
Mathematical Modelling 

and Control

https://www.aimspress.com/journal/mmc

Editors in Chief:
Xiaodi Li & Sabri Arik

Mathematical
Modelling and Control

ISSN: 2767-8946Volume 1 January 2021 MMC, 4(3): 316–335.
DOI: 10.3934/mmc.2024026
Received: 28 December 2022
Revised: 13 May 2023
Accepted: 20 June 2023
Published: 09 September 2024

Research article

Modeling and optimal control of COVID-19 and malaria co-infection based
on vaccination

Yaxin Ren1 and Yakui Xue2,*

1 Laiwu Technician Institute, Ji’nan 271100, China
2 School of Mathematics, North University of China, Taiyuan 030051, China

* Correspondence: Email: xyk5152@163.com.

Abstract: Malaria is a serious health problem in Africa, and the ongoing COVID-19 pandemic has affected the implementation of key
malaria control interventions. This jeopardizes the gains made in malaria. As a result, a new co-infection model of COVID-19 and
malaria is constructed, and the role of vaccination in COVID-19-malaria co-infection is analyzed. The existence and stability of the
equilibria of each single infection are first studied by their respective basic reproduction numbers. When the basic reproduction numbers
RC0 and RM0 are both below unity, the COVID-19-malaria-free equilibrium is locally asymptotically stable. Sensitivity analysis reveals
that the main parameters affecting the spread of diseases are their respective disease transmission rate and vaccine efficacy. Further, we
introduce the effect of vaccination rate and efficacy on controlling the co-infected population. It also shows that under the condition
of a low recovery rate caused by the shortage of medical resources, improving the vaccination rate and effectiveness of vaccines has
a positive impact on suppressing diseases. The model is then extended into an optimal control system by introducing prevention and
treatment measures for COVID-19 and malaria. The results suggest that applying each strategy alone can reduce the scale of co-infection,
but strategy A increases the number of malaria cases and strategy B prolongs the period of COVID-19 infection. Measures to control
COVID-19 must be combined with efforts to ensure malaria control is maintained.
Keywords: COVID-19; malaria; co-infection; vaccination; optimum control

1. Introduction

Malaria is a vector-borne infection caused by the bite
of a mosquito carrying the plasmodium parasite. Of all
infectious diseases, malaria remains one of the largest
contributors to the global burden and continues to receive
worldwide attention in terms of suffering and death (see [1]).
Efforts have been made to curb malaria transmission (see
the works [1, 2]), for example, through the use of effective
antimalarial drugs [3] and infecting the mosquito population
with Wolbachia [4]. Also, COVID-19 was caused by the
outbreak of SARS-CoV-2 at the end of 2019, which spreads
rapidly around the world and poses an unprecedented
challenge to global health. The clinical manifestations of
COVID-19 include fever, difficulty breathing, dry cough,
and a range of symptoms that overlap those of malaria [5].

This makes diagnosis and treatment challenging. In addition,
malaria cases are mainly distributed in African countries,

which have a heavy burden of infectious diseases and

weak public health infrastructure. At the same time, most

of these countries have limited health budgets [6], and

controlling the spread of COVID-19 will have an impact

on the intervention level of other infectious diseases [7].

This provides a geographical advantage for co-infection of

COVID-19 and malaria. Hence, Gutman et al. [8] pointed

out that co-infection of malaria and COVID-19 can occur in

those countries where malaria is endemic. Many scientists

also believed COVID-19 would hit Africa hard [9–11].

Moreover, there are also concerns about the broader health,

economic, and social impacts of measures to mitigate the

spread of COVID-19, not just about the disease itself. From

the aforementioned reasons, co-infection is a concern, and it
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is important to theoretically investigate the impact of control

measures on their long-term dynamics.

Mathematical models are important tools for predicting
and simulating the spread of epidemics, and can provide
timely information for decision-making [12–15]. At the
beginning of the COVID-19 outbreak, a large number
of papers about COVID-19 infection modeling have been
produced. Scholars have made many contributions to
COVID-19 research from the perspective of micro [16, 17],
macro (see [18, 19]), or using fractional order models
(see, for example, [19–21]). However, reports of co-
infection of COVID-19 and malaria are rare, and the
researchers are focused on studying the complex dynamics
and possible control of this global infection. Tchoumi
et al. [13] constructed a mathematical model incorporating
some epidemiological features of the co-dynamics of both
malaria and COVID-19. They showed that applying
both COVID-19 and malaria protective strategies could
help reduce their spread in comparison to applying each
preventive measure singly, but only control strategies for
non-pharmaceutical interventions were analyzed. Ojo et al.
analyzed the impact of COVID-19 on a malaria-dominated
region and investigated the impact of threshold and co-
infection transmission rate on the synergistic relationship
between the two diseases [14]. The co-infection of two
diseases can have devastating consequences globally, so
research on the co-infection of COVID-19 and other diseases
is booming. For example, COVID-19 and dengue [22],
COVID-19 and HIV [23, 24], COVID-19 and cholera [25]
and other co-infections [26–30].

Some researchers developed dynamic models of
epidemiology for infectious disease based on preventive
measures (social distancing, wearing masks, and
lockdown) [21, 31, 32]. Couras et al. [33] introduced
two control functions in the SEIR model representing
vaccination and plasma transfusion, and the results showed
that the strategies may have a real application for the
COVID-19 pandemic. So, among the measures to control
the spread of disease, vaccination is an effective way
to cut the chain of transmission, prevent, and reduce
virus infection [34]. There are also some studies on the
impact of vaccination on the spread of COVID-19. For
example, see [15, 18, 35–37] and the references therein.

Despite these control measures, controlling the spread of
COVID-19 remains a challenge due to inadequate vaccine
supply, vaccine uptake hesitancy, vaccine efficacy, vaccine
waning, non-adherence to public health orders, and virus
mutation [38].

In addition to vaccination, asymptomatic carriers also
play an important role in infectious disease modeling [39],
neither of which has been mentioned in literature [13].
Currently, there are insufficient studies to analyze the impact
of vaccination on co-infection with COVID-19 and malaria.
To fill this gap, we consider and improve the limitations
in [13] in modeling and formulate a COVID-19 and malaria
co-infection model to study the effects of basic reproduction
numbers and vaccination on the COVID-19-malaria co-
infection. This study is seemingly the first of its kind to
theoretically detailly investigate the effects of vaccination
on the co-dynamics of COVID-19 and malaria, as well
as the key prevention and therapeutic measures that are
incorporated into the control system. Then, we discuss
numerical simulation depicts results.

The structure of this paper is as follows: In Section 2, the
co-infection model of malaria and COVID-19 is established.
In Section 3, the sub-models are first analyzed, and
then the co-infection model is studied. To mitigate the
spread of these two diseases, four control measures are
incorporated into the co-infection model, and the optimal
control problem is explored in Section 4. In Section 5,
numerical simulations are carried out. This includes data
fitting, sensitivity analysis, stability analysis, the impact of
vaccination parameters on disease transmission and control,
and the implementation of control strategies. Section 6 is the
summary part.

