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Abstract: Both tuberculosis (TB) and COVID-19 are infectious diseases with similar clinical manifestations, which mainly affect the
lungs. Clinical studies have revealed that the immunosuppressive drugs taken by COVID-19 patients can affect the immunological
functions in the body, which can cause the patients to contract active TB via a new infection or reinfection, and the co-infection of the two
diseases portends a clinical complexity in the management of the patients. Thus, this paper presents a mathematical model to study the
dynamics and control of COVID-19-TB co-infection. The full model of the co-infection is split into two submodels, namely, the TB-only
and the COVID-19-only models. The equilibria of the disease-free and endemic situations of the two sub-models are shown to be globally
asymptotically stable when their control reproduction numbers RTV

o ,RCV
o < 1 and R̃TV

o , R̃CV
o > 1, respectively. However, the disease-free

equilibrium of the co-infection model was found to lose its global stability property when the reproduction number RF
o < 1, therefore

exhibiting a backward bifurcation. Uncertainty and sensitivity analysis of the associated reproduction number of the full model has been
performed by using the Latin hypercube sampling/Pearson rank correlation coefficient (LHS/PRCC) method. The rate of transmission of
COVID-19 and the proportions of individuals vaccinated with Bacillus Calmette-Guérin (BCG) and against COVID-19 were found to be
highly significant in the spread and control of COVID-19-TB co-infection. Furthermore, the simulation results show that decreasing the
COVID-19 transmission rate and increasing the proportion of people vaccinated with BCG and against COVID-19 can lower the number
of cases of COVID-19-TB co-infection. Therefore, measures to reduce the transmission rate and the provision of adequate resources to
increase the proportions of people vaccinated against TB and COVID-19 should be implemented to minimize the cases of co-infection.
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1. Introduction

COVID-19 began its widespread propagation in Wuhan,
China in December 2019 and spread throughout the World,
with devastating effects on the health and lives of people.
Currently, there are 760 million confirmed cases of the
COVID-19 in the world, and 6.9 million people have been
reported to have died from the infection [1]. COVID-19 is a
contagious disease caused by SARS-CoV-2. The disease is
characterized by respiratory symptoms which are similar to
the flu, a cold, or pneumonia, and it spreads primarily through

the droplets from an infected person. It mainly attacks the
lungs and respiratory organs [2].

Tuberculosis (TB) is a serious respiratory disease which
has continued to impact the health of people negatively. The
causative agent of TB is Mycobacterium TB, which attacks
the lungs [3]. One of the main barriers to the fight against TB
is the resistance of Mycobacterium TB to drugs. Globally,
TB ranks thirteenth among diseases with a high mortality rate,
and it is the second infectious killer disease after COVID-19.
In 2021, about 10.6 million people contracted TB, and a total
of 1.6 million deaths occurred as a result of TB worldwide [4].
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Both COVID-19 and TB are infectious diseases and
they attack the lungs. The two diseases have similar
manifestations, such as fever, cough, and breathing problems.
However, the latency period of COVID-19 is shorter than that
of TB [4]. The experience of COVID-19 infection in people
with TB is still limited, but it is expected that people with
COVID-19-TB co-infection will experience worse treatment
results, especially if TB treatment is interrupted [4].

Clinical studies have reported and discussed the
possibility, interaction, and facilitation of dual infections.
According to Yang and Lu [5], they opined that the
intake of immunosuppressive drugs by people infected
with the COVID-19 can temporarily alter immunological
functionality, introducing vulnerability to active TB via a new
infection or reinfection. Also, from the pathological point
of view, the immunomodulation-related disorders caused by
the pathogens of COVID-19 and TB lead to an unstable
inflammatory response and progression and worsening of the
two diseases [6]. According to [7], there is a huge reduction
in T cell counts in patients with COVID-19, and Khayat
et al. [8] stated that T cell depletion can cause the patient to
develop active TB if the patient is living with latent TB. In a
pilot study carried out by the Global Tuberculosis Network,
the diagnosis of TB and COVID-19 was concurrently carried
out in patients, and a clinical investigation of COVID-19 in
patients led to the discovery of TB [9].

Opportunistic infections typically refer to infections that
occur in people with weak immune systems, such as those
with HIV/AIDS or those on immunosuppressants therapy.
According to a previous study [10], COVID-19 can also be
referred to as an opportunistic infection. These infections
take advantage of the compromised immune system to
cause illness. In the case of a co-infection of COVID-19
and TB, COVID-19 is considered to be an opportunistic
infection; similarly, both diseases can independently cause
illness in individuals with normal or compromised immune
systems. However, having both infections simultaneously
could potentially exacerbate symptoms and increase the
severity of the disease, particularly in people with underlying
health conditions or weak immune systems. The estimated
efficacy of the Bacillus Calmette-Guérin (BCG) vaccine is
about 50–60% in childhood TB prevention.

Recently, the modeling of the spread of contagious diseases

has come to influence the theory and practice of disease
control and management. Mathematical modeling now plays
an important role in epidemiology-related policy decision-
making for diseases in many countries [11]. Several studies
have been carried out on TB and COVID-19 dynamics,
with remarkable results. The authors of [12] proposed a
model for the prevention and control of TB by using cases
from US citizens. Also, Nkamba et al. [13] worked on
the TB mathematical model to examine the influence of
vaccination and the effective contact rate. In addition, Liu
et al. [14] formulated a mathematical model to study China’s
transmission of TB. The authors used data from reported
cases of TB in China from 1998 to 2017 to calibrate the
model. In a study by Chong et al. [15], a model was used to
investigate the effect of treatment on latent TB infection in
the elderly population. Researchers including Perkins and
España [16], Oke et al. [17], Zamir et al. [18], Masandawa
et al. [19], Atede et al. [20] etc., have worked on the
modelling of COVID-19. Also, Yang et al. [21] investigated
the impact of vaccination in the COVID-19 transmission
model, and the model was later extended to incorporate
isolation as an intervention. The work of Kouidere et al.
suggested that the awareness and quarantine of people
infected with COVID-19 are the most effective means of
reducing infection [22]. Furthermore, Ngonghala et al. [23]
examined the impact of nonpharmaceutical measures on
mitigating the burden of COVID-19. They concluded that
early implementation, strict adherence, and high coverage of
measures such as combinations of face mask use and social
distancing in the public can reduce disease transmission.

Many models of co-infection of diseases have been
formulated and studied [24–28]. The authors of [29]
presented a mathematical analysis and numerical solutions
of a model for the co-infection of TB-HIV. The authors
of [30] studied the optimal control and cost-effectiveness
of the human papillomavirus and syphilis co-infection model.
The authors of [31] presented the COVID-19 and TB co-
infection model by using the Atangana–Baleanu derivative in
the fractional-order approach. In the same vein, the authors
of [32] developed a fractional-order COVID-19 and hepatitis
B virus co-infection model; they compared the approximate
solutions of models of integer and fractional order. Another
group of authors [33] developed the SARS-CoV-2 and TB
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co-infection model to study its optimal control by using a
case from Indonesia. Also, Gweryina et al. [34] worked on
a model of TB co-infected with pneumonia. The authors
of [35] presented a seven-compartment TB-COVID-19 co-
infection model. Similarly, Mekonen et al. [36] studied and
analyzed a mathematical model of TB and COVID-19 co-
infection, and their analysis revealed that minimizing the
contact rate and increasing treatments can reduce the cases
of co-infection with COVID-19-TB. The authors of [37]
studied a fractal-fractional model of TB and COVID-19 co-
infection by using the Atangana-Baleanu fractal-fractional
operator; additionally Lagrange polynomial interpolation was
used to obtain the numerical scheme for the co-infection
model. Also, Bandekar and Ghosh conducted optimal control
and sensitivity analysis of the TB-COVID-19 co-infection
model [38]. Their work emphasized that the treatment of
other diseases should be implemented in times of a pandemic.
Furthermore, Inayaturohmat et al. [39] examined the effects
of treatment and isolation on a co-infection model of TB and
COVID-19. Their results revealed that the impact of isolation
is immediate, whereas the treatment takes a longer time for
its effect to be felt.

