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Abstract: In this article, a hybrid numerical scheme based on Lucas and Fibonacci polynomials in combination with Störmer’s method
for the solution of Klein/Sinh-Gordon equations is proposed. Initially, the problem is transformed to a time-discrete form by using
Störmer’s technique. Then, with the help of Fibonacci polynomials, we approximate the derivatives of the function. The suggested
technique is validated to both one and two-dimensional problems. The resultant findings are compared with existing numerical solutions
and presented in a tabular form. The comparison reveals the superior accuracy of the scheme. The numerical convergence of the scheme
is computed in each example.

Keywords: Klein/Sinh-Gordon equation; finite differences; Lucas polynomials; Fibonacci polynomials

1. Introduction

Nonlinear evolution equations (NEEs) are mathematical
equations that describe the behavior of complex physical
systems. These equations are often used in various fields of
science, including material and biological sciences, physics,
mathematics, and mechanics [1–5]. One of the most
commonly used NEE is the nonlinear Schrödinger equation,
which is used in quantum mechanics to describe the behavior
of wave packets [6,7]. Another example is the Klein-Gordon
equation, which is used in particle physics to describe the
behavior of spinless particles. The Cahn-Hilliard equation
is another important equation used in materials science to
describe the phase separation behaviour of binary mixtures.
This equation has applications in the fields of metallurgy,
polymer science, and biomaterials. The Navier-Stokes
equation is a well-known NEE that describes the behavior
of fluids, and is used in fluid mechanics to study the
flow of fluids in various applications, including aerospace

engineering, civil engineering, and oceanography [8–11].

NEEs are important in many fields of science because they
can provide a mathematical model to describe the behavior
of complex physical systems. By studying these equations
and developing new numerical techniques to solve them,
scientists can gain a better understanding of the physical
phenomena they describe, and develop new technologies
and materials that are based on this knowledge. To study
the behavior of the physical problem (see [12–15]), either
analytical or numerical solutions are needed. However,
finding an analytical solution for NNEs is not always
simple. As a result, developing numerical methods for
such problems is useful. In this article, we investigate the
nonlinear Klein-Gordon and sinh-Gordon equations, which
are given as follows:

utt + α∆u + ψ(u) = g(x, t), (1.1)

where u = u(x, t), α is constant, and ψ is some nonlinear
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function. For

ψ(u) = sinh(u),

the Eq (1.1) becomes the sinh-Gordon equation [16]. When

ψ(u) = βu + γu2,

the Eq (1.1) becomes the Klein-Gordon equation, which is
given as follows:

utt + α∆u + βu + γu2 = g(x, t), (1.2)

with the following initial and boundary conditions:

u(x, 0) = g1(x), ut(x, 0) = g2(x), a ≤ x ≤ b, (1.3)

u(a, t) = f1(t), u(b, t) = f2(t), t > 0. (1.4)

The Klein-Gordon equation has numerous applications
in different areas of physics and engineering and plays a
crucial role in our understanding of the behavior of particles
and fields in the universe. The Klein-Gordon equation is
a relativistic wave equation that describes the behavior of
particles with a zero spin, such as the Higgs boson particle.
It has several applications in different fields of physics;
for example, the Klein-Gordon equation is fundamental
in the quantum field theory. It describes the behavior of
scalar fields, which are fields that have a single value at
each point in space-time [17, 18]. Additionally, it can
be used to describe the behavior of phonons, which are
the quantized vibrations of a crystal lattice, and is used
to describe the behavior of the inflaton field, which is
thought to be responsible for the rapid expansion of the
universe during the Big Bang [19]. Due to the wide range
of applications, numerous researchers have investigated the
solution of this equation utilizing various methodologies,
including collocation points with the thin-plate splines radial
basis function [20], the sine-cosine and tanh methods for
travelling wave solutions [19], and the generalized auxiliary
equation methods in [21]. Pseduospectral formulation with
a perfectly matched layer has been suggested for the non-
relativistic Klein-Gordon equation in [22]. Three different
numerical methods were introduced to solve the rotating
Klein-Gordon equation from relativistic regimes to non-
relativistic regimes in polar and Cartesian coordinates [23].
Various numerical methods, including finite difference time

