)(t1), t0 ≤ t ≤ t1,

where t1 is sufficiently large, M1, and M2 are positive
constants, and

α ∈ (M1 + p1M2,M2 − p2M2).

Meanwhile, it is clear that the existence of a nonoscillatory
solution for Eq (1.1) is equivalent to the fixed point of F1 in
X1. According to Lemma 2.1, we need to separate our proofs
into the following four steps.

Step i: F1 is continuous.
For any {xn} ∈ X1, n = 1, 2, . . . , x ∈ X1 with xn → x,

n → ∞, since f and g are continuous, it suggests that when
n→ ∞,

f (t, xn(t))→ f (t, x(t)) and g(t, xn(t))→ g(t, x(t)). (3.1)
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From conditions (H1)–(H3), Eq (3.1), and Lebesgue
dominated convergence theorem, we obtain that for any
t ∈ [t0,∞),

|(F1xn)(t) − (F1x)(t)|

≤
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

(s − t)n−1(u − s)m−1

a(s)

×
(
q1(u) | f (u, xn(u)) − f (u, x(u))|

+ q2(u) |g(u, xn(u)) − g(u, x(u))|
)
duds

+ p1(t)|xn(t − τ1) − x(t − τ1)|

+ p2(t)|xn(t + τ2) − x(t + τ2)| → 0

as xn → x, that is,

||F1xn − F1x|| → 0

as xn → x.

Thus, F1 is continuous.

Step ii: F1X1 ⊂ X1.

We will consider the following two cases: n+m is an even
number and n + m is an odd number.

i) n + m is an even number.

From condition (H1), we know that for the sufficiently
large t2, we get

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)

(
h(u) + k2M2q2(u)

)
duds (3.2)

≤ (n − 1)!(m − 1)!(M2 − p2M2 − α)

and

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
q1(u)duds (3.3)

≤
(n − 1)!(m − 1)!(α − p1M2 − M1)

k2M2
,

where t > t2. On the one hand, for any x ∈ X1, from
condition (H2) and inequality (3.2), we have that for any

t ∈ [t0,∞),

(F1x)(t) ≤ α +
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

(s − t)n−1(u − s)m−1

a(s)

×
(
h(u) + q2(u)g(u, x(u))

)
duds + p2(t)x(t + τ2)

≤ α +
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)

×
(
h(u) + q2(u)

g(u, x(u))
x(u)

x(u)
)
duds + p2M2

≤ α +
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)

×
(
h(u) + k2M2q2(u)

)
duds + p2M2

≤ α + (M2 − p2M2 − α) + p2M2

= M2.

On the other hand, for any x ∈ X1, from condition (H2)
and inequality (3.3), we get that for any t ∈ [t0,∞),

(F1x)(t) ≥ α −
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

(s − t)n−1(u − s)m−1

a(s)

× q1(u) f (u, x(u))duds − p1(t)x(t − τ1)

≥ α −
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
q1(u)

×
f (u, x(u))

x(u)
x(u)duds − p1M2

≥ α −
k1M2

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
q1(u)duds

− p1M2

≥ α − (α − p1M2 − M1) − p1M2

= M1.

ii) n + m is an odd number.

Similar to Eqs (3.2) and (3.3), for the sufficiently large t3,
we have ∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
q1(u)duds (3.4)

≤
(n − 1)!(m − 1)!(M2 − p2M2 − α)

k1M2

and ∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
(
h(u) + k2M2q2(u)

)
duds (3.5)

≤ (n − 1)!(m − 1)!(α − p1M2 − M1),

where t > t3.
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On the one hand, for any x ∈ X1, from condition (H2) and
inequality (3.4), we obtain that for any t ∈ [t0,∞),

(F1x)(t) ≤ α +
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

(s − t)n−1(u − s)m−1

a(s)

×
(
q1(u) f (u, x(u))

)
duds + p2(t)x(t + τ2)

≤ α +
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)

×

(
q1(u)

f (u, x(u))
x(u)

x(u)
)
duds + p2M2

≤ α +
k1M2

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)

× q1(u)duds + p2M2

≤ α + (M2 − p2M2 − α) + p2M2

= M2.