In another study, Kifle and Obsu [40] applied optimal
control in their COVID-19-TB co-infection model. They
incorporated exogenous TB reinfection and COVID-19
vaccination into the model.

The authors of [41] developed a compartmental model
to analyze the spread of HIV/AIDS-TB co-infection. They
considered preventive measures and the treatment of infected
individuals and assessed the impact of co-infection and
single-infection treatment on the spreading dynamics of
HIV/AIDS-TB co-infection and single infection. The study
concluded that therapeutic controls were more effective
for infected individuals, whereas preventive controls were
more effective for noninfected individuals. In another study,
Kotola et al. [42] formulated and analyzed a mathematical
model for the transmission dynamics of HIV/AIDS and
COVID-19 co-infection. Their model incorporated protection
and treatment for infected groups. The results showed
that applying combinations of all possible protective and
treatment strategies was the most effective strategy to
minimize the transmission of HIV/AIDS and COVID-19
co-infection in the community.

Similarly, Teklu [43] investigated the respective impacts of
vaccination, other protective measures, home quarantine with
treatment, and hospital quarantine with treatment strategies
simultaneously by using a deterministic mathematical
modeling approach. They found that, among all parameters,
the transmission rate is the most sensitive to control, and
that vaccination, other protective measures, home quarantine
with treatment, and hospital quarantine with treatment greatly
minimize COVID-19 transmission in the community.

In addition, the authors of [44] studied a compartmental
model of co-infection of pneumonia and HIV/AIDS with
optimal control strategies by using a system of ordinary
differential equations. They investigated various optimal
control strategies to predict the best strategy to minimize and
possibly eradicate HIV/AIDS and pneumonia co-infection
from the community.

However, none of the studies has incorporated a
vaccination program for the two diseases, and this makes
our current research differ from the existing works. Since TB
and COVID-19 are infectious diseases with similar clinical
manifestations, they mainly attack the lungs. Clinical studies
have revealed that the immunosuppressive drugs taken by
COVID-19 patients can affect the immunological functions
in the body, which can make patients vulnerable to active
TB via a new infection or reinfection; also, the co-infection
of the two diseases portends a clinical complexity in the
management of the patients. This has motivated us to present
a mathematical model that studied the dynamics and control
of COVID-19-TB co-infection.

We also aimed to identify which parameters actually
trigger the burden of COVID-19-TB co-infection, as well
as the parameters that must be targeted in order to reduce the
incidence of either disease in the population as this will allow
us to appropriately advise policymakers, health workers, and
government agencies.

It is important to note that this study is limited to the use
of classical ordinary differential equations in the modeling
process.

The other part of this work is fragmented into sections as
follows: Section 2 presents the formulation of the model, the
analysis of the model is given in Section 3, the discussion
of the results follows in Section 4, and the conclusion is in
Section 5.
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2. Mathematical formulation and the assumptions of the
model

The total human population (N) at time (t) is separated into
the following classes: the susceptible (S (t)) class, the latent
TB (LT (t)) class, the TB infectious class (IT (t)), the latent
COVID-19 (LC(t)) class, the COVID-19 infectious class
(IC(t)), the latent COVID-19-TB co-infected class (LTC(t)),
the infectious COVID-19-TB co-infected class (ITC(t)), the
treatment (T (t)) class, the class of individuals who are
vaccinated (V(t)), and the recovered class (R(t)). It is assumed
that the susceptible class (S (t)) is increased by the recruitment
of people (at the rate Λ). This class diminishes as a result of
infections following contact with TB-infectious individuals,
COVID-19-infectious individuals, infectious COVID-19-TB
co-infected individuals at the rates λC and λT , given by

λT =
β1(IT + mITC)

N
and λC =

β2(IC + nITC)
N

, (2.1)

where β1 and β2 are the transmission rates of TB and
the COVID-19 infections, respectively. Also, m and n

are the modification parameters accounting for reduced
infectivity of the ITC class relative to the IT and IC classes,
respectively. The class further reduces due to the vaccination
of proportions a and b of the newly recruited individuals
against TB and COVID-19 infection respectively. It is also
assumed that all humans die naturally (at the rate µ), which
causes every compartment to reduce. Therefore,

dS
dt
= (1 − (a + b))Λ − λT S − λCS − µS . (2.2)

The class LT of people with latent TB is assumed to be
populated by the newly infected TB individuals who have
acquired TB (at the rate λT ). The size of the class diminishes
due to transfer (at the rates α and η) to the IT class and LTC

class, respectively. Thus,

dLT

dt
= λT S − (µ + α + ηλC)LT . (2.3)

The TB infectious class (IT ) is assumed to be composed
of those who have transitioned from the latent class (at the
rate α); additionally, the size of the class shrinks due to
progression (at the rates γ and θ). Thus,

dIT

dt
= αLT − (µ + δT + γ + θ)IT . (2.4)

The latent COVID-19 class (LC) comprises those who just
contracted COVID-19 (at the rate λC). This population is
decreased by transition to the IC and LTC classes (at the rates
ψ and ε, respectively). Also, the population of individuals
with latent COVID-19 declines (at the rate χ) as they recover
naturally without treatment. Hence,

dLC

dt
= λCS − (µ + χ + ελT + ψ)LC . (2.5)

The class IC , of infectious COVID-19 individuals is occupied
by those who have transitioned into the class from the
LC compartment (at the rate ψ). The reductions in the
IC population are caused by mortality (at the rate δC) and
transition to the ITC and T classes (at the rates υ and φ,
respectively). Therefore,

dIC

dt
= ψLC − (µ + δC + υ + φ)IC . (2.6)

The LTC population of the latent COVID-19-TB co-
infected individuals is assumed to be generated by the latent
COVID-19 individuals who contracted TB and latent-TB-
infected individuals who contracted COVID-19 as well. The
transition to the class ITC (at the rate ρ) lowers this population.
Hence,

dLTC

dt
= ηλC LT + ελT LC − (µ + ρ)LTC . (2.7)

The ITC class is increased by the contributions of the LTC ,
IT , and IC classes (at the rates γ, θ, and υ, respectively),
indicating infectious COVID-19-TB co-infected. The
treatment and death due to the co-infection (at the rates τ
and δTC , respectively) cause the population to reduce. Thus,

dITC

dt
= ρLTC + θIT + υIC − (µ + δTC + τ)ITC . (2.8)

The treatment class is filled with those who are receiving
treatment in the IT , IC , and ITC classes (at the rates γ, φ, and
τ, respectively). The class is decreased by recovery at the
rate ϕ. Then,

dT
dt
= γIT + φIC + τITC − (ϕ + µ)T. (2.9)

It is assumed that the vaccinated class V has the
proportions a and b of those that are recruited who have
been vaccinated against TB and COVID-19. Then,

dV
dt
= aΛ + bΛ − µV. (2.10)
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Last, the recovered compartment comprises those recovered
from treatment at the rate ϕ and those who recover at the rate
χ from latent COVID-19 naturally without treatment. Thus,

dR
dt
= ϕT + χLC − µR. (2.11)

The schematic diagram illustrating the dynamics in the
models is given in Figure 1. Also, all of the parameters and
variables used in the model are defined in Tables 1 and 2.