2. Model formulation

The human population at time t, denoted by N(t),
is divided into susceptible individuals S (t), individuals
vaccinated against COVID-19 V(t), asymptomatic infectious
individuals A(t), symptomatic infectious individuals I(t),
individuals infected with malaria E(t), individuals infected
with both malaria and COVID-19 IE(t), and recovered
individuals R(t). So that,

N (t) = S (t) + V (t) + A (t) + I (t) + E (t) + IE (t) + R (t) .
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The mosquito population at time t, denoted by Nv(t),
is divided into susceptible mosquitoes S v(t), mosquitoes
exposed to the malaria parasite Ev(t), and infectious
mosquitoes Iv(t). So that,

Nv(t) = S v(t) + Ev(t) + Iv(t).

The model has the following assumptions:

(i) Co-infected individuals can not transmit the mixed
infections at the same time;

(ii) Co-infected individuals can recover either from
COVID-19 or malaria but not from the mixed infection
at the same time.

The changes that occur in each compartment in disease
transmission can be interpreted by Figures 1 and 2.

Figure 1. Transmission diagram of the human
component of the model.

Figure 2. Transmission diagram of the mosquito
component of the model.

The system of differential equations related to the

transmission diagram Figures 1 and 2 is as follows:



dS (t)
dt
= Λ − (λm + λc + τ) S − µS ,

dV(t)
dt
= τS − ((1 − θ) λc + λm) V − µV,

dA(t)
dt
= λc (S + (1 − θ) V) − (ρ + φ3 + µ) A,

dI(t)
dt
= ρA − σ2λmI − (δ2 + φ2 + µ) I + γ2IE ,

dE(t)
dt
= λm (S + V) − σ1λcE − (δ1 + φ1 + µ) E + γ1IE ,

dIE(t)
dt
= σ1λcE + σ2λmI − (δ3 + µ) IE − (γ1 + γ2) IE ,

dR(t)
dt
= φ1E + φ2I + φ3A − µR,

dS v(t)
dt

= Λv − λvS v − µvS v,

dEv(t)
dt

= λvS v − (αv + µv) Ev,

dIv(t)
dt
= αvEv − µvIv,

(2.1)
where,

λc =
βc (ε1A + I + IE)

N
,

λm =
βmbIv

N

and

λv =
βvb (E + IE)

N
.

All variables and parameters of model (2.1) are non-
negative at time

t ≥ 0.

In this paper, as in article [13], the incidence of the disease is
considered as the standard incidence type. The descriptions
and values of other associated parameters are provided in
Tables 1 and 2.
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Table 1. Parameters description.

Parameter Description

Λ Recruitment rate of humans
Λv Recruitment rate of mosquitoes
βc Contact rate for COVID-19 transmission

βm
Malaria transmission probability per
mosquito bite

βv
Transmission probability in vectors from
infected humans

φ1 Malaria recovery rate for singly-infected

φ2
Recovery rate of symptomatic infectious
individuals

φ3
Recovery rate of asymptomatic infectious
individuals

τ COVID-19 vaccination rate
δ1 Malaria induced death rate
δ2 COVID-19 induced death rate

δ3
Disease induced death rate for individuals
in compartment IE

µ Mortality rate of humans
µv Natural mortality rate of mosquitoes

ε1
Modification factor concerning transmission
from compartment A

b Number of bites per day by female mosquitoes
θ COVID-19 vaccine efficacy
ρ Rate of onset of symptoms

γ1
Rate at which co-infected individuals (IE)
recover from COVID-19-only

γ2
Rate at which co-infected individuals (IE)
recover from malaria-only

σ1
Factor that enhances acquiring of COVID-19
infection after being infected with malaria

σ2
Factor that enhances the acquisition of malaria
infection after being infected with COVID-19

αv
Progression rate from exposed to
infectious class

3. Model analysis

Before analyzing the dynamics of the full model, analyze
the sub-models first, i.e., COVID-19-only model and
malaria-only model.

3.1. COVID-19-only model

The COVID-19-only sub-model is not related to malaria,
so the COVID-19-only model is obtained by setting

E (t) = IE (t) = S v (t) = Ev (t) = Iv (t) = 0

Table 2. Parameters used in the model.

Parameter Value Reference

Λ 39609704
64.13×365 [24]

Λv
5000
21 [40]

βc 0.4531 [13]
βm 0.5 [13]
βv 0.52 Assumed
φ1 0.038 [28]
φ2 0.022 Assumed
φ3 0.05 Assumed
τ 0.02 [37]
δ1 0.0019 [28]
δ2 0.015 [29]
δ3 0.4 Assumed
µ 1

64.13×365 [24]
µv 0.033 [4]
ε1 0.45 [15]
b 4.3 × 0.33 [13]
θ 0.8 [15]
ρ 0.07 [30]
γ1 0.055 Assumed
γ2 0.038 Assumed
σ1 1.02 [13]
σ2 1.01 [13]
αv 0.1 [13]

in (2.1). We have

dS (t)
dt
= Λ − (λc + τ) S − µS ,

dV(t)
dt
= τS − (1 − θ) λcV − µV,

dA(t)
dt
= λc (S + (1 − θ) V) − (ρ + φ3 + µ) A,

dI(t)
dt
= ρA − (δ2 + φ2 + µ) I,

dR(t)
dt
= φ2I + φ3A − µR,

(3.1)

where

λc =
βc (ε1A + I)

N

is the force of infection and

N (t) = S (t) + V (t) + A (t) + I (t) + R (t) .

By adding up all the equations of the model (3.1), the total
human population is given by

dN (t)
dt
= Λ − µN − δ2I. (3.2)
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Solving the differential Eq (3.2), we have

N (t) ≤ N (0) e−µt +
Λ

µ

(
1 − e−µt

)
. (3.3)

Thereby, 0 ≤ N (t) ≤ Λ
µ

as t → +∞. In the region

ΓC =

{
(S ,V, A, I,R) ∈ R5

+ : N (t) ≤
Λ

µ

}
,

all solutions of the model (3.1) starting in ΓC remain in
ΓC for all t ≥ 0. Thus, we will consider the dynamics of
model (3.1) in ΓC .

3.1.1. Stability of the disease-free equilibrium

The disease-free equilibrium of model (3.1) is given by

EC0 =

(
Λ

µ + τ
,
Λτ

µ (µ + τ)
, 0, 0, 0

)
. (3.4)

According to the next generation matrix method [41], the
matrices F and V are calculated by

F =

 λc (S + (1 − θ) V)

0


and

V =

 (ρ + φ3 + µ) A
(δ2 + φ2 + µ) I − ρA

 .
Then,

F =

 βcε1[µ+τ(1−θ)]
µ+τ

βc[µ+τ(1−θ)]
µ+τ

0 0


and

V =

 ρ + φ3 + µ 0
−ρ δ2 + φ2 + µ

 .
Thus, RC0 is given by

RC0 =
βc

[
(δ2 + φ2 + µ) ε1 + ρ

] [
µ + (1 − θ) τ

]
(ρ + φ3 + µ) (δ2 + φ2 + µ) (µ + τ)

. (3.5)

From Theorem 2 of [41], the result follows:

Lemma 3.1. The disease-free equilibrium EC0 of the

COVID-19-only model (3.1) is locally asymptotically stable

if RC0 < 1, and unstable if RC0 > 1.