domain methods, the time-splitting method, an exponential
wave integrator, a limit integrator, a multiscale time
integrator, the two-scale formulation method, and an
iterative exponential integrator, were compared in terms
of their accuracy while solving the Klein-Gordon equation
(see [24]). The authors used a finite element technique
based on cubic B-splines, the decomposition method [25],
the fourth-order implicit Runge-Kutta-Nystrom, the fourth-
order compact finite difference method [26], the boundary
integral equation method [27], and the cubic B-spline
collocation approach [28] to solve the generalized form of
the nonlinear Klein-Gordon equation. For the solution of
this model, a variety of numerical techniques have been
reported in [29, 30]. The two-dimensional sinh-Gordon
equation is an essential partial differential equation (PDE)
model with applications in a variety of fields.

The following is a concise review of the sinh-Gordon
equation. In [31], the (G’/G)-expansion scheme was
proposed for the generalized form of the double sinh-Gordon
equations. For the analytical solutions to the sinh-Gordon
equation, the tanh method was used in [32]. The element-
free Galerkin technique was suggested in [33] to solve the
generalized sinh-Gordon equation. The radial basis function
was utilized by the authors in [34] to solve the sinh-Gordon
equation. In [35], the author employed an implicit Lie-
group iterative technique for the solution of the sinh-Gordon
equation, whereas the Pseudo spectral and Kansa’s methods
based on radial basis functions were used in [36] to solve
the two-dimensional sinh-Gordon equation. In [37], two
effective approaches, namely the generalized leap-frog and
the method of lines, were utilized for the sinh-Gordon
equation, whereas the polynomial differential quadrature
method was examined in [38].

In this work, we utilize the Fibonacci polynomials
combined with Störmer’s method to compute the numerical
solutions of the one-dimensional Klein-Gordon and the
two-dimensional sinh-Gordon equations. One of the
key advantages of the suggested method is the ease
implementation in higher-order derivatives using the relation
of the Lucas and Fibonacci polynomials. Furthermore, the
proposed approach improves the accuracy even for a small
number of collocation points, thus lowering the computing
costs. These polynomials have a wide range of applications
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in differential equations; for instance, the relationship
between Chebyshev and Lucas polynomials was discussed
in [39], and accurate solutions for the boundary value
problems were obtained. Higher-order differential equations
were solved using the Lucas polynomial technique in [40],
while the Volterra-Fredholm integral differential equations
were solved using a Fibonacci polynomial approach in [41].
Delay difference equations were solved using a hybrid
Taylor-Lucas polynomial approach [42]. The Fibonacci
wavelet approach was implemented for non-linear reaction
diffusion equations of a Ficher-type, non-linear Hunter-
Saxton and time fractional telegraph equation in [43, 44].
The author and his co-worker used the Gegenbauer wavelet
method for time fractional PDEs in [45, 46]. For the first
time, the authors proposed a hybrid Lucas and Fibonacci
polynomial scheme to solve the time-dependent PDEs
in [16, 47]. More publications using Lucas polynomials
and finite-differences to find efficient numerical solutions for
different types of PDE models can be found in [48–51].

The rest of the paper is organized as follows: in Section 2,
fundamental concepts and definitions are discussed; in
Section 3, the proposed methodology of the scheme is
described; the method is verified with the help of numerical
experiment in Section 4, and finally, the concluding remarks
are drawn at the end.

2. Fundamental concepts

In this section, we will go over several key definitions and
properties related to the Fibonacci and Lucas polynomials.

2.1. Fibonacci polynomials

The Fibonacci polynomial is an extension of Fibonacci
numbers described by the linear recurrence relation, which
is shown as follows [52]:

Fk(x) = kFk−1(x) + Fk−2(x), k ≥ 2, (2.1)

with the initial values

F0(x) = 0 and F1(x) = 1.

Their explicit form is as follows:

Fk(x) =
⌊ k

2 ⌋∑
n=0

(
k − n

n

)
xk−2n,

where (
m
n

)
=

m!
n!(m − n)!

,

and ⌊k⌋ denotes the integer floor function. Equation (2.1)
generates a sequence for x = 1 of the Fibonacci numbers.