On the other hand, for any x ∈ X1, from condition (H2)
and inequality (3.5), we have that for any t ∈ [t0,∞),

(F1x)(t) ≥ α −
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

(s − t)n−1(u − s)m−1

a(s)

×
(
h(u) + q2(u)g(u, x(u))

)
duds − p1(t)x(t − τ1)

≥ α −
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)

×

(
h(u) + q2(u)

g(u, x(u))
x(u)

x(u)
)
duds − p1M2

≥ α −
1

(n − 1)!(m − 1)!

∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)

×
(
h(u) + k2M2q2(u)

)
duds − p1M2

≥ α − (α − p1M2 − M1) − p1M2

= M1.

The above equalities and Step i suggest that

F1X1 ⊂ X1.

Step iii: F1x is uniformly bounded.
Since F1X1 ⊂ X1 for any x ∈ X1, it holds that

∥F1x∥ ≤ M2,

which means that F1x is uniformly bounded.
Step iv: F1x is equicontinuous.
For any ε > 0 and t4, t5 ∈ [t0,∞), there exists δ > 0 such

that when
|t4 − t5| < δ,

we derive

|(F1x)(t4) − (F1x)(t5)|

≤

∣∣∣∣∣ 1
(n − 1)!(m − 1)!

∫ t5

t4

∫ ∞

s

sn−1um−1

a(s)

×
(
h(u) − q1(u) f (u, x(u)) + q2(u)g(u, x(u))

)
duds

− p1(t4)x(t4 − τ1) + p1(t5)x(t5 − τ1)

+ p2(t4)x(t4 + τ2) − p2(t5)x(t5 + τ2)
∣∣∣∣∣

≤
1

(n − 1)!(m − 1)!

(∣∣∣∣∣ ∫ t5

t4

∫ ∞

s

sn−1um−1

a(s)
h(u)duds

∣∣∣∣∣
+ k1M2

∣∣∣∣∣ ∫ t5

t4

∫ ∞

s

sn−1um−1

a(s)
q1(u)duds

∣∣∣∣∣
+ k2M2

∣∣∣∣∣ ∫ t5

t4

∫ ∞

s

sn−1um−1

a(s)
q2(u)duds

∣∣∣∣∣)
+ |p1(t4)x(t4 − τ1) − p1(t5)x(t5 − τ1)|

+ |p2(t4)x(t4 + τ2) − p2(t5)x(t5 + τ2)|.

From conditions (H1)–(H3), we know that

|(F1x)(t4) − (F1x)(t5)| < ε

when
|t4 − t5| < δ,

which means that F1x is equicontinuous. Therefore, F1 is
completely continuous on X1. By Lemma 2.1, there exists
x̃ ∈ X1 such that

F1(x̃) = x̃,

that is, there exists a bounded nonoscillatory solution for
Eq (1.1). The proof is completed. □

In what follows, we consider a special case of Eq (1.1).
Let

p1(t) = p2(t) = q2(t) = 0 and q1(t) = 1

in Eq (1.1). Then, Eq (1.1) can be reduced to the following
form [

a(t)(x(t))(n)
](m)
+ f (t, x(t)) = h(t). (3.6)

Therefore, we can easily derive another result according to
Theorem 3.1.

Corollary 3.1. Suppose that the following conditions hold.

(H4) For any t ∈ [t0,∞),∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
h(u)duds < ∞

Mathematical Modelling and Control Volume 4, Issue 4, 417–423.



422

and ∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
duds < ∞.

(H5) f is continuous and

0 <
f (t, u)

u
≤ k1

for any u , 0, where k1 is a positive constant.

(H6) a(t) ∈ C([t0,∞), (0,∞)) and h(t) ∈ C([t0,∞),R).

Then, there exists a bounded nonoscillatory solution for

Eq (3.6).

Remark 3.1. From Corollary 3.1, we will find that our result

in this paper is a direct generalization of [20]. We can also

present some other results when set different parameters for

the coefficients.

4. Example

An example will be presented in this section to illustrate
our main results.

Example 4.1. Consider the following fifth-order mixed
neutral delay differential equation(

et(x(t) + x(t − 1) − x(t + 2))
′′
)′′′
+ e−t x(t) − e−2t x(t) = e−t,

(4.1)
where t ≥ 0.