Theorem 3.1. The disease-free equilibrium EC0 of the

COVID-19-only model (3.1) is globally asymptotically

stable if RC0 < 1.

Proof. Consider a Lyapunov function L1(t) as follows

L1 = (δ2 + φ2 + µ) A +
βc

[
µ + (1 − θ) τ

]
µ + τ

I. (3.6)

From model (3.1), as

t → ∞,N → N∞ = S∞ + V∞ + A∞ + I∞ + R∞

≥ S∞ + V∞

= S 0 + V0.

Since S ≤ S 0 and V ≤ V0, the following inequalities which
will be used subsequently hold:

S
N
≤

S 0

S 0 + V0

and
V
N
≤

V0

S 0 + V0
.

Thus,

L̇1 = (δ2 + φ2 + µ)
[
λc (S + (1 − θ) V) − (ρ + φ3 + µ) A

]
+
βc

[
µ + (1 − θ) τ

]
µ + τ

[
ρA − (δ2 + φ2 + µ) I

]
≤
βc (δ2 + φ2 + µ)

[
µ + (1 − θ) τ

]
µ + τ

(ε1A + I)

− (δ2 + φ2 + µ) (ρ + φ3 + µ) A +
βcρ

[
µ + (1 − θ) τ

]
µ + τ

A

−
βc (δ2 + φ2 + µ)

[
µ + (1 − θ) τ

]
µ + τ

I

=
βc (δ2 + φ2 + µ)

[
µ + (1 − θ) τ

]
µ + τ

(
ε1 +

ρ

δ2 + φ2 + µ

)
A

− (δ2 + φ2 + µ) (ρ + φ3 + µ) A

= (δ2 + φ2 + µ) (ρ + φ3 + µ) (RC0 − 1) A.

(3.7)

It can be verified that L̇1 ≤ 0 for RC0 < 1. Thus,
by LaSalle’s invariance principle [42], the disease-free
equilibrium EC0 of model (3.1) is global asymptotically
stable when RC0 < 1. □

3.1.2. Existence and stability of the endemic equilibrium

Solving the COVID-19-only sub-model (3.1) at an
arbitrary equilibrium denoted by

EC1 = (S ∗,V∗, A∗, I∗,R∗)
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yields

EC1 =

(
Λ

µ+τ+λ∗c
,

τS ∗

µ + (1 − θ) λ∗c
,
λ∗c [S ∗ + (1 − θ) V∗]
ρ + φ3 + µ

,

ρA∗

δ2 + φ2 + µ
,
φ2I∗ + φ3A∗

µ
) , (3.8)

where
λ∗c =

βc (ε1A∗ + I∗)
S ∗ + V∗ + V∗ + I∗ + R∗

. (3.9)

Note that

ε1A∗ + I∗ =

Λλ∗c
[
µ + (1 − θ)

(
λ∗c + τ

)]
(ρ + φ3 + µ)

(
µ+τ+λ∗c

) [
µ + (1 − θ) λ∗c

] (
ε1 +

ρ

δ2 + φ2 + µ

)
.

(3.10)

From Eq (3.9), we obtain

ε1A∗ + I∗ =
λ∗cN∗

βc
(3.11)

From Eqs (3.10) and (3.11) and after some little
rearrangements, we obtain the following polynomial

a0λ
∗2
c + a1λ

∗
c + a2 = 0 (3.12)

and

a0 = (ρ + φ3 + µ) (δ2 + φ2 + µ) N∗ (1 − θ) ,

a1 =µ (ρ + φ3 + µ) (δ2 + φ2 + µ) N∗

+ (ρ + φ3 + µ) (δ2 + φ2 + µ) N∗ (µ+τ) (1 − θ)

− Λβc (1 − θ)
[
ε1 (δ2 + φ2 + µ) + ρ

]
,

a2 = (ρ + φ3 + µ) (δ2 + φ2 + µ)Λ (µ+τ) (1 − RC0) .

(3.13)

Hence, the following result:

Theorem 3.2. The endemic equilibrium

EC1 = (S ∗,V∗, A∗, I∗,R∗)

of the COVID-19-only model (3.1) has one unique endemic

equilibrium if RC0 > 1.

Theorem 3.3. The endemic equilibrium

EC1 = (S ∗,V∗, A∗, I∗,R∗)

of the COVID-19-only model (3.1) is globally asymptotically

stable if RC0 > 1.

Proof. The Lyapunov function L2(t) is given by

L2 =S − S ∗ − S ∗ ln
S
S ∗
+ V − V∗ − V∗ ln

V
V∗
+ A − A∗

− A∗ ln
A
A∗
+
βc [S ∗ + (1 − θ) V∗]

(δ2 + φ2 + µ) N0

(
I − I∗ − I∗ ln

I
I∗

)
.

(3.14)

The derivative of L2(t) along the solutions of model (3.1) is
as follows:

L̇2 =

(
1 −

S ∗

S

)
Ṡ +

(
1 −

V∗

V

)
V̇ +

(
1 −

A∗

A

)
Ȧ

+
βc [S ∗ + (1 − θ) V∗]

(δ2 + φ2 + µ) N0

(
1 −

I∗

I

)
İ.

(3.15)

Let

x =
S
S ∗
, y =

V
V∗
, g =

A
A∗
, t =

I
I∗
, (3.16)

we obtain

.
L2 =(1 −

1
x

)[Λ −
βcε1A∗S ∗

N0 xg −
βcε1I∗S ∗

N0 xt − (µ + τ) S ∗x]

+

(
1 −

1
y

)
[τS ∗x −

(1 − θ) βcε1A∗V∗

N0 yg

−
(1 − θ) βcI∗V∗

N0 ty − µV∗y] + (1 −
1
g

)[
βcε1A∗S ∗

N0 xg

+
(1 − θ) βcε1A∗V∗

N0 yg +
βcI∗S ∗

N0 xt +
(1 − θ) βcI∗V∗

N0 ty

− (ρ + φ3 + µ) A∗g] +
βc [S ∗ + (1 − θ) V∗]

(δ2 + φ2 + µ) N0 ·(
1 −

1
t

) [
ρA∗g − (δ2 + φ2 + µ) I∗t

]
=Λ+ (µ + τ) S ∗ + µV∗ + (ρ + φ3 + µ) A∗

+
βc [S ∗ + (1 − θ) V∗]

N0 I∗ −
(
µS ∗ +

βcε1A∗S ∗

N0

)
x − Λ

1
x

−

(
µV∗ +

(1 − θ) βcε1A∗V∗

N0

)
y − τS ∗

x
y
−
βcI∗S ∗

N0

xt
g

−
(1 − θ) βcI∗V∗

N0

ty
g
−
βc [S ∗ + (1 − θ) V∗]

(δ2 + φ2 + µ) N0 ρA
∗ g

t

=

(
µS ∗ +

βcε1A∗S ∗

N0

) (
2 − x −

1
x

)
+

(
µV∗ +

(1 − θ) βcε1A∗V∗

N0

) (
3 − y −

x
y
−

1
x

)
+
βcI∗S ∗

N0

(
3 −

xt
g
−

g
t
−

1
x

)
+

(1 − θ) βcI∗V∗

N0

(
4 −

ty
g
−

g
t
−

x
y
−

1
x

)
.