2.2. Lucas polynomials

The Lucas polynomials can be defined as follows [52]:

Lk(x) = kLk−1(x) + Lk−2(x), k ≥ 2, (2.2)

with
L0(x) = 2 and L1(x) = x.

Their explicit form is

Lk(x) =
⌊ k

2 ⌋∑
n=0

k
k − n

(
k − n

n

)
xk−2n,

when x = 1. Equation (2.2) generates a sequence of the
Lucas numbers.

2.3. Function approximation

Let u(x) be a continuous function that may be
approximated in terms of the Lucas series in the following
manner:

u(x) =
M∑

k=0

λn+1
k Lk(x), (2.3)

where L(x) are the Lucas polynomials and λk are the
unknown coefficients. Utilizing the finite terms of the Lucas
series, the mth-order derivative of a function u(x) can be
approximated as follows:

u(m)(x) =
M∑

k=0

λn+1
k L(m)

k (x). (2.4)

Utilizing the differentiation matrix D and Fibonacci
polynomials, L(m)

k (x) can be approximated [52] as follows:

L(m)
k (x) = kFk(x)Dm−1, (2.5)

where

D =


0 0 . . . 0
0
... d

0


,

and d is a N × N matrix

dm,n =

m sin (n−m)π
2 , if n > m,

0, otherwise.
(2.6)
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3. Proposed methodology

To describe the proposed hybrid scheme, we consider
Eq (1.1)

utt + α∆u + ψ(u) = g(x, t) (3.1)

with the following conditions:

u(x, 0) = g1(x), ut(x, 0) = g2(x), a ≤ x ≤ b, (3.2)

u(a, t) = f1(t), u(b, t) = f2(t), t > 0. (3.3)

First, re-arrange Eq (3.1)

utt = g(x, t) − α∆u − ψ(u). (3.4)

Now, using Störmer’s method for the time discretization of
Eq (3.4), we have the following:

un+1 = 2un − un−1 + dt2(g(x, t) − α∆un − ψ(u)n), (3.5)

where

un+1 = u(tn+1, x),

dt is time stepsize for t ∈ [0,T ].

Then, let us discretize the spacial domain [a, b] into the
M + 1 number of the nodes xi, i = 0, 1, 2, . . . ,M, where
x0, xM are the boundary points while the remaining (i.e.,
xi, i = 1, 2, . . . ,M − 1) are interior points of the domain,
which are computed as follows:

xi = a + i ∗ h,

where

h = (b − a)/M

is spatial step size. Here, we approximate the unknown
function u(x) by Lucas polynomials at the nth time level,
which is denoted as un(x):

un(x) =
M∑
j=0

cn
j (t)L j(x) = LT (x)C, (3.6)

where C is the vector of unknown coefficients dependent on
time, and L is the (M + 1) × 1 vector of Lucas polynomials,
such that

L(x) = [L0(x), L1(x), ..., LM(x)]T . (3.7)

Now, for the collocation points xi,

un(xi) =
M∑
j=0

cn
j (t)L j(xi) = L(xi)C. (3.8)

Let
un(xi) = ui;

then, in the matrix notation,

U = AC, (3.9)

where

U = [u0, u1, ..., uM]T , C = [c0, c1, ..., cM]T

and

A =


L0(x)
L1(x)
...

LM(x)


=


L0(x0) L0(x1) · · · L0(xM)
L1(x0) L1(x1) · · · L1(xM)
...

...
. . .

...

LM(x0) LM(x1) · · · LM(xM)


. (3.10)

Similarly, the kth order derivative of unknown functions
are approximated by the kth order derivatives of Lucas
polynomials

u(k)(xi) =
M∑
j=0

cn
j (t)L

(k)
j (xi) = L(k)(xi)C. (3.11)

In the matrix form,
U(k) = BC, (3.12)

where

U(k) = [u(k)
0 , u(k)

1 , ..., u(k)
M ]T , C = [c0, c1, ..., cM]T

and

B =


L(k)

0 (x)
L(k)

1 (x)
...

L(k)
M (x)


=


L(k)

0 (x0) L(k)
0 (x1) · · · L(k)

0 (xM)
L(k)

1 (x0) L(k)
1 (x1) · · · L(k)

1 (xM)
...

