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Abstract: This article presents and analyzes a mathematical model for smoking-related cancer that involves fractional-order derivative
with seven different compartments. The model uses the ABC fractional derivative to describe the transmission dynamics of cancer
caused by the smoking habit. We employed the Adams-Bashforth-Moulton method to find the numerical and graphical results of the
model and we achieved a good level of accuracy. The existence and uniqueness of the model solution were established using Banach’s
fixed-point theory. For stability, we investigated the steady state points and basic reproduction number of the system. Additionally,
the model’s stability was discussed using the Hyers-Ulam criterion. The two-dimensional (2D) and three-dimensional (3D) simulations
were performed for the different compartments and for the various values of the fractional-order parameters.
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1. Introduction

The smoking disease, also known as chronic obstructive
pulmonary disease (COPD), is a group of progressive lung
diseases that cause breathing difficulties [1]. It is primarily
caused by long-term exposure to cigarette smoke, although
exposure to second-hand smoke, air pollution, and certain
occupational fumes can also contribute to its development.
Common symptoms of COPD include chest tightness,
wheezing, shortness of breath, and persistent cough. Over
time, the disease progressively worsens, resulting in a
reduced ability to carry out physical activities and everyday
tasks. Individuals with COPD may also experience frequent
respiratory infections, fatigue, unintended weight loss, and
swelling in the ankles, feet, or legs [2].

This smoking-related disease mainly affects the lungs’
alveoli, or air sacs, and airways. The toxic compounds

in tobacco smoke affect the respiratory system and cause
damage to the airways, leading to a narrowing of the
air passages and mucus production [3]. As a result, the
lungs become less efficient at transferring oxygen into
the bloodstream, making breathing more difficult. In
advanced stages, COPD can also affect the heart, leading
to complications such as heart failure [4]. While there
is currently no cure for COPD, there are treatments that
can help to control the symptoms and delay the illness’s
progression. In order to effectively manage COPD, changes
in lifestyle like giving up smoking, avoiding triggers in the
environment, and engaging in regular exercise are essential.
Medications like bronchodilators, inhaled corticosteroids,
and oxygen therapy are commonly prescribed to improve
breathing and reduce inflammation [5].

Smoking is a major cause of various types of cancer,
including lung, oral, throat, bladder, kidney, pancreas, and
stomach cancer, among others [6]. It is estimated that

https://www.aimspress.com/journal/mmc
https://dx.doi.org/ 10.3934/mmc.2024020


247

smoking is responsible for nearly one-third of all cancer
deaths in the United States. When tobacco is smoked,
thousands of harmful chemicals are released into the body.
These chemicals can cause damage to the DNA in cells,
leading to the formation of cancerous cells. Smoking also
weakens the immune system, making it harder for the body
to fight off cancer cells [7].

Lung cancer is the most common and deadliest form of
cancer associated with smoking. The risk of developing
lung cancer is directly related to the duration and intensity
of smoking. The longer a person smokes and the more
cigarettes they consume, the higher their risk of developing
lung cancer. Oral and throat cancers are also strongly linked
to smoking [8]. The toxic chemicals from tobacco can cause
mutations in the cells of the mouth and throat, leading to
the formation of cancerous growths. Smokers are also at
a higher risk of developing bladder, kidney, pancreas, and
stomach cancer, as these organs come into contact with the
harmful chemicals through the bloodstream or urine [9].

Quitting smoking significantly decreases the risk of
developing cancer. Although it can be challenging, quitting
smoking at any age can provide immediate and long-term
health benefits. Additionally, early detection through cancer
screening programs and regular medical check-ups is crucial
for detecting and treating cancer at an early stage, improving
the chances of successful treatment and survival [10, 11].

Mathematical modeling is highly significant in
various fields and has numerous practical applications.
Mathematical models provide a means to simulate and
analyze real-world phenomena, allowing scientists to
conduct virtual experiments and test hypotheses. This
enables researchers to explore complex systems and
generate insights that may be difficult or impossible through
direct experimentation [12, 13]. Therefore, mathematical
modeling is a great tool as it provides a framework
for understanding complex systems, predicting future
outcomes, solving problems, making informed decisions,
optimizing designs, evaluating policies, conducting
scientific research, and fostering education [14, 15].

Mathematical models can be used to determine the
probability of developing different types of cancer due to
smoking. Researchers can incorporate various factors such
as smoking duration, intensity, and exposure to second-

hand smoke to estimate individual and population-level
cancer risks. We can simulate the natural history and
progression of smoking-related cancers with the help of
modeling [16, 17]. Researchers can create models that
simulate the effects of implementing intervention strategies
like tobacco taxes, smoking cessation programs, or smoke-
free regulations, allowing policy-makers to make evidence-
based decisions [18].