Figure 1. Schematic diagram of the dynamics of
the COVID-19-TB co-infection model.

Table 1. The description of variables of the
COVID-19-TB co-infected model (2.12).

Parameter Description

S (t) Susceptible class
LT (t) Latent TB class
IT (t) TB-infectious class
LC(t) Latent COVID-19 class
IC(t) COVID-19 infectious class
LTC(t) Latent COVID-19-TB co-infected class
ITC(t) Infectious COVID-19-TB co-infected class
T (t) Class of individuals under treatment
V(t) Class of individuals who are vaccinated
R(t) Recovered class

Table 2. Definition and value of each parameter of
the model (2.12).

Parameter Definition Value Reference

Λ Recruitment rate for the population 20 Assumed
β1 Transmission rate of TB infection 0.0234 [45]
β2 Transmission rate of COVID-19 infection 0.49 [46]
m, n Modification parameters accounting for

reduced infectivity of TB and COVID-19 0.1,0.1 Assumed
µ Natural death rate for humans 0.0000423 [38]
α Progression of latent TB individuals

to TB infectious class 0.000137 [45]
η Rate at which latent TB individuals

become latently infected with COVID-19 0.2 Assumed
γ Treatment rate for TB-infectious

individuals 0.1005 [39]
χ Recovery rate for latent COVID-19

individuals 0.00001 Assumed
ψ Progression of latent COVID-19 individuals

to infectious COVID-19 class 0.087 [47]
ε Rate at which latent COVID-19 individuals

become latently infected with TB 0.2 Assumed
υ Rate at which COVID-19-infectious humans

become actively infected with TB 0.039 Assumed
θ Rate at which TB-infectious human

becomes actively infected with COVID-19 0.25 [48]
φ Treatment rate for COVID-19-infectious

individuals 0.0264 [49]
a Proportion of individuals vaccinated

with BCG 0.1 Assumed
b Proportion of individuals vaccinated

against COVID-19 0.1 Assumed
δT Induced death rate for TB 0.001 [45]
δC Induced death rate for COVID-19 0.20704 [17]
δTC Induced death rate for co-infection 0.0525 [39]
ρ Progression of individuals from LTC to ITC 0.05 Assumed
τ Treatment rate for co-infected individuals 0.0055 Assumed
ϕ Recovery rate of treated individuals 0.018 Assumed
λT , λC Forces of infection for TB and COVID-19 — —

Mathematical Modelling and Control Volume 4, Issue 2, 208–229.



213

Summarily, combining all of the assumptions together, we
have the following system of equations:

dS
dt
= (1 − (a + b))Λ − λT S − λCS − µS ,

dLT

dt
= λT S − (µ + α + ηλC)LT ,

dIT

dt
= αLT − (µ + δT + γ + θ)IT ,

dLC

dt
= λCS − (µ + χ + ελT + ψ)LC ,

dIC

dt
= ψLC − (µ + δC + υ + φ)IC ,

dLTC

dt
= ηλC LT + ελT LC − (µ + ρ)LTC ,

dITC

dt
= ρLTC + θIT + υIC − (µ + δTC + τ)ITC ,

dT
dt
= γIT + φIC + τITC − (ϕ + µ)T,

dV
dt
= aΛ + bΛ − µV,

dR
dt
= ϕT + χLC − µR,

(2.12)

where

λT =
β1(IT + mITC)

N
, λC =

β2(IC + nITC)
N

.

2.1. Positivity of the solutions

Since the model (2.12) tracks the populations of humans,
the solutions to the model (2.12) have to be positive. Hence,
the following theorem is proved to ensure that the solutions
are all positive.

Theorem 2.1. All solutions

S (t), LT (t), IT (t), LC(t), IC(t), LTC(t), ITC(t),T (t),V(t),R(t)

having positive starting values continue to be positive at all

times.

Proof. Let t1 = sup{t > 0 : S (t) > 0, LT (t) > 0, IT (t) >
0, LC(t) > 0, IC(t) > 0, LTC(t) > 0, ITC(t) > 0,T (t) >

0,V(t) > 0,R(t) > 0} > 0.
So, from the equation for the first compartment of the

model (2.12), we have

dS
dt
= (1 − (a + b))Λ − λT S − λCS − µS . (2.13)

Then,

dS
dt
≥ (−λT − λC − µ)S , (2.14)

∫ t1

0

dS
S
≥

∫ t1

0
−(λT + λC + µ)dt, (2.15)

S (t) ≥ S (0) exp
(
−µt1 −

∫ t1

0

(
λT (χ) + λC(χ)

)
dχ

)
≥ 0.

∴ S (t1) ≥ 0. (2.16)

By applying the same approach, all other variables of the
model (2.12) can be shown to stay positive for all time t > 0;
therefore, this ends the proof. □

2.2. Invariant region of the model

Lemma 2.1. Consider

D =
{

(S , LT , IT , LC , IC , LTC , ITC ,T,V,R) ∈ R10
+ : N ≤

Λ

µ

}
.

Then, the closed set D is positively-invariant and attracting

for the model (2.12).

Proof. The summation of the rates of change of all classes
in (2.12) gives

dN
dt
= Λ − µN − δT IT − δC IC − δTC ITC .

So,
dN
dt
≤ Λ − µN.

Then
N(t) ≤ N(0)e−µt +

Λ

µ
(1 − e−µt).

If
N(0) ≤

Λ

µ
,

then
N(t) ≤

Λ

µ
.

Hence, all solutions possessing initial values in D stay in D

for t > 0. This signifies that D is positively-invariant, and that,
in region D, the model is deemed to be epidemiologically
meaningful and mathematically well-posed. □

3. Mathematical analysis of the models

The full co-infection model is split into 2 sub-models
namely, the TB-only model and the COVID-19-only model.
We will first explore the dynamics of the 2 sub-models
separately (i.e., the TB-only model and the COVID-19-only
model) before proceeding to the co-infection model.
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3.1. TB-only model

The TB-only model is obtained from the co-infection
model (2.12) by setting b = θ = 0 and LC = IC = LTC =

ITC = 0; thus we have the TB-only model as follows:

dS
dt
= (1 − a)Λ − λT S − µS ,

dLT

dt
= λT S − (µ + α)LT ,

dIT

dt
= αLT − (µ + δT + γ)IT ,

dT
dt
= γIT − (ϕ + µ)T,

dV
dt
= aΛ − µV,

dR
dt
= ϕT − µR,

(3.1)

where

λT =
β1IT

N
, (3.2)

N = S + LT + IT + T + V + R. (3.3)

Consider the feasible region

DT =

{
(S , LT , IT ,T,V,R) ∈ R6

+ : N ≤
Λ

µ

}
.