...
. . .

...

L(k)
M (x0) L(k)

M (x1) · · · L(k)
M (xM)


.

(3.13)

Using the above approximation in Eq (3.5), we have the
following:

un+1 = 2un − un−1 + dt2 (gn − αDun − ψ(un)), (3.14)
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where
gn = g(xi, tn) (i = 0, 1, · · · ,M)

and
D = BA−1.

For n=1, u1 and u0 can be obtained from the initial
conditions. To satisfy the boundary conditions we collocated
the boundary conditions that corresponded to each of the
following:

xi ∈ Γ = {a, b}.

That is, for
u(xi, t) = f (xi, t), ∀xi ∈ Γ,

we then update the solution vector at boundary points to have

un+1
Γ = f(tn+1).

Remark 3.1. The stability condition for the second order

Störmer method is as follows:

α

(
dt
dx

)
≤ 1,

where α is the coefficient of the Laplace operator. Then the

method is then said to be stable, by the rule of thumb, if all

the eigenvalues, λ, of the discretized operator,

D = BA−1,

scaled by dt2 lies within the stability region of the time-

stepping method [53], i.e.,

−4 ≤ ℜ(λdt2) ≤ 0.

4. Numerical results and discussion

This section demonstrates the numerical solution of
one dimension Klien-Gordon and two dimension sinh-
Gordon equations utilizing the proposed scheme. All the
computations are performed using MATLAB (R2012a)
on Dell PC Laptop with an Intel(R) Core(TM)i5-2450M
CPU 2.50 GHz 2.50 GHz 8 GB RAM. To check the accuracy
and convergence, we used the following error norms:

L∞ = max| Ek − uk |
M+1
k=1 ,

L2 =

dx
M+1∑
k=1

(Ek − uk)2


1/2

,

Lrms =

1/MM+1∑
k=1

(Ek − uk)2


1/2

,

C − rate =
L∞(dtℓ)

L∞(dtℓ+1)
,

where E is the exact solution.

4.1. (1+1)-dimensional case

Test Problem 4.1. Consider Eq (1.2) with α = β = −1,

γ = 0, g(x, t) = 0; we have

utt − ∆u − u = 0, (4.1)

with the following initial and boundary conditions:

u(x, 0) = 1 + sin(x), ut(x, 0) = 0, x ∈ [0, 1],

u(0, t) = sin(0) + cosh(t), u(1, t) = sin(1) + cosh(t), t > 0,

and the actual solution is as follows:

u(x, t) = sin(x) + cosh(t).

Using the proposed methodology for this particular equation

the iterative scheme (3.14) becomes the following:

un+1 = 2un − un−1 + dt2(gn + Dun + un). (4.2)

The above equation is used to generate numerical results,

which are provided in Table 1 in terms of the L∞ and L2

error norms. These findings are obtained using nodal points

M = 10 and various values of the time step size dt while

preserving the final time T = 0.1, and for various values

of T and fixing dt = 0.0001. The accuracy increases as

the value of dt decreases, as shown in this table. Based on

the comparison with [29], it is obvious that the suggested

scheme is more accurate than those reported in the recent

literature. The numerical results in terms of L∞, L2, and

Lrms, as well as central processing unit (CPU) times in

seconds, are computed using the suggested approach for

various values of M in Table 2. The table illustrates that as

the number of collocation points rises, the current approach

provides an improved accuracy. Furthermore, the proposed

technique may be seen to be quite efficient, whereas the

comparison between the exact and approximate solutions

are visualized in Figure 1.
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Table 1. Results of the proposed method for Test
Problem 4.1 with M = 10 and T = 0.1.