Models can assist in optimizing treatment strategies for
smoking-related cancers. By simulating treatment outcomes
and comparing different treatment approaches, researchers
can identify the most effective combinations of surgery,
chemotherapy, radiation therapy and targeted therapies [19].
This can improve patient outcomes and resource allocation.
Mathematical modeling can also be used to evaluate the
economic implications of different smoking-related cancer
interventions. By considering factors such as healthcare
costs, productivity losses, and quality-adjusted life years
gained, policymakers can assess the value of various
interventions and allocate resources accordingly (see [20]).

Fractional differential equations (FDEs) are a type of
differential equation that involve fractional order derivatives.
They provide a more flexible and accurate mathematical tool
for modeling complex physical phenomena with memory
effects, such as viscoelastic materials, anomalous diffusion,
and biological systems [21]. To implement FDEs in
modeling, one can use semi-analytical or numerical methods
that approximate the fractional-order derivatives, as exact
closed-form solutions are often unavailable. Several
popular numerical methods for FDEs include the Riemann-
Liouville, Caputo, Atangana-Baleanu fractional derivative
in Caputo sense (ABC), or any other fractional-order
operator. Once the system of FDEs is solved, we can analyze
and interpret the obtained solution in the context of the
physical problem being modeled [22, 23]. This may involve
calculating key quantities of interest or comparing the results
with experimental data.

In the last few decades, many studies have been noted
as significant in fractional-order modeling, which include
optimal systems, series solutions and conservation laws for
a time fractional cancer tumor model [24, 25], the Mittag-
Leffler kernel approach for time-fractional advection-
reaction-diffusion equations [26, 27], codimension two Lie

Mathematical Modelling and Control Volume 4, Issue 3, 246–259.



248

invariant solutions of the modified Khokhlov-Zabolotskaya-
Kuznetsov equation [28, 29], mathematical studies of
the solution of Burgers’ equations [30, 31], numerical
studies of the neural network-based fractional mathematical
model of immunotherapy and chemotherapy for breast
cancer [32], mathematical modeling of integer and
fractional order and its simulations for Q-fever [33], an
examination of the glucose-insulin alliance scheme in
the fractional-order diabetes model [34, 35], evaluation
of a fractional vector-host disease system mathematically
using the Caputo-Fabrizio operator [36], the Atangana-
Baleanu-Caputo derivative-based numerical and geometric
interpretation of a fractional-order model of the cancer-
immune mode [37], the solution of fractional sawada-
kotera-ito equation employing the derivatives of Caputo
and Atangana-Baleanu [38], and the new semi-analytical
approach to solve the fractional-order Sharma-Tasso-Olver
equation with the derivatives of Caputo and Atangana-
Baleanu [39]. In addition, we have Hopf bifurcation
control of a fractional-order delayed turbidostat model,
delayed chemostat model, and three-triangle multi-delayed
neural networks [40–42], the COVID-19 stochastic model,
the plankton–oxygen dynamical model owning delay, and
a control technique in a predator-prey system [43–45],
hybrid controller design of a 2D Lotka-Volterra commensal
symbiosis system, fractional order uncertain BAM neural
networks, and as well as a Hopf bifurcation of a type of
BAM neural network model concerning three nonidentical
delays [46–48].

The present work is organized as follows: Section 2
includes the fractional smoking-related cancer model, its
diagram, and detailing of the parameters. Section 3 covers
the well-defined definitions and theorems which we have
used in this work. Qualitative and stability analysis are
discussed in Sections 4 and 5, respectively. Numerical
computation and its behavior in the form of figures are
displayed in Section 6. Valedictory results and graphical
interpretation are discussed in Section 7.

2. Model formation

The present mathematical model of smoking-related
cancer is classified into seven specific compartments:

smoking individuals as the susceptible class P(t), lately
infected individuals as IL(t), chronically infected individuals
without treatment as IC(t), infected individuals with and
without treatment as T (t) and I(t), smoking-related cancer
individuals as C(t), and recovered individuals as R(t). We
contemplated some parameters in the formation of the
model. The disease transmission coefficient from the
susceptible P(t) to the lately infected class IL(t) is β1, and
from the lately infected IL(t) to the chronically infected
class IC(t) is β2. The total population size is denoted
as ∆. The infected individuals without treatment I(t) to
with treatment T (t) transmission rate is defined as δ1, and
smoker individuals P(t) to cancer patient C(t) transmit rate
is δ2. For TB-infected patients that transmit from the lately
infected IL(t) to infected with treatment class T (t) is defined
as δ3, those infected with treatment T (t) that transmit to
the smoking-related cancer class C(t) as δ4, and those that
transmit from the infected with treatment T (t) to recovered
class R(t) as δ5. The death rate due to smoking is marked
as µ. Notations α1, α2, and α3 are assigned for infection
growth from IL(t) to IC(t) class, from IC(t) to I(t) class, and
from I(t) to T (t) class, respectively. The disease death rate
in the IL(t), IC(t), and I(t) compartments are γ1, γ2, and γ3,
respectively.