It can be shown that all solutions in DT stay in DT for all
values of t > 0. Hence, DT is positively-invariant. Now, we
can proceed to explore the model’s dynamics in DT .

3.1.1. Disease-free equilibrium and reproduction number of
TB-only model

When TB infection does not exist, the disease-free
equilibrium is obtained, and it is given by

Eo
T = (S o, Lo

T , I
o
T ,T

o,Vo,Ro)

=

(
(1 − a)Λ

µ
, 0, 0, 0,

aΛ
µ
, 0

)
.

(3.4)

By adopting the next-generation matrix method of [50] to
find the reproduction number, we can respectively define the
matrices F and V as follows:

F =


λT S

0
0

 and V =


(µ + α)LT

−αLT + (µ + δT + γ)IT

−γIT + (ϕ + µ)T

 . (3.5)

Differentiating F and V in (3.5) with respect to LT , IT , and T

at the disease-free equilibrium Eo
T , leads to

F =


0 β1(1 − a) 0
0 0 0
0 0 0

 (3.6)

and

V =


G1 0 0
−α G2 0
0 −γ G3

 , (3.7)

where

G1 = µ + α, G2 = µ + δT + γ, G3 = ϕ + µ. (3.8)

Then, the control reproduction number in the presence of
the vaccine, denoted by RTV

o , is given by

RTV
o = ρ(FV−1) =

β1α(1 − a)
G1G2

. (3.9)

The ρ parameter in (3.9) is the spectral radius of the dominant
eigenvalue of the matrix FV−1. When there is no vaccination,
the basic reproduction number is represented by RT

o , which is
given by

RT
o =

β1α

G1G2
. (3.10)

Then, from (3.9) and (3.10), we have that

RTV
o = (1 − a)RT

o . (3.11)

If we denote the critical vaccination proportion to be ac, then,
the critical number of individuals that must be vaccinated to
guarantee the elimination of the disease is given by

ac = 1 −
1

RT
o
, (3.12)

provided that RTV
o ≤ 1 whenever a ≥ ac.

The epidemiological quantity RTV
o is the control

reproduction number, which is the average number of
secondary TB infections that stem from one primary infection
source when introduced into the population of susceptible
individuals where a proportion a has been vaccinated. On
the other hand, the quantity RT

o is the basic reproduction
number of the TB-only model. This is the average number
of secondary TB infections that stemmed from a single
infectious person in a group of susceptible individuals [50].
Therefore, employing Theorem 2 of [51], we arrive at the
following result:
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Lemma 3.1. If RTV
o < 1, then the disease-free equilibrium of

TB-model (3.1) is locally asymptotically stable.

The meaning of Lemma 3.1 is that the eradication of TB is
possible if the starting values of the sub-classes of the model
are in the basin of attraction of Eo

T . Therefore, an introduction
of a small group of TB-infectious people into the population
will not produce an outbreak of TB; therefore, it vanishes.

3.1.2. Endemic equilibrium of TB-only model

The endemic equilibrium of the TB-only model
represented by

Ee
T = (S ∗, L∗T , I

∗
T ,T

∗,V∗,R∗)

is obtained as follows:

S ∗ =
[
(1 − a)[αγG3 + µG3(α +G2)] + aG1G2G3

]
Λ(1 − a)

[(1 − a)[αγG3 + µG3(α +G2)] +G1G2G3G4]µ
,

L∗T =
ΛG2G3(RTV

o − 1)(1 − a)
[(1 − a)[αγG3 + µG3(α +G2)] +G1G2G3G4]

,

I∗T =
αΛG3(RTV

o − 1)(1 − a)
[(1 − a)[αγG3 + µG3(α +G2)] +G1G2G3G4]

,

T ∗ =
αγΛ(RTV

o − 1)(1 − a)
[(1 − a)[αγG3 + µG3(α +G2)] +G1G2G3G4]

,

V∗ =
aΛ
µ
,

R∗ =
ϕαγΛ(RTV

o − 1)(1 − a)
[(1 − a)[αγG3 + µG3(α +G2)] +G1G2G3G4]

,

(3.13)
where G1,G2, and G3 have been defined in (3.8); similarly,

G4 = RTV
o − 1 + a.

From (3.13), it is clear that Ee
T has a unique positive

endemic equilibrium when RTV
o > 1.

3.1.3. Global stability of disease-free equilibrium of
TB-only model

The global asymptotic stability of the disease-free
equilibrium of the TB-only model is investigated here for
RTV

o < 1, to determine whether the disappearance of TB is
independent of the starting values of the sub-classes of the
TB-only model.

Theorem 3.1. The disease-free equilibrium (3.4) of the

TB-only model (3.1) is globally asymptotically stable when

RTV
o < 1, but not when RTV

o > 1.

Proof. We apply linear Lyapunov function, which is given
by

Z = αLT +G1IT +

(
G1G2N − αβ1S

Nγ

)
T. (3.14)

The time derivative of (3.14) is given by

Z′ = αL′T +G1I′T +
(
G1G2N − αβ1S

Nγ

)
T ′. (3.15)

Then, by substitution and simplification, we have

Z′ =
αβ1G3S T

Nγ
−

G1G2G3T
γ

,

Z′ =
(
G1G2G3T

γ

)
[RTV

o − 1].

Therefore, Z′ < 0 if RTV
o < 1 and Z′ = 0 if T = 0. Thus, Z

is a Lyapunov function in DT . Also, the largest invariant set
in

(S , LT , IT ,T,V,R) ∈ DT : Z′ = 0

is the singleton Eo
T . According to LaSalle’s invariance

principle [52], every solution that possesses initial values
in DT tends to Eo

T as t becomes large. □

Theorem 3.1, epidemiologically, means that TB can be
curtailed regardless of the starting sizes of the sub-classes of
the model (3.1) when RTV

o < 1.

3.1.4. Global stability of endemic equilibrium of the
TB-only model

Consider the model (3.1) with δT = 0. Let

β̃1 =
β1µ

Λ

and the endemic equilibrium be denoted by

Ee∗
T = (S ∗∗, L∗∗T , I

∗∗
T ,T

∗∗,V∗∗,R∗∗).

If the associated reproduction number of the model is given
by

R̃TV
o = RTV

o|δT =0
> 1.

Then, we prove the global stability of Ee∗
T .

Theorem 3.2. For DT \D∗, the endemic equilibrium of the

model (3.1) with δT = 0 is globally asymptotically stable if

R̃TV
o > 1, where

D∗ =
{
(S , LT , IT ,T,V,R) ∈ DT : LT = IT = T = R = 0

}
.
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Proof. We apply the Lyapunov function in (3.16) to prove
Theorem 3.2

Q = S − S ∗∗ − S ∗∗ ln
S

S ∗∗
+ LT − L∗∗T − L∗∗T ln

LT

L∗∗T

+
G1

α

[
IT − I∗∗T − I∗T ln

IT

IT ∗∗

]
+

G1G2 − β̃1S ∗∗α
αγ

[
T − T ∗∗ − T ∗∗ ln

T
T ∗∗

]
.