Present method MQ-RBF [29] GA-RBF [29]

dt L∞ L2 L∞ L2 L∞ L2

0.01 5.65E-04 4.92E-04 5.06E-04 4.46E-04 1.36E-03 1.26E-03
0.001 5.50E-05 4.86E-05 5.55E-05 4.74E-05 5.08E-05 4.43E-05
0.0005 2.75E-05 2.43E-05 4.04E-05 2.61E-05 2.57E-05 2.21E-05
0.0001 5.49E-06 4.85E-06 2.83E-05 1.12E-05 6.80E-06 5.05E-06

T L∞ L2 L∞ L∞
0.01 5.00E-07 4.78E-07 7.57E-07 - 5.35E-07 -
0.02 1.00E-06 9.49E-07 2.02E-06 - 1.13E-06 -
0.1 5.49E-06 4.85E-06 2.83E-05 - 6.80E-06 -
0.5 4.19E-05 3.42E-05 8.61E-05 - 4.63E-05 -
1 4.37E-04 2.14E-04 3.95E-05 - 4.20E-04 -

Table 2. Results of the proposed method for Test
Problem 4.1 with dt = 0.0001 and T = 0.1.

M L∞ L2 Lrms CPU

5 5.03E-06 4.45E-06 3.15E-07 0.037078
7 4.32E-06 3.73E-06 2.95E-07 0.045391
10 2.49E-06 1.85E-06 1.85E-07 0.051433
15 9.03E-07 8.56E-07 9.81E-08 0.071921
18 7.12E-07 6.42E-07 7.88E-08 0.109775
20 5.31E-07 5.13E-07 6.36E-08 0.155763
22 2.90E-07 1.65E-07 3.38E-08 0.330819
25 2.35E-07 1.09E-07 1.47E-08 1.366762
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Figure 1. Comparison of exact and approximate
solutions for Test Problem 4.1.

Test Problem 4.2. Now assume

α = −1, β = −2, γ = 0

and

g(x, t) = −2 sin x sin t

in Eq (1.2) with the following conditions:

u(x, 0) = 0, ut(x, 0) = sin x, x ∈ [0, π/2],

u(0, t) = 0, u(π/2, t) = sin t, t > 0.

The exact solution of Eq (1.2) for the above parameter is

given in [29], which is

u(x, t) = sin x sin t.

In Test Problem 4.2, the numerical results are computed

utilizing the proposed technique. These results are shown in

Table 3 using nodal points

M = 10

and various values of dt while preserving the final time

T = 0.1,

and for various values of T and fixing

dt = 0.0001.

In this situation, as indicated in the table, the method’s

accuracy improves as the value of dt declines. Furthermore,

in comparison with [29], we came to know that the current

method is more accurate than other articles published in

the recent literature. Similarly to the previous test problem,

the numerical results are computed in the form of L∞, L2,

and Lrms, as well as the CPU times in seconds, using the

suggested approach for various values of M in Table 4.

As the number of collocation points increases, the current

approach efficiently improves the accuracy, as seen in

the table whereas profiles of the exact and approximate

solutions are given in Figure 2.

Table 3. Results of the proposed method for Test
Problem 4.2 with M = 10 and T = 0.1.

Present method MQ-RBF [29] GA-RBF [29]

dt L∞ L2 L∞ L2 L∞ L2

0.01 1.59E-06 1.23E-03 2.50E-03 1.04E-03 2.44E-03 9.86E-04
0.001 1.59E-08 1.23E-04 1.53E-04 6.58E-05 5.05E-04 2.09E-04
0.0005 3.97E-09 6.17E-05 7.65E-05 3.24E-05 3.87E-04 1.63E-04
0.0001 1.57E-10 1.23E-05 1.50E-05 2.59E-05 2.92E-04 1.26E-04

T L∞ L2 L∞ L∞
0.01 1.65E-11 3.91E-06 1.58E-07 - 5.45E-07 -
0.02 3.29E-11 5.53E-06 6.29E-07 - 3.32E-06 -
0.1 1.57E-10 1.23E-05 1.50E-05 - 2.92E-04 -
0.5 6.47E-10 2.27E-05 8.84E-05 - 1.07E-02 -
1 1.16E-09 1.39E-05 5.20E-05 - 2.34E-02 -
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Table 4. Results of the proposed method for Test
Problem 4.2 with dt = 0.0001 and T = 1.