(3.17)
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Because the arithmetic mean is greater than or equal to the
geometric mean,

2 − x −
1
x
≤ 0, 3 − y −

x
y
−

1
x
≤ 0,

3 −
xt
g
−

g
t
−

1
x
≤ 0, 4 −

ty
g
−

g
t
−

x
y
−

1
x
≤ 0.

(3.18)

It can be verified that L̇2 ≤ 0 for RC0 > 1. Hence, by the
LaSalle’s invariance principle [42], the endemic equilibrium
EC1 of model (3.1) is global asymptotically stable when
RC0 > 1. □

3.2. Malaria-only model

The malaria-only model is obtained by setting

V (t) = A (t) = I (t) = IE (t) = 0

in (2.1). We have

dS (t)
dt
= Λ − λmS − µS ,

dE(t)
dt
= λmS − (δ1 + φ1 + µ) E,

dR(t)
dt
= φ1E − µR,

dS v(t)
dt

= Λv − λvS v − µvS v,

dEv(t)
dt

= λvS v − (αv + µv) Ev,

dIv(t)
dt
= αvEv − µvIv,

(3.19)

where,
λm =

βmbIv

N
, λv =

βvbE
N

and
N = S + E + R.

Consider the region

ΓM =

{
(S , E,R, S v, Ev, Iv) ∈ R6

+ : N (t) ≤
Λ

µ
,Nv (t) ≤

Λv

µv

}
.

It can be shown that the region ΓM is positively invariant.

3.2.1. Stability of the disease-free equilibrium

The disease-free equilibrium of the malaria-only
model (3.19) is given by

EM0 =
(
S 0, E0,R0, S 0

v , E
0
v , I

0
v

)
=

(
Λ

µ
, 0, 0,

Λv

µv
, 0, 0

)
.

According to the next generation matrix method [41], the
basic reproduction number is calculated as follows:

F =


λmS

λvS v

0

 , V =


(δ1 + φ1 + µ)E
(αv + µv)Ev

µvIv − αvEv

 .
Thus,

F =


0 0 βmb

βvbµΛv
Λµv

0 0

0 0 0

 ,

V =


δ1 + φ1 + µ 0 0

0 αv + µv 0
0 −αv µv

 .
The basic reproduction number RM0 of the model (3.19) is
the spectral radius of matrix FV−1. Thus, RM0 is given by

RM0 =

√
Λvβmβvb2µαv

Λµv
2 (δ1 + φ1 + µ) (αv + µv)

.

Lemma 3.2. [43, Theorem A.1] Given a > 0, b > 0, c > 0
and d > 0, all roots of the function

f (x) = (x + a)(x + b)(x + c)(x + d) − e

are negative or have negative real parts if and only if abcd >

e.

Theorem 3.4. The disease-free equilibrium EM0 of the

malaria-only model (3.19) is locally asymptotically stable

if RM0 < 1, and unstable if RM0 > 1.

Proof. The Jacobian matrix of model (3.19) at EM0 is given
by

J (EM0) =

−µ 0 0 0 0 −βmb

0 − (δ1 + φ1 + µ) 0 0 0 βmb

0 φ1 −µ 0 0 0
0 −

Λvβvbµ
Λµv

0 −µv 0 0

0 Λvβvbµ
Λµv

0 0 − (αv + µv) 0

0 0 0 0 αv −µv


.

(3.20)
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The eigenvalues of the Jacobin matrix J(EM0) include −µ,
−µv. The other eigenvalues are the roots of the following
equation:

|λ − J1| =

∣∣∣∣∣∣∣∣∣∣
λ + (δ1 + φ1 + µ) 0 −βmb

−
Λvβvbµ
Λµv

λ + (αv + µv) 0

0 −αv λ + µv

∣∣∣∣∣∣∣∣∣∣
=

[
λ + (δ1 + φ1 + µ)

] [
λ + (αv + µv)

]
(λ + µv)

−
Λvβmβvb2µαv

Λµv
. (3.21)

Due to the RM0 < 1, then

(δ1 + φ1 + µ)(αv + µv)µv >
Λvβmβvb2µαv

Λµv
.

According to Lemma 3.2, all the roots of the characteristic
equation have negative real parts if RM0 <1. Hence,
the disease-free equilibrium EM0 of the malaria-only
model (3.19) is locally asymptotically stable when
RM0 <1. □

3.2.2. Existence of the endemic equilibrium of the
malaria-only model

By setting each of the equations of model (3.19) to zero,
the endemic equilibrium is given by

EM1 = (S ∗, E∗,R∗, S ∗v , E
∗
v , I
∗
v ),

where

S ∗ =
Λ

λ∗m + µ
, E∗ =

λ∗mS ∗

δ1 + φ1 + µ
, R∗ =

φ1E∗

µ
,

S ∗v =
Λv

λ∗v + µv
, E∗v =

λ∗vS ∗v
αv + µv

, I∗v =
αvE∗v
µv

(3.22)

and
λ∗m = βmb

I∗v
S ∗ + E∗ + R∗

.

From expressions (3.22), we obtain

N∗ =S ∗ + E∗ + R∗

=
Λ

λ∗m + µ
+

λ∗mΛ

(δ1 + φ1 + µ)
(
λ∗m + µ

)
+

φ1λ
∗
mΛ

µ (δ1 + φ1 + µ)
(
λ∗m + µ

)
=
Λ

[
µ (δ1 + φ1 + µ) + λ∗m (φ1 + µ)

]
µ (δ1 + φ1 + µ)

(
λ∗m + µ

) .

(3.23)

After some little algebraic manipulations, we obtain

I∗v =
αvλ

∗
vΛv

µv (αv + µv)
(
λ∗v + µv

)
=

λ∗mΛΛvβvbαv

µv (αv + µv)
[
Λβvbλ∗m + µvN∗ (δ1 + φ1 + µ)

(
λ∗m + µ

)] .
(3.24)

Substituting (3.23) and (3.24) into the expression for λ∗m, we
obtain

λ∗m =
1

µv (αv + µv)
[
µ (δ1 + φ1 + µ) + λ∗m (φ1 + µ)

]
λ∗mµ

2b2Λvβmβvαv (δ1 + φ1 + µ)
(
λ∗m + µ

)[
λ∗mµbΛβv + Λµv

[
µ (δ1 + φ1 + µ) + λ∗m (φ1 + µ)

]] .
(3.25)

After some lengthy algebraic manipulations, the endemic
equilibria of the malaria-only model (3.19) satisfy the
following polynomial in terms of λ∗m given by

λ∗m
(
Aλ∗m

2
+ Bλ∗m +C

)
= 0, (3.26)

where,

A =Λµv (αv + µv) (φ1 + µ)
[
µbβv + µv (φ1 + µ)

]
,

B =Λµµv
2 (αv + µv) (φ1 + µ) (δ1 + φ1 + µ)

+ Λµµv (αv + µv) (δ1 + φ1 + µ)
[
µbβv + µv (φ1 + µ)

]
− µ2b2Λvβmβvαv (δ1 + φ1 + µ) ,

C =Λµ2µv
2 (αv + µv) (δ1 + φ1 + µ)2

− µ3b2Λvβmβvαv (δ1 + φ1 + µ)

=Λµ2µv
2 (αv + µv) (δ1 + φ1 + µ)2

(
1 − R2

M0

)
.