(3.16)

By differentiation, (3.16) becomes

Q′ =
(
1 −

S ∗∗

S

)
S ′ +

(
1 −

L∗T
LT

)
L′T +

G1

α

[
1 −

I∗∗T
IT

]
I′T

+
G1G2 − β̃1S ∗∗α

αγ

[
1 −

T ∗∗

T

]
T ′,

(3.17)

Q′ = 3β̃1I∗∗T S ∗∗ − 2µS ∗∗ − µS −
β̃1I∗∗T S ∗2

S
−
µS ∗∗2

S

−
β̃1IT S L∗∗T

LT
−
β̃1I∗∗T S ∗∗LT I∗∗T

IT L∗∗T
,

(3.18)

Q′ = β̃1I∗∗T S ∗∗
(
3 −

S ∗∗

S
−

IT S L∗∗T
I∗∗T S ∗∗LT

−
I∗∗T LT

L∗∗T IT

)
+ µS ∗∗

(
2 −

S
S ∗∗
−

S ∗∗

S

)
.

(3.19)

With the arithmetic mean surpassing the geometric mean,
we have the following inequalities:

3 −
S ∗∗

S
−

IT S L∗∗T
I∗∗T S ∗∗LT

−
I∗∗T LT

L∗∗T IT
≤ 0

and
2 −

S
S ∗∗
−

S ∗∗

S
≤ 0.

Hence, Q′ ≤ 0 for R̃TV
o > 1. Therefore, Q is a Lyapunov

function in DT , and, from LaSalle’s invariance principle [52],
every solution possessing starting values in DT \D∗ tends to
Ee∗

T as the time moves closer to infinity for R̃TV
o > 1. □

The biological interpretation of Theorem 3.2 is that TB
will continue to exist in the community regardless of the
initial population levels whenever R̃TV

o > 1.

3.2. COVID-19-only model

The COVID-19-only model can be obtained from the co-
infection model (2.12) when

a = υ = 0

and
LT = IT = LTC = ITC = 0.

We have the COVID-19-only model as follows:

dS
dt
= (1 − b)Λ − λCS − µS ,

dLC

dt
= λCS − (µ + χ + ψ)LC ,

dIC

dt
= ψLC − (µ + δC + φ)IC ,

dT
dt
= φIC − (ϕ + µ)T,

dV
dt
= bΛ − µV,

dR
dt
= ϕT + χLC − µR,

(3.20)

where

λC =
β2IC

N
, (3.21)

N = S + LC + IC + T + V + R. (3.22)

Regarding model (3.20), it can be shown that the region
given by

DC =

{
(S , LC , IC ,T,V,R) ∈ R6

+ : N ≤
Λ

µ

}
is positively-invariant and attracting. Then, the COVID-19-
only model (3.20) will be considered in the region DC .

3.2.1. Disease-free equilibrium and reproduction number of
COVID-19-only model

In a case in which there is no COVID-19, we have a disease-
free situation, and its equilibrium is given by

Eo
C = (S o, Lo

C , I
o
C ,T

o,Vo,Ro)

=

(
(1 − b)Λ

µ
, 0, 0, 0,

bΛ
µ
, 0

)
.

(3.23)

The control reproduction number of COVID-19 is obtained
by employing the next-generation matrix method as in [50].
Let F and V be defined as follows:

F =


0 β1(1 − b) 0
0 0 0
0 0 0

 (3.24)
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and

V =


H1 0 0
−ψ H2 0
0 −φ H3

 . (3.25)

Then, the control reproduction number is given by

RCV
o = ρ(FV−1) =

β2ψ(1 − b)
H1H2

, (3.26)

where
H1 = µ + χ + ψ, H2 = µ + δC + φ, (3.27)

and ρ is the spectral radius of the dominant eigenvalue of
the matrix FV−1. In the absence of a vaccine, the basic
reproduction number is obtained, which is represented by RC

o .
Then,

RC
o =

β2ψ

H1H2
. (3.28)

We can re-write (3.26) as follows:

RCV
o = (1 − b)RC

o . (3.29)

Thus, the critical number of individuals who need to be
vaccinated to eliminate the disease is given by

bc = 1 −
1

RC
o
, (3.30)

such that RCV
o ≤ 1 whenever b ≥ bc. Then, by adopting

Theorem 2 of [51], we obtain the following result:

Lemma 3.2. If RCV
o < 1, then the disease-free equilibrium

of the COVID-19-only model (3.20) is locally asymptotically

stable.

Lemma 3.2 basically states that the eradication of the
COVID-19 is possible if the starting values of the different
populations that make up the model are in the basin of
attraction of Eo

C . Hence, an introduction of a few numbers
of infected people into the population will not lead to an
outbreak of COVID-19; then, the disease vanishes.

3.2.2. Endemic equilibrium of COVID-19-only model

Let the endemic equilibrium of the COVID-19-only model
be represented by Ee

C . We obtain the following for Ee
C:

Ee
C = (S ∗, L∗C , I

∗
C ,T

∗,V∗,R∗).

where

S ∗ =
[
(1 − b)[ψ(φ + µ) + H2(µ + χ)] + bH1H2

]
H5

[(1 − b)[H2(χ + µ) + ψ(φ + µ)] + H1H2H4]µ
,

L∗C =
H5H2(RCV

o − 1)
[(1 − b)[H2(χ + µ) + ψ(φ + µ)] + H1H2H4]

,

I∗C =
H5ψ(RCV

o − 1)
[(1 − b)[H2(χ + µ) + ψ(φ + µ)] + H1H2H4]

,

T ∗ =
φψH5(RCV

o − 1)
[(1 − b)[H2(χ + µ) + ψ(φ + µ)] + H1H2H4]H3

,

V∗ =
bΛ
µ
,

R∗ =
H5(RCV

o − 1)[χH2H3 + φϕψ]
[(1 − b)[H2(χ + µ) + ψ(φ + µ)] + H1H2H4]H3

,

(3.31)
where

H5 = Λ(1 − b), H4 = RCV
o − 1 + b, H3 = ϕ + µ,

and H1 and H2 have been defined in (3.27).
Evidently, from (3.31), we have a unique positive endemic

equilibrium when RCV
o > 1.

3.2.3. Global stability of disease-free equilibrium of
COVID-19-only model

We shall investigate whether the elimination of COVID-19
relies on the starting values of the sub-classes through the
exploration of the global asymptotic stability of the disease-
free equilibrium of the COVID-19-only model.

Theorem 3.3. The disease-free equilibrium (3.23) of the

COVID-19-only model (3.20) is globally asymptotically

stable when RCV
o < 1, but not when RCV

o > 1.

Proof. We adopt the linear Lyapunov function defined by

J = ψLC + H1IC +

(
H1H2N − ψβ2S

Nφ

)
T. (3.32)

Taking the derivative of (3.32) leads to

dJ
dt
= ψ

dLC

dt
+ H1

dIC

dt
+

(
H1H2N − ψβ2S

Nφ

)
dT
dt
. (3.33)

Then, by substitution and simplification, we have

dJ
dt
=
ψβ2H3S T

Nφ
−

H1H2H3T
φ

,

dJ
dt
=

(
H1H2H3T

φ

)
[RCV

o − 1].
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Therefore,
dJ
dt

< 0

if RCV
o < 1 and

dJ
dt
= 0

if T = 0. Thus, J is a Lyapunov function in DC . Also, the
largest invariant set in

(S , LC , IC ,T,V,R) ∈ DC :
dJ
dt
= 0

is the singleton Eo
C . According to LaSalle’s invariance

principle [52], all solutions having initial values in DC move
toward Eo

C as t becomes large. □

Theorem 3.3 can be interpreted epidemiologically to mean
that COVID-19 can be curbed regardless of the starting sizes
of the sub-classes of the model (3.1) when RCV

o < 1.