M L∞ L2 Lrms CPU

5 4.23E-04 3.32E-03 1.87E-04 0.051816
7 2.99E-05 2.90E-04 3.65E-05 0.051183
10 9.76E-06 8.90E-05 7.09E-06 0.082319
15 6.51E-06 2.40E-05 2.34E-06 0.09778
18 1.64E-06 2.73E-05 6.92E-07 0.143512
20 8.01E-07 8.93E-06 1.01E-07 0.184772
22 9.55E-08 5.80E-06 8.68E-08 0.338581
25 7.12E-08 7.42E-07 7.70E-08 1.288726
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Figure 2. Exact versus approximate solution for
Test Problem 4.2.

Test Problem 4.3. Consider Eq (1.2) with the exact solution

u(x, t) = x3t3, when

α = −1, β = 0, γ = 1

and

g(x, t) = 6xt(x2 − t2) + x6t6,

with associated conditions

u(x, 0) = 0, ut(x, 0) = 0, x ∈ [0, 1],

u(0, t) = 0, u(1, t) = 0, t > 0.

Tables 5 and 6 show the numerical results for Test

Problem 4.3 for various values of dt and M, respectively.

We compared our results with the methods in [29] for

M = 10 and T = 1

in Table 5. We can see from this table that the method’s

accuracy improves as the number of iterations increases,

with a very good accuracy of 10−8 for

dt = 0.0001.

In comparison to the method in [29], the proposed method

produces more accurate results. In Table 6, the results are

computed in terms of L∞, L2, and Lrms for

dt = 0.001

and time T = 1, as well as the CPU time in seconds. The

suggested procedure is accurate and efficient, as shown in

this table. The profile of the exact and approximate solutions

are shown in Figures 3 and 4, respectively.

Table 5. Results of the proposed method for Test
Problem 4.3 with M = 10 and T = 1.

Present method MQ-RBF [29] GA-RBF [29]

dt L∞ L2 L∞ L2 L∞ L2

0.01 3.35E-04 1.78E-04 2.24E-02 9.59E-03 4.66E-02 1.96E-02
0.001 3.24E-06 1.64E-06 2.46E-03 1.05E-03 2.27E-03 9.71E-04
0.0005 8.08E-07 4.09E-07 1.36E-03 5.79E-04 1.17E-03 5.00E-04
0.0001 3.17E-08 1.66E-08 4.85E-04 2.07E-04 2.94E-04 1.25E-04

Table 6. Results of the proposed method for Test
Problem 4.3 with T = 1 and dt = 0.001.

M L∞ L2 Lrms CPU

5 2.19E-04 1.37E-04 9.65E-05 0.050013
10 3.24E-05 6.36E-06 1.64E-06 0.102678
15 4.84E-06 4.88E-06 6.82E-07 0.088209
20 1.07E-06 1.3606E-06 1.92E-07 0.185567
22 8.11E-07 5.05E-07 7.13E-08 0.370034
25 6.08E-07 2.72E-07 4.21E-08 1.372918
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Figure 3. Comparison of exact and approximate
solutions for Test Problem 4.3.
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Figure 4. Exact versus approximate solution for
Test Problem 4.3.

Test Problem 4.4. Consider

α = −1, β = −1, γ = 0

and

g(x, t) = − cos x sin t

in Eq (1.2) with the following conditions:

u(x, 0) = 0, ut(x, 0) = cos x, x ∈ [0, 1],

u(0, t) = sin t, u(1, t) = cos 1 sin t, t > 0.

The exact solution of Eq (1.2) for the above parameter given

as follows:

u(x, t) = cos x sin t.

The solution is computed for the fixed point T = 0.1 and

M = 20, while decreasing the time step. The results are

reported in Table 7, which shows that the accuracy improves

as the number of iteration increases. In Table 8, the results

are recorded for various numbers of nodal points M, and

notice that as number of collocation point increases, the

numerical convergence accuracy improves. Along with,

maximum error, the CPU time in seconds is also reported in

the tables. The solution profiles of the exact and approximate

solutions are illustrated in Figure 5, which shows that both

the solutions are well matched.

Table 7. Results of the proposed method for Test
Problem 4.4 with M = 15 and T = 0.1.

dt L∞ L2 Lrms CPU

0.01 4.28E-05 3.55E-05 4.79E-05 2.03E-01
0.001 4.88E-06 4.05E-06 1.80E-06 2.04E-01
0.0005 2.46E-06 2.04E-06 6.45E-07 1.77E-01
0.0001 4.97E-07 4.23E-07 5.98E-08 1.92E-01

Table 8. Results of the proposed method for Test
Problem 4.4 with dt = 0.0001 and T = 0.1.