(3.27)

It is worth noting that the coefficient A is always positive and
C is positive if RM0 < 1, and negative if RM0 > 1. Hence, we
have established the following result:

Theorem 3.5. The malaria-only model (3.19) has:

(i) Precisely one unique endemic equilibrium if C < 0 ⇔
RM0 > 1;

(ii) Precisely one unique endemic equilibrium if B < 0 and

C = 0 or B2 − 4AC = 0;

(iii) Precisely two endemic equilibria if C > 0, B < 0 and

B2 − 4AC > 0;

(iv) No endemic equilibrium otherwise.

Case (iii) indicates the possibility of backward bifurcation
in the model, and the disease may spread even though
RM0 <1.
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3.3. Malaria-COVID-19 model

The feasible region for model (2.1) is given by

ΓCM = ΓC × ΓM ,

where ΓC and ΓM are defined in (3.1) and (3.19),
respectively.

The disease-free equilibrium of model (2.1) is given by

E0 = (S ,V, A, I, E, IE ,R, S v, Ev, Iv)

= (
Λ

µ + τ
,
Λτ

µ(µ + τ)
, 0, 0, 0, 0, 0,

Λv

µv
, 0, 0). (3.28)

From the basic reproduction number of the COVID-19-
only and malaria-only sub-models, the basic reproduction
number of the full model is given as

R0 = max {RC0,RM0} . (3.29)

Following Theorem 2 in [41], the model (2.1) has the
following results:

Theorem 3.6. The disease-free equilibrium of the full

model (2.1) is locally asymptotically stable if R0 < 1, and

unstable if R0 > 1.

4. Optimal control model

To investigate the impact of intervention measures,
we incorporate the following four controls into the full
model (2.1):
u1: Control against incident COVID-19 infection, such as
vaccination;
u2: Control against incident malaria infection, such as
insecticide treatment of mosquito nets;
u3: COVID-19 treatment control;
u4: Malaria treatment control.

The controls u1 and u2 satisfy

0 ≤ u1 ≤ 0.95

following the general efficacy of the COVID-19
vaccine [15],

0 ≤ u2 ≤ 0.95.

The COVID-19 and malaria treatment controls u3 and u4 are
bounded as follows:

0 ≤ u3, u4 ≤ 0.9.

The model (2.1) now reads

dS (t)
dt
= Λ − (1 − u2) λmS − (1 − u1) λcS − (µ + τ) S ,

dV(t)
dt
= τS − (1 − θ) (1 − u1) λcV − (1 − u2) λmV − µV,

dA(t)
dt
= (1 − u1) λc [S + (1 − θ) V] − (ρ + u3 + µ) A,

dI(t)
dt
= ρA − σ2 (1 − u2) λmI − (δ2 + u3 + µ) I + u4IE ,

dE(t)
dt
= (1 − u2) λm (S + V) − σ1 (1 − u1) λcE

− (δ1 + u4 + µ) E + u3IE ,

dIE(t)
dt
= σ1 (1 − u1) λcE + σ2 (1 − u2) λmI

− (δ3 + µ + u3 + u4) IE ,

dR(t)
dt
= u4E + u3 (A + I) − µR,

dS v(t)
dt

= Λv − (1 − u2) λvS v − µvS v,

dEv(t)
dt

= (1 − u2) λvS v − (αv + µv) Ev,

dIv(t)
dt
= αvEv − µvIv,

(4.1)

with initial conditions

S (0) ≥ 0,V(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, E(0) ≥ 0,

IE(0) ≥ 0,R(0) ≥ 0, S v(0) ≥ 0, Ev(0) ≥ 0, Iv(0) ≥ 0.
(4.2)

The following objective function is considered.

J (u1, u2, u3, u4) =
∫ T

0
(C1A +C2I +C3E +C4IE +C5Nv

+
w1

2
u2

1 +
w2

2
u2

2 +
w3

2
u2

3 +
w4

2
u2

4 ) dt,

(4.3)

where T is the final time, Ci, i = 1, · · · , 5 are positive
weight constants, and wi, i = 1, · · · , 4 are weight constants
for the strategies and treatments against proliferation of the
COVID-19 and malaria. The goal is to find an optimal
control, u∗1–u∗4, such that

J
(
u∗1, u

∗
2, u
∗
3, u
∗
4

)
= min

{
J
(
u∗1, u

∗
2, u
∗
3, u
∗
4

)
|u1, u2, u3, u4 ∈ U

}
,

(4.4)
where

U =
{(

u∗1, u
∗
2, u
∗
3, u
∗
4

)}
,
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such that u∗1–u∗4 are measurable with

0 ≤ u∗1 ≤ 0.95, 0 ≤ u∗2 ≤ 0.95, 0 ≤ u∗3 ≤ 0.9, 0 ≤ u∗4 ≤ 0.9

for t ∈ [0,T ] is the control set. The Hamiltonian is given by

H =C1A +C2I +C3E +C4IE +C5Nv +
w1

2
u2

1 +
w2

2
u2

2

+
w3

2
u2

3 +
w4

2
u2

4 + λ1Ṡ + λ2V̇ + λ3Ȧ + λ4 İ + λ5Ė

+ λ6 İE + λ7Ṙ + λ8Ṡ v + λ9Ėv + λ10 İv, (4.5)

where λi, i = 1, · · · , 10 are the adjoint variables. Pontryagins
maximum principle [44] is applied, such that there exist
adjoint variables satisfying:

λ′1 = −
∂H
∂S
, λ′2 = −

∂H
∂V
, λ′3 = −

∂H
∂A
, λ′4 = −

∂H
∂I
,

λ′5 = −
∂H
∂E
, λ′6 = −

∂H
∂IE
, λ′7 = −

∂H
∂R
, λ′8 = −

∂H
∂S v
,

λ′9 = −
∂H
∂Ev
, λ′10 = −

∂H
∂Iv
. (4.6)

Writing (4.6) in details gives

λ1
′ = (1 − u1) λc

[
(λ1 − λ3)

(
1 −

S
N

)
+ (1 − θ)

V
N

(λ3 − λ2)

+ σ1
E
N

(λ6 − λ5)
]
+ (1 − u2) λm

[
(λ1 − λ5)

(
1 −

S
N

)
+

V
N

(λ5 − λ2) + σ2
I
N

(λ6 − λ4)
]

+ (µ + τ) λ1 − τλ2 + (1 − u2) λv
S v

N
(λ9 − λ8) ,

λ2
′ = (1 − u1) λc

[ S
N

(λ3 − λ1) + (1 − θ)
(
1 −

V
N

)
(λ2 − λ3)

+ σ1
E
N

(λ6 − λ5)
]
+ (1 − u2) λm

[ S
N

(λ5 − λ1)

+

(
1 −

V
N

)
(λ2 − λ5) + σ2

I
N

(λ6 − λ4)
]

+ µλ2 + (1 − u2) λv
S v

N
(λ9 − λ8) ,

λ3
′ = (1 − u1)

βcε1 − λc

N

[
S (λ1 − λ3) + (1 − θ) V (λ2 − λ3)