3.2.4. Global stability of endemic equilibrium of the
COVID-19-only model

Consider the model (3.20) with δC = 0. Let the associated
transmission rate

β̃2 =
β2µ

Λ
,

and the endemic equilibrium be denoted by

Ee∗
C = (S ∗∗, L∗∗C , I

∗∗
C ,T

∗∗,V∗∗,R∗∗).

Let the associated reproduction number of the model be given
by

R̃CV
o = RCV

o|δC=0
> 1.

Then, we explore the global asymptotic behavior of Ee∗
C .

Theorem 3.4. For DC\D∗∗, the endemic equilibrium of the

model (3.20) with δC = 0 is globally asymptotically stable if

R̃CV
o > 1, where

D∗∗ =
{
(S , LC , IC ,T,V,R) ∈ DC : LC = IC = T = R = 0

}
.

Proof. We consider the Lyapunov function for the proof. We
define the Lyapunov function as follows:

X = S − S ∗∗ − S ∗∗ ln
S

S ∗∗
+ LC − L∗∗C − L∗∗C ln

LC

L∗∗C

+
H1

ψ

[
IC − I∗∗C − I∗∗C ln

IC

IC∗∗

]
+

H1H2 − β̃2S ∗∗ψ
φψ

[
T − T ∗∗ − T ∗∗ ln

T
T ∗∗

]
.

(3.34)

By differentiation, (3.34) becomes

X′ =
(
1 −

S ∗∗

S

)
S ′ +

(
1 −

L∗∗C
LC

)
L′C +

H1

ψ

[
1 −

I∗∗C

IC

]
I′C

+
H1H2 − β̃2S ∗∗ψ

φψ

[
1 −

T ∗∗

T

]
T ′,

(3.35)

X′ = 3β̃2I∗∗C S ∗∗ − 2µS ∗∗ − µS −
−β̃2I∗∗C S ∗∗2

S
−
µS ∗∗2

S

−
−β̃2ICS L∗∗C

LC
−
−β̃2I∗∗C S ∗∗LC I∗∗C

IC L∗∗C
,

(3.36)

X′ = β̃2I∗∗C S ∗∗
(
3 −

S ∗∗

S
−

ICS L∗∗C
I∗∗C S ∗∗LC

−
I∗∗C LC

L∗∗C IC

)
+ µS ∗∗

(
2 −

S
S ∗∗
−

S ∗∗

S

)
.

(3.37)

Given that the arithmetic mean surpassing the geometric
mean, the following inequalities hold:

3 −
S ∗∗

S
−

ICS L∗∗C
I∗∗C S ∗∗LC

−
I∗∗C LC

L∗∗C IC
≤ 0, 2 −

S
S ∗∗
−

S ∗∗

S
≤ 0.

Thus, X′ ≤ 0 for R̃CV
o > 1. Then, X is a Lyapunov function

in DC , and from LaSalle’s invariance principle [52], every
solution with starting values in DC\D∗∗ tends to Ee∗

C as the
time moves closer to infinity for R̃CV

o > 1. □

The biological interpretation of Theorem 3.4 is that
COVID-19 will continue to exist in the population regardless
of the starting values of the classes whenever R̃CV

o > 1.

3.3. Analysis of the COVID-19-TB co-infection model

3.3.1. Disease-free equilibrium and reproduction of the
co-infection model

The disease-free equilibrium of the COVID-19-TB co-
infection model (2.12) is given by

Eo
F = (S o, Lo

T , I
o
T , L

o
C , I

o
C , L

o
TC , I

o
TC ,T

o,Vo,Ro)

=

( (
1 − (a + b)

)
Λ

µ
, 0, 0, 0, 0, 0, 0, 0,

(a + b)Λ
µ

, 0
)
.

(3.38)

Then, using the next-generation matrix method as in [50],
the associated reproduction number is given by

RF
o =

(1 − a − b)(B +
√

A)
2K6K4K3K2K1

, (3.39)
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where

A = β1
2α2 K4

2K3
2 (mθ + K6)2

− 2 β1β2ψαK4 K1 K2K3

(
K6

2 + (mθ + nυ) K6 − nθmυ
)

+ β2
2ψ2K1

2K2
2 (nυ + K6)2 ,

B = β2ψK2K1(nυ + K6) + β1αK4K3(mθ + K6)

(3.40)

and

K1 = µ + α, K2 = µ + δT + γ + θ, K3 = µ + ψ + χ,

K4 = µ + δC + υ + φ, K6 = µ + δTC + τ.
(3.41)

Hence, given Theorem 2 of [51,53], we claim the following
result:

Lemma 3.3. The disease-free equilibrium Eo
F of the COVID-

19-TB-model (2.12) is locally asymptotically stable if RF
o < 1,

but not if RF
o > 1.

The epidemiological interpretation of Figure 2 indicates
that the disease may dies out in the population regards of the
initial size. The following Theorem 3.3 confirms the disease
free equilibrium in the case RCV

0 < 1, while that of Figure 3
shows that the disease may keep persistent in the population
irrespective of the initial size of the infected individual. The
following Theorem 3.4 affirms the persistence of the disease
in the case R̃CV

0 > 1.
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Figure 2. Simulation showing global stability
of disease-free equilibrium points of infectious
COVID-19 population equilibrium with various
initial values and the parameter values as presented
in Table 2, except that β2 = 0.19 when RCV

0 =

0.7350.
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Figure 3. Simulation showing global stability of
endemic equilibrium points of infectious COVID-
19 population with various initial values and the
parameter values as presented in Table 2, except
that β2 = 0.69 when R̃CV

0 > 1.

3.3.2. Global stability of disease-free equilibrium of
COVID-19-TB co-infection model

Using the method presented by Castillo-Chavez et al. [50],
we can write the model (2.12) as follows:

dP
dt
= A(P, I),

dI
dt
= B(P, I), B(P, 0) = 0.

(3.42)

Then, the global asymptotic stability of the disease-free
equilibrium is guaranteed if the following conditions hold:

Y1. For
dP
dt
= A(P, 0), P∗ is globally asymptotically stable;

Y2. B(P, I) = HI − B̃(P, I) ≥ 0 for (P, I) ∈ D,

where
H = DI B(P∗, 0)

is an M-matrix (the off-diagonal elements of H are non-
negative) and D is the feasible region in which the model
makes sense.

Theorem 3.5. If the disease-free equilibrium Eo
F of

the COVID-19-TB co-infection model (2.12) is locally

asymptotically stable, then, it is also globally asymptotically

stable if the conditions (Y1) and (Y2) are satisfied.
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Proof. For model (2.12),

P = (S ,V,R)

and
I = (LT , IT , LC , IC , LTC , ITC ,T ).