M L∞ L2 Lrms CPU

5 4.97E-07 4.88E-07 3.74E-08 0.04553
7 4.80E-07 3.94E-07 3.53E-08 0.048321
10 4.90E-07 3.76E-07 3.40E-08 0.063045
15 4.64E-07 3.66E-07 3.39E-08 0.081496
18 4.54E-07 3.68E-07 3.36E-08 0.115411
20 4.40E-07 3.43E-07 3.33E-08 0.167235
22 4.36E-07 3.36E-07 3.32E-08 0.372988
25 4.24E-07 3.18E-07 2.82E-08 1.378855
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Figure 5. Exact versus approximate solution for
Test Problem 4.4.

Test Problem 4.5. (1+2)-dimensional case: Finally,

consider the two dimensional sinh-Gordon equation

utt − ∆u + sinh(u) = g(x, y, t) (4.3)

with initial conditions

u(x, y, 0) = ut(x, y, 0) = sin(x + y), (x, y) ∈ [0, 1]2,

and boundary conditions

u(0, y, t) = et sin(0 + y), u(1, y, t) = et sin(1 + y), t > 0,

u(x, 0, t) = et sin(x + 0), u(x, 1, t) = et sin(x + 1).

The exact solution

u(x, y, t) = et sin(x + y)

is considered, as given in [47]. Additionally the source term

is as follows:

g(x, y, t) = 3et sin(x + y) + sinh(et sin(x + y)). (4.4)

The results of the suggested method for Test Problem 4.5

are shown in Table 9 for various values of dt with M = 4
and T = 1. This table shows that the method delivers a

good accuracy for very coarse nodes, and that the method’s

accuracy improves to some extent as the number of iterations

increases. Additionally in this table, we also compared the

computed results to the approach in [47]. The results of

the proposed approach in contrast to the method presented

in [47] are shown in Table 10 for various values of M

for the same test problem. This comparison reveals that

the proposed approach is more accurate than [47]. The

approximate solution of the suggested approach is compared

to the exact solution in Figure 6. Although the absolute

errors are indicated in Figure 7, the numerical solution is in

a good agreement with the exact solution, as demonstrated

in Figure 6.

Table 9. Results of the proposed method for Test
Problem 4.5 with M = 4 and T = 1.

Present method [47]

dt L∞ L2 C-rate(L∞) L∞ L2

0.100 1.91E-02 8.66E-03 - 2.20E-02 4.19E-02
0.050 9.19E-03 3.93E-03 2.08E+00 1.15E-02 1.47E-02
0.025 4.52E-03 1.93E-03 2.03E+00 7.53E-03 1.23E-02
0.013 2.24E-03 9.51E-04 2.02E+00 4.88E-03 9.57E-03
0.006 1.11E-03 4.68E-04 2.02E+00 2.90E-03 6.04E-03
0.003 5.45E-04 2.27E-04 2.04E+00 1.60E-03 3.40E-03
0.002 2.63E-04 1.08E-04 2.07E+00 8.49E-04 1.80E-03
0.001 1.22E-04 5.13E-05 2.15E+00 4.43E-04 9.30E-04

Table 10. Results of the proposed method for Test
Problem 4.5 with dt = 0.001 and T = 1.

Present method [47]

M L∞ L2 L∞ L2

2 5.85E-03 2.93E-03 5.53E-03 5.53E-03
3 2.22E-03 1.47E-03 1.22E-03 1.74E-03
4 1.62E-04 6.66E-05 5.59E-04 1.18E-03
5 1.63E-04 6.75E-05 5.38E-04 9.99E-04
6 1.23E-04 6.37E-05 - -
7 1.32E-04 7.41E-05 - -
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Figure 6. Exact versus approximate solution at
M = 15, T = 1, for Test Problem 4.5.
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Figure 7. Error for Test Problem 4.5.