Comparing with Eq (1.1), we have

a(t) = et, p1(t) = p2(t) ≡ 1, q1(t) = e−t,

q2(t) = e−2t, h(t) = e−t, n = 2, m = 3,

τ1 = 1, τ2 = 2, f (t, u) = g(t, u) = u.

Then,
f (t, u)

u
=

g(t, u)
u
= 1.

It is obvious that conditions (H2) and (H3) are satisfied.
Next, we will verify the condition (H1). Since

h(u) = q1(u)

in this example, we only need to verify condition (1.2)
or (1.3). Then,∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
h(u)duds =

∫ ∞

t

s
es

∫ ∞

s

u2

eu duds

=

(
1
2

t3 +
7
4

t2 +
11
4

t +
11
8

)
e−2t

< ∞

and∫ ∞

t

∫ ∞

s

sn−1um−1

a(s)
q2(u)duds =

∫ ∞

t

s
es

∫ ∞

s

u2

e2u duds

=

(1
6

t3 +
1
3

t2 +
11
36

t +
11

108

)
e−3t

< ∞,

for any t ≥ 0. All conditions of Theorem 3.1 are satisfied.
Therefore, there exists a nonoscillatory solution for Eq (4.1).

5. Conclusions

We considered the existence of nonoscillatory solutions
for a class of higher order nonlinear mixed neutral delay
differential equations. Not only the equations but also the
results obtained are completely new, which are necessary
supplements to the known results. The nonlinear terms f

and g are sublinear in this paper. The superlinear case could
discussed in future research.

Acknowledgments

This paper is supported by the Shandong Provincial
Natural Science Foundation (Grant No. ZR2023QA063,
ZR2022QF108) and the National Natural Science
Foundation of China (Grant No. 62203185).

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. M. R. Xu, S. Liu, Y. Lou, Persistence and
extinction in the anti-symmetric Lotka-Volterra
systems, J. Differ. Equations, 387 (2024), 299–323.
https://doi.org/10.1016/j.jde.2023.12.032

2. T. D. Wei, X. Xie, X. D. Li, Persistence and periodicity
of survival red blood cells model with time-varying
delays and impulses, Math. Modell. Control, 1 (2021),
12–25. https://doi.org/10.3934/mmc.2021002

Mathematical Modelling and Control Volume 4, Issue 4, 417–423.

https://dx.doi.org/https://doi.org/10.1016/j.jde.2023.12.032
https://dx.doi.org/https://doi.org/10.3934/mmc.2021002


423

3. K. K. Ma, L. Gao, The solution theory for the fractional
hybrid q-difference equations, J. Appl. Math. Comput.,
68 (2022), 2971–2982. https://doi.org/10.1007/s12190-
021-01650-6

4. Y. P. Wang, H. Li, Global stabilization via adaptive
event-triggered output feedback for nonlinear systems
with unknown measurement sensitivity, IEEE/CAA J.

Autom. Sin., 2022. https://10.1109/JAS.2023.123984

5. M. Bohner, T. S. Hassan, T. X. Li, Fite-Hille-
Wintner-type oscillation criteria for second-order
half-linear dynamic equations with deviating
arguments, Indagationes Math., 29 (2018), 548–560.
https://doi.org/10.1016/j.indag.2017.10.006

6. Y. Sui, H. M. Yu, Oscillation of a kind of
second order quasilinear equation with mixed
arguments, Appl. Math. Lett., 103 (2020), 103.
https://doi.org/10.1016/j.aml.2019.106193

7. Y. Sui, H. M. Yu, Oscillation of damped second
order quasilinear wave equations with mixed
arguments, Appl. Math. Lett., 117 (2021), 117.
https://doi.org/10.1016/j.aml.2021.107060

8. R. P. Agarwal, C. H. Zhang, T. X. Li, Some remarks
on oscillation of second order neutral differential
equations, Appl. Math. Comput., 274 (2016), 178–181.
https://doi.org/10.1016/j.amc.2015.10.089

9. T. X. Li, Y. V. Rogovchenko, Oscillation
criteria for even-order neutral differential
equations, Appl. Math. Lett., 61 (2016), 35–41.
https://doi.org/10.1016/j.aml.2016.04.012