By linking the above-mentioned parameters, the
mathematical model as a system of differential equations is
represented as:

dP(t)
dt
=Λ −

β1

N(t)
log (P(t)IL(t) + 1) + δ1T (t) + δ2C(t) − µP(t),

dIL(t)
dt
=
β1

N(t)
log (P(t)IL(t) + 1) − (α1 + δ3 + γ1 + µ) IL(t)

− β2IL(t)IC(t),

dIC(t)
dt
=β2IL(t)IC(t) − α2IC(t) − (γ2 + µ) IC(t) + α1IL(t),

dI(t)
dt
=α2IC(t) − (α3 + γ3 − µ) I(t),

dT (t)
dt
=δ3IL(t) − δ4T (t) − (δ1 + µ) T (t) + α3I(t) − δ5T (t),

dC(t)
dt
=δ4T (t) − δ2C(t) − µC(t),

dR(t)
dt
=δ5T (t) − µR(t),

(2.1)

with the initial conditions

P(0) = P0, IL(0) = IL0 , IC(0) = IC0 , I(0) = I0,

T (0) = T0, C(0) = C0, R(0) = R0.
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Here, the total population by adding all of the
compartments is defined as

N(t) = P(t) + IL(t) + IC(t) + I(t) + T (t) +C(t) + R(t).

The proposed smoking-related cancer model, by
implementing the ABC fractional derivative [49], is as
follows:

ABC
0 Dα

t P(t) =Λ −
β1

N(t)
log(P(t)IL(t) + 1) + δ1T (t)

+ δ2C(t) − µP(t),

ABC
0 Dα

t IL(t) =
β1

N(t)
log(P(t)IL(t) + 1) − β2IL(t)IC(t)

− (α1 + δ3 + γ1 + µ)IL(t),
ABC
0 Dα

t IC(t) =β2IL(t)IC(t) − α2IC(t) − (γ2 + µ)IC(t)

+ α1IL(t),
ABC
0 Dα

t I(t) =α2IC(t) − (α3 + γ3 − µ)I(t),
ABC
0 Dα

t T (t) =δ3IL(t) − δ4T (t) − (δ1 + µ)T (t) + α3I(t)

− δ5T (t),
ABC
0 Dα

t C(t) =δ4T (t) − δ2C(t) − µC(t),
ABC
0 Dα

t R(t) =δ5T (t) − µR(t).

(2.2)

3. Preliminaries

Definition 3.1. [49] Let G ∈ H1(a, b), a > b, then the ABC

fractional derivative is given as:

ABC
0 Dα

t G(t) =
N(α)
1 − α

∫ t

a
Eα

[
−
α(t − δ)α

1 − α

]
G
′

(δ)dδ, (3.1)

where Eα(·) is the Mittag-Leffler function of order one and

can be expressed as

Eα(z) =
∞∑

k=0

zk

Γ (kα + 1)
.

Definition 3.2. [49] The ABC fractional integral of order α

is defined as:

ABC
0 Iαt G(t) =

1 − α
N(α)

G(t) +
α

N(α)Γ(α)

∫ t

0
G(δ)(t − δ)α−1dδ,

(3.2)
where Γ(·) denotes the Gamma function and it can be defined

as

Γ(n) =
∫ ∞

0
e−xxn−1dx.

Lemma 3.1. [50] The solution of any fractional differential

equation

ABC
0 Dα

t ψ(t) = f (t), f (t) ∈ C ([0,T )) , 0 < α < 1, (3.3)

with ψ(0) = ψ0, is given by

ψ(t) = ψ0 +
(1 − α)
N(α)

f (t) +
α

Γ(α)N(α)

∫ t

0
(t − u)α−1 f (u)du.