5. Conclusions

A numerical method based on Fibonacci polynomials
combined with Störmer’s method was developed to solve

the nonlinear Klein/Sinh-Gordon equation. On a variety
of test cases, numerical evaluation exhibited an improved
performance of the proposed scheme against the available
results in the literature. As evidenced by the comparison,
the proposed technique is simple to execute and faster in
convergence. Furthermore, it was observed that by reducing
the spatial and time steps size, the errors were reduced.
With slight modifications, the proposed method can be
applied to a variety of PDEs. This modification is mainly
dictated by the problem at hand with the associated initial
and boundary conditions that are dictated by the particular
problem of interest. As such, we are interested in applying
the proposed method to time-dependent Neumann and/or
mixed boundary value problems with possible discontinuous
initial condition(s). The limitations, as is the case in
spectral methods, was the high-condition numbers of the
collocated/system matrices. However, this can be alleviated
by the state-of-the-art pre-conditioned algorithms developed
for spectral methods. In the future, the proposed method can
be expanded for applications to complex fractal-fractional
problems.
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47. Ö. Oruç, A new numerical treatment based on Lucas
polynomials for 1D and 2D sinh-Gordon equation,

Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 14–
25. https://doi.org/10.1016/j.cnsns.2017.09.006

48. I. Ali, S. Haq, K. S. Nisar, D. Baleanu, An efficient
numerical scheme based on Lucas polynomials
for the study of multidimensional Burgers-type
equations, Adv. Differ. Equations, 2021 (2021), 43.
https://doi.org/10.1186/s13662-020-03160-4

49. S. Haq, I. Ali, Approximate solution of two-dimensional
Sobolev equation using a mixed Lucas and Fibonacci
polynomials, Eng. Comput., 38 (2021), 2059–2068.
https://doi.org/10.1007/s00366-021-01327-5

50. S. Haq, I. Ali, K. S. Nisar, A computational
study of two-dimensional reaction-diffusion
Brusselator system with applications in chemical
processes, Alex. Eng. J., 60 (2021), 4381–4392.
https://doi.org/10.1016/j.aej.2021.02.064

51. I. Ahmad, A. A. Bakar, I. Ali, S. Haq, S.
Yussof, A. H. Ali, Computational analysis of
time-fractional models in energy infrastructure
applications, Alex. Eng. J., 82 (2023), 426–436.
https://doi.org/10.1016/j.aej.2023.09.057

52. I. Ali, S. Haq, S. F. Aldosary, K. S. Nisar,
F. Ahmad, Numerical solution of one-and two-
dimensional time-fractional Burgers equation via
lucas polynomials coupled with finite difference
method, Alex. Eng. J., 61 (2022), 6077–6087.
https://doi.org/10.1016/j.aej.2021.11.032

53. J. S. Hesthaven, S. Gottlieb, D. Gottlieb,
Spectral methods for time-dependent

problems, Cambridge University Press, 2007.
https://doi.org/10.1017/CBO9780511618352

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Modelling and Control Volume 4, Issue 3, 361–373.

http://dx.doi.org/https://doi.org/10.1007/s40819-020-0799-4
http://dx.doi.org/https://doi.org/10.1155/2015/625984
http://dx.doi.org/https://doi.org/10.1016/j.amc.2015.10.035
http://dx.doi.org/https://doi.org/10.18576/amis/110627
http://dx.doi.org/https://doi.org/10.1155/2023/1705607
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104123
http://dx.doi.org/https://doi.org/10.1134/S1061920819010096
http://dx.doi.org/https://doi.org/10.1007/s40096-022-00465-1
http://dx.doi.org/https://doi.org/10.1007/s40096-022-00465-1
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2017.09.006
http://dx.doi.org/https://doi.org/10.1186/s13662-020-03160-4
http://dx.doi.org/https://doi.org/10.1007/s00366-021-01327-5
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.02.064
http://dx.doi.org/https://doi.org/10.1016/j.aej.2023.09.057
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.11.032
http://dx.doi.org/https://doi.org/10.1017/CBO9780511618352
http://creativecommons.org/licenses/by/4.0

	Introduction
	Fundamental concepts
	Fibonacci polynomials
	Lucas polynomials
	Function approximation

	Proposed methodology
	Numerical results and discussion
	(1+1)-dimensional case

	Conclusions