A(P, 0) =


[1 − (a + b)]Λ − µS

(a + b)Λ − µV

0

 , (3.43)

H =



−K1 β1[1 − (a + b)] 0 0 0 β1m[1 − (a + b)] 0
α −K2 0 0 0 0 0
0 0 −K3 β2[1 − (a + b)] 0 β2n[1 − (a + b)] 0
0 0 ψ −K4 0 0 0
0 0 0 0 −K5 0 0
0 θ 0 υ ρ −K6 0
0 γ 0 φ 0 τ −K7


,

(3.44)
where K5 = µ + ρ, K7 = ϕ + µ, and K1,K2,K3K4,K6 have
been defined in (3.41).

Then,

B̃(P, I) =



β1(IT + mITC)
[
[1 − (a + b)] −

S
N

]
+
ηβ2LT (IC + nITC)

N
0

β2(IC + nITC)
[
[1 − (a + b)] −

S
N

]
+
εβ1LC(IT + mITC)

N
0

−
ηLTβ2(IC + nITC)

N
−
εLCβ1(IT + mITC)

N
0
0


.

(3.45)
From (3.45), B̃5(P, I) < 0, which means that (Y2) is not

satisfied. Hence, the disease-free equilibrium Eo
F may not

be globally asymptotically stable. This implies that multiple
endemic equilibria may exist; thus, we decided to investigate
the possibility of backward bifurcation. □

3.3.3. Bifurcation analysis of the COVID-19-TB
co-infection model

The approach presented by Castillo-Chavez and Song [54]
is adopted to determine the type of bifurcation in the co-
infection model. The method used was derived from the
centre manifold theory. Now, we can establish the following
result:

Theorem 3.6. The model (2.12) exhibits backward

bifurcation at RF
o = 1 if a > 0 when RF

o < 1; otherwise,

it exhibits forward bifurcation, where

a =
2µ
Λ

(
[β∗1v2(mw7 + w3) + β2v4(nw7 + w5)]

[
w1(a + b)

− (1 − (a + b))(w2 + w3 + w5 + w7 + w8 + w10)
]

+ β∗1v2(mw7 + w3)
[
v6(εw4 + ηw2) − (ηv2w2 + εv4w4)

])
.

Proof. The approach of Castillo-Chavez and Song [54] will
be followed. We start by changing the variables as follows:

S = x1, LT = x2, IT = x3, LC = x4, IC = x5,

LTC = x6, ITC = x7,T = x8,V = x9,R = x10

and establishing that

N = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10.

So, if we use the vector form

X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)T ,

then the model (2.12) is represented as follows:

dX
dt
= ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10)T .

Thus, model (2.12) becomes

dx1

dt
= (1 − (a + b))Λ − λT x1 − λC x1 − µx1 = f1,

dx2

dt
= λT x1 − (µ + α + ηλC)x2 = f2,

dx3

dt
= αx2 − (µ + δT + γ + θ)x3 = f3,

dx4

dt
= λC x1 − (µ + χ + ελT + ψ)x4 = f4,

dx5

dt
= ψx4 − (µ + δC + υ + φ)x5 = f5,

dx6

dt
= ηλC x2 + ελT x4 − (µ + ρ)x6 = f6,

dx7

dt
= ρx6 + θx3 + υx5 − (µ + δTC + τ)x7 = f7,

dx8

dt
= γx3 + φx5 + τx7 − (ϕ + µ)x8 = f8,

dx9

dt
= aΛ + bΛ − µx9 = f9,

dx10

dt
= ϕx8 + χx4 − µx10 = f10,

(3.46)

where

λT =
β1(x3 + mx7)

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10
,

λC =
β2(x5 + nx7)

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10
.
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If β1 is taken as the bifurcation parameter at RF
o = 1, then

β1 = β
∗
1

=
K2K1

[
K6K4K3 − β2ψ (1 − a − b) (nυ + K6)

] α (1 − a − b)
[
K3K4 (mθ + K6)

−β2ψ (mθ + nυ + K6) (1 − a − b)
] 

. (3.47)

The Jacobian of (3.46), evaluated at Eo
F , is denoted by

J(Eo
F); also by adopting the method in [54, 55], the Jacobian

J(Eo
F) has right and left eigenvectors w and v that correspond

to the simple zero eigenvalue such that w.v = 1. The right
eigenvector is given by

w = (w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)T , (3.48)

where

w1 =
−[1 − (a + b)]

[
β∗1[w3 + mw7] + β2[w5 + nw7]

]
µ

,

w6 = 0, w2 =
β∗1[1 − (a + b)]

[
w3 + mw7

]
K1

, w7 = w7 > 0,

w3 = w3 > 0, w8 =
γw3 + φw5 + τw7

K7
, w9 = 0,

w4 =
β2[1 − (a + b)]

[
w5 + nw7

]
K3

, w10 =
θw8 + χw4

µ
,

w5 = w5 > 0.

The left eigenvector v is given by

v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10),

where

v1 = 0, v6 =
ρv7

K5
, v2 = v3 > 0,

v7 =
[1 − (a + b)](β∗1mv2 + β2nv4)

K4
,

v3 =
θv7 + β

∗
1v2[1 − (a + b)]

K2
,

v8 = 0, v4 = v4 > 0, v9 = 0,

v5 =
υv7 + β2v4[1 − (a + b)]

K4
, v10 = 0.

where K5 = µ + ρ,K7 = ϕ + µ and K1,K2,K3K4,K6, have
been defined in (3.41).

We then compute the bifurcation coefficients a and b,
defined as follows:

a =
n∑

k,i, j=1

vkwiw j
∂2 fk
∂xi∂x j

(0, 0),

b =
n∑

k,i=1

vkwi
∂2 fk
∂xi∂β

∗
1

(0, 0).

Thus,

a =
2µ
Λ

(
[β∗1v2(mw7 + w3) + β2v4(nw7 + w5)]

[
w1(a + b)

− (1 − (a + b))(w2 + w3 + w5 + w7 + w8 + w10)
]

(3.49)

+ β∗1v2(mw7 + w3)
[
v6(εw4 + ηw2) − (ηv2w2 + εv4w4)

])
and

b = v2
(
1 − (a + b)

)[
w3 + mw7

]
. (3.50)

From (3.50), b > 0; consequently, from Theorem 3.6,
the COVID-19-TB co-infection model will exhibit backward
bifurcation if a in (3.49) is positive. The parameters that
lead to the backward bifurcation observed in the co-infection
model when RF

o < 1 are η, i.e., rate at which latent TB
individuals become latently infected with COVID-19, and
ε, i.e., rate at which latent COVID-19 individuals become
latently infected with TB. □

This means that the classical condition RF
o < 1 required

for the elimination of the co-infection is necessary but not
sufficient to guarantee adequate control of COVID-19-TB
co-infection. This implies that it will be difficult to manage
COVID-19-TB co-infection. Figure 4 is a diagrammatic
representation of the contents of Subsection 3.3.3.