(3.4)

4. Existence and uniqueness

The existence and uniqueness of the considered
model (2.2) will be covered in this section. The considered
model (2.2) can be rewritten as follows:

ABC
0 Dα

t P(t) = g1(t, P, IL, IC , I,T,C,R),
ABC
0 Dα

t IL(t) = g2(t, P, IL, IC , I,T,C,R),
ABC
0 Dα

t IC(t) = g3(t, P, IL, IC , I,T,C,R),
ABC
0 Dα

t I(t) = g4(t, P, IL, IC , I,T,C,R),
ABC
0 Dα

t T (t) = g5(t, P, IL, IC , I,T,C,R),
ABC
0 Dα

t C(t) = g6(t, P, IL, IC , I,T,C,R),
ABC
0 Dα

t R(t) = g7(t, P, IL, IC , I,T,C,R),

(4.1)

where

g1(t, P, IL, IC , I,T,C,R) =Λ −
β1

N
log(PIL + 1)

+ δ1T + δ2C − µP,

g2(t, P, IL, IC , I,T,C,R) =
β1

N
log(PIL + 1) − β2ILIC

− (α1 + δ3 + γ1 + µ)IL,

g3(t, P, IL, IC , I,T,C,R) =β2ILIC − α2IC

− (γ2 + µ)IC + α1IL,

g4(t, P, IL, IC , I,T,C,R) =α2IC − (α3 + γ3 − µ)I,

g5(t, P, IL, IC , I,T,C,R) =δ3IL − δ4T − (δ1 + µ)T

+ α3I − δ5T,

g6(t, P, IL, IC , I,T,C,R) =δ4T − δ2C − µC,

g7(t, P, IL, IC , I,T,C,R) =δ5T − µR.

(4.2)

For the purpose of simplicity, we refer to the suggested
model (4.1) as follows:

ABC
0 Dα

t G(t) = ∆ (t,G(t)) , (4.3)
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G(0) = G0 ≥ 0,

where,

G(t) = (P(t), IL(t), IC(t), I(t),T (t),C(t),R(t))T ,

G0 =
(
P0, IL0 , IC0 , I0,T0,C0,R0

)T ,

∆(t,G(t)) = (g1, g2, g3, g4, g5, g6, g7)T .

Applying fractional ABC integral (3.2) on (4.3), we get:

G(t) =G0 +
(1 − α)
N(α)

∆(t,G(t))

+
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1∆(δ,G(δ))dδ.

(4.4)

Utilizing χ = [0,T ] as

Ω = C(χ,R7)

under the norm specified as follows, let us define the Banach
space as:

∥G∥ = sup
t∈χ
{G(t) : G ∈ Ω} .

Assume that the function ∆ (t,G(t)) satisfies the following
two conditions for each G ∈ Ω and t ∈ [0,T ].

• ∃ constants µ∆ and ν∆ such that:

|∆(t,G(t))| ≤ µ∆ |G| + ν∆.

• ∃ constant λ∆ > 0 such that:

|∆(t,G1(t)) − ∆(t,G2(t))| ≤ λ∆ |G1 − G2| .

Now we define the operators Λ1 and Λ2 such that:

Λ1G = G0 +
(1 − α)
N(α)

∆(t,G(t)),

Λ2G =
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1∆(δ,G(δ))dδ,

where
Λ1 + Λ2 = Ω.

Theorem 4.1. Suppose that the above-mentioned Lipschitz

and growth conditions hold. If the following are true, then

there is at least one solution for (4.4):

(I) (1−α)
N(α) λ∆ < 1.

(II) Ψ1 =
[

(1−α)
N(α) +

Tα

N(α)Γ(α)

]
ν∆ < 1.

(III) Ψ2 =
[

(1−α)
N(α) +

Tα

N(α)Γ(α)

]
µ∆ < 1.

Proof. Assume a closed convex set

Bτ = {G ∈ Ω : ∥G∥ ≤ τ} .

In order to establish that Λ1G1 + Λ2G2 ∈ Bτ for any G1, G2

∈ Bτ. Using the growth condition, we get:

∥Λ1G1 + Λ2G2∥ ≤ sup
t∈χ

{
|G0| +

(1 − α)
N(α)

|∆(t,G(t))|

+
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1|∆(δ,G(δ))|dδ

}
≤

{
|G0| +

(1 − α)
N(α)

(µ∆ ∥G∥ + ν∆)

+
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1(µ∆ ∥G∥ + ν∆)dδ

}
=|G0| +

{
(1 − α)
N(α)

+
Tα

N(α)Γ(α)

}
ν∆

+

{
(1 − α)
N(α)

+
Tα

N(α)Γ(α)

}
µ∆τ

=Ψ1 + Ψ2τ

≤τ.

This shows that

Λ1G1 + Λ2G2 ∈ Bτ.