10. S. B. Ai, S. P. Hastings, A shooting approach to
layers and chaos in a forced Duffing equation,
J. Differ. Equations, 185 (2002), 389–436.
https://doi.org/10.1006/jdeq.2002.4166

11. C. W. Wang, The lower bounds of T -periodic
solutions for the forced Duffing equation,
J. Math. Anal. Appl., 260 (2001), 507–516.
https://doi.org/10.1006/jmaa.2001.7474

12. C. L. Tang, Solvability of the forced Duffing equation at
resonance, J. Math. Anal. Appl., 219 (1998), 110–124.
https://doi.org/10.1006/jmaa.1997.5793

13. M. Naito, Oscillation and nonoscillation of
solutions of a second-order nonlinear ordinary

differential equation, Results Math., 74 (2019), 178.
https://doi.org/10.1007/s00025-019-1103-y

14. Z. G. Luo, L. P. Luo, New criteria for oscillation
of damped fractional partial differential equations,
Math. Modell. Control, 2 (2022), 219–227.
https://doi.org/10.3934/mmc.2022021

15. Z. C. Li, Exploring complicated behaviors of a delay
differential equation, Math. Modell. Control, 3 (2023),
1–6. https://doi.org/10.3934/mmc.2023001

16. L. S. Pontryagin, Mathematical theory

of optimal processes, Routledge, 1987.
https://doi.org/10.1201/9780203749319

17. M. Slater, H. S. Wilf, A class of linear differential-
difference equations, Pacific J. Math., 10 (1960), 1419–
1427. https://doi.org/10.2140/PJM.1960.10.1419

18. W. P. Zhang, W. Feng, J. R. Yan, J. S. Song,
Existence of nonoscillatory solutions of first-
order linear neutral delay differential equations,
Comput. Math. Appl., 49 (2005), 1021–1027.
https://doi.org/10.1016/j.camwa.2004.12.006

19. Y. Zhou, Existence for nonoscillatory solutions
of second-order nonlinear differential equations,
J. Math. Anal. Appl., 331 (2007), 91–96.
https://doi.org/10.1016/j.jmaa.2006.08.048

20. T. Candan, Nonoscillatory solutions of higher order
differential and delay differential equations with
forcing term, Appl. Math. Lett., 39 (2015), 67–72.
https://doi.org/10.1016/j.aml.2014.08.010

21. T. Candan, Existence of non-oscillatory solutions to first-
order neutral differential equations, Electron. J. Differ.

Equations, 39 (2016), 1–11.

22. A. Granas, J. Dugundji, Fixed point theory, Springer,
2003. https://doi.org/10.1007/978-0-387-21593-8

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematical Modelling and Control Volume 4, Issue 4, 417–423.

https://dx.doi.org/https://doi.org/10.1007/s12190-021-01650-6
https://dx.doi.org/https://doi.org/10.1007/s12190-021-01650-6
https://dx.doi.org/https://10.1109/JAS.2023.123984
https://dx.doi.org/https://doi.org/10.1016/j.indag.2017.10.006
https://dx.doi.org/https://doi.org/10.1016/j.aml.2019.106193
https://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107060
https://dx.doi.org/https://doi.org/10.1016/j.amc.2015.10.089
https://dx.doi.org/https://doi.org/10.1016/j.aml.2016.04.012
https://dx.doi.org/https://doi.org/10.1006/jdeq.2002.4166
https://dx.doi.org/https://doi.org/10.1006/jmaa.2001.7474
https://dx.doi.org/https://doi.org/10.1006/jmaa.1997.5793
https://dx.doi.org/https://doi.org/10.1007/s00025-019-1103-y
https://dx.doi.org/https://doi.org/10.3934/mmc.2022021
https://dx.doi.org/https://doi.org/10.3934/mmc.2023001
https://dx.doi.org/https://doi.org/10.1201/9780203749319
https://dx.doi.org/https://doi.org/10.2140/PJM.1960.10.1419
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2004.12.006
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2006.08.048
https://dx.doi.org/https://doi.org/10.1016/j.aml.2014.08.010
https://dx.doi.org/https://doi.org/10.1007/978-0-387-21593-8
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Example
	Conclusions