+ σ1E (λ5 − λ6)
]
+ (1 − u2) λm

[ S
N

(λ5 − λ1)

+
V
N

(λ5 − λ2) + σ2
I
N

(λ6 − λ4)
]
+ λ3 (ρ + u3 + µ)

− λ4ρ − λ7u3 + (1 − u2) λv
S v

N
(λ9 − λ8) −C1,

λ4
′ = (1 − u1)

βc − λc

N

[
S (λ1 − λ3) + (1 − θ) V (λ2 − λ3)

+ σ1E (λ5 − λ6)
]
+ (1 − u2) λm

[ S
N

(λ5 − λ1)

+
V
N

(λ5 − λ2) + σ2

(
1 −

I
N

)
(λ4 − λ6)

]
−C2

+ λ4 (δ2 + u3 + µ) − λ7u3 + (1 − u2) λv
S v

N
(λ9 − λ8) ,

λ5
′ = −C3 + (1 − u1) λc

[ S
N

(λ3 − λ1) + (1 − θ)
V
N

(λ3 − λ2)

+ σ1

(
1 −

E
N

)
(λ5 − λ6)

]
+ (1 − u2) λm

[ S
N

(λ5 − λ1)

+
V
N

(λ5 − λ2) + σ2
I
N

(λ6 − λ4)
]

− λ7u4 + (1 − u2)
βvb − λv

N
S v (λ8 − λ9) ,

λ6
′ = (1 − u1)

βc − λc

N

[
S (λ1 − λ3) + (1 − θ) V (λ2 − λ3)

+ σ1E (λ5 − λ6)
]
+ (1 − u2) λm

[ S
N

(λ5 − λ1)

+
V
N

(λ5 − λ2) + σ2
I
N

(λ6 − λ4)
]
− λ4u4 − λ5u3

+ λ6 (δ3 + µ + u3 + u4) −C4

+ (1 − u2)
βvb − λv

N
S v (λ8 − λ9) ,

λ7
′ = (1 − u1)

λc

N

[
S (λ3 − λ1) + (1 − θ) V (λ3 − λ2)

+ σ1E (λ6 − λ5)
]
+ (1 − u2)

λm

N

[
S (λ5 − λ1)

+ V (λ5 − λ2) + σ2I (λ6 − λ4)
]

+ µλ7 + (1 − u2) λv
S v

N
(λ9 − λ8) ,

λ8
′ = −C5 + (1 − u2) λv (λ8 − λ9) + λ8µv,

λ9
′ = −C5 + λ9 (αv + µv) − λ10αv,

λ10
′ = −C5 + (1 − u2)

βmb − λm

N

[
S (λ1 − λ5)

+ V (λ2 − λ5) + σ2I (λ4 − λ6)
]
+ λ10µv. (4.7)

The necessary and sufficient optimality conditions are

0 =
∂H
∂u1
=w1u1 + λc

[
S (λ1 − λ3) + (1 − θ) V (λ2 − λ3)

+ σ1E (λ5 − λ6)
]
,

0 =
∂H
∂u2
=w2u2 + λm

[
(S + V) (λ1 + λ2 − λ5)

+ σ2I (λ4 − λ6)
]
+ λvS v (λ8 − λ9) ,

0 =
∂H
∂u3
=w3u3 + A (λ7 − λ3) + I (λ7 − λ4) + IE (λ5 − λ6) ,

0 =
∂H
∂u4
=w4u4 + E (λ7 − λ5) + IE (λ4 − λ6) .

(4.8)

Mathematical Modelling and Control Volume 4, Issue 3, 316–335.



326

Therefore, the optimal controls are given

u∗1 = max
{
0,min

(
1,
λc [S (λ3 − λ1) + (1 − θ) V (λ3 − λ2) + σ1E (λ6 − λ5)]

w1

)}
,

u∗2 = max
{
0,min

(
1,

λm [(S + V) (λ5 − λ1 − λ2) + σ2I (λ6 − λ4)] + λvS v (λ9 − λ8)
w2

)}
,

u∗3 = max
{
0,min

(
1,

A (λ3 − λ7) + I (λ4 − λ7) + IE (λ6 − λ5)
w3

)}
,

u∗4 = max
{
0,min

(
1,

E (λ5 − λ7) + IE (λ6 − λ4)
w4

)}
.

(4.9)

5. Numerical simulations

To verify the results in the previous analysis, a numerical
simulation of model (2.1) is carried out. The parameter
values in Table 2 refer to a large number of literatures. In
the absence of reference values, we make assumptions based
on the actual situation. The initial value conditions of the
model (2.1) are as follows:

S = 2500, V = 166, A = 15, I = 8, E = 11,

IE = 3, R = 50, S v = 10000, Ev = 8, Iv = 10.

We search the data of confirmed cases in South Africa in
the early stage of the outbreak of COVID-19, and use Matlab
to model fit the data. Data from the WHO website.

The period of the fitting covered 100 days, from
March 6, 2020 to June 16, 2020. The “20” in Figure 3
represents the 20th day from March 6, 2020, and so on.
The results are presented in Figure 3, from which it can be
intuitively seen that our model fits well to the data set.
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Figure 3. Model fitting diagram.

5.1. Sensitivity analysis

Understanding the relative importance of parameters can
help to develop effective intervention strategies to control

disease spread. Forward sensitivity analysis plays an
important role in determining the relative importance of each
parameter in disease epidemics and quantifies the impact
of parameter variations. When RC0 and RM0 are response
functions, we study the impact of parameters on RC0 and
RM0, respectively. In this section, we use the formula

S ω =
ω

R0

∂R0

∂ω

for analysis.
As can be seen from Table 3, when the COVID-19

associated with the basic reproduction number RC0 is
used as a response function, the effective contact rate
for the COVID-19 transmission (βc, positively correlated)
and the vaccine efficacy against COVID-19 (θ, negatively
correlated), as well as the COVID-19 vaccination rate
(τ, negatively correlated), dominate the disease dynamics.
Furthermore, parameters δ2, φ2, φ3 (negatively correlated)
and ε1, ρ (positively correlated) also dominate the disease
dynamics. These index values further indicate that if
βc, µ, ε1, ρ increase or decrease by 10%, RC0 increases
or decreases by 10%, 0.073%, 3.461%, and 0.708%,
respectively. But on the other hand, the index for parameters
φ2, φ3, δ2, θ, and τ illustrates that increasing their values
by 10% will decrease the values of reproduction number
RC0 by 3.884%, 4.165%, 2.648%, 39.578%, and 0.084%,
respectively.

Table 3. Sensitivity indices of the reproduction
number RC0 against parameters.