Next, we will show that Λ1 is a contraction. For any G1,
G2 ∈ Bτ, and using the Lipschitz condition, we get

∥Λ1G1 + Λ2G1∥ = sup
t∈[0,T]

(1 − α)
N(α)

|∆(t,G1(t)) − ∆(t,G2(t))|

≤
(1 − α)
N(α)

λ∆ sup
t∈[0,T]

|G1 − G2|

≤
(1 − α)
N(α)

λ∆ ∥G1 − G2∥ ,

where
(1 − α)
N(α)

λ∆ < 1.

Thus, Λ1 is a contraction.
Let us now demonstrate the relative compactness of Λ2.

Considering G ∈ Bτ for this

∥Λ2G∥ ≤ sup
t∈[0,T]

α

N(α)Γ(α)

∫ t

0
(t − δ)α−1|∆(δ,G(δ))|dδ

≤
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1 sup

t∈[0,T]
[µ∆ |G| + ν∆]dδ

≤
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1[µ∆ ∥G∥ + ν∆]dδ

≤
Tα

N(α)Γ(α)
[µ∆τ + ν∆].
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Therefore, on Bτ, Λ2 is uniformly bounded. Lastly, we
demonstrate the equicontinuous nature of Λ2. Let t1, t2 ∈

[0,T ] such that t1 < t2. Let G ∈ Bτ. Following that:

∥Λ2G(t1) − Λ2G(t2)∥

≤
α

N(α)Γ(α)

∫ t2

t1
(t2 − δ)α−1|∆(δ,G(δ))|dδ

+
α

N(α)Γ(α)

∫ t2

0
[(t1 − δ)α−1 − (t2 − δ)α−1]|∆(δ,G(δ))|dδ

≤
2[µ∆τ + ν∆]
N(α)Γ(α)

[(t2 − t1)α].

Thus, ∥Λ2G(t1) − Λ2G(t2)∥ → 0 as t2 → t1. The operator
Λ2 is equicontinuous because it is relatively compact,
according to the Arzela-Ascoli theorem. Hence, there is at
least one solution for Eq (4.4). The considered model has at
least one solution since the proposed model is equivalent to
Eq (4.4). □

Theorem 4.2. Assuming that the Lipschitz condition is

satisfied, then the unique solution of Eq (4.4) can be found if{
(1 − α)
N(α)

+
Tα

N(α)Γ(α)

}
λ∆ < 1.

Proof. Considering t ∈ [0,T ] and for any G, G∗ ∈ Ω, we
have

∥ΛG(t) − ΛG∗(t)∥ ≤ max
t∈[0,T]

(1 − α)
N(α)

|∆(t,G(t)) − ∆(t,G∗(t))|

+ max
t∈[0,T]

α

N(α)Γ(α)

∫ t

0
(t − δ)α−1 |∆(t,G(t))

− ∆(t,G∗(t))| dδ

≤

{
(1 − α)
N(α)

+
Tα

N(α)Γ(α)

}
λ∆ ∥G − G

∗∥ .

The operator Λ is a contraction as per the hypothesis{
(1 − α)
N(α)

+
Tα

N(α)Γ(α)

}
λ∆ < 1.

The solution to Eq (4.4) is unique according to the Banach
contraction theorem. As a result, the solution for the
suggested model (2.2) is unique. □

5. Stability analysis

5.1. Local stability

We discuss the equilibrium points of presented
model (2.1). Here, we consider the two stage of the
population.

(1) Disease-free equilibrium point E0

At this stage, there is no contamination due to the
smoking habit in the class. Hence, we set every
infection class to zero. Therefore, the disease-free
equilibrium point E0 can be defined as:

E0 =

(
Λ

µ
, 0, 0, 0, 0, 0, 0

)
.

(2) Endemic equilibrium point Eend

To obtain the value of endemic stage Eend, we will
equate the system of Eq (2.1) with zero. By solving
the system of linear equations, we achieve the endemic
equilibrium point Eend as:

Eend =
(
Pend, Iend

L , Iend
C , Iend,T end,Cend,Rend

)
,

where

Pend =
2β1 (1 − PIL)
µN (1 + PIL)

+
R (δ1δ2 + δ1µ + δ2)

δ5 (δ2 + µ)
,

Iend
L =

2β1 (PIC (µ + α2 + γ2) − α1 − β2IC)
N (PIC (µ + α2 + γ2) + α2 + β2IC) (µ + α1 + γ1 + δ3 + β2IC)