0 0.5 1 1.5
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0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Unstable EE

Stable EE

Unstable DFE

Stable DFE

Turning point

Figure 4. Simulation showing backward
bifurcation.
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3.4. Uncertainty and sensitivity analysis

As a result the model (2.12) comprising many parameters,
uncertainty will arise. To ascertain the impact of different
parameters of the model, uncertainty and sensitivity analysis
was performed by using Latin hypercube sampling (LHS)
and the partial rank correlation coefficient (PRCC). LHS was
used to sample the 17 parameters required to determine the
reproduction number RF

o , and the PRCC was used for the
global sensitivity analysis of RF

o . For more details on this
method, see [56–58]. The significance of this analysis is that
it helps to identify the parameters that contribute massively
to the spread and control of the co-infection [59]. The signs
of the PRCCs indicate the relationship between the response
function RF

o and the parameters. It is important to note that
this analysis helps to predict the necessary policy measures.
The parameters with negative PRCCs show that they are
negatively correlated, and parameters with positive PRCCs
indicate that they are positively correlated. If the absolute
value of a PRCC of a parameter is greater than or equal to 0.5,
then such a parameter is statistically important. The results
of the computed PRCCs are given in Table 3.

Table 3. The values of the PRCCs

Parameter PRCC Parameter PRCC

υ 0.15957 µ -0.00089
m 0.16899 n 0.41851
γ -0.05719 β1 0.06647
β2 0.87130 τ -0.06119
α -0.01836 ψ 0.01265
χ -0.00265 φ -0.20452
θ -0.01220 δT -0.00526
δC -0.74791 δTC -0.46910
a -0.52019 b -0.56013

4. Results and discussion

Various simulation experiments were carried out by
employing ODE45 in Matlab with the parameter values in
Table 2; the results are presented in Figures 2–12.

The parameter values used were obtained from the
literature, with the references stated in Table 2. It should
be noted that the initial data of the sub-populations used were
hypothetical values. Figure 2 shows to us the possibilities
of eliminating COVID-19 in the population regardless of the
initial size of infected individual provided that RCV

0 < 1. on

the other-hands, if R̃CV
0 > 1 the diseases will persist in the

population, this is clearly shown in Figure 3. Figure 4 shows
the co-existence of the stable disease-free equilibrium and
endemic equilibrium. Thus, The classical condition RF

o < 1
required for the elimination of the co-infection is necessary
but not sufficient to guarantee adequate control of COVID-19-
TB co-infection. Then, this will make it difficult to manage
the COVID-19-TB co-infection.

The results of the uncertainty and sensitivity analysis
using LHS/PRCC are given in Table 3, and the bar plot
of the results is depicted in Figure 5. From the analysis,
the most important parameters, i.e., with |PRCC| ≥ 0.5, are
β2, δC , b, and a, which are the rate of transmission of the
COVID-19, death from COVID-19, the proportion vaccinated
against the COVID-19, and the proportion vaccinated with
BCG. β2 was found to be positively correlated, which means
that its increase will give rise to a corresponding increase
in the value of RF

o . Hence, non-pharmaceutical measures
should be put in place to minimize the transmission rate β2.
However, a and b were found to be negatively correlated,
which signifies that they have decreasing effects on RF

o ,
when they are increased. Thus, increasing the proportion
of people vaccinated against COVID-19 and TB can also
control the incidence of the COVID-19-TB co-infection.
Hence, interventions that can help to increase the vaccinated
proportion should be considered (e.g., adequate funding
and manpower, use of media, community engagement, and
improved access to vaccine).

Figure 5. Bar plot of the PRCCs.
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Figure 6 presents the contour graph to illustrate the impact
of a and b on the reproduction number RF

o of the complete
model. The associated reproduction number RF

o increases
as the proportions a and b of vaccinated people decrease;
this is consistent with the results of the sensitivity analysis.
Figure 7 indicates that, with a low transmission rate of
COVID-19 infection, the proportion of people required to
be vaccinated with BCG and against COVID-19 to have the
reproduction number RF

o be less than unity will be small. The
illustration in Figure 8 depicts the effects of the COVID-19
transmission rate and vaccination proportions a and b on
the associated reproduction number RF

o . It is observed that
lowering the transmission rate and increasing the proportions
a and b reduce the reproduction number RF

o . This means
that a smaller number of people will be co-infected with the
COVID-19-TB if the proportions of people vaccinated with
BCG and against COVID-19 are large and there is a reduced
COVID-19 transmission rate.

Figure 6. Contour graph of the associated
reproduction number of the co-infection as
functions of a and b.

(i)

(ii)

(iii)

Figure 7. Contour graph of the associated
reproduction number of the co-infection as
functions of a and b with different transmission
rates β2.
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(i)

(ii)

Figure 8. 3D plots illustrating the effects of
transmission rate β2 of COVID-19 and vaccinated
proportions a and b on the associated reproduction
number of the co-infection model.

The long-term dynamics of the infectious COVID-19-TB
co-infected population depicted in Figure 9 indicate that co-
infection will persist in the population whenever RF

o > 1.
Moreover, the effect of the rate of transmission of COVID-19
is illustrated in Figure 10. The infectious population of the
co-infected individuals was found to reach the highest peak
within a very short time under the maximum transmission
rate. Hence, the large number of infectious COVID-19-TB
co-infected populations that is subject to a high transmission
rate of COVID-19 should be addressed by implementing
interventions that can reduce the transmission rate.

Figure 9. Long-term dynamics of the infectious
COVID-19-TB co-infected population with β2 =

0.69 when RF
o > 1.

Figure 10. Plot of the infectious COVID-19-TB
co-infected population against time for various
transmission rates β2.

Furthermore, the solution lines of infectious COVID-19-
TB co-infected population when the proportions a and b

were varied simultaneously are depicted in Figure 11. The
population declines as these proportions increase, and this is
related to the interpretation of the sensitivity analysis results.
The plot in the Figure 12 shows the infectious COVID-19-
TB co-infected population when the transmission rate β2
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is varied with different values of a and b. A decrease in
population size was observed, and it is attributed to the
increase in the proportions a and b of vaccinated people.
Hence, interventions that can reduce the rate of transmission
of COVID-19 and interventions targeted at increasing the
proportion of people vaccinated should be concurrently
considered to mitigate the burden of the co-infection.

Figure 11. Plot of the infectious COVID-19-TB
co-infected population against time for varying
proportions a and b.

(i) (ii)

(iii) (iv)

Figure 12. Plot of the infectious COVID-19-TB
co-infected population against time for various
transmission rates β2 different values of a and b.

5. Conclusions

A mathematical model of the dynamics of COVID-19-TB
co-infection has been presented and studied. The disease-
free and endemic equilibria of the two sub-models have
been obtained and found to be globally asymptotically stable
when their control reproduction numbers RTV

o ,RCV
o < 1 and

R̃TV
o , R̃CV

o > 1, respectively. However, the co-infection model
was found to exhibit backward bifurcation. Furthermore,
uncertainty and sensitivity analysis was performed by using
LHS and the PRCC to determine the impact of different
parameters of the model. The simulation results suggest that
a reduction in the rate of transmission and an increment in
the proportions of people vaccinated with BCG and against
TB can lower the number of COVID-19 cases. Therefore,
interventions aimed at reducing the transmission rate and
increasing the proportion of people vaccinated against TB
and COVID-19, such as the use of face masks, good sanitation
practices, massive vaccination funding, programs, and
campaigns, should be prioritized. Based on the limitations
stated earlier, we wish to explore the fractional order of the
model and use real data to simulate and predict the dynamics
of the model in our future research.
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