Parameter S.Index Value Parameter S.Index Value

βc S βc 1 µ S µ 0.0073
ε1 S ε1 0.3461 φ2 S φ2 -0.3884
ρ S ρ 0.0708 φ3 S φ3 -0.4165
θ S θ -3.9578 δ2 S δ2 -0.2648
τ S τ -0.0084

Therefore, in order to effectively mitigate the transmission
of COVID-19 in the population, the COVID-19 infection
rate should be reduced first. In conjunction with the relevant
policies, the populace should take appropriate protective
measures to reduce the risk of infection. At the same time,
effective vaccination can provide the public with physical
immunity. This makes people less likely to get sick, which
in turn reduces the infection rate βc.
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In Table 4, using the malaria associated with the basic
reproduction number RM0 as a response function, the
parameters Λv, βm, βv, b, αv and µ have a positive effect
on RM0, which describe that the growth or decay of
these parameters, say by 10%, will increase or decrease
RM0 by 5%, 5%, 5%, 10%, 1.241%, and 4.995%,
respectively. But the index for parameters Λ, µv, φ1 and
δ1 illustrates that increasing their values by 10% will
decrease the values of RM0 by 5%, 11.241%, 4.757%,
and 0.238%, respectively. These need to be achieved by
comprehensive preventive measures and adequate medical
resources. Second, mosquito control cannot be ignored. This
requires spraying insecticides and hanging mosquito nets to
reduce mosquito bites.

Table 4. Sensitivity indices of the reproduction
number RM0 against parameters.

Parameter S.Index Value Parameter S.Index Value

Λ SΛ -0.5 Λv SΛv 0.5
βm S βm 0.5 βv S βv 0.5
b S b 1 αv S αv 0.1241
µ S µ 0.4995 µv S µv -1.1241
φ1 S φ1 -0.4757 δ1 S δ1 -0.0238

The analysis of the basic reproduction number is crucial
as the R0 value is highly significant in determining the state
of an epidemic. We study the effect of two parameters on the
basic reproduction number when

R0 = max {RC0,RM0} = RC0 = 1.7813.

Figure 4a shows that with the increase in the infection
rate βc, the R0 value increases and decreases with the
increase in vaccination rate τ. In Figure 4b, we clearly
witness the decrease in the R0 value with the decrease
in the infection rate βc and rate of onset of symptoms ρ
values. Figure 4c shows that R0 decreases with increase in
vaccination rate τ and decrease in symptom onset rate ρ. The
results indicate that vaccination provides protection to the
population, resulting in a reduced probability of contracting
the disease and a shorter recovery time for infected people.
Thus, the reduction of βc and ρ values is achieved. The
decrease in the R0 value also suggests that vaccination
reduces the number of co-infections and the burden of health
care. Additionally, we learn the range of these parameters

when the R0 value with below 1, which can indicate a
direction for disease control.

(a)

(b)

(c)

Figure 4. Effects of (a) βc, τ, (b) βc, ρ, and (c) τ, ρ
on the reproduction number.

5.2. Stability of equilibrium points

In Figures 5–8, we plot the time series of sub-models and
full model for parameter values given in Table 2, and verify
the stability of equilibria. Figure 5 simulates the stability of
the disease-free equilibrium of model (3.1). Other values of
parameters are the same as in Table 2 except βc = 0.18, then

RC0 = 0.874 < 1,
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satisfying the condition of Theorem 3.1. It can be seen
from Figure 5 that when t tends to infinity, the number
of asymptomatic infectious individuals A and symptomatic
infectious individuals I both tend to zero, indicating the
spread of the disease is under control, which is consistent
with the conclusion of Theorem 3.1.
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Figure 5. Stability of disease-free equilibrium of
model (3.1).

Figure 6 simulates the stability of the endemic equilibrium
of model (3.1). There

βc = 0.4531

and other parameters are the same as in Table 2. Then, the

RC0 = 2.2 > 1

satisfies the conditions of Theorem 3.3. As shown in
Figure 6, when t tends to infinity, the numbers of A and I are
both greater than zero, indicating that humans will continue
to be attacked by disease, which is also consistent with the
conclusion of Theorem 3.3.

In a similar way, we simulate the stability of the disease-
free equilibrium of models (2.1) and (3.19) in Figures 7

and 8, respectively, which verifies the correctness of
Theorems 3.4 and 3.6.
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Figure 6. Stability of endemic equilibrium of
model (3.1).

Figure 7. Stability of disease-free equilibrium of
model (3.19).

Mathematical Modelling and Control Volume 4, Issue 3, 316–335.



329

0 500 1000 1500 2000
Time(Days)

0

0.5

1

1.5

2

S

105

0 0.5 1 1.5 2
Time(Days) 105

0

2

4

V

107

0 500 1000 1500
Time(Days)

0

     1

     2 

     3

A

4 ×103

0 500 1000 1500
Time(Days)

0

     1

     2

     3

     4
I

×103

0 500 1000 1500 2000 2500
Time(Days)

0

1

2

3

4

E

104

0 500 1000
Time(Days)

0

  0.5

      1

    1.5

      2

I E

×103

0 5 10
Time(Days) 104

0

1

2

R

106

0 500 1000 1500 2000 2500
Time(Days)

0

1

2

3

S v

104

0 1000 2000
Time(Days)

0

      1

      3

      5

E
v

×103

0 1000 2000
Time(Days)

0

    0.5

        1

I v

×104

Figure 8. Stability of disease-free equilibrium of
model (2.1).

5.3. Impact of several parameters on disease prevalence

The impacts of key parameters τ, θ, and ρ on variation
in the co-infected population are shown in Figure 9. In
Figure 9a, the co-infected population has been plotted for
different vaccination rates τ, and it is clearly shown that
the number of co-infected population decreases with the
increase of vaccination rate. Set

τmax = 0.02

in drawing [37]. Figure 9b shows the trajectories of the
co-infected population for different values of the vaccine

efficacy θ. The larger the value of θ, the smaller the
size of the co-infected group. Therefore, improving the
vaccination rate and efficacy of vaccines can reduce the
number of co-infections. In Figure 9c, the co-infected
population has been illustrated for different values of
symptom occurrence rates ρ. It is obvious from the figure
that the co-infected population increases with the increase
in symptom occurrence rate, so we should pay attention to
the asymptomatic infected class and improve their recovery
rate.

0 50 100 150 200
Time(Days)

0

500

1000

1500

2000

I E

=0.0002
=0.0051
=0.0101
=0.0151
=0.02

(a)

0 50 100 150 200
Time(Days)

0

500

1000

1500

2000

I E

=0.18
=0.38
=0.58
=0.78
=0.98

(b)

0 20 40 60 80
Time(Days)

0

200

400

600

800

1000

I E

=0.06
=0.17
=0.28
=0.39
=0.5

(c)

Figure 9. Effects of different (a) τ, (b) θ, and (c) ρ
values on the number of co-infected population.
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5.4. Impacts of vaccination rate and efficacy of vaccine on

co-infection

Co-infected individuals have been presented in Figure 10
by varying the vaccination rate and vaccine efficacy at the
same time. Figure 10 is drawn under the condition of low
recovery rates. Let

φ1 = 0.01, φ2 = 0.015, φ3 = 0.03, and βc = 0.18,

then

R0 = 1.2085 > 1.

If we increase the vaccination rate together with the vaccine
efficacy, the number of co-infected people will gradually
decrease. This suggests that active vaccination with effective
vaccines can reduce the scale of an outbreak during an
epidemic when the recovery rate is reduced due to the
shortage of medical resources.
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Figure 10. Effect of effective vaccination on the
number of co-infected population.

In Figure 11, we hypothesize the effects of the following
three situations on: co-infected population:

(1) Low vaccination rate and high vaccine efficacy;

(2) High vaccination rate and low vaccine efficacy;

(3) Low vaccination rate and low vaccine efficacy.