,

Iend
C =

1
β2

(
2β1 (PIC (µ + α2 + γ2) − α1 − β2IC)
NIL (PIC (µ + α2 + γ2) + α2 + β2IC)

− (µ + α1 + γ1 + δ3)
)
,

Iend =
α1α2IL + α2β2ILIC

(µ + α2 + γ2) (−µ + α3 + γ3)
,

T end =
IL (α1α2α3 + α2α3β2IC + δ3)

(2δ4 + δ5 − µ) (µ + α2 + γ2) (−µ + α3 + γ3)
,

Cend =
IL (α1α2α3 + α2α3β2IC + δ3)

(µ + δ2) (2δ4 + δ5 − µ) (µ + α2 + γ2) (−µ + α3 + γ3)
,

Rend =
IL (δ3δ5 + α1α2α3δ5 + α2α3β2δ5IC)

µ(2δ4 + δ5 − µ) (µ + α2 + γ2) (−µ + α3 + γ3)
.

5.1.1. Reproduction number R0

To calculate R0, we employ the next generation matrix
method. Let us consider the following sub-system by
involving the infective compartments as below:

dIL(t)
dt
=
β1

N(t)
log (P(t)IL(t) + 1) − β2IL(t)IC(t)

− (α1 + δ3 + γ1 + µ) IL(t),

dIC(t)
dt
=β2IL(t)IC(t) − α2IC(t) − (γ2 + µ) IC(t) + α1IL(t),

dI(t)
dt
=α2IC(t) − (α3 + γ3 − µ) I(t),

dC(t)
dt
=δ4T (t) − δ2C(t) − µC(t).

(5.1)

Now we find the eigenvalues for the matrix FV−1 to
evaluate R0, where matrix F and V for the system (5.1) can
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be defined as:

F =


−β2IC +

β1P
N(1+PIL) −β2IL 0 0

β2IC β2IL 0 0
0 0 0 0
0 0 0 0


and

V =


µ + α1 + γ1 + δ3 0 0 0

−α1 µ + α2 + γ2 0 0
0 −α2 −µ + α3 + γ3 0
0 0 0 µ + δ2

 .

Next, we find the inverse of matrix V−1 and with simple
matrix multiplication, we get

FV−1 =


−ILβ2 +

β1P
N(1+PIL) −

β2IL
(µ+α1+γ1+δ3) −

β2IL
α1

0 0

β2IC +
β2IL

(µ+α1+γ1+δ3) −
β2IL
α1

0 0

0 0 0 0
0 0 0 0

 .
(5.2)

Further, the dominant eigenvalues can be found by

|FV−1 − λI| = 0.

The basic reproduction number R0 can be defined as

R0 =
m1 + m2 + m3

2α1c1N
, (5.3)

where

m1 = α1β1c1,

m2 = Nβ2 (α1c1IC + α1IL + c1IL)

and

m3 =

√√√√
α2

1β
2
1c2

1 + 2α1c1N (α1c1IC + β1β2IL (α1 − c1)

+ N2
(
α1c1IC + β

2
2IL(α1 + c1)2

)) .

Theorem 5.1. The disease-free stage of smoking-related

cancer model (2.1) is locally asymptotically stable if the

basic reproduction number R0 < 0.

Proof. Available in [51]. □

Theorem 5.2. The endemic stage of smoking-rated cancer

model (2.1) is locally asymptotically stable if the endemic

Lyaponove function L < 0 and the basic reproduction

number R0 > 0.

Proof. Available in [51]. □

5.2. Global stability

Using the concept of nonlinear functional analysis, we
address the Ulam-Hyres (UH) stability of the suggested
fractional model (2.2) in this section.

Definition 5.1. If the following property holds true and ∃

ω > 0, then the proposed system (2.2) is UH stable. For any

G ∈ Ω and ϵ > 0, If∣∣∣∣ABC
0 Dα

t G(t) − ∆
(
t,G(t)

)∣∣∣∣ ≤ ϵ, (5.4)

then ∃ G ∈ Ω satisfies the system (2.2) with the initial

condition

G(0) = G(0) = G0,

such that ∥∥∥∥G − G∥∥∥∥ ≤ ωϵ.
Where

G(t) =
(
P(t), IL(t), IC(t), I(t),T (t),C(t),R(t),

)T
,

G0 =
(
P0(t), IL0 (t), IC0 (t), I0(t),T 0(t),C0(t),R0(t),

)T
,

∆(t,G(t)) =
(
g1, g2, g3, g4, g5, g6, g7

)T ,

ϵ = max(ϵ j)T , j = 1, 2, 3, 4, 5,

ω = max(ω j)T , j = 1, 2, 3, 4, 5.

Remark 5.1. Consider a small perturbation ρ ∈ C[0,T]
such that ρ(0) = 0 along with the following property:

|ρ(t)| ≤ ϵ,

for t ∈ [0,T] and ϵ > 0.

Lemma 5.3. The solution Gρ(t) of the perturbed system

ABC
0 Dα

t G(t) = ∆
(
t,G(t)

)
+ ρ(t), G(0) = G0, (5.5)

satisfies the relation

∣∣∣∣Gρ(t) − G(t)
∣∣∣∣ ≤ [

(1 − α)Γ(α) + Tα

N(α)Γ(α)

]
ϵ,

where

ρ(t) = (ρ1(t), ρ2(t), ρ3(t), ρ4(t), ρ5(t))T .
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Proof. Applying fractional integral (3.2) on (5.5), we get

Gρ(t) =G0 +
(1 − α)
N(α)

∆
(
t,G(t)

)
+

α

N(α)Γ(α)

∫ t

0
(t − δ)α−1∆

(
δ,G(δ)

)
dδ

+
(1 − α)
N(α)

ρ(t) +
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1ρ(δ)dδ,

and also,

G(t) =G0 +
(1 − α)
N(α)

∆
(
t,G(t)

)
+

α

N(α)Γ(α)

∫ t

0
(t − δ)α−1∆

(
δ,G(δ)

)
dδ.

(5.6)

Using Remark 5.1,∣∣∣∣Gρ(t) − G(t)
∣∣∣∣ ≤ (1 − α)
N(α)

|ρ(t)| +
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1 |ρ(δ)| dδ,

≤

[
(1 − α)Γ(α) + Tα

N(α)Γ(α)

]
ϵ.

This completes the proof. □

Theorem 5.4. The proposed fractional system (2.2) is UM

stable if ∥∥∥∥G(t) − G(t)
∥∥∥∥ ≤ ωϵ.

Proof. Since G is a unique solution of the system (5.5) and
G is the solution of (5.4), then∣∣∣∣G(t) − G(t)

∣∣∣∣ ≤ ∣∣∣∣Gρ(t) − G(t)
∣∣∣∣ + ∣∣∣∣Gρ(t) − G(t)

∣∣∣∣
≤ 2

[
(1 − α)Γ(α) + Tα

N(α)Γ(α)

]
ϵ +

1 − α
N(α)

∣∣∣∣∆(t,G(t)) − ∆(t,G(t))
∣∣∣∣

+
α

N(α)Γ(α)

∫ t

0
(t − δ)α−1

∣∣∣∣∆(δ,G(δ)) − ∆(δ,G(δ))
∣∣∣∣ dδ

≤ 2
[
(1 − α)Γ(α) + Tα

N(α)Γ(α)

]
ϵ +

[
(1 − α)Γ(α) + Tα

N(α)Γ(α)

]
λ∆

∣∣∣∣G − G∣∣∣∣ ,
which implies that ∣∣∣∣G(t) − G(t)

∣∣∣∣ ≤ 2ξϵ
1 − η

,

where
ξ = 2

[
(1 − α)Γ(α) + Tα

N(α)Γ(α)

]
and

η =

[
(1 − α)Γ(α) + Tα

N(α)Γ(α)

]
λ∆.

For
ω =

2ξ
1 − η

,

then ∣∣∣∣G(t) − G(t)
∣∣∣∣ ≤ ωϵ.

Hence, the considered fractional system (2.2) is UM
stable. □

6. Numerical results and discussion

In this work, we obtain the solution of the fractional-
order smoking-related cancer model (2.2) using the Adams-
Bashforth-Moulton method [52]. We take some specific
values of the necessary parameters

Λ = 0.002, β1 = 0.00012, β2 = 0.002,

δ1 = 0.0032, δ2 = 0.00233, δ3 = 0.00462,

δ4 = 0.00023, δ5 = 0.000123, µ = 0.05,

α1 = 0.001, α2 = 0.0045, α3 = 0.000123,

γ1 = 0.007, γ2 = 0.00023, γ3 = 0.00034

with the initial values

P0 = 40, IL0 = 20, IC0 = 15, I0 = 10, T0 = 10, C0 = 5, R0 = 0.

Figures 1–7 represent the behavior of each compartment
when we utilized the ABC with some fractional orders
between 0.9 and 1. We plot the 3D behavior of the
transmission rate from the IL(t) class to the IC(t) class when
β2 and α1 are between 0 and 0.004 in Figures 8 and 9,
respectively. When infective parameter δ4 is between 0.0001
and 0.0004, the rate of transmission from the I(t) and
C(t) class is demonstrated as Figure 10. When another
infective parameter δ5 is between 0 and 0.0004, the rate
of transmission from I(t) to R(t) class is obtained as in
Figure 11. Figure 12 is the plot of the transmission rate from
infected to recovered individuals when infective parameter
δ5 change.