Other values of parameters are the same as in Table 2,
except τ and θ. Through the two graphs in Figure 11, we can
find that the curves of co-infected people basically coincide
in the cases of (1) and (2), while in the case of (3), the
number of co-infected population is much larger than the
previous two cases.
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Figure 11. Effect of three situations on the
number of co-infected population.

5.5. Optimal control model simulation

To support the analytical results, the optimal control
model (4.1) is simulated using the model parameter values
in Table 2. The balancing factors are assumed as follows:
C1 = C2 = C3 = 2,C4 = C5 = 1. The weight constants
are set as follows: w1 = 1500,w2 = 1000,w3 = 1200, and
w4 = 900.

5.5.1. Strategy A: COVID-19 prevention and treatment
(u1 , 0, u3 , 0, u2 = u4 = 0)

The control model (4.1) is simulated when strategy A
is implemented. The results of this strategy are shown in
Figure 12a–c, respectively. When this intervention strategy
is implemented, the number of symptomatic individuals I

drastically decreases (Figure 12a). Interestingly, strategy A
increases the number of individuals infected with malaria
(Figure 12b). In other words, the implementation of strategy
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A has prevented the progress of activities to control the
spread of malaria, which conforms to the actual situation
during the COVID-19 epidemic [7]. Many key activities are
not effectively implemented, such as insecticide treatment of
mosquito nets, chemical prevention for pregnant women and
young children, and reduced access to effective antimalarial
drugs. This means that tracking, treating, and controlling
malaria are much more difficult than before. Also, it is
worth noting that strategy A also has a positive population
level impact on the number of individuals co-infected with
COVID-19 and malaria (Figure 12c). The control profile
depicted in Figure 12d shows that prevention is at optimal
from the onset of the implementation and drops at around
100 days, while COVID-19 treatment drops at around 110
days.
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Figure 12. Impact of strategy A on individuals in
(a) I, (b) E, and (c) IE epidemiological class and
(d) control profile for strategy A.

5.5.2. Strategy B: malaria prevention and treatment
(u2 , 0, u4 , 0, u1 = u3 = 0)

Optimal control simulations of strategy B for model (4.1)
are implemented. This strategy B reduces new cases
of COVID-19, malaria, and co-infections. It is worth
noting that strategy B delays the emergence of the peak
of COVID-19 infection and lengthens the entire infection

cycle. Moreover, this strategy also decreases cases of vector
infections, thereby significantly reducing the infectious
vector population (Figure 13d). The control profile for this
control strategy is given in Figure 13e. The control profile
shows that malaria treatment is at its peak within 10 to 80
days, drops and then rises again, and reaches about 0.07 and
then drops slowly for the remaining days of the simulation,
while prevention do not start to work until about 19 days,
and then there is a little bump at about 200 days.
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Figure 13. Impact of strategy B on individuals in
(a) I, (b) E, (c) IE , and (d) Iv epidemiological class
and (e) control profile for strategy B.

6. Conclusions

The burden of malaria on human health has persisted for
many years, especially in endemic areas. The symptoms
of COVID-19 are similar to those of malaria, and there
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is extensive geographic overlap. Besides, the COVID-19
pandemic has reversed progress on malaria. Thus, co-
infection is a double whammy. In order to reduce the
human burden of malaria and COVID-19, research on the
co-infection of these diseases is particularly needed. In
this work, a co-infection model of COVID-19 and malaria
is constructed, which includes asymptomatic individuals
infected with COVID-19. Vaccination and its timeliness
are included in the model, as vaccination is an important
measure to protect people from infectious diseases. We
investigate the influence of vaccination on the co-infection
of malaria and COVID-19, which creates a novel and more
epidemiologically realistic model. This study seems to
be the first of its kind to study the effect of vaccination
on COVID-19 and malaria co-dynamics in detail. The
theoretical analysis results are as follows:

(1) The disease-free equilibria of the sub-models are shown
to be locally asymptotically stable when the respective
reproduction numbers are below unity.

(2) When RC0 > 1, the COVID-19-only sub-model has a
globally asymptotically stable endemic equilibrium.

(3) Compared with literature [13], the number of endemic
equilibrium of the malaria sub-model is theoretically
discussed. There is a possibility of backward bifurcation
in this model, and although RM0 < 1 is necessary, it is
not sufficient to eliminate the disease.

(4) The disease-free equilibrium of the co-infection
model is locally asymptotically stable whenever the
reproduction number

R0 = max {RC0,RM0}

is less than unity.

The simulations of the stability of the disease-free
equilibrium and endemic equilibrium verify the correctness
of the theoretical analysis. The influence of important
parameters on the basic reproduction number is numerically
analyzed. The effects of different vaccination rates, vaccine
efficacy and symptoms onset rates on co-infected individuals
are also analyzed. In addition, the question of how the
vaccination rate and efficacy affect the number of co-infected
people is explored. The simulation results are as follows:

(1) The key parameters that dominate the disease dynamics
are βc, βm, βv, θ, φ2, φ3, δ2, φ1, δ1, b, τ (see Table 1 for
parameter description).

(2) From the numerical results of sensitivity analysis, it is
necessary to reduce the spread of these two diseases and
increase effective vaccine management in order to curb
the spread of the epidemic.

(3) The scale of the co-infected population decreases
with the increase of vaccination rate and efficacy
and increases with the increase of symptoms onset
rate. Therefore, it is important to detect and
treat asymptomatic individuals before they become
symptomatic.

(4) When the recovery rate is low, that is, the medical
resources are relatively tight, the influence of accepting
effective vaccines actively on the co-infected population
is simulated. Actively accepting effective vaccines (high
vaccination rate and effectiveness) is helpful to reduce
the number of co-infections and control the spread of
diseases.

(5) A simple simulation of the three hypothetical situations
in the paper aims to demonstrate that lack of effective
vaccine vaccination will be detrimental to the control of
co-infection of COVID-19 and malaria.

Next, based on the direction of future studies pointed out
in literature [13], this paper adopts strategies different from
those in literature [13]. After simulation of combination
strategies, the results show that:

(1) Each strategy can reduce the burden of co-infection.
Strategy B is more effective than strategy A.

(2) The implementation of strategy A reduces the number
of individuals infected with COVID-19 but increases the
number of malaria cases. In contrast, the use of strategy
B results in a reduction in the number of individuals
infected with both malaria and COVID-19.

(3) Strategy B reduces the peak value of COVID-19
infection but delays the occurrence of the peak value,
indicating a trend toward a longer infection cycle.

(4) The use of strategy B reduces the number of vectors.
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The findings suggest that if prevention and treatment
for malaria infection are neglected, the disease will spread
more widely. Therefore, other infectious diseases must
not be neglected during the COVID-19 pandemic, and
appropriate preventive measures and treatment services must
be taken. These results provide insight into the impact of the
implementation of one strategy on the other.

While this study provides further analysis for the
transmission dynamics of malaria and COVID-19, this study
can be extended. We explored the impact of vaccination on
COVID-19-malaria co-infection, but the model did not take
into account people’s different attitudes towards vaccination.
The co-infection model can be analyzed in the future based
on different vaccination attitudes, or other extensions can be
made, such as incorporating virus variation and stratifying
the population by age.
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