Figure 1. Diagram of the smoking-related cancer
model.
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Figure 2. Behavior of the susceptible class P(t)
for certain fractional-order between 0.9 and 1.
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Figure 3. Behavior of the lately infected class
IL(t) for certain fractional orders between 0.9 and
1.
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Figure 4. Behavior of the chronically infected
without treatment class IC(t) for certain fractional
orders between 0.9 and 1.
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Figure 5. Behavior of the infected without
treatment class I(t) for certain fractional orders
between 0.9 and 1.
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Figure 6. Behavior of the infected with treatment
class T (t) for certain fractional orders between 0.9
and 1.
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Figure 7. Behavior of the cancer infected class
C(t) for certain fractional orders between 0.9 and
1.
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Figure 8. Behavior of the recovered class R(t) for
certain fractional orders between 0.9 and 1.

Figure 9. Rate of transmission from lately
infected to chronically infected without treatment
individuals when transmission coefficient β2 is
between 0 and 0.004.

Figure 10. Individuals transferring form the IL to
the IC compartment with the rate of α1 between 0
and 0.004.

Figure 11. Rate of transmission from infected
individuals to cancer infected individuals when
infective parameter δ4 is between 0.0001 and
0.0004.

Figure 12. Rate of transmission from infected
individuals to recovered individuals when
infective parameter δ5 is between 0 and 0.0004.

7. Conclusions

We demonstrated a fractional-order smoking-related
cancer mathematical model with seven compartments under
the duration of 60 days. We utilized the ABC fractional
operator as it has non-local and non-singular properties.
Further, we acquired a well-known Adams-Bashforth-
Moulton method which provided a fast convergence to the
solution. The existence and uniqueness of the system was
proved with the help of Banach’s fix point theorem. By
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calculating the equilibrium points and basic reproduction

number, we validated the local stability and, with the use

of Ulam-Hyres stability, we admitted the global stability

of the suggested model. From Figures 1–8, we see that
the behavior of the solution of each class having a stable

region. Figures 9 and 10 show that when transmission

coefficients β2 and α1 change, the lately infected individuals

transmit to chronically infected individuals. Figure 11

displays the transmission rate from infected individuals to

cancer due to smoking individuals when infective parameter

δ4 differs. By incorporating data on smoking-related cancer

and its treatment effectiveness, researchers can gain insights

into how different factors affect the cancer progression and

design strategies for prevention, diagnosis, and treatment. It

can help to evaluate the impact of different tobacco control

policies on cancer incidence and mortality.

The use of the smoking-related cancer model in research

can support the UN’s sustainable development goals in

several ways. Researchers can contribute valuable insights

into the causes and mechanisms of cancer development,

which can ultimately lead to improved prevention, early

detection, and treatment strategies. This can have a

significant impact on good health and well-being, by

reducing the burden of cancer worldwide and improving

overall public health. Additionally, research on the

smoking-related cancer model can also contribute to quality

education, by providing valuable training and educational

opportunities for researchers and healthcare professionals.

By sharing knowledge and expertise gained from studying

the smoking cancer model, researchers can help build

capacity in cancer research and care, ultimately improving

the quality of education and healthcare delivery in this field.

Use of AI tools declaration

The authors declare they have not used Artificial
Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors have no conflicts of interest to declare.

References

1. J. M. Sethi, C. L. Rochester, Smoking and chronic
obstructive pulmonary disease, Clin. Chest Med.,
21 (2000), 67–86. https://doi.org/10.1016/S0272-
5231(05)70008-3

2. R. M. Senior, N. R. Anthonisen, Chronic
obstructive pulmonary disease (COPD), Amer.

J. Resp. Crit. Care Med., 157 (1998), 139–147.
https://doi.org/10.1164/ajrccm.157.4.nhlbi-12

3. D. Twardella, M. Loew, D. Rothenbacher, C.
Stegmaier, H. Ziegler, H. Brenner, The diagnosis
of a smoking-related disease is a prominent trigger
for smoking cessation in a retrospective cohort
study, J. Clin. Epidemiol., 59 (2006), 82–89.
https://doi.org/10.1016/j.jclinepi.2005.05.003

4. T. Alnima, R. Meijer, H. Spronk, M. Warlé, H. Cate,